code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[Any]=13 ,__lowerCAmelCase: Tuple=7 ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=99 ,__lowerCAmelCase: Optional[int]=32 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Any=4 ,__lowerCAmelCase: int=37 ,__lowerCAmelCase: Tuple="gelu" ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Union[str, Any]=512 ,__lowerCAmelCase: Optional[int]=16 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: List[str]=None ,): '''simple docstring''' _lowerCamelCase : int = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : Any = scope def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCamelCase : List[Any] = None _lowerCamelCase : int = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCamelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: Any ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,) def _lowercase ( self: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Dict = NystromformerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = NystromformerForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = NystromformerForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Any = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,start_positions=__lowerCAmelCase ,end_positions=__lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : int = NystromformerForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: str ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : int = NystromformerForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.num_choices _lowerCamelCase : List[Any] = NystromformerForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCamelCase : Optional[Any] = model( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,labels=__lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : str = config_and_inputs _lowerCamelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = NystromformerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = NystromformerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : str = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCamelCase : List[str] = model(__lowerCAmelCase )[0] _lowerCamelCase : Dict = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = "the [MASK] of Belgium is Brussels" _lowerCamelCase : str = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : List[Any] = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) _lowerCamelCase : Optional[int] = tokenizer(__lowerCAmelCase ,return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : Dict = model(encoding.input_ids ).logits _lowerCamelCase : Tuple = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__lowerCAmelCase ) ,"capital" )
46
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase : Union[str, Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowercase__( A , A=None ): require_version(deps[pkg] , A )
170
0
"""simple docstring""" def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> str: # Return True if there is node that has not iterated. _UpperCamelCase : Any = [False] * len(__lowerCAmelCase ) _UpperCamelCase : List[Any] = [] queue.append(__lowerCAmelCase ) _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCAmelCase ) _UpperCamelCase : Dict = True _UpperCamelCase : Dict = u return visited[t] def __lowerCAmelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> List[str]: # This array is filled by BFS and to store path _UpperCamelCase : Tuple = [-1] * (len(__lowerCAmelCase )) _UpperCamelCase : List[Any] = 0 while bfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCamelCase : Union[str, Any] = float("Inf" ) _UpperCamelCase : Union[str, Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[str] = min(__lowerCAmelCase , graph[parent[s]][s] ) _UpperCamelCase : List[str] = parent[s] max_flow += path_flow _UpperCamelCase : Any = sink while v != source: _UpperCamelCase : Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Optional[int] = parent[v] return max_flow _SCREAMING_SNAKE_CASE = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 5 print(ford_fulkerson(graph, source, sink))
239
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
239
1
"""simple docstring""" import random from typing import Any def snake_case ( lowerCAmelCase_ ) -> list[Any]: for _ in range(len(lowerCAmelCase_ ) ): _snake_case = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) _snake_case = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) _snake_case , _snake_case = data[b], data[a] return data if __name__ == "__main__": snake_case = [0, 1, 2, 3, 4, 5, 6, 7] snake_case = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
103
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : List[Any]=7 , lowerCamelCase : List[Any]=True , lowerCamelCase : str=True , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : int=32 , lowerCamelCase : str=5 , lowerCamelCase : str=4 , lowerCamelCase : List[str]=37 , lowerCamelCase : str="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Optional[int]=16 , lowerCamelCase : Any=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=False , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]="None" , lowerCamelCase : Tuple=3 , lowerCamelCase : int=4 , lowerCamelCase : Optional[Any]=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = relative_attention _UpperCAmelCase = position_biased_input _UpperCAmelCase = pos_att_type _UpperCAmelCase = scope def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase = DebertaVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase , token_type_ids=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = DebertaVaForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = DebertaVaForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Tuple: """simple docstring""" _UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : str ) -> str: """simple docstring""" _UpperCAmelCase = DebertaVaForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase = DebertaVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase ) def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCamelCase ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DebertaVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" pass @slow def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _UpperCAmelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] # compare the actual values for a slice. _UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
108
0
from __future__ import annotations def a_ ( _A , _A ) -> str: """simple docstring""" # Checks if the entire collection has been sorted if len(_A ) <= 1 or n <= 1: return insert_next(_A , n - 1 ) rec_insertion_sort(_A , n - 1 ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Checks order between adjacent elements if index >= len(_A ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order snake_case__ , snake_case__ = ( collection[index], collection[index - 1], ) insert_next(_A , index + 1 ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = input("""Enter integers separated by spaces: """) __UpperCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
372
def a_ ( _A = 4000000 ) -> int: """simple docstring""" snake_case__ = [0, 1] snake_case__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case__ = 0 for j in range(len(_A ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
372
1
from collections import namedtuple import requests from lxml import html # type: ignore a_ :Tuple = namedtuple('covid_data', 'cases deaths recovered') def a ( A__ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(A__ ).content ).xpath(A__ ) ) a_ :str = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __lowerCamelCase = '''facebook/wmt19-en-de''' __lowerCamelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __lowerCamelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __lowerCamelCase = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test __lowerCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __lowerCamelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save __lowerCamelCase = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
716
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class a__ ( lowerCAmelCase_ ): lowerCamelCase__: str = """summarization""" lowerCamelCase__: List[str] = ["""loss"""] lowerCamelCase__: List[str] = ROUGE_KEYS lowerCamelCase__: Union[str, Any] = """rouge2""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: a_ : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase_ , num_labels=lowerCamelCase_ , mode=self.mode , **lowerCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) a_ : Any = Path(self.output_dir ) / """metrics.json""" a_ : Tuple = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) a_ : Dict = 0 a_ : Optional[Any] = defaultdict(lowerCamelCase_ ) a_ : str = self.config.model_type a_ : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size a_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } a_ : int = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } a_ : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} a_ : Optional[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) a_ : int = get_git_info()["""repo_sha"""] a_ : Union[str, Any] = hparams.num_workers a_ : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase_ ): a_ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] a_ : List[str] = self.decoder_start_token_id a_ : Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) a_ : Union[str, Any] = False a_ : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: a_ : Union[str, Any] = self.hparams.eval_max_gen_length else: a_ : Optional[Any] = self.model.config.max_length a_ : Optional[int] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Dict[str, torch.Tensor] ): a_ : Optional[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) a_ : List[Any] = True return readable_batch def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): return self.model(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : List[int] ): a_ : str = self.tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return lmap(str.strip , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : dict ): a_ : int = self.tokenizer.pad_token_id a_ , a_ : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] a_ : Optional[Any] = batch["""labels"""] if isinstance(self.model , lowerCamelCase_ ): a_ : List[Any] = self.model._shift_right(lowerCamelCase_ ) else: a_ : Dict = shift_tokens_right(lowerCamelCase_ , lowerCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero a_ : int = decoder_input_ids self.save_readable_batch(lowerCamelCase_ ) a_ : str = self(lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , use_cache=lowerCamelCase_ ) a_ : int = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id a_ : Any = nn.CrossEntropyLoss(ignore_index=lowerCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size a_ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: a_ : int = nn.functional.log_softmax(lowerCamelCase_ , dim=-1 ) a_ , a_ : str = label_smoothed_nll_loss( lowerCamelCase_ , lowerCamelCase_ , self.hparams.label_smoothing , ignore_index=lowerCamelCase_ ) return (loss,) @property def UpperCAmelCase( self : Union[str, Any] ): return self.tokenizer.pad_token_id def UpperCAmelCase( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): a_ : Dict = self._step(lowerCamelCase_ ) a_ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase_ ) ) # tokens per batch a_ : str = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() a_ : Optional[int] = batch["""input_ids"""].shape[0] a_ : int = batch["""input_ids"""].eq(self.pad ).sum() a_ : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]="val" ): self.step_count += 1 a_ : Optional[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} a_ : Tuple = losses["""loss"""] a_ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } a_ : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) a_ : torch.FloatTensor = torch.tensor(lowerCamelCase_ ).type_as(lowerCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase_ ) a_ : str = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} a_ : Union[str, Any] = self.step_count self.metrics[prefix].append(lowerCamelCase_ ) # callback writes this to self.metrics_save_path a_ : List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCAmelCase( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): return calculate_rouge(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int , lowerCamelCase_ : dict ): a_ : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') a_ : Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) a_ : Optional[int] = (time.time() - ta) / batch["""input_ids"""].shape[0] a_ : List[str] = self.ids_to_clean_text(lowerCamelCase_ ) a_ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) a_ : Tuple = self._step(lowerCamelCase_ ) a_ : List[str] = dict(zip(self.loss_names , lowerCamelCase_ ) ) a_ : Dict = self.calc_generative_metrics(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = np.mean(lmap(lowerCamelCase_ , lowerCamelCase_ ) ) base_metrics.update(gen_time=lowerCamelCase_ , gen_len=lowerCamelCase_ , preds=lowerCamelCase_ , target=lowerCamelCase_ , **lowerCamelCase_ ) return base_metrics def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : str , lowerCamelCase_ : Any ): return self.validation_epoch_end(lowerCamelCase_ , prefix="""test""" ) def UpperCAmelCase( self : Any , lowerCamelCase_ : Any ): a_ : List[str] = self.n_obs[type_path] a_ : Dict = self.target_lens[type_path] a_ : Optional[Any] = self.dataset_class( self.tokenizer , type_path=lowerCamelCase_ , n_obs=lowerCamelCase_ , max_target_length=lowerCamelCase_ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): a_ : List[str] = self.get_dataset(lowerCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": a_ : List[str] = dataset.make_sortish_sampler(lowerCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": a_ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) def UpperCAmelCase( self : Any ): a_ : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase_ ) return dataloader def UpperCAmelCase( self : Dict ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase( self : List[Any] ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): BaseTransformer.add_model_specific_args(lowerCamelCase_ , lowerCamelCase_ ) add_generic_args(lowerCamelCase_ , lowerCamelCase_ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCamelCase_ , default=lowerCamelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCamelCase_ , default=5_0_0 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCamelCase_ , default="""summarization""" , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCamelCase_ , default=0.0 , required=lowerCamelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCamelCase_ , default=1 , required=lowerCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = """translation""" lowerCamelCase__: int = ["""loss"""] lowerCamelCase__: List[str] = ["""bleu"""] lowerCamelCase__: Optional[Any] = """bleu""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ): super().__init__(lowerCamelCase_ , **lowerCamelCase_ ) a_ : Union[str, Any] = hparams.src_lang a_ : Optional[int] = hparams.tgt_lang def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): return calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) def _a ( __UpperCamelCase , __UpperCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__UpperCamelCase ) check_output_dir(__UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: a_ : SummarizationModule = SummarizationModule(__UpperCamelCase ) else: a_ : SummarizationModule = TranslationModule(__UpperCamelCase ) a_ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): a_ : Union[str, Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = os.environ.get("""WANDB_PROJECT""" , __UpperCamelCase ) a_ : str = WandbLogger(name=model.output_dir.name , project=__UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: a_ : Any = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: a_ : str = False a_ : Tuple = args.val_metric == """loss""" a_ : pl.Trainer = generic_train( __UpperCamelCase , __UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCamelCase ) , early_stopping_callback=__UpperCamelCase , logger=__UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model a_ : Union[str, Any] = """""" a_ : int = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__UpperCamelCase ) ) if checkpoints: a_ : Tuple = checkpoints[-1] a_ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
478
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = {} with open(_lowercase , 'r' ) as file: for line_number, line in enumerate(_lowercase ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(_lowercase , _lowercase ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = '.'.join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if 'lm_head' in full_key else value[0] __snake_case = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> List[Any]: """simple docstring""" __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , _lowercase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = 'weight' else: __UpperCamelCase = None if hf_dict is not None: rename_dict(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return is_used return is_used def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(_lowercase , _lowercase , _lowercase ) if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False ) -> Dict: """simple docstring""" if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(_lowercase ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(_lowercase ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(_lowercase ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) feature_extractor.save_pretrained(_lowercase ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(_lowercase , 'vocab.json' ) if not os.path.isdir(_lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowercase , _lowercase ) __UpperCamelCase = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , ) __UpperCamelCase = True if config.feat_extract_norm == 'layer' else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) __UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __UpperCamelCase = WavaVecaForCTC(_lowercase ) else: __UpperCamelCase = WavaVecaForPreTraining(_lowercase ) if is_finetuned or is_seq_class: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) __UpperCamelCase = fairseq.tasks.setup_task(_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) __UpperCamelCase = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __snake_case = parser.parse_args() __snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> str: """simple docstring""" A__ : Union[str, Any] =10 A__ : Dict =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) A__ : Dict =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(__snake_case ) ), }, features=__snake_case, ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[int] ) -> int: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __snake_case = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int: """simple docstring""" A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt""" A__ : List[Any] =FILE_CONTENT with open(__snake_case, """w""" ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> str: """simple docstring""" import bza A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" A__ : str =bytes(__snake_case, """utf-8""" ) with bza.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int: """simple docstring""" import gzip A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) A__ : List[str] =bytes(__snake_case, """utf-8""" ) with gzip.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" A__ : List[Any] =bytes(__snake_case, """utf-8""" ) with lza.frame.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> List[str]: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__snake_case, """w""" ) as archive: archive.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> int: """simple docstring""" import tarfile A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str] ) -> str: """simple docstring""" import lzma A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" A__ : str =bytes(__snake_case, """utf-8""" ) with lzma.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : str ) -> Union[str, Any]: """simple docstring""" import zipfile A__ : Any =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd A__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" A__ : Any =bytes(__snake_case, """utf-8""" ) with zstd.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """file.xml""" A__ : Optional[Any] =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__snake_case, """w""" ) as f: f.write(__snake_case ) return filename __snake_case = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __snake_case = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __snake_case = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __snake_case = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __snake_case = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Tuple: """simple docstring""" A__ : Dict =datasets.Dataset.from_dict(__snake_case ) A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: A__ : Any =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__snake_case, """w""", newline="""""" ) as f: A__ : Tuple =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__snake_case, """w""", newline="""""" ) as f: A__ : str =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> Tuple: """simple docstring""" import bza A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__snake_case, """rb""" ) as f: A__ : Optional[Any] =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int], __snake_case : Dict ) -> List[str]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Any, __snake_case : List[Any], __snake_case : str ) -> Optional[int]: """simple docstring""" A__ : Tuple =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(csv_path.replace(""".csv""", """.CSV""" ) ) ) f.write(__snake_case, arcname=os.path.basename(csva_path.replace(""".csv""", """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Tuple, __snake_case : Any ) -> str: """simple docstring""" A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) A__ : Optional[int] =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__snake_case, """wb""" ) as f: A__ : List[str] =pq.ParquetWriter(__snake_case, schema=__snake_case ) A__ : Tuple =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]}, schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> str: """simple docstring""" A__ : Union[str, Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A__ : List[Any] ={"""data""": DATA} with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A__ : Dict ={"""data""": DATA_DICT_OF_LISTS} with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> int: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> str: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str ) -> Dict: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Dict: """simple docstring""" A__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" import gzip A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__snake_case, """rb""" ) as orig_file: with gzip.open(__snake_case, """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Any: """simple docstring""" import gzip A__ : int =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__snake_case, """rb""" ) as orig_file: with gzip.open(__snake_case, """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : str, __snake_case : Tuple ) -> Optional[int]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : str, __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str, __snake_case : Any ) -> List[str]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[str], __snake_case : List[str], __snake_case : Any ) -> Union[str, Any]: """simple docstring""" A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Any: """simple docstring""" A__ : int =["""0""", """1""", """2""", """3"""] A__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] =["""0""", """1""", """2""", """3"""] A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> Optional[int]: """simple docstring""" A__ : Optional[int] =["""0""", """1""", """2""", """3"""] A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any, __snake_case : int ) -> str: """simple docstring""" A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any], __snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : Tuple ) -> int: """simple docstring""" A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__snake_case, arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : List[str] ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__snake_case, """w""", encoding="""utf-8""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" return os.path.join("""tests""", """features""", """data""", """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" return os.path.join("""tests""", """features""", """data""", """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : int, __snake_case : List[str] ) -> int: """simple docstring""" A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ).replace(""".jpg""", """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int] ) -> str: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""", """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""", """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
class UpperCamelCase: def __init__( self : Any ) -> List[str]: '''simple docstring''' __snake_case = 0 __snake_case = 0 __snake_case = {} def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: '''simple docstring''' if vertex not in self.adjacency: __snake_case = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: '''simple docstring''' self.add_vertex(SCREAMING_SNAKE_CASE ) self.add_vertex(SCREAMING_SNAKE_CASE ) if head == tail: return __snake_case = weight __snake_case = weight def SCREAMING_SNAKE_CASE_ ( self : str ) -> int: '''simple docstring''' __snake_case = self.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __snake_case = list(edges[i] ) edges.sort(key=lambda SCREAMING_SNAKE_CASE : e[2] ) for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __snake_case = edges[i][2] + 1 for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = weight __snake_case = weight def __str__( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = "" for tail in self.adjacency: for head in self.adjacency[tail]: __snake_case = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' __snake_case = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Tuple=None ) -> Tuple: '''simple docstring''' __snake_case = Graph() if vertices is None: __snake_case = [] if edges is None: __snake_case = [] for vertex in vertices: g.add_vertex(SCREAMING_SNAKE_CASE ) for edge in edges: g.add_edge(*SCREAMING_SNAKE_CASE ) return g class UpperCamelCase: def __init__( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case = {} __snake_case = {} def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self.parent ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Any ) -> List[str]: '''simple docstring''' if item in self.parent: return self.find(SCREAMING_SNAKE_CASE ) __snake_case = item __snake_case = 0 return item def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(SCREAMING_SNAKE_CASE ) if item != self.parent[item]: __snake_case = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: '''simple docstring''' __snake_case = self.find(SCREAMING_SNAKE_CASE ) __snake_case = self.find(SCREAMING_SNAKE_CASE ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __snake_case = roota return roota if self.rank[roota] < self.rank[roota]: __snake_case = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __snake_case = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE : Dict ) -> Tuple: '''simple docstring''' __snake_case = graph.num_vertices __snake_case = Graph.UnionFind() __snake_case = [] while num_components > 1: __snake_case = {} for vertex in graph.get_vertices(): __snake_case = -1 __snake_case = graph.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = union_find.find(SCREAMING_SNAKE_CASE ) __snake_case = union_find.find(SCREAMING_SNAKE_CASE ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __snake_case , __snake_case , __snake_case = cheap_edge[vertex] if union_find.find(SCREAMING_SNAKE_CASE ) != union_find.find(SCREAMING_SNAKE_CASE ): union_find.union(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) mst_edges.append(cheap_edge[vertex] ) __snake_case = num_components - 1 __snake_case = Graph.build(edges=SCREAMING_SNAKE_CASE ) return mst
371
def _lowerCAmelCase ( _lowerCAmelCase = 100 ) -> int: '''simple docstring''' __snake_case = n * (n + 1) * (2 * n + 1) / 6 __snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
371
1
def snake_case (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def snake_case (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ = y, x % y return abs(UpperCamelCase ) def snake_case (): '''simple docstring''' try: lowerCamelCase__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ = int(nums[0] ) lowerCamelCase__ = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
235
def snake_case (UpperCamelCase : int , UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCamelCase__ = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] lowerCamelCase__ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__ = primes[:idx] break lowerCamelCase__ , lowerCamelCase__ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__ = False for r in range(UpperCamelCase ): lowerCamelCase__ = pow(UpperCamelCase , d * 2**r , UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def snake_case (): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
235
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A = logging.get_logger(__name__) class __snake_case ( a__): def __init__( self, *A, **A ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.', A, ) super().__init__(*A, **A )
320
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=32 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=False ,snake_case=True ,snake_case="None" ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : List[Any] = parent lowercase : int = batch_size lowercase : Any = seq_length lowercase : Dict = is_training lowercase : int = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : Optional[Any] = use_labels lowercase : Union[str, Any] = vocab_size lowercase : List[str] = hidden_size lowercase : str = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : List[str] = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : List[str] = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : List[str] = type_sequence_label_size lowercase : Union[str, Any] = initializer_range lowercase : str = num_labels lowercase : Tuple = num_choices lowercase : List[str] = relative_attention lowercase : List[Any] = position_biased_input lowercase : List[str] = pos_att_type lowercase : Tuple = scope def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = None if self.use_input_mask: lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) lowercase : List[Any] = None if self.use_token_type_ids: lowercase : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Optional[int] = None lowercase : Dict = None lowercase : str = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = DebertaVaModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : str = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case )[0] lowercase : Tuple = model(snake_case ,token_type_ids=snake_case )[0] lowercase : Optional[Any] = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = DebertaVaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = self.num_labels lowercase : Dict = DebertaVaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : Dict = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_labels lowercase : Optional[int] = DebertaVaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[Any] = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = DebertaVaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Tuple = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,start_positions=snake_case ,end_positions=snake_case ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = DebertaVaForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Optional[Any] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] = config_and_inputs lowercase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _a : str= ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _a : Any= True _a : List[Any]= False _a : List[Any]= False _a : Any= False _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = DebertaVaModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[Any] = DebertaVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) lowercase : Any = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowercase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : str = model(snake_case ,attention_mask=snake_case )[0] # compare the actual values for a slice. lowercase : Tuple = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) ,f"{output[:, 1:4, 1:4]}" )
336
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
106
import logging import os import threading import time try: import warnings except ImportError: __UpperCamelCase : Any = None try: import msvcrt except ImportError: __UpperCamelCase : Optional[Any] = None try: import fcntl except ImportError: __UpperCamelCase : Union[str, Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __UpperCamelCase : Any = OSError # Data # ------------------------------------------------ __UpperCamelCase : Optional[int] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] __UpperCamelCase : Dict = "3.0.12" __UpperCamelCase : str = None def _a ( ): """simple docstring""" global _logger UpperCamelCase__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class __magic_name__ ( __lowerCAmelCase): def __init__( self : Any , lowerCamelCase__ : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = lock_file return None def __str__( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Tuple = F"The file lock '{self.lock_file}' could not be acquired." return temp class __magic_name__ : def __init__( self : List[str] , lowerCamelCase__ : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[int] = lock return None def __enter__( self : Tuple ) -> str: '''simple docstring''' return self.lock def __exit__( self : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str ) -> Any: '''simple docstring''' self.lock.release() return None class __magic_name__ : def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=-1 , lowerCamelCase__ : Any=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase__ : List[Any] = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. UpperCamelCase__ : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase__ : int = None # The default timeout value. UpperCamelCase__ : Optional[Any] = timeout # We use this lock primarily for the lock counter. UpperCamelCase__ : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase__ : Any = 0 return None @property def UpperCAmelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return self._lock_file @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = float(lowerCamelCase__ ) return None def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' raise NotImplementedError() @property def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : List[str]=0.05 ) -> int: '''simple docstring''' if timeout is None: UpperCamelCase__ : int = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase__ : int = id(self ) UpperCamelCase__ : List[Any] = self._lock_file UpperCamelCase__ : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase__ : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int]=False ) -> Any: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase__ : List[str] = id(self ) UpperCamelCase__ : Union[str, Any] = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() UpperCamelCase__ : Optional[Any] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.acquire() return self def __exit__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' self.release() return None def __del__( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.release(force=lowerCamelCase__ ) return None def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> str: '''simple docstring''' UpperCamelCase__ : str = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: UpperCamelCase__ : Optional[int] = os.path.dirname(lowerCamelCase__ ) UpperCamelCase__ : List[str] = str(hash(lowerCamelCase__ ) ) UpperCamelCase__ : Optional[int] = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class __magic_name__ ( __lowerCAmelCase): def __init__( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str=-1 , lowerCamelCase__ : int=None ) -> Optional[int]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) UpperCamelCase__ : int = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase__ : Union[str, Any] = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: UpperCamelCase__ : Union[str, Any] = fd return None def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : str = self._lock_file_fd UpperCamelCase__ : List[str] = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __magic_name__ ( __lowerCAmelCase): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : str=-1 , lowerCamelCase__ : int=None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase__ : int = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: UpperCamelCase__ : Any = fd return None def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = self._lock_file_fd UpperCamelCase__ : int = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase__ : Any = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: UpperCamelCase__ : Optional[Any] = fd return None def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' os.close(self._lock_file_fd ) UpperCamelCase__ : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __UpperCamelCase : Tuple = None if msvcrt: __UpperCamelCase : str = WindowsFileLock elif fcntl: __UpperCamelCase : Optional[Any] = UnixFileLock else: __UpperCamelCase : Optional[Any] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
106
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) for i in range(lowercase ): for j in range(i + 1 ,lowercase ): if numbers[j] < numbers[i]: _UpperCAmelCase , _UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
277
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a ( lowerCAmelCase_ ): _snake_case : Dict = CustomTokenizer pass
277
1
"""simple docstring""" from __future__ import annotations def _A ( _a : int , _a : int ): """simple docstring""" A = [] create_all_state(1 , _a , _a , [] , _a ) return result def _A ( _a : int , _a : int , _a : int , _a : list[int] , _a : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_a , total_number - level + 2 ): current_list.append(_a ) create_all_state(i + 1 , _a , level - 1 , _a , _a ) current_list.pop() def _A ( _a : list[list[int]] ): """simple docstring""" for i in total_list: print(*_a ) if __name__ == "__main__": UpperCAmelCase =4 UpperCAmelCase =2 UpperCAmelCase =generate_all_combinations(n, k) print_all_state(total_list)
255
"""simple docstring""" def _A ( _a : float , _a : float , _a : float , _a : float , _a : float , ): """simple docstring""" A = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: A = 1 - (matter_density + radiation_density + dark_energy) A = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCAmelCase =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
255
1
def _A ( _lowercase = 10_00 ) -> int: """simple docstring""" __UpperCamelCase = 2**power __UpperCamelCase = str(_lowercase ) __UpperCamelCase = list(_lowercase ) __UpperCamelCase = 0 for i in list_num: sum_of_num += int(_lowercase ) return sum_of_num if __name__ == "__main__": __snake_case = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) __snake_case = solution(power) print('''Sum of the digits is: ''', result)
1
import os from distutils.util import strtobool def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): for e in env_keys: lowercase = int(os.environ.get(lowerCAmelCase__ ,-1 ) ) if val >= 0: return val return default def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return strtobool(lowerCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__="no" ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return value
428
0
from __future__ import annotations from random import random class __magic_name__ : '''simple docstring''' def __init__( self: Tuple , _lowerCamelCase: int | None = None ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = random() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def __repr__( self: Optional[Any] ): from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = str(self.value ) + ''' ''' SCREAMING_SNAKE_CASE_ = str(self.left or '''''' ) SCREAMING_SNAKE_CASE_ = str(self.right or '''''' ) return value + left + right def a (_lowerCAmelCase , _lowerCAmelCase ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split(root.left , _lowerCAmelCase ) return left, root else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split(root.right , _lowerCAmelCase ) return root, right def a (_lowerCAmelCase , _lowerCAmelCase ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: SCREAMING_SNAKE_CASE_ = merge(left.right , _lowerCAmelCase ) return left else: SCREAMING_SNAKE_CASE_ = merge(_lowerCAmelCase , right.left ) return right def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = Node(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(merge(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split(_lowerCAmelCase , value - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(_lowerCAmelCase , _lowerCAmelCase ) def a (_lowerCAmelCase ): if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def a (_lowerCAmelCase , _lowerCAmelCase ): for arg in args.split(): if arg[0] == "+": SCREAMING_SNAKE_CASE_ = insert(_lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": SCREAMING_SNAKE_CASE_ = erase(_lowerCAmelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def a (): SCREAMING_SNAKE_CASE_ = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) SCREAMING_SNAKE_CASE_ = input() while args != "q": SCREAMING_SNAKE_CASE_ = interact_treap(_lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): '''simple docstring''' def __init__( self: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any]=7 , _lowerCamelCase: int=3 , _lowerCamelCase: Optional[int]=18 , _lowerCamelCase: Optional[Any]=30 , _lowerCamelCase: Any=4_00 , _lowerCamelCase: List[str]=True , _lowerCamelCase: str=None , _lowerCamelCase: Union[str, Any]=True , _lowerCamelCase: Union[str, Any]=False , _lowerCamelCase: int=True , _lowerCamelCase: Any=True , _lowerCamelCase: List[str]=[0.5, 0.5, 0.5] , _lowerCamelCase: Dict=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else {'''height''': 18, '''width''': 20} SCREAMING_SNAKE_CASE_ = do_thumbnail SCREAMING_SNAKE_CASE_ = do_align_axis SCREAMING_SNAKE_CASE_ = do_pad SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std def _A ( self: str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = DonutImageProcessor if is_vision_available() else None def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = DonutImageProcessingTester(self ) @property def _A ( self: List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _A ( self: List[Any] ): pass @is_flaky() def _A ( self: int ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _A ( self: Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _A ( self: List[str] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
89
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _a : str = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _a : str = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _a : int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _a : int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _a : Optional[int] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _a : Union[str, Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _a : Any = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _a () -> str: """simple docstring""" __snake_case , __snake_case = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) __snake_case = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __snake_case , __snake_case = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a (lowercase__ : int = 1_0_0 ) -> Optional[int]: """simple docstring""" return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : Optional[int] , lowercase__ : Any ) -> Dict: """simple docstring""" assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> List[Any]: """simple docstring""" assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowercase__ ) def _a (lowercase__ : int , lowercase__ : Tuple , lowercase__ : List[str] ) -> str: """simple docstring""" __snake_case = PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : str , lowercase__ : int ) -> Any: """simple docstring""" assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : List[str] , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowercase__ ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> str: """simple docstring""" assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _a (lowercase__ : int , lowercase__ : int , lowercase__ : List[str] ) -> str: """simple docstring""" assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def _a () -> Any: """simple docstring""" __snake_case = [PokerHand(lowercase__ ) for hand in SORTED_HANDS] __snake_case = poker_hands.copy() shuffle(lowercase__ ) __snake_case = chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def _a () -> str: """simple docstring""" # Test that five high straights are compared correctly. __snake_case = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a () -> Dict: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __snake_case = PokerHand('2C 4S AS 3D 5C' ) __snake_case = True __snake_case = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a () -> Any: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file __snake_case = 0 __snake_case = os.path.abspath(os.path.dirname(lowercase__ ) ) __snake_case = os.path.join(lowercase__ , 'poker_hands.txt' ) with open(lowercase__ ) as file_hand: for line in file_hand: __snake_case = line[:1_4].strip() __snake_case = line[1_5:].strip() __snake_case , __snake_case = PokerHand(lowercase__ ), PokerHand(lowercase__ ) __snake_case = player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
56
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ : Dict = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowerCAmelCase ( A__ ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def _lowerCAmelCase ( A__ ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase__ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
703
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): __a = tempfile.mkdtemp() __a = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __a = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], """do_convert_rgb""": True, } __a = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__A , __A ) def snake_case_ ( self , **__A ): return BertTokenizer.from_pretrained(self.tmpdirname , **__A ) def snake_case_ ( self , **__A ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__A ) def snake_case_ ( self , **__A ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__A ) def snake_case_ ( self ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ): __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = self.get_image_processor() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) __a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) __a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def snake_case_ ( self ): __a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) __a = self.get_image_processor(do_normalize=__A ) __a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def snake_case_ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) __a = self.prepare_image_inputs() __a = image_processor(__A , return_tensors="""np""" ) __a = processor(images=__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) __a = """Alexandra,T-shirt的价格是15便士。""" __a = processor(text=__A ) __a = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) __a = """Alexandra,T-shirt的价格是15便士。""" __a = self.prepare_image_inputs() __a = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def snake_case_ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(__A ) __a = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def snake_case_ ( self ): __a = self.get_image_processor() __a = self.get_tokenizer() __a = ChineseCLIPProcessor(tokenizer=__A , image_processor=__A ) __a = """Alexandra,T-shirt的价格是15便士。""" __a = self.prepare_image_inputs() __a = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
328
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = (1 - _cos) / 2 snake_case__ = 1 - _cos snake_case__ = 1 + alpha snake_case__ = -2 * _cos snake_case__ = 1 - alpha snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = (1 + _cos) / 2 snake_case__ = -1 - _cos snake_case__ = 1 + alpha snake_case__ = -2 * _cos snake_case__ = 1 - alpha snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = _sin / 2 snake_case__ = 0 snake_case__ = -ba snake_case__ = 1 + alpha snake_case__ = -2 * _cos snake_case__ = 1 - alpha snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float = 1 / sqrt(2 ) ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = 1 - alpha snake_case__ = -2 * _cos snake_case__ = 1 + alpha snake_case__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = 10 ** (gain_db / 40) snake_case__ = 1 + alpha * big_a snake_case__ = -2 * _cos snake_case__ = 1 - alpha * big_a snake_case__ = 1 + alpha / big_a snake_case__ = -2 * _cos snake_case__ = 1 - alpha / big_a snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = 10 ** (gain_db / 40) snake_case__ = (big_a + 1) - (big_a - 1) * _cos snake_case__ = (big_a + 1) + (big_a - 1) * _cos snake_case__ = (big_a - 1) - (big_a + 1) * _cos snake_case__ = (big_a - 1) + (big_a + 1) * _cos snake_case__ = 2 * sqrt(snake_case_ ) * alpha snake_case__ = big_a * (pmc + aaa) snake_case__ = 2 * big_a * mpc snake_case__ = big_a * (pmc - aaa) snake_case__ = ppmc + aaa snake_case__ = -2 * pmpc snake_case__ = ppmc - aaa snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( a : int , a : int , a : float , a : float = 1 / sqrt(2 ) , ): snake_case__ = tau * frequency / samplerate snake_case__ = sin(snake_case_ ) snake_case__ = cos(snake_case_ ) snake_case__ = _sin / (2 * q_factor) snake_case__ = 10 ** (gain_db / 40) snake_case__ = (big_a + 1) - (big_a - 1) * _cos snake_case__ = (big_a + 1) + (big_a - 1) * _cos snake_case__ = (big_a - 1) - (big_a + 1) * _cos snake_case__ = (big_a - 1) + (big_a + 1) * _cos snake_case__ = 2 * sqrt(snake_case_ ) * alpha snake_case__ = big_a * (ppmc + aaa) snake_case__ = -2 * big_a * pmpc snake_case__ = big_a * (ppmc - aaa) snake_case__ = pmc + aaa snake_case__ = 2 * mpc snake_case__ = pmc - aaa snake_case__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
718
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _UpperCAmelCase ( a : int=32 , a : int=10 , a : Tuple=100 , a : str=1026 , a : Union[str, Any]=True , a : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , a : Tuple="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set snake_case__ , snake_case__ = generate_datasets( a , a , number=a , min_len=1026 , trim=a ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model snake_case__ = load_gpta("""gpt2""" ).to(a ) print("""computing perplexity on objective set""" ) snake_case__ = compute_perplexity(a , a , a ).item() print("""perplexity on objective set:""" , a ) # collect igf pairs and save to file demo.jbl collect_objective_set(a , a , a , a , a , a , a , a ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _UpperCAmelCase ( a : int , a : Dict=15 , a : Optional[int]=128 , a : str=100 , a : Optional[int]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model snake_case__ = SecondaryLearner(a ) # Train secondary learner snake_case__ = train_secondary_learner( a , a , max_epochs=a , batch_size=a , eval_freq=100 , igf_model_path=a , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _UpperCAmelCase ( a : Tuple , a : List[Any] , a : str , a : List[Any]=32 , a : Any=1000 , a : str=16 , a : Tuple=1.0 , a : str=recopy_gpta , a : Any=None , a : Optional[int]=10 , a : Tuple="gpt2_finetuned.pt" , ): snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) snake_case__ = RandomSampler(a ) snake_case__ = DataLoader(a , sampler=a ) snake_case__ = max_steps // (len(a )) + 1 snake_case__ = 0 snake_case__ = torch.zeros((1, context_len) , dtype=torch.long , device=a ) snake_case__ , snake_case__ , snake_case__ = recopy_model(a , a , a ) model.train() if secondary_learner is not None: secondary_learner.to(a ) secondary_learner.eval() snake_case__ = [] snake_case__ = 0 snake_case__ = [] snake_case__ = [] # Compute the performance of the transformer model at the beginning snake_case__ = compute_perplexity(a , a , a ) test_perps.append(a ) print("""Test perplexity, step""" , a , """:""" , a ) for epoch in range(int(a ) ): for step, example in enumerate(a ): torch.cuda.empty_cache() snake_case__ = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case__ = model(a , labels=a ) snake_case__ = True if secondary_learner is not None: snake_case__ = secondary_learner.forward( torch.tensor(a , dtype=torch.long , device=a ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case__ = -1 if predicted_q < threshold: snake_case__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case__ = compute_perplexity(a , a , a ) test_perps.append(a ) print("""Test perplexity, step""" , a , """:""" , a ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=a , type=a , required=a , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=a , type=a , required=a , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=a , default=a , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=a , default=a , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=a , type=a , required=a , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=a , type=a , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=a , default=a , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=a , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=a , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=a , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=a , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=a , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=a , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=a , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=a , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=a , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=a , type=a , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=a , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=a , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=a , type=a , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=a , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner snake_case__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner snake_case__ = training_secondary_learner( a , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case__ , snake_case__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=a ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a , a , a , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=a , secondary_learner=a , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
99
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : Optional[Any] ) -> List[Any]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase : Tuple = TapasConfig.from_json_file(_lowerCAmelCase ) # set absolute/relative position embeddings parameter _UpperCAmelCase : Dict = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase : int = 4 _UpperCAmelCase : Union[str, Any] = True # hparam_utils.py hparams _UpperCAmelCase : int = 0.664694 _UpperCAmelCase : Dict = 0.207951 _UpperCAmelCase : Union[str, Any] = 0.121194 _UpperCAmelCase : Dict = True _UpperCAmelCase : Dict = True _UpperCAmelCase : int = False _UpperCAmelCase : Optional[Any] = 0.0352513 _UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : List[str] = False # hparam_utils.py hparams _UpperCAmelCase : Optional[int] = 36.4519 _UpperCAmelCase : Optional[Any] = 0.903421 _UpperCAmelCase : Union[str, Any] = 222.088 _UpperCAmelCase : Tuple = True _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : int = 0.763141 _UpperCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "TABFACT": _UpperCAmelCase : Optional[int] = TapasForSequenceClassification(config=_lowerCAmelCase ) elif task == "MLM": _UpperCAmelCase : Union[str, Any] = TapasForMaskedLM(config=_lowerCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase : List[Any] = TapasModel(config=_lowerCAmelCase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowerCAmelCase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""", model_max_length=512 ) tokenizer.save_pretrained(_lowerCAmelCase ) print("""Used relative position embeddings:""", model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
238
"""simple docstring""" import argparse import datetime def UpperCamelCase ( _lowerCAmelCase : str ) -> str: _UpperCAmelCase : List[str] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _UpperCAmelCase : List[str] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCAmelCase ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month _UpperCAmelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) _UpperCAmelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _UpperCAmelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _UpperCAmelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _UpperCAmelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _UpperCAmelCase : List[str] = datetime.date(int(_lowerCAmelCase ), int(_lowerCAmelCase ), int(_lowerCAmelCase ) ) # Start math if m <= 2: _UpperCAmelCase : int = y - 1 _UpperCAmelCase : List[str] = m + 12 # maths var _UpperCAmelCase : int = int(str(_lowerCAmelCase )[:2] ) _UpperCAmelCase : int = int(str(_lowerCAmelCase )[2:] ) _UpperCAmelCase : int = int(2.6 * m - 5.39 ) _UpperCAmelCase : int = int(c / 4 ) _UpperCAmelCase : int = int(k / 4 ) _UpperCAmelCase : int = int(d + k ) _UpperCAmelCase : int = int(t + u + v + x ) _UpperCAmelCase : int = int(z - (2 * c) ) _UpperCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _UpperCAmelCase : str = f'''Your date {date_input}, is a {days[str(_lowerCAmelCase )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCamelCase__ : int = parser.parse_args() zeller(args.date_input)
238
1
'''simple docstring''' import cva import numpy as np class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' if k in (0.0_4, 0.0_6): __lowercase = k __lowercase = window_size else: raise ValueError('''invalid k value''' ) def __str__(self ) -> str: '''simple docstring''' return str(self.k ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' __lowercase = cva.imread(_lowerCamelCase ,0 ) __lowercase , __lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(_lowerCamelCase ,cva.COLOR_GRAY2RGB ) __lowercase , __lowercase = np.gradient(_lowerCamelCase ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.0_4 __lowercase = self.window_size // 2 for y in range(_lowerCamelCase ,h - offset ): for x in range(_lowerCamelCase ,w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,255 ) return color_img, corner_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = HarrisCorner(0.0_4, 3) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class A_ ( __a , __a ): _A :Optional[int] = 1 @register_to_config def __init__( self : int , snake_case__ : int = 10_00 , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(snake_case__ ) # standard deviation of the initial noise distribution lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase = 4 # running values lowercase = [] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): lowercase = num_inference_steps lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase = torch.sin(steps * math.pi / 2 ) ** 2 lowercase = (1.0 - self.betas**2) ** 0.5 lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase = timesteps.to(snake_case__ ) lowercase = [] def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowercase = (self.timesteps == timestep).nonzero().item() lowercase = timestep_index + 1 lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case__ ) if len(self.ets ) == 1: lowercase = self.ets[-1] elif len(self.ets ) == 2: lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase = self._get_prev_sample(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , *snake_case__ : Dict , **snake_case__ : Dict ): return sample def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Dict , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[int] ): lowercase = self.alphas[timestep_index] lowercase = self.betas[timestep_index] lowercase = self.alphas[prev_timestep_index] lowercase = self.betas[prev_timestep_index] lowercase = (sample - sigma * ets) / max(snake_case__ , 1E-8 ) lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): return self.config.num_train_timesteps
428
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( __a , __a , unittest.TestCase ): _A :List[Any] = VQModel _A :Any = '''sample''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : int=(32, 32) ): lowercase = 4 lowercase = 3 lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : str ): return (3, 32, 32) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return (3, 32, 32) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase , lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(snake_case__ ) lowercase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase = image.to(snake_case__ ) with torch.no_grad(): lowercase = model(snake_case__ ).sample lowercase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
428
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCAmelCase ( A__ , A__=0.9_99 , A__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(A__ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowercase__ = [] for i in range(a_ ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) , a_ ) ) return torch.tensor(a_ , dtype=torch.floataa ) class UpperCAmelCase__( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' A : int = [e.name for e in KarrasDiffusionSchedulers] A : Dict = 2 @register_to_config def __init__( self : Optional[int] , lowerCAmelCase : Dict = 10_00 , lowerCAmelCase : Tuple = 0.0_00_85 , lowerCAmelCase : List[str] = 0.0_12 , lowerCAmelCase : Optional[int] = "linear" , lowerCAmelCase : List[str] = None , lowerCAmelCase : Any = "epsilon" , lowerCAmelCase : List[Any] = "linspace" , lowerCAmelCase : List[str] = 0 , ) -> Optional[int]: """simple docstring""" if trained_betas is not None: lowercase__ = torch.tensor(_UpperCAmelCase , dtype=torch.floataa) elif beta_schedule == "linear": lowercase__ = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ = betas_for_alpha_bar(_UpperCAmelCase) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''') lowercase__ = 1.0 - self.betas lowercase__ = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int]=None) -> str: """simple docstring""" if schedule_timesteps is None: lowercase__ = self.timesteps lowercase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: lowercase__ = 1 if len(_UpperCAmelCase) > 1 else 0 else: lowercase__ = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase) else timestep lowercase__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , ) -> Dict: """simple docstring""" lowercase__ = self.index_for_timestep(_UpperCAmelCase) if self.state_in_first_order: lowercase__ = self.sigmas[step_index] else: lowercase__ = self.sigmas_interpol[step_index] lowercase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Optional[Any] = None , ) -> List[Any]: """simple docstring""" lowercase__ = num_inference_steps lowercase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase__ = np.linspace(0 , num_train_timesteps - 1 , _UpperCAmelCase , dtype=_UpperCAmelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(0 , _UpperCAmelCase) * step_ratio).round()[::-1].copy().astype(_UpperCAmelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(_UpperCAmelCase , 0 , -step_ratio)).round().copy().astype(_UpperCAmelCase) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''') lowercase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) lowercase__ = torch.from_numpy(np.log(_UpperCAmelCase)).to(_UpperCAmelCase) lowercase__ = np.interp(_UpperCAmelCase , np.arange(0 , len(_UpperCAmelCase)) , _UpperCAmelCase) lowercase__ = np.concatenate([sigmas, [0.0]]).astype(np.floataa) lowercase__ = torch.from_numpy(_UpperCAmelCase).to(device=_UpperCAmelCase) # interpolate sigmas lowercase__ = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() lowercase__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) lowercase__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(_UpperCAmelCase).startswith('mps'): # mps does not support float64 lowercase__ = torch.from_numpy(_UpperCAmelCase).to(_UpperCAmelCase , dtype=torch.floataa) else: lowercase__ = torch.from_numpy(_UpperCAmelCase).to(_UpperCAmelCase) # interpolate timesteps lowercase__ = self.sigma_to_t(_UpperCAmelCase).to(_UpperCAmelCase , dtype=timesteps.dtype) lowercase__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() lowercase__ = torch.cat([timesteps[:1], interleaved_timesteps]) lowercase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase__ = defaultdict(_UpperCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" lowercase__ = sigma.log() # get distribution lowercase__ = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase__ = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) lowercase__ = low_idx + 1 lowercase__ = self.log_sigmas[low_idx] lowercase__ = self.log_sigmas[high_idx] # interpolate sigmas lowercase__ = (low - log_sigma) / (low - high) lowercase__ = w.clamp(0 , 1) # transform interpolation to time range lowercase__ = (1 - w) * low_idx + w * high_idx lowercase__ = t.view(sigma.shape) return t @property def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return self.sample is None def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] = True , ) -> int: """simple docstring""" lowercase__ = self.index_for_timestep(_UpperCAmelCase) # advance index counter by 1 lowercase__ = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase__ = self.sigmas[step_index] lowercase__ = self.sigmas_interpol[step_index + 1] lowercase__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase__ = self.sigmas[step_index - 1] lowercase__ = self.sigmas_interpol[step_index] lowercase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase__ = 0 lowercase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowercase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''') if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase__ = sigma_interpol - sigma_hat # store for 2nd order step lowercase__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase__ = sigma_next - sigma_hat lowercase__ = self.sample lowercase__ = None lowercase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , ) -> List[Any]: """simple docstring""" lowercase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCAmelCase): # mps does not support float64 lowercase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa) lowercase__ = timesteps.to(original_samples.device , dtype=torch.floataa) else: lowercase__ = self.timesteps.to(original_samples.device) lowercase__ = timesteps.to(original_samples.device) lowercase__ = [self.index_for_timestep(_UpperCAmelCase , _UpperCAmelCase) for t in timesteps] lowercase__ = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): lowercase__ = sigma.unsqueeze(-1) lowercase__ = original_samples + noise * sigma return noisy_samples def __len__( self : List[str]) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
713
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : '''simple docstring''' @staticmethod def snake_case_ ( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class _A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,image_processor=SCREAMING_SNAKE_CASE_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ,threshold=0.0 ) self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) ,0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ ,{ """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } ,) import datasets snake_case : Any = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) snake_case : Any = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] snake_case : Union[str, Any] = object_detector(SCREAMING_SNAKE_CASE_ ,threshold=0.0 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(SCREAMING_SNAKE_CASE_ ) ) for outputs in batch_outputs: self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) ,0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ ,{ """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } ,) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def snake_case_ ( self ): '''simple docstring''' pass @require_torch def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = """hf-internal-testing/tiny-detr-mobilenetsv3""" snake_case : Optional[int] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : str = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=0.0 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] ,) snake_case : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = """facebook/detr-resnet-50""" snake_case : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Any = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) snake_case : str = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : str = """facebook/detr-resnet-50""" snake_case : str = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) snake_case : List[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = 0.99_85 snake_case : List[Any] = """facebook/detr-resnet-50""" snake_case : Any = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) @require_torch @require_pytesseract @slow def snake_case_ ( self ): '''simple docstring''' snake_case : int = """Narsil/layoutlmv3-finetuned-funsd""" snake_case : Dict = 0.99_93 snake_case : Any = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ,threshold=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] ,)
36
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowercase : Dict = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[int] = ['''pixel_values'''] def __init__( self ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = 1 / 255 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = size if size is not None else {"""shortest_edge""": 224} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : Optional[Any] = do_resize snake_case : Union[str, Any] = size snake_case : Dict = resample snake_case : Dict = do_rescale snake_case : Dict = rescale_factor snake_case : List[str] = do_center_crop snake_case : Dict = crop_size snake_case : Any = do_flip_channel_order def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : List[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ ,size=size["""shortest_edge"""] ,default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ ,size=(size["""height"""], size["""width"""]) ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' return flip_channel_order(SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = resample if resample is not None else self.resample snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case : Tuple = size if size is not None else self.size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = crop_size if crop_size is not None else self.crop_size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case : Dict = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : Optional[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case : Optional[int] = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : int = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ ,tensor_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): snake_case : int = target_sizes.numpy() snake_case : Optional[Any] = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): snake_case : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: snake_case : Tuple = logits.argmax(dim=1 ) snake_case : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
36
1
def UpperCamelCase_( __magic_name__ : int = 50 ): """simple docstring""" _lowerCAmelCase :Optional[int] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
382
def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [0 for i in range(len(__magic_name__ ) )] # initialize interval's left pointer and right pointer _lowerCAmelCase , _lowerCAmelCase :List[Any] = 0, 0 for i in range(1 , len(__magic_name__ ) ): # case when current index is inside the interval if i <= right_pointer: _lowerCAmelCase :Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _lowerCAmelCase :Any = min_edge while go_next(__magic_name__ , __magic_name__ , __magic_name__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _lowerCAmelCase , _lowerCAmelCase :List[Any] = i, i + z_result[i] - 1 return z_result def UpperCamelCase_( __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : str ): """simple docstring""" return i + z_result[i] < len(__magic_name__ ) and s[z_result[i]] == s[i + z_result[i]] def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _lowerCAmelCase :Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__magic_name__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
382
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> str: super().__init__( features=SCREAMING_SNAKE_CASE_, cache_dir=SCREAMING_SNAKE_CASE_, keep_in_memory=SCREAMING_SNAKE_CASE_, streaming=SCREAMING_SNAKE_CASE_, num_proc=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = Generator( cache_dir=SCREAMING_SNAKE_CASE_, features=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, gen_kwargs=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Union[str, Any]: # Build iterable dataset if self.streaming: UpperCamelCase : Tuple = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: UpperCamelCase : List[Any] = None UpperCamelCase : Tuple = None UpperCamelCase : Any = None UpperCamelCase : List[str] = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_, download_mode=SCREAMING_SNAKE_CASE_, verification_mode=SCREAMING_SNAKE_CASE_, base_path=SCREAMING_SNAKE_CASE_, num_proc=self.num_proc, ) UpperCamelCase : List[str] = self.builder.as_dataset( split='train', verification_mode=SCREAMING_SNAKE_CASE_, in_memory=self.keep_in_memory ) return dataset
40
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self : str , a__ : List[Any] , a__ : Dict=13 , a__ : int=7 , a__ : Tuple=True , a__ : List[Any]=True , a__ : int=True , a__ : int=True , a__ : List[Any]=99 , a__ : Tuple=32 , a__ : Optional[Any]=5 , a__ : Optional[int]=4 , a__ : Any=37 , a__ : Union[str, Any]="gelu" , a__ : Union[str, Any]=0.1 , a__ : List[Any]=0.1 , a__ : Optional[int]=512 , a__ : str=16 , a__ : str=2 , a__ : Any=0.02 , a__ : Tuple=3 , a__ : List[Any]=4 , a__ : Optional[Any]=None , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def snake_case__ ( self : List[Any] ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Tuple ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def snake_case__ ( self : Any , a__ : Any , a__ : Tuple , a__ : str , a__ : List[Any] , a__ : int , a__ : str , a__ : Tuple ): __magic_name__ = NystromformerModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , token_type_ids=a__ ) __magic_name__ = model(a__ , token_type_ids=a__ ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[str] , a__ : Any , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Optional[Any] , a__ : Optional[Any] , a__ : int ): __magic_name__ = NystromformerForMaskedLM(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : List[Any] , a__ : List[str] , a__ : int , a__ : List[str] , a__ : int , a__ : Dict , a__ : Optional[int] , a__ : Any ): __magic_name__ = NystromformerForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] , a__ : List[Any] , a__ : List[str] , a__ : List[Any] , a__ : Tuple , a__ : Any , a__ : Tuple , a__ : List[Any] ): __magic_name__ = self.num_labels __magic_name__ = NystromformerForSequenceClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[int] , a__ : str , a__ : Union[str, Any] , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : Tuple ): __magic_name__ = self.num_labels __magic_name__ = NystromformerForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , a__ : str , a__ : Any , a__ : List[Any] , a__ : Optional[Any] , a__ : Dict , a__ : Optional[int] , a__ : Dict ): __magic_name__ = self.num_choices __magic_name__ = NystromformerForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : str ): __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :Optional[int] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :int = False __SCREAMING_SNAKE_CASE :Any = False def snake_case__ ( self : Union[str, Any] ): __magic_name__ = NystromformerModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def snake_case__ ( self : Dict ): self.config_tester.run_common_tests() def snake_case__ ( self : Dict ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self : List[Any] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self : str ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ ) def snake_case__ ( self : str ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def snake_case__ ( self : Dict ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def snake_case__ ( self : int ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = NystromformerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : str ): __magic_name__ = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __magic_name__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __magic_name__ = model(a__ )[0] __magic_name__ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a__ ) __magic_name__ = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def snake_case__ ( self : str ): __magic_name__ = '''the [MASK] of Belgium is Brussels''' __magic_name__ = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __magic_name__ = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __magic_name__ = tokenizer(a__ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(encoding.input_ids ).logits __magic_name__ = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(a__ ) , '''capital''' )
432
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" # save results if os.path.exists(__A ): if os.path.exists(os.path.join(__A , "config.json" ) ) and os.path.isfile( os.path.join(__A , "config.json" ) ): os.remove(os.path.join(__A , "config.json" ) ) if os.path.exists(os.path.join(__A , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__A , "pytorch_model.bin" ) ): os.remove(os.path.join(__A , "pytorch_model.bin" ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=False )-> Dict: """simple docstring""" UpperCamelCase = 2 if unlogit: UpperCamelCase = torch.pow(__A , __A ) UpperCamelCase = p * torch.log(__A ) UpperCamelCase = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=False )-> str: """simple docstring""" UpperCamelCase = model.config.num_hidden_layers, model.config.num_attention_heads UpperCamelCase = torch.zeros(__A , __A ).to(args.device ) UpperCamelCase = torch.zeros(__A , __A ).to(args.device ) if head_mask is None: UpperCamelCase = torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCamelCase = None UpperCamelCase = 0.0 UpperCamelCase = 0.0 for step, inputs in enumerate(tqdm(__A , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): UpperCamelCase = tuple(t.to(args.device ) for t in inputs ) (UpperCamelCase ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCamelCase = model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCamelCase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): UpperCamelCase = entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCamelCase = 2 UpperCamelCase = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: UpperCamelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__A ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__A ) logger.info("Head ranked by importance scores" ) UpperCamelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCamelCase = torch.arange( head_importance.numel() , device=args.device ) UpperCamelCase = head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Tuple: """simple docstring""" UpperCamelCase = compute_heads_importance(__A , __A , __A , compute_entropy=__A ) UpperCamelCase = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __A , original_score * args.masking_threshold ) UpperCamelCase = torch.ones_like(__A ) UpperCamelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCamelCase = original_score while current_score >= original_score * args.masking_threshold: UpperCamelCase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCamelCase = float("Inf" ) UpperCamelCase = head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads UpperCamelCase = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) UpperCamelCase = new_head_mask.view(-1 ) UpperCamelCase = 0.0 UpperCamelCase = new_head_mask.view_as(__A ) UpperCamelCase = new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again UpperCamelCase = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) UpperCamelCase = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("Final head mask" ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase = datetime.now() UpperCamelCase = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) UpperCamelCase = 1 / loss UpperCamelCase = datetime.now() - before_time UpperCamelCase = sum(p.numel() for p in model.parameters() ) UpperCamelCase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): UpperCamelCase = [ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) UpperCamelCase = sum(p.numel() for p in model.parameters() ) UpperCamelCase = datetime.now() UpperCamelCase = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) UpperCamelCase = 1 / loss UpperCamelCase = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __A , __A , pruned_num_params / original_num_params * 1_00 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __A , __A ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 ) save_model(__A , args.output_dir ) def lowerCamelCase__ ( )-> List[Any]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__A , type=__A , required=__A , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__A , type=__A , required=__A , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__A , type=__A , required=__A , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__A , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__A , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__A , type=__A , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__A , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__A , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__A , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__A , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_28 , type=__A , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__A , help="Batch size." ) parser.add_argument("--seed" , type=__A , default=42 ) parser.add_argument("--local_rank" , type=__A , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__A , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__A , default="" , help="Can be used for distant debugging." ) UpperCamelCase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCamelCase = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) UpperCamelCase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCamelCase = torch.device("cuda" , args.local_rank ) UpperCamelCase = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCamelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCamelCase = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: UpperCamelCase = nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __A ) # Prepare dataset UpperCamelCase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCamelCase = (torch.from_numpy(__A ),) UpperCamelCase = TensorDataset(*__A ) UpperCamelCase = RandomSampler(__A ) UpperCamelCase = DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCamelCase = mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
715
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE = """Normal""" if result[0][0] == 1: SCREAMING_SNAKE_CASE = """Abnormality detected"""
556
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : str , snake_case__ : List[Any]=False ): A = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): A = 'segformer.encoder.' + key if key.startswith('backbone' ): A = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A = key[key.find('patch_embed' ) + len('patch_embed' )] A = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(snake_case__ )-1}' ) if "norm" in key: A = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] A = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(snake_case__ )-1}' ) if "layer_norm1" in key: A = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: A = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 A = key[key.find('block' ) + len('block' )] A = key.replace(F'block{idx}' , F'block.{int(snake_case__ )-1}' ) if "attn.q" in key: A = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: A = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: A = key.replace('attn' , 'attention.self' ) if "fc1" in key: A = key.replace('fc1' , 'dense1' ) if "fc2" in key: A = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: A = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: A = key.replace('linear_fuse.conv' , 'linear_fuse' ) A = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A = key[key.find('linear_c' ) + len('linear_c' )] A = key.replace(F'linear_c{idx}' , F'linear_c.{int(snake_case__ )-1}' ) if key.startswith('head' ): A = key.replace('head' , 'classifier' ) A = value return new_state_dict def _snake_case ( snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A = kv_weight[ : config.hidden_sizes[i], : ] A = kv_bias[: config.hidden_sizes[i]] A = kv_weight[ config.hidden_sizes[i] :, : ] A = kv_bias[ config.hidden_sizes[i] : ] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Tuple ): A = SegformerConfig() A = False # set attributes based on model_name A = 'huggingface/label-files' if "segformer" in model_name: A = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: A = 150 A = 'ade20k-id2label.json' A = (1, 150, 128, 128) elif "city" in model_name: A = 19 A = 'cityscapes-id2label.json' A = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: A = True A = model_name[4:6] A = 1000 A = 'imagenet-1k-id2label.json' A = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": A = [64, 128, 320, 512] A = 256 elif size == "b2": A = [64, 128, 320, 512] A = 768 A = [3, 4, 6, 3] elif size == "b3": A = [64, 128, 320, 512] A = 768 A = [3, 4, 18, 3] elif size == "b4": A = [64, 128, 320, 512] A = 768 A = [3, 8, 27, 3] elif size == "b5": A = [64, 128, 320, 512] A = 768 A = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) A = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) # prepare image A = prepare_img() A = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: A = torch.load(snake_case__ , map_location=torch.device('cpu' ) ) else: A = torch.load(snake_case__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys A = rename_keys(snake_case__ , encoder_only=snake_case__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict if encoder_only: A = False A = SegformerForImageClassification(snake_case__ ) else: A = SegformerForSemanticSegmentation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass A = model(snake_case__ ) A = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": A = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": A = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": A = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": A = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": A = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": A = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": A = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": A = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": A = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": A = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": A = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": A = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": A = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": A = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": A = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: A = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
91
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = AudioLDMPipeline _lowerCamelCase: Optional[int] = TEXT_TO_AUDIO_PARAMS _lowerCamelCase: Optional[int] = TEXT_TO_AUDIO_BATCH_PARAMS _lowerCamelCase: Optional[int] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=(32, 64) ,class_embed_type='simple_projection' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=A_ ,) A = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=A_ ,set_alpha_to_one=A_ ,) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,projection_dim=32 ,) A = ClapTextModelWithProjection(A_ ) A = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' ,model_max_length=77 ) A = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=A_ ,) A = SpeechTaHifiGan(A_ ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Dict=0 ) -> str: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = audioldm_pipe(**A_ ) A = output.audios[0] assert audio.ndim == 1 assert len(A_ ) == 256 A = audio[:10] A = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.get_dummy_components() A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 3 * [inputs['prompt']] # forward A = audioldm_pipe(**A_ ) A = output.audios[0] A = self.get_dummy_inputs(A_ ) A = 3 * [inputs.pop('prompt' )] A = audioldm_pipe.tokenizer( A_ ,padding='max_length' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=A_ ,return_tensors='pt' ,) A = text_inputs['input_ids'].to(A_ ) A = audioldm_pipe.text_encoder( A_ ,) A = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state A = F.normalize(A_ ,dim=-1 ) A = prompt_embeds # forward A = audioldm_pipe(**A_ ) A = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = self.get_dummy_components() A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 3 * ['this is a negative prompt'] A = negative_prompt A = 3 * [inputs['prompt']] # forward A = audioldm_pipe(**A_ ) A = output.audios[0] A = self.get_dummy_inputs(A_ ) A = 3 * [inputs.pop('prompt' )] A = [] for p in [prompt, negative_prompt]: A = audioldm_pipe.tokenizer( A_ ,padding='max_length' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=A_ ,return_tensors='pt' ,) A = text_inputs['input_ids'].to(A_ ) A = audioldm_pipe.text_encoder( A_ ,) A = text_embeds.text_embeds # additional L_2 normalization over each hidden-state A = F.normalize(A_ ,dim=-1 ) embeds.append(A_ ) A , A = embeds # forward A = audioldm_pipe(**A_ ) A = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = PNDMScheduler(skip_prk_steps=A_ ) A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 'egg cracking' A = audioldm_pipe(**A_ ,negative_prompt=A_ ) A = output.audios[0] assert audio.ndim == 1 assert len(A_ ) == 256 A = audio[:10] A = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = PNDMScheduler(skip_prk_steps=A_ ) A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) A = audioldm_pipe(A_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts A = 2 A = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt A = 2 A = audioldm_pipe(A_ ,num_inference_steps=2 ,num_waveforms_per_prompt=A_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts A = 2 A = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=A_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = audioldm_pipe.vocoder.config.sampling_rate A = self.get_dummy_inputs(A_ ) A = audioldm_pipe(audio_length_in_s=0.0_16 ,**A_ ) A = output.audios[0] assert audio.ndim == 1 assert len(A_ ) / vocoder_sampling_rate == 0.0_16 A = audioldm_pipe(audio_length_in_s=0.0_32 ,**A_ ) A = output.audios[0] assert audio.ndim == 1 assert len(A_ ) / vocoder_sampling_rate == 0.0_32 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = self.get_dummy_components() A = AudioLDMPipeline(**A_ ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = ['hey'] A = audioldm_pipe(A_ ,num_inference_steps=1 ) A = output.audios.shape assert audio_shape == (1, 256) A = audioldm_pipe.vocoder.config config.model_in_dim *= 2 A = SpeechTaHifiGan(A_ ).to(A_ ) A = audioldm_pipe(A_ ,num_inference_steps=1 ) A = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: self._test_inference_batch_single_identical(test_mean_pixel_difference=A_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ ) @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[Any] ,A_ : str="cpu" ,A_ : List[str]=torch.floataa ,A_ : str=0 ) -> List[Any]: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = np.random.RandomState(A_ ).standard_normal((1, 8, 128, 16) ) A = torch.from_numpy(A_ ).to(device=A_ ,dtype=A_ ) A = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs(A_ ) A = 25 A = audioldm_pipe(**A_ ).audios[0] assert audio.ndim == 1 assert len(A_ ) == 8_1920 A = audio[7_7230:7_7240] A = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) A = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: A = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) A = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) A = audioldm_pipe.to(A_ ) audioldm_pipe.set_progress_bar_config(disable=A_ ) A = self.get_inputs(A_ ) A = audioldm_pipe(**A_ ).audios[0] assert audio.ndim == 1 assert len(A_ ) == 8_1920 A = audio[2_7780:2_7790] A = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) A = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
91
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCamelCase : Any =logging.get_logger(__name__) def a__ (__lowercase :Union[str, Any] ) -> Any: _A : int = R'''\w+[.]\d+''' _A : Optional[int] = re.findall(__lowercase , __lowercase ) for pat in pats: _A : Any = key.replace(__lowercase , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ (__lowercase :List[str] , __lowercase :List[str] , __lowercase :Optional[int] ) -> int: _A : Tuple = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _A : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _A : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _A : List[str] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _A : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _A : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _A : int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _A : List[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ (__lowercase :Optional[int] , __lowercase :List[Any] , __lowercase :List[str]=42 ) -> Tuple: # Step 1: Convert pytorch tensor to numpy _A : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _A : Any = flax_model.init_weights(PRNGKey(__lowercase ) ) _A : Optional[int] = flatten_dict(__lowercase ) _A : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _A : Optional[Any] = rename_key(__lowercase ) _A : str = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _A , _A : Optional[int] = rename_key_and_reshape_tensor(__lowercase , __lowercase , __lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _A : Dict = jnp.asarray(__lowercase ) return unflatten_dict(__lowercase )
332
def a__ (__lowercase :Tuple ) -> Optional[Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _A : List[str] = len(__lowercase ) _A : Optional[Any] = max(__lowercase ) _A : Tuple = min(__lowercase ) # create the counting array _A : Optional[Any] = coll_max + 1 - coll_min _A : Dict = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __lowercase ): _A : List[str] = counting_arr[i] + counting_arr[i - 1] # create the output collection _A : str = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __lowercase ) ): _A : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ (__lowercase :int ) -> List[str]: return "".join([chr(__lowercase ) for i in counting_sort([ord(__lowercase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _UpperCamelCase : Tuple =input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : Any =[int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
332
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=13 , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Dict=[10, 20, 30, 40] , UpperCAmelCase__ : Union[str, Any]=[2, 2, 3, 2] , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=10 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[str]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Tuple=[2, 3, 4] , UpperCAmelCase__ : str=None , ) ->Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = num_labels A__ = initializer_range A__ = out_features A__ = out_indices A__ = scope def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' A__ = ConvNextVaModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int) ->Any: '''simple docstring''' A__ = ConvNextVaForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = ConvNextVaBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None A__ = None A__ = ConvNextVaBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = ConvNextVaModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''') def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: A__ , A__ = self.model_tester.prepare_config_and_inputs_with_labels() A__ = True if model_class.__name__ in [ *get_values(UpperCAmelCase__), *get_values(UpperCAmelCase__), ]: continue A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.train() A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) A__ = model(**UpperCAmelCase__).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: A__ , A__ = self.model_tester.prepare_config_and_inputs_with_labels() A__ = False A__ = True if ( model_class.__name__ in [*get_values(UpperCAmelCase__), *get_values(UpperCAmelCase__)] or not model_class.supports_gradient_checkpointing ): continue A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.gradient_checkpointing_enable() model.train() A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) A__ = model(**UpperCAmelCase__).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any]): A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ConvNextVaModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''').to(UpperCAmelCase__) A__ = self.default_image_processor A__ = prepare_img() A__ = preprocessor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) # forward pass with torch.no_grad(): A__ = model(**UpperCAmelCase__) # verify the logits A__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = torch.tensor([0.9996, 0.1966, -0.4386]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
87
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def UpperCamelCase__ ( self ) -> List[str]: __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) __a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict: if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) __a = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) __a = sd_pipe(**UpperCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> str: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
539
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _lowerCAmelCase : List[str] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
604
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self ,a_ ,a_=13 ,a_=32 ,a_=2 ,a_=3 ,a_=16 ,a_=[1, 2, 1] ,a_=[2, 2, 4] ,a_=2 ,a_=2.0 ,a_=True ,a_=0.0 ,a_=0.0 ,a_=0.1 ,a_="gelu" ,a_=False ,a_=True ,a_=0.02 ,a_=1e-5 ,a_=True ,a_=None ,a_=True ,a_=10 ,a_=8 ,): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = patch_norm lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = is_training lowerCAmelCase__ = scope lowerCAmelCase__ = use_labels lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = encoder_stride def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = SwinvaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ) lowerCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = SwinvaForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = SwinvaForMaskedImageModeling(a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = SwinvaForImageClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = SwinvaModelTester(self ) lowerCAmelCase__ = ConfigTester(self ,config_class=a_ ,embed_dim=37 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.attentions lowerCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(a_ ) ,a_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = config.window_size**2 lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a_ ) ,a_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowerCAmelCase__ = len(a_ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): lowerCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states ,len(a_ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a_ ) ,a_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a_ ) ,a_ ) # Swinv2 has a different seq_length lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowerCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(a_ ) ,a_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reshaped_hidden_states[0].shape lowerCAmelCase__ = ( reshaped_hidden_states[0].view(a_ ,a_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,(padded_height, padded_width) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SwinvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = _config_zero_init(a_ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=a_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @require_vision @require_torch class __snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( a_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ = image_processor(images=a_ ,return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**a_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,a_ ) lowerCAmelCase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) )
604
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowercase ( __UpperCamelCase : List[str] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def _lowercase ( __UpperCamelCase : Union[str, Any] ): from transformers.testing_utils import pytest_terminal_summary_main snake_case__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase )
214
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Tuple ={ """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple =["""MobileNetV2FeatureExtractor"""] _lowerCAmelCase : Optional[int] =["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] =[ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCAmelCase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
0
'''simple docstring''' def A ( A_ : str ): snake_case : List[str] = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A ( A_ : str ): snake_case : List[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case : Any = remove_duplicates(key.upper() ) snake_case : Any = len(A_ ) # First fill cipher with key characters snake_case : List[Any] = {alphabet[i]: char for i, char in enumerate(A_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A_ ) , 26 ): snake_case : Optional[Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case : Union[str, Any] = alphabet[i - offset] snake_case : List[Any] = char return cipher_alphabet def A ( A_ : str , A_ : dict[str, str] ): return "".join(cipher_map.get(A_ , A_ ) for ch in message.upper() ) def A ( A_ : str , A_ : dict[str, str] ): snake_case : Union[str, Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A_ , A_ ) for ch in message.upper() ) def A ( ): snake_case : Optional[int] = input('''Enter message to encode or decode: ''' ).strip() snake_case : int = input('''Enter keyword: ''' ).strip() snake_case : Any = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: snake_case : Optional[Any] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) snake_case : str = create_cipher_map(A_ ) print(func(A_ , A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
555
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def A ( A_ : str , A_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: snake_case : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ ) snake_case, snake_case : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( A_ , output_loading_info=A_ ) else: snake_case : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(A_ ) snake_case, snake_case : List[Any] = ProphetNetForConditionalGeneration.from_pretrained( A_ , output_loading_info=A_ ) snake_case : Union[str, Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] snake_case : str = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: snake_case : Optional[Any] = key.split('''.''' ) if attributes[0] == "lm_head": snake_case : Optional[int] = prophet snake_case : Union[str, Any] = prophet_old else: snake_case : Optional[int] = prophet.prophetnet snake_case : Any = prophet_old.model snake_case : Optional[Any] = False for attribute in attributes: if attribute in mapping: snake_case : List[str] = mapping[attribute] if not hasattr(A_ , A_ ) and len(A_ ) > 0: snake_case : str = attribute elif hasattr(A_ , A_ ): snake_case : Any = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" snake_case : Optional[Any] = old_model.weight logger.info(F"""{attribute} is initialized.""" ) snake_case : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" snake_case : List[str] = old_model.bias logger.info(F"""{attribute} is initialized""" ) snake_case : Tuple = True break elif attribute in special_keys and hasattr(A_ , '''in_proj_weight''' ): snake_case : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 snake_case : Any = getattr(A_ , A_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": snake_case : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) snake_case : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": snake_case : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) snake_case : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": snake_case : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) snake_case : List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) snake_case : Optional[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." snake_case : List[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) snake_case : Any = True break if attribute.isdigit(): snake_case : Optional[Any] = model[int(A_ )] snake_case : List[str] = old_model[int(A_ )] else: snake_case : Optional[Any] = getattr(A_ , A_ ) if old_attribute == "": snake_case : Union[str, Any] = old_model else: if not hasattr(A_ , A_ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) snake_case : Tuple = getattr(A_ , A_ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(A_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
555
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __snake_case ( lowerCAmelCase_ ) -> str: SCREAMING_SNAKE_CASE__ = [] for line in lines: SCREAMING_SNAKE_CASE__ = re.sub(r'''#.*''' , '''''' , lowerCAmelCase_ ) # remove comments if line: filtered_lines.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = '''\n'''.join(lowerCAmelCase_ ) # Make a hash from all this code SCREAMING_SNAKE_CASE__ = full_str.encode('''utf-8''' ) return shaaaa(lowerCAmelCase_ ).hexdigest() # get importable module names and hash for caching _A : str = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _A : Union[str, Any] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _A : List[str] = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name _A : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
100
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A_ ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self: str , a: str=2000 , a: List[str]=0.1 , a: Any=20 , a: Dict=1e-3 ): __lowerCamelCase : Dict = None __lowerCamelCase : Any = None __lowerCamelCase : Optional[int] = None def _snake_case ( self: int , a: str , a: Union[str, torch.device] = None ): __lowerCamelCase : int = torch.linspace(1 , self.config.sampling_eps , a , device=a ) def _snake_case ( self: List[Any] , a: Union[str, Any] , a: Tuple , a: Optional[Any] , a: Dict=None ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowerCamelCase : Tuple = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowerCamelCase : Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowerCamelCase : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowerCamelCase : List[str] = std.unsqueeze(-1 ) __lowerCamelCase : Any = -score / std # compute __lowerCamelCase : List[Any] = -1.0 / len(self.timesteps ) __lowerCamelCase : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowerCamelCase : Dict = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowerCamelCase : int = beta_t.unsqueeze(-1 ) __lowerCamelCase : Any = -0.5 * beta_t * x __lowerCamelCase : List[Any] = torch.sqrt(a ) __lowerCamelCase : Tuple = drift - diffusion**2 * score __lowerCamelCase : str = x + drift * dt # add noise __lowerCamelCase : Any = randn_tensor(x.shape , layout=x.layout , generator=a , device=x.device , dtype=x.dtype ) __lowerCamelCase : Any = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self: Optional[int] ): return self.config.num_train_timesteps
669
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ : int = logging.get_logger(__name__) __magic_name__ : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __magic_name__ : int = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["""input_ids""", """attention_mask"""] snake_case__ = GPTaTokenizer def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[str]="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Dict="<|endoftext|>" , _SCREAMING_SNAKE_CASE : str="<|endoftext|>" , _SCREAMING_SNAKE_CASE : Union[str, Any]=False , **_SCREAMING_SNAKE_CASE : Any , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop('add_bos_token' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop('type' ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = add_prefix_space def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Dict , **_SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase = kwargs.get('is_split_into_words' , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase = kwargs.get('is_split_into_words' , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : "Conversation" ): """simple docstring""" UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
410
import argparse import os import re import packaging.version __magic_name__ : Dict = '''examples/''' __magic_name__ : List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __magic_name__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __magic_name__ : int = '''README.md''' def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.read() UpperCamelCase , UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace('VERSION' , _UpperCamelCase) UpperCamelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.write(_UpperCamelCase) def lowercase__ ( _UpperCamelCase) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(_UpperCamelCase): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects') if "legacy" in directories: directories.remove('legacy') for fname in fnames: if fname.endswith('.py'): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase , pattern='examples') def lowercase__ ( _UpperCamelCase , _UpperCamelCase=False) -> Any: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if not patch: update_version_in_examples(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = '🤗 Transformers currently provides the following architectures' UpperCamelCase = '1. Want to contribute a new model?' with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('1.'): UpperCamelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" with open(REPLACE_FILES['init'] , 'r') as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS['init'][0].search(_UpperCamelCase).groups()[0] return packaging.version.parse(_UpperCamelCase) def lowercase__ ( _UpperCamelCase=False) -> str: """simple docstring""" UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!') if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase = input(F'Which version are you releasing? [{default_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = default_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase , patch=_UpperCamelCase) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() def lowercase__ ( ) -> int: """simple docstring""" UpperCamelCase = get_version() UpperCamelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(F'Which version are we developing now? [{dev_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = dev_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase) print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() if __name__ == "__main__": __magic_name__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __magic_name__ : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
410
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: _a = np.argmax(_lowercase , axis=1 ) return np.sum(outputs == labels ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: with open(_lowercase , encoding='utf_8' ) as f: _a = csv.reader(_lowercase ) _a = [] next(_lowercase ) # skip the first line for line in tqdm(_lowercase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: _a = [] for dataset in encoded_datasets: _a = len(_lowercase ) _a = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _a = np.zeros((n_batch, 2) , dtype=np.intaa ) _a = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _a = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowercase ): _a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a = with_conta _a = with_conta _a = len(_lowercase ) - 1 _a = len(_lowercase ) - 1 _a = with_conta _a = with_conta _a = mc_label _a = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowercase ) for t in all_inputs ) ) return tensor_datasets def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _a = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_lowercase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_lowercase , type=_lowercase , required=_lowercase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_lowercase , default='' ) parser.add_argument('--eval_dataset' , type=_lowercase , default='' ) parser.add_argument('--seed' , type=_lowercase , default=42 ) parser.add_argument('--num_train_epochs' , type=_lowercase , default=3 ) parser.add_argument('--train_batch_size' , type=_lowercase , default=8 ) parser.add_argument('--eval_batch_size' , type=_lowercase , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_lowercase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_lowercase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_lowercase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_lowercase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_lowercase , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_lowercase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_lowercase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_lowercase , default=0.01 ) parser.add_argument('--lm_coef' , type=_lowercase , default=0.9 ) parser.add_argument('--n_valid' , type=_lowercase , default=374 ) parser.add_argument('--server_ip' , type=_lowercase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_lowercase , default='' , help='Can be used for distant debugging.' ) _a = parser.parse_args() print(_lowercase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _a = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _a = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_lowercase , _lowercase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _a = ['_start_', '_delimiter_', '_classify_'] _a = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowercase ) _a = tokenizer.convert_tokens_to_ids(_lowercase ) _a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowercase ) ) model.to(_lowercase ) # Load and encode the datasets def tokenize_and_encode(_UpperCAmelCase ): if isinstance(_lowercase , _lowercase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowercase ) ) elif isinstance(_lowercase , _lowercase ): return obj return [tokenize_and_encode(_lowercase ) for o in obj] logger.info('Encoding dataset...' ) _a = load_rocstories_dataset(args.train_dataset ) _a = load_rocstories_dataset(args.eval_dataset ) _a = (train_dataset, eval_dataset) _a = tokenize_and_encode(_lowercase ) # Compute the max input length for the Transformer _a = model.config.n_positions // 2 - 2 _a = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _a = min(_lowercase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _a = pre_process_datasets(_lowercase , _lowercase , _lowercase , *_lowercase ) _a , _a = tensor_datasets[0], tensor_datasets[1] _a = TensorDataset(*_lowercase ) _a = RandomSampler(_lowercase ) _a = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.train_batch_size ) _a = TensorDataset(*_lowercase ) _a = SequentialSampler(_lowercase ) _a = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _a = args.max_steps _a = args.max_steps // (len(_lowercase ) // args.gradient_accumulation_steps) + 1 else: _a = len(_lowercase ) // args.gradient_accumulation_steps * args.num_train_epochs _a = list(model.named_parameters() ) _a = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _a = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _a = AdamW(_lowercase , lr=args.learning_rate , eps=args.adam_epsilon ) _a = get_linear_schedule_with_warmup( _lowercase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowercase ) if args.do_train: _a , _a , _a = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _a = 0 _a = 0 _a = tqdm(_lowercase , desc='Training' ) for step, batch in enumerate(_lowercase ): _a = tuple(t.to(_lowercase ) for t in batch ) _a , _a , _a , _a = batch _a = model(_lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) _a = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _a = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _a = 'Training loss: {:.2e} lr: {:.2e}'.format(_lowercase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _a = model.module if hasattr(_lowercase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _a = os.path.join(args.output_dir , _lowercase ) _a = os.path.join(args.output_dir , _lowercase ) torch.save(model_to_save.state_dict() , _lowercase ) model_to_save.config.to_json_file(_lowercase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _a = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowercase ) if args.do_eval: model.eval() _a , _a = 0, 0 _a , _a = 0, 0 for batch in tqdm(_lowercase , desc='Evaluating' ): _a = tuple(t.to(_lowercase ) for t in batch ) _a , _a , _a , _a = batch with torch.no_grad(): _a , _a , _a , _a = model( _lowercase , mc_token_ids=_lowercase , lm_labels=_lowercase , mc_labels=_lowercase ) _a = mc_logits.detach().cpu().numpy() _a = mc_labels.to('cpu' ).numpy() _a = accuracy(_lowercase , _lowercase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _a = eval_loss / nb_eval_steps _a = eval_accuracy / nb_eval_examples _a = tr_loss / nb_tr_steps if args.do_train else None _a = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _a = os.path.join(args.output_dir , 'eval_results.txt' ) with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _lowercase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
562
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : str ,a__ : int ,a__ : int ,a__ : int ,a__ : float ,a__ : int ,a__ : int ,a__ : int ,a__ : int ,a__ : str ,a__ : bool = False ,): super().__init__() a__ = nn.Embedding(a__ ,a__ ) a__ = nn.Embedding(a__ ,a__ ) a__ = False a__ = nn.Dropout(p=a__ ) a__ = TaConfig( vocab_size=a__ ,d_model=a__ ,num_heads=a__ ,d_kv=a__ ,d_ff=a__ ,dropout_rate=a__ ,feed_forward_proj=a__ ,is_decoder=a__ ,is_encoder_decoder=a__ ,) a__ = nn.ModuleList() for lyr_num in range(a__ ): a__ = TaBlock(a__ ) self.encoders.append(a__ ) a__ = TaLayerNorm(a__ ) a__ = nn.Dropout(p=a__ ) def lowerCAmelCase_ ( self : Optional[Any] ,a__ : Tuple ,a__ : Optional[int] ): a__ = self.token_embedder(a__ ) a__ = encoder_input_tokens.shape[1] a__ = torch.arange(a__ ,device=encoder_input_tokens.device ) x += self.position_encoding(a__ ) a__ = self.dropout_pre(a__ ) # inverted the attention mask a__ = encoder_input_tokens.size() a__ = self.get_extended_attention_mask(a__ ,a__ ) for lyr in self.encoders: a__ = lyr(a__ ,a__ )[0] a__ = self.layer_norm(a__ ) return self.dropout_post(a__ ), encoder_inputs_mask
331
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCamelCase__ = logging.getLogger(__name__) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''summarization''' lowerCamelCase__ = ['''loss'''] lowerCamelCase__ = ROUGE_KEYS lowerCamelCase__ = '''rouge2''' def __init__( self , _a , **_a ) -> Optional[Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(_a , num_labels=_a , mode=self.mode , **_a ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) lowerCAmelCase_ = Path(self.output_dir ) / "metrics.json" lowerCAmelCase_ = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) lowerCAmelCase_ = 0 lowerCAmelCase_ = defaultdict(_a ) lowerCAmelCase_ = self.config.model_type lowerCAmelCase_ = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size lowerCAmelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCAmelCase_ = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } lowerCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase_ = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase_ = get_git_info()["repo_sha"] lowerCAmelCase_ = hparams.num_workers lowerCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _a ): lowerCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase_ = self.decoder_start_token_id lowerCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) lowerCAmelCase_ = False lowerCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase_ = self.hparams.eval_max_gen_length else: lowerCAmelCase_ = self.model.config.max_length lowerCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __a ( self , _a ) -> Dict[str, List[str]]: lowerCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(_a , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) lowerCAmelCase_ = True return readable_batch def __a ( self , _a , **_a ) -> Union[str, Any]: return self.model(_a , **_a ) def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) return lmap(str.strip , _a ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = self.tokenizer.pad_token_id lowerCAmelCase_ , lowerCAmelCase_ = batch["input_ids"], batch["attention_mask"] lowerCAmelCase_ = batch["labels"] if isinstance(self.model , _a ): lowerCAmelCase_ = self.model._shift_right(_a ) else: lowerCAmelCase_ = shift_tokens_right(_a , _a ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase_ = decoder_input_ids self.save_readable_batch(_a ) lowerCAmelCase_ = self(_a , attention_mask=_a , decoder_input_ids=_a , use_cache=_a ) lowerCAmelCase_ = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase_ = nn.CrossEntropyLoss(ignore_index=_a ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCAmelCase_ = nn.functional.log_softmax(_a , dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = label_smoothed_nll_loss( _a , _a , self.hparams.label_smoothing , ignore_index=_a ) return (loss,) @property def __a ( self ) -> int: return self.tokenizer.pad_token_id def __a ( self , _a , _a ) -> Dict: lowerCAmelCase_ = self._step(_a ) lowerCAmelCase_ = dict(zip(self.loss_names , _a ) ) # tokens per batch lowerCAmelCase_ = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() lowerCAmelCase_ = batch["input_ids"].shape[0] lowerCAmelCase_ = batch["input_ids"].eq(self.pad ).sum() lowerCAmelCase_ = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __a ( self , _a , _a ) -> Dict: return self._generative_step(_a ) def __a ( self , _a , _a="val" ) -> Dict: self.step_count += 1 lowerCAmelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase_ = losses["loss"] lowerCAmelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } lowerCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase_ = torch.tensor(_a ).type_as(_a ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_a ) lowerCAmelCase_ = {f"{prefix}_avg_{k}": x for k, x in losses.items()} lowerCAmelCase_ = self.step_count self.metrics[prefix].append(_a ) # callback writes this to self.metrics_save_path lowerCAmelCase_ = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metric_tensor, } def __a ( self , _a , _a ) -> Dict: return calculate_rouge(_a , _a ) def __a ( self , _a ) -> dict: lowerCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase_ = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=_a , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCAmelCase_ = (time.time() - ta) / batch["input_ids"].shape[0] lowerCAmelCase_ = self.ids_to_clean_text(_a ) lowerCAmelCase_ = self.ids_to_clean_text(batch["labels"] ) lowerCAmelCase_ = self._step(_a ) lowerCAmelCase_ = dict(zip(self.loss_names , _a ) ) lowerCAmelCase_ = self.calc_generative_metrics(_a , _a ) lowerCAmelCase_ = np.mean(lmap(_a , _a ) ) base_metrics.update(gen_time=_a , gen_len=_a , preds=_a , target=_a , **_a ) return base_metrics def __a ( self , _a , _a ) -> List[str]: return self._generative_step(_a ) def __a ( self , _a ) -> List[Any]: return self.validation_epoch_end(_a , prefix="test" ) def __a ( self , _a ) -> SeqaSeqDataset: lowerCAmelCase_ = self.n_obs[type_path] lowerCAmelCase_ = self.target_lens[type_path] lowerCAmelCase_ = self.dataset_class( self.tokenizer , type_path=_a , n_obs=_a , max_target_length=_a , **self.dataset_kwargs , ) return dataset def __a ( self , _a , _a , _a = False ) -> DataLoader: lowerCAmelCase_ = self.get_dataset(_a ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase_ = dataset.make_sortish_sampler(_a , distributed=self.hparams.gpus > 1 ) return DataLoader( _a , batch_size=_a , collate_fn=dataset.collate_fn , shuffle=_a , num_workers=self.num_workers , sampler=_a , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _a , batch_sampler=_a , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _a , batch_size=_a , collate_fn=dataset.collate_fn , shuffle=_a , num_workers=self.num_workers , sampler=_a , ) def __a ( self ) -> DataLoader: lowerCAmelCase_ = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=_a ) return dataloader def __a ( self ) -> DataLoader: return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def __a ( self ) -> DataLoader: return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __a ( _a , _a ) -> Any: BaseTransformer.add_model_specific_args(_a , _a ) add_generic_args(_a , _a ) parser.add_argument( "--max_source_length" , default=1024 , type=_a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=_a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=_a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=_a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=_a ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=_a ) parser.add_argument("--max_tokens_per_batch" , type=_a , default=_a ) parser.add_argument("--logger_name" , type=_a , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=_a , default=-1 , required=_a , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=_a , default=500 , required=_a , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=_a , default=-1 , required=_a , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=_a , default="summarization" , required=_a , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=_a , default=0.0 , required=_a ) parser.add_argument("--src_lang" , type=_a , default="" , required=_a ) parser.add_argument("--tgt_lang" , type=_a , default="" , required=_a ) parser.add_argument("--eval_beams" , type=_a , default=_a , required=_a ) parser.add_argument( "--val_metric" , type=_a , default=_a , required=_a , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=_a , default=_a , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=_a , default=1 , required=_a , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=_a , default=-1 , required=_a , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class __magic_name__ (__lowercase ): lowerCamelCase__ = '''translation''' lowerCamelCase__ = ['''loss'''] lowerCamelCase__ = ['''bleu'''] lowerCamelCase__ = '''bleu''' def __init__( self , _a , **_a ) -> List[str]: super().__init__(_a , **_a ) lowerCAmelCase_ = hparams.src_lang lowerCAmelCase_ = hparams.tgt_lang def __a ( self , _a , _a ) -> dict: return calculate_bleu(_a , _a ) def A(__a: Optional[Any] , __a: Any=None ): Path(args.output_dir ).mkdir(exist_ok=__a ) check_output_dir(__a , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase_ = SummarizationModule(__a ) else: lowerCAmelCase_ = TranslationModule(__a ) lowerCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): lowerCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase_ = os.environ.get("WANDB_PROJECT" , __a ) lowerCAmelCase_ = WandbLogger(name=model.output_dir.name , project=__a ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase_ = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: lowerCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase_ = False lowerCAmelCase_ = args.val_metric == "loss" lowerCAmelCase_ = generic_train( __a , __a , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __a ) , early_stopping_callback=__a , logger=__a , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model lowerCAmelCase_ = "" lowerCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=__a ) ) if checkpoints: lowerCAmelCase_ = checkpoints[-1] lowerCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() lowerCamelCase__ = pl.Trainer.add_argparse_args(parser) lowerCamelCase__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCamelCase__ = parser.parse_args() main(args)
713
from __future__ import annotations from PIL import Image # Define glider example lowerCamelCase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCamelCase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def A(__a: list[list[int]] ): lowerCAmelCase_ = [] for i in range(len(__a ) ): lowerCAmelCase_ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase_ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__a ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__a ) - 1: neighbour_count += cells[i + 1][j] if i < len(__a ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase_ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__a ) return next_generation def A(__a: list[list[int]] , __a: int ): lowerCAmelCase_ = [] for _ in range(__a ): # Create output image lowerCAmelCase_ = Image.new("RGB" , (len(cells[0] ), len(__a )) ) lowerCAmelCase_ = img.load() # Save cells to image for x in range(len(__a ) ): for y in range(len(cells[0] ) ): lowerCAmelCase_ = 255 - cells[y][x] * 255 lowerCAmelCase_ = (colour, colour, colour) # Save image images.append(__a ) lowerCAmelCase_ = new_generation(__a ) return images if __name__ == "__main__": lowerCamelCase__ = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
226
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase : List[str] = parse(importlib.metadata.version('torch')) def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[str]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) lowercase__ = STR_OPERATION_TO_FUNC[operation] if isinstance(A , A ): lowercase__ = parse(importlib.metadata.version(A ) ) return operation(A , parse(A ) ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[int]: """simple docstring""" return compare_versions(A , A , A )
460
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(A ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(A ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(A ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(A ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) torch.save(A , args.output ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCamelCase : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
460
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int = 1000 ): """simple docstring""" return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'{solution() = }')
491
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _snake_case = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: str = 1 @add_end_docstrings(UpperCAmelCase ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: int = "generated" def __init__( self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Union[str, Any] , ) -> int: """simple docstring""" _lowerCAmelCase = {} if truncation is not None: _lowerCAmelCase = truncation _lowerCAmelCase = generate_kwargs _lowerCAmelCase = {} if return_tensors is not None and return_type is None: _lowerCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: _lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _lowerCAmelCase = self.tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" return True def __lowerCamelCase ( self : Union[str, Any] , *UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> str: """simple docstring""" _lowerCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , UpperCAmelCase_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) _lowerCAmelCase = ([prefix + arg for arg in args[0]],) _lowerCAmelCase = True elif isinstance(args[0] , UpperCAmelCase_ ): _lowerCAmelCase = (prefix + args[0],) _lowerCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) _lowerCAmelCase = self.tokenizer(*UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ) -> str: """simple docstring""" _lowerCAmelCase = super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if ( isinstance(args[0] , UpperCAmelCase_ ) and all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for el in args[0] ) and all(len(UpperCAmelCase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowerCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" _lowerCAmelCase = self._parse_and_tokenize(UpperCAmelCase_ , truncation=UpperCAmelCase_ , **UpperCAmelCase_ ) return inputs def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) -> Any: """simple docstring""" if self.framework == "pt": _lowerCAmelCase , _lowerCAmelCase = model_inputs['input_ids'].shape elif self.framework == "tf": _lowerCAmelCase , _lowerCAmelCase = tf.shape(model_inputs['input_ids'] ).numpy() _lowerCAmelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) _lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(UpperCAmelCase_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) _lowerCAmelCase = self.model.generate(**UpperCAmelCase_ , **UpperCAmelCase_ ) _lowerCAmelCase = output_ids.shape[0] if self.framework == "pt": _lowerCAmelCase = output_ids.reshape(UpperCAmelCase_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _lowerCAmelCase = tf.reshape(UpperCAmelCase_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=ReturnType.TEXT , UpperCAmelCase_ : Optional[Any]=False ) -> str: """simple docstring""" _lowerCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _lowerCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: _lowerCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , ) } records.append(UpperCAmelCase_ ) return records @add_end_docstrings(UpperCAmelCase ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] = "summary" def __call__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ) -> int: """simple docstring""" return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCAmelCase ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = "translation" def __lowerCamelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> Any: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def __lowerCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None ) -> Optional[int]: """simple docstring""" if getattr(self.tokenizer , '_build_translation_inputs' , UpperCAmelCase_ ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase_ , return_tensors=self.framework , truncation=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ ) else: return super()._parse_and_tokenize(*UpperCAmelCase_ , truncation=UpperCAmelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = super()._sanitize_parameters(**UpperCAmelCase_ ) if src_lang is not None: _lowerCAmelCase = src_lang if tgt_lang is not None: _lowerCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _lowerCAmelCase = kwargs.get('task' , self.task ) _lowerCAmelCase = task.split('_' ) if task and len(UpperCAmelCase_ ) == 4: # translation, XX, to YY _lowerCAmelCase = items[1] _lowerCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ )
491
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw).convert('RGB') return image def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding')) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding')) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight')) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias')) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight')) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias')) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',)) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''')) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''')) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight')) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias')) # fmt: on return rename_keys def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = val def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''') SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''') # next, set bias in the state dict SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase), v_bias)) SCREAMING_SNAKE_CASE = qkv_bias def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 364 if 'coco' in model_name else 224 SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=_UpperCAmelCase).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1).to_dict() SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase) return config, image_size @torch.no_grad() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b') if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl') ) SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=_UpperCAmelCase).input_ids[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase) SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(_UpperCAmelCase).eval() SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...') SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase) original_model.eval() print('Done!') # update state dict keys SCREAMING_SNAKE_CASE = original_model.state_dict() SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) if key.startswith('Qformer.bert'): SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer') if "attention.self" in key: SCREAMING_SNAKE_CASE = key.replace('self' , 'attention') if "opt_proj" in key: SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection') if "t5_proj" in key: SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection') if key.startswith('opt'): SCREAMING_SNAKE_CASE = key.replace('opt' , 'language') if key.startswith('t5'): SCREAMING_SNAKE_CASE = key.replace('t5' , 'language') SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase) assert len(_UpperCAmelCase) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE = load_demo_image() SCREAMING_SNAKE_CASE = vis_processors['eval'](_UpperCAmelCase).unsqueeze(0).to(_UpperCAmelCase) SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt').input_ids.to(_UpperCAmelCase) # create processor SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase) SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase) SCREAMING_SNAKE_CASE = processor(images=_UpperCAmelCase , return_tensors='pt').pixel_values.to(_UpperCAmelCase) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase) original_model.to(_UpperCAmelCase) hf_model.to(_UpperCAmelCase) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']}).logits SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase).logits else: SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']}).logits SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100) SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3]) print('First values of HF logits:' , logits[0, :3, :3]) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_UpperCAmelCase) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_UpperCAmelCase) else: # cast to same type SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase) , _UpperCAmelCase , atol=1e-2) print('Looks ok!') print('Generating a caption...') SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids.to(_UpperCAmelCase) SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values}) SCREAMING_SNAKE_CASE = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = input_ids.shape[1] SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase) SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase) hf_model.save_pretrained(_UpperCAmelCase) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''') hf_model.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": a_ : str = argparse.ArgumentParser() a_ : Optional[int] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
73
import math import os import sys def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = '' try: with open(_UpperCAmelCase , 'rb') as binary_file: SCREAMING_SNAKE_CASE = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): lexicon.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = last_match_id if math.loga(_UpperCAmelCase).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE = '0' + lexicon[curr_key] SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = {'0': '0', '1': '1'} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = '', '' SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) for i in range(len(_UpperCAmelCase)): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) index += 1 SCREAMING_SNAKE_CASE = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = os.path.getsize(_UpperCAmelCase) SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 8 try: with open(_UpperCAmelCase , 'wb') as opened_file: SCREAMING_SNAKE_CASE = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase) , _UpperCAmelCase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('10000000') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2).to_bytes(1 , byteorder='big')) except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = read_file_binary(_UpperCAmelCase) SCREAMING_SNAKE_CASE = compress_data(_UpperCAmelCase) SCREAMING_SNAKE_CASE = add_file_length(_UpperCAmelCase , _UpperCAmelCase) write_file_binary(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
73
1
from math import ceil def _A ( __snake_case :int = 1001 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __SCREAMING_SNAKE_CASE = 2 * i + 1 __SCREAMING_SNAKE_CASE = 2 * i __SCREAMING_SNAKE_CASE = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _snake_case : Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
214
import argparse _snake_case : Union[str, Any] = 'docs/source/_static/js/custom.js' def _A ( __snake_case :List[Any] ) -> Any: """simple docstring""" with open(__snake_case , encoding="utf-8" , newline="\n" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 __SCREAMING_SNAKE_CASE = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(__snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') _snake_case : Tuple = parser.parse_args() update_custom_js(args.version)
214
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar snake_case_ = TypeVar('T') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): def __init__(self : Union[str, Any] , a__ : T ): """simple docstring""" __snake_case = data __snake_case = None def __str__(self : Optional[int] ): """simple docstring""" return f"""{self.data}""" class SCREAMING_SNAKE_CASE__ ( Generic[T] ): def __init__(self : List[str] ): """simple docstring""" __snake_case = None def __iter__(self : List[Any] ): """simple docstring""" __snake_case = self.top while node: yield node.data __snake_case = node.next def __str__(self : Any ): """simple docstring""" return "->".join([str(a__ ) for item in self] ) def __len__(self : List[Any] ): """simple docstring""" return len(tuple(iter(self ) ) ) def a (self : List[str] ): """simple docstring""" return self.top is None def a (self : List[Any] , a__ : T ): """simple docstring""" __snake_case = Node(a__ ) if not self.is_empty(): __snake_case = self.top __snake_case = node def a (self : Any ): """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , a__ ) __snake_case = self.top __snake_case = self.top.next return pop_node.data def a (self : List[str] ): """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def a (self : Optional[Any] ): """simple docstring""" __snake_case = None if __name__ == "__main__": from doctest import testmod testmod()
592
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : int = 'xlnet' A_ : str = ['mems'] A_ : str = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self : str , a__ : Any=3_2000 , a__ : List[str]=1024 , a__ : List[str]=24 , a__ : Dict=16 , a__ : Optional[int]=4096 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=True , a__ : int="bi" , a__ : Optional[Any]=0.0_2 , a__ : str=1E-12 , a__ : Dict=0.1 , a__ : List[str]=512 , a__ : Optional[int]=None , a__ : Optional[int]=True , a__ : Any=False , a__ : List[Any]=False , a__ : List[Any]=-1 , a__ : Optional[Any]=False , a__ : List[Any]="last" , a__ : Dict=True , a__ : Union[str, Any]="tanh" , a__ : Optional[int]=0.1 , a__ : Tuple=5 , a__ : str=5 , a__ : int=5 , a__ : Any=1 , a__ : List[Any]=2 , **a__ : Union[str, Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = d_model __snake_case = n_layer __snake_case = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) __snake_case = d_model // n_head __snake_case = ff_activation __snake_case = d_inner __snake_case = untie_r __snake_case = attn_type __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = dropout __snake_case = mem_len __snake_case = reuse_len __snake_case = bi_data __snake_case = clamp_len __snake_case = same_length __snake_case = summary_type __snake_case = summary_use_proj __snake_case = summary_activation __snake_case = summary_last_dropout __snake_case = start_n_top __snake_case = end_n_top __snake_case = bos_token_id __snake_case = pad_token_id __snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , a__ , ) __snake_case = kwargs['''use_cache'''] __snake_case = use_mems_eval __snake_case = use_mems_train super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) @property def a (self : Any ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a (self : Dict , a__ : Union[str, Any] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
592
1
"""simple docstring""" import heapq import sys import numpy as np lowercase = tuple[int, int] class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self) -> List[str]: '''simple docstring''' snake_case__ : int = [] snake_case__ : Optional[int] = set() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("inf") def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return len(self.elements) == 0 def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> Optional[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCamelCase__) else: # update # print("update", item) snake_case__ : int = [] (snake_case__) : List[str] = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) (snake_case__) : Optional[int] = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self , lowerCamelCase__) -> List[Any]: '''simple docstring''' if item in self.set: self.set.remove(lowerCamelCase__) snake_case__ : Any = [] (snake_case__) : List[str] = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) (snake_case__) : List[Any] = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return self.elements[0][1] def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' (snake_case__) : Dict = heapq.heappop(self.elements) self.set.remove(lowerCamelCase__) return (priority, item) def A__ ( _UpperCAmelCase : TPos , _UpperCAmelCase : TPos ) -> Optional[Any]: '''simple docstring''' snake_case__ : str = np.array(_UpperCAmelCase ) snake_case__ : List[Any] = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def A__ ( _UpperCAmelCase : TPos , _UpperCAmelCase : TPos ) -> str: '''simple docstring''' return consistent_heuristic(_UpperCAmelCase , _UpperCAmelCase ) // t def A__ ( _UpperCAmelCase : TPos , _UpperCAmelCase : TPos ) -> Any: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A__ ( _UpperCAmelCase : TPos , _UpperCAmelCase : int , _UpperCAmelCase : TPos , _UpperCAmelCase : dict[TPos, float] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = g_function[start] + Wa * heuristics[i](_UpperCAmelCase , _UpperCAmelCase ) return ans def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): snake_case__ : Any = "*" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: snake_case__ : Optional[Any] = "#" snake_case__ : Optional[Any] = "-" snake_case__ : Optional[int] = back_pointer[goal] while x != start: (snake_case__) : str = x # print(x) snake_case__ : str = "-" snake_case__ : int = back_pointer[x] snake_case__ : Optional[Any] = "-" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) snake_case__ : Union[str, Any] = back_pointer[goal] while x != start: print(_UpperCAmelCase , end=" " ) snake_case__ : List[Any] = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def A__ ( _UpperCAmelCase : TPos ) -> int: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , ) -> Optional[Any]: '''simple docstring''' for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) (snake_case__) : Union[str, Any] = s snake_case__ : List[str] = (x - 1, y) snake_case__ : List[Any] = (x + 1, y) snake_case__ : List[Any] = (x, y + 1) snake_case__ : Tuple = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) snake_case__ : Dict = -1 snake_case__ : List[Any] = float("inf" ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: snake_case__ : List[Any] = g_function[s] + 1 snake_case__ : Any = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase , key(_UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCAmelCase ): if key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) def A__ ( ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowercase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowercase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowercase = make_common_ground() lowercase = blocks_blk # hyper parameters lowercase = 1 lowercase = 1 lowercase = 20 lowercase = 3 # one consistent and two other inconsistent # start and end destination lowercase = (0, 0) lowercase = (n - 1, n - 1) lowercase = 1 def A__ ( _UpperCAmelCase : TPos , _UpperCAmelCase : TPos , _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' snake_case__ : str = {start: 0, goal: float("inf" )} snake_case__ : Dict = {start: -1, goal: -1} snake_case__ : str = [] snake_case__ : Optional[Any] = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) snake_case__ : list[int] = [] snake_case__ : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: snake_case__ : int = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: snake_case__ : str = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_anchor.append(_UpperCAmelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
715
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowercase = {"""facebook/blenderbot_small-90M""": 512} def A__ ( _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = set() snake_case__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Any = char snake_case__ : List[str] = set(_UpperCAmelCase ) return pairs class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : Tuple = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="__start__" , lowerCamelCase__="__end__" , lowerCamelCase__="__unk__" , lowerCamelCase__="__null__" , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__) with open(lowerCamelCase__ , encoding="utf-8") as vocab_handle: snake_case__ : int = json.load(lowerCamelCase__) snake_case__ : List[str] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="utf-8") as merges_handle: snake_case__ : Any = merges_handle.read().split("\n")[1:-1] snake_case__ : Optional[int] = [tuple(merge.split()) for merge in merges] snake_case__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__)))) snake_case__ : List[str] = {} @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return len(self.encoder) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case__ : Tuple = re.sub("([.,!?()])" , R" \1" , lowerCamelCase__) snake_case__ : List[Any] = re.sub("(')" , R" \1 " , lowerCamelCase__) snake_case__ : Dict = re.sub(R"\s{2,}" , " " , lowerCamelCase__) if "\n" in token: snake_case__ : Tuple = token.replace("\n" , " __newln__") snake_case__ : Optional[int] = token.split(" ") snake_case__ : int = [] for token in tokens: if not len(lowerCamelCase__): continue snake_case__ : str = token.lower() snake_case__ : List[str] = tuple(lowerCamelCase__) snake_case__ : str = tuple(list(word[:-1]) + [word[-1] + "</w>"]) snake_case__ : Optional[int] = get_pairs(lowerCamelCase__) if not pairs: words.append(lowerCamelCase__) continue while True: snake_case__ : int = min(lowerCamelCase__ , key=lambda lowerCamelCase__: self.bpe_ranks.get(lowerCamelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Any = bigram snake_case__ : Optional[int] = [] snake_case__ : str = 0 while i < len(lowerCamelCase__): try: snake_case__ : Any = word.index(lowerCamelCase__ , lowerCamelCase__) new_word.extend(word[i:j]) snake_case__ : Tuple = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCamelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 snake_case__ : Optional[int] = tuple(lowerCamelCase__) snake_case__ : str = new_word if len(lowerCamelCase__) == 1: break else: snake_case__ : Optional[int] = get_pairs(lowerCamelCase__) snake_case__ : Tuple = "@@ ".join(lowerCamelCase__) snake_case__ : Union[str, Any] = word[:-4] snake_case__ : Any = word words.append(lowerCamelCase__) return " ".join(lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__) -> List[str]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = re.findall(R"\S+\n?" , lowerCamelCase__) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__).split(" "))) return split_tokens def UpperCAmelCase ( self , lowerCamelCase__) -> int: '''simple docstring''' snake_case__ : str = token.lower() return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' snake_case__ : Optional[int] = " ".join(lowerCamelCase__).replace("@@ " , "").strip() return out_string def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return snake_case__ : int = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) snake_case__ : Tuple = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCamelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__) + "\n") snake_case__ : str = 0 with open(lowerCamelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!") snake_case__ : Tuple = token_index writer.write(" ".join(lowerCamelCase__) + "\n") index += 1 return vocab_file, merge_file
150
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 def __init__( self : List[Any] ,A : UNetaDModel ,A : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : int ,A : int = 1 ,A : int = 20_00 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,**A : Optional[int] ,): __A = self.unet.config.sample_size __A = (batch_size, 3, img_size, img_size) __A = self.unet __A = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma __A = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __A = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __A = self.unet(A ,A ).sample __A = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step __A = model(A ,A ).sample __A = self.scheduler.step_pred(A ,A ,A ,generator=A ) __A , __A = output.prev_sample, output.prev_sample_mean __A = sample_mean.clamp(0 ,1 ) __A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
55
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a :str = 16 a :Union[str, Any] = 32 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> Tuple: SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Dict = 8 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a :Dict = mocked_dataloaders # noqa: F811 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": SCREAMING_SNAKE_CASE__ : Optional[int] = 2 # New Code # SCREAMING_SNAKE_CASE__ : Optional[int] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Any = config["""lr"""] SCREAMING_SNAKE_CASE__ : str = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ : List[str] = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ : Any = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : int = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Any = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) def _lowercase ( ) -> Any: SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
680
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Union[str, Any] = 'upernet' def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=512 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=384 , lowerCAmelCase__=256 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__: str = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: str = backbone_config.get('model_type' ) lowercase__: Union[str, Any] = CONFIG_MAPPING[backbone_model_type] lowercase__: Dict = config_class.from_dict(lowerCAmelCase__ ) lowercase__: List[Any] = backbone_config lowercase__: Union[str, Any] = hidden_size lowercase__: Tuple = initializer_range lowercase__: Optional[int] = pool_scales lowercase__: Union[str, Any] = use_auxiliary_head lowercase__: Any = auxiliary_loss_weight lowercase__: Tuple = auxiliary_in_channels lowercase__: Optional[Any] = auxiliary_channels lowercase__: List[Any] = auxiliary_num_convs lowercase__: List[str] = auxiliary_concat_input lowercase__: Any = loss_ignore_index def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Tuple = copy.deepcopy(self.__dict__ ) lowercase__: List[Any] = self.backbone_config.to_dict() lowercase__: str = self.__class__.model_type return output
335
from __future__ import annotations from dataclasses import dataclass @dataclass class __a : __lowercase : float __lowercase : TreeNode | None = None __lowercase : TreeNode | None = None def snake_case_ ( snake_case ) -> bool: # Validation def is_valid_tree(snake_case ) -> bool: if node is None: return True if not isinstance(snake_case , snake_case ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( snake_case , snake_case , snake_case ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case ) ) return is_binary_search_tree_recursive_check(snake_case , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_0_0 , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , ): snake_case__ : Tuple = parent snake_case__ : Optional[Any] = 1_0_0 snake_case__ : List[Any] = batch_size snake_case__ : List[str] = image_size snake_case__ : int = patch_size snake_case__ : Tuple = num_channels snake_case__ : List[str] = is_training snake_case__ : List[str] = use_labels snake_case__ : int = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = scope snake_case__ : Any = out_indices snake_case__ : str = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Optional[Any] = (image_size // patch_size) ** 2 snake_case__ : str = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : int = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = BeitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = BeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Union[str, Any] = self.type_sequence_label_size snake_case__ : Any = BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Any = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Any = 1 snake_case__ : Any = BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = self.num_labels snake_case__ : str = BeitForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : int = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case__ : Any = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = config_and_inputs snake_case__ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[str] = BeitModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : int = [*signature.parameters.keys()] snake_case__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): if not self.model_tester.is_training: return snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling]: continue snake_case__ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : List[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case__ : Optional[int] = False snake_case__ : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Dict = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __UpperCamelCase ( self ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = BeitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values.to(__SCREAMING_SNAKE_CASE ) # prepare bool_masked_pos snake_case__ : str = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[Any] = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE ) snake_case__ : int = outputs.logits # verify the logits snake_case__ : Dict = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 ) ) @slow def __UpperCamelCase ( self ): snake_case__ : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : str = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = outputs.logits # verify the logits snake_case__ : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) snake_case__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ : List[Any] = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = outputs.logits # verify the logits snake_case__ : str = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) snake_case__ : Union[str, Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case__ : List[Any] = model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=6_4_0 , do_center_crop=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case__ : int = Image.open(ds[0]["""file"""] ) snake_case__ : Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = outputs.logits # verify the logits snake_case__ : str = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: snake_case__ : List[str] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__SCREAMING_SNAKE_CASE , ) else: snake_case__ : Tuple = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[int] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case__ : str = model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=6_4_0 , do_center_crop=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case__ : Optional[int] = Image.open(ds[0]["""file"""] ) snake_case__ : List[str] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = outputs.logits.detach().cpu() snake_case__ : int = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(5_0_0, 3_0_0)] ) snake_case__ : Tuple = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
38
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
1
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__ ( unittest.TestCase, lowercase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : str = load_tool('text-to-speech' ) self.tool.setup() def A_ ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCamelCase : str = self.tool('hey' ) _lowerCamelCase : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def A_ ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) _lowerCamelCase : List[Any] = self.tool('hey' ) _lowerCamelCase : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
703
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def A_ ( *lowercase , **lowercase ): pass @is_pipeline_test @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @require_torch def A_ ( self ): _lowerCamelCase : int = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : List[str] = image_classifier(lowercase , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase ) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) _lowerCamelCase : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], ] , ) @require_tf def A_ ( self ): _lowerCamelCase : Optional[Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Optional[int] = image_classifier(lowercase , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(lowercase ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) _lowerCamelCase : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], [ {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, {'score': 0.3_33, 'label': ANY(lowercase )}, ], ] , ) @slow @require_torch def A_ ( self ): _lowerCamelCase : Tuple = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Optional[Any] = image_classifier(lowercase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowercase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : Dict = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def A_ ( self ): _lowerCamelCase : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Tuple = image_classifier(lowercase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowercase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : Dict = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
492
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowerCAmelCase : str =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowerCAmelCase : list[int] =[ord(letter) for letter in string.ascii_lowercase] _lowerCAmelCase : set[int] ={ord(char) for char in VALID_CHARS} _lowerCAmelCase : list[str] =["the", "be", "to", "of", "and", "in", "that", "have"] def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = "" UpperCAmelCase__: int UpperCAmelCase__: int UpperCAmelCase__: int for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE ) return decoded def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: list[str] = [] for key in product(SCREAMING_SNAKE_CASE ,repeat=3 ): UpperCAmelCase__: Optional[int] = try_key(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE ) return possibles def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): return [possible for possible in possibles if common_word in possible.lower()] def _A ( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ): UpperCAmelCase__: list[int] UpperCAmelCase__: list[str] UpperCAmelCase__: str UpperCAmelCase__: str UpperCAmelCase__: str = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding="utf-8" ) UpperCAmelCase__: int = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split("," )] UpperCAmelCase__: int = filter_valid_chars(SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: UpperCAmelCase__: int = filter_common_word(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: break UpperCAmelCase__: List[str] = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
113
def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = int(SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = divmod(SCREAMING_SNAKE_CASE ,2 ) return binary_recursive(SCREAMING_SNAKE_CASE ) + str(SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = str(SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase__: Tuple = "-" if number.startswith("-" ) else "" UpperCAmelCase__: Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE ) )}" if __name__ == "__main__": from doctest import testmod testmod()
113
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> list[int]: __a = [] __a = 2 __a = int(math.sqrt(lowerCAmelCase__ ) ) # Size of every segment __a = [True] * (end + 1) __a = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase__ ) for i in range(start * start , end + 1 , lowerCAmelCase__ ): __a = False start += 1 prime += in_prime __a = end + 1 __a = min(2 * end , lowerCAmelCase__ ) while low <= n: __a = [True] * (high - low + 1) for each in in_prime: __a = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase__ , high + 1 , lowerCAmelCase__ ): __a = False for j in range(len(lowerCAmelCase__ ) ): if temp[j] is True: prime.append(j + low ) __a = high + 1 __a = min(high + end , lowerCAmelCase__ ) return prime print(sieve(1_0**6))
65
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase ( lowerCAmelCase__ : Optional[int] ) -> int: monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def lowercase ( lowerCAmelCase__ : Any ) -> Any: class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a ): __a = metric_id class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Any = [MetricMock(__SCREAMING_SNAKE_CASE ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def __UpperCAmelCase ( self ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> Optional[int]: if "tmp_path" in args: __a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase__ , match='''https://huggingface.co/docs/evaluate''' ): func(*lowerCAmelCase__ )
65
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCamelCase__ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = XLMProphetNetTokenizer UpperCamelCase__ = False UpperCamelCase__ = True def lowerCAmelCase_ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing a__ = XLMProphetNetTokenizer(a__ ,keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : int ): a__ = "[PAD]" a__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) ,a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) ,a__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"[PAD]" ) self.assertEqual(vocab_keys[1] ,"[CLS]" ) self.assertEqual(vocab_keys[-1] ,"j" ) self.assertEqual(len(a__ ) ,10_12 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase_ ( self : List[Any] ): a__ = XLMProphetNetTokenizer(a__ ,keep_accents=a__ ) a__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) a__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) a__ = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) a__ = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] ,) @cached_property def lowerCAmelCase_ ( self : List[str] ): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowerCAmelCase_ ( self : List[Any] ): a__ = "Hello World!" a__ = [3_53_89, 66_72, 49, 2] self.assertListEqual(a__ ,self.big_tokenizer.encode(a__ ) ) @slow def lowerCAmelCase_ ( self : List[Any] ): # fmt: off a__ = {"input_ids": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ ,model_name="microsoft/xprophetnet-large-wiki100-cased" ,revision="1acad1643ddd54a44df6a1b797ada8373685d90e" ,)
331
'''simple docstring''' import sys UpperCamelCase_ : Union[str, Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCAmelCase (_lowercase = N ): """simple docstring""" a__ = -sys.maxsize - 1 for i in range(len(_lowercase ) - 12 ): a__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a__ = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
331
1
"""simple docstring""" import math def _UpperCamelCase ( _A ) -> bool: """simple docstring""" _UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_A ) def _UpperCamelCase ( _A = 1 / 1_2_3_4_5 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 3 while True: _UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_A ): _UpperCAmelCase = int(_A ) total_partitions += 1 if check_partition_perfect(_A ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_A ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( _UpperCAmelCase ): def _snake_case ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : str ) ->Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _snake_case ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self : str ) ->Optional[Any]: '''simple docstring''' import PIL.Image _UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects: _UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) _UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __UpperCamelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=_A , features=_A ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() _UpperCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_A ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} _UpperCAmelCase = os.path.join(_A , """test.arrow""" ) with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(_A , 1 ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" if pa.types.is_list(_A ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" if isinstance(lst[0] , _A ): change_first_primitive_element_in_list(lst[0] , _A ) else: _UpperCAmelCase = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _UpperCAmelCase = copy.deepcopy(_A ) _UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_A , _A ) _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=_A ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_A ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_A ) def _UpperCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" import PIL.Image _UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" ) _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer: writer.write({"""image""": image_path} ) writer.finalize() _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) _UpperCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , _A ) with open(_A , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] ) _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=_A ) as writer: writer._build_writer(inferred_schema=_A ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
19
1
"""simple docstring""" class UpperCamelCase_ : def __init__( self : str ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase_ : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase_ : str = self.__min_dist_top_down_dp(lowerCAmelCase_ , n - 1 ) UpperCAmelCase_ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase_ : str = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return self.dp[m][n] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> int: UpperCAmelCase_ : Optional[int] = worda UpperCAmelCase_ : Union[str, Any] = worda UpperCAmelCase_ : str = [[-1 for _ in range(len(lowerCAmelCase_ ) )] for _ in range(len(lowerCAmelCase_ ) )] return self.__min_dist_top_down_dp(len(lowerCAmelCase_ ) - 1 , len(lowerCAmelCase_ ) - 1 ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> int: UpperCAmelCase_ : str = worda UpperCAmelCase_ : Any = worda UpperCAmelCase_ : Union[str, Any] = len(lowerCAmelCase_ ) UpperCAmelCase_ : str = len(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase_ : int = j elif j == 0: # second string is empty UpperCAmelCase_ : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase_ : Any = self.dp[i - 1][j - 1] else: UpperCAmelCase_ : Union[str, Any] = self.dp[i][j - 1] UpperCAmelCase_ : List[Any] = self.dp[i - 1][j] UpperCAmelCase_ : Union[str, Any] = self.dp[i - 1][j - 1] UpperCAmelCase_ : Union[str, Any] = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return self.dp[m][n] if __name__ == "__main__": lowerCamelCase_ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowerCamelCase_ = input('''Enter the first string: ''').strip() lowerCamelCase_ = input('''Enter the second string: ''').strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
95
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> set[str]: a , a = set(__UpperCamelCase), [start] while stack: a = stack.pop() explored.add(__UpperCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(__UpperCamelCase) return explored lowercase__ : int = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
515
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
from __future__ import annotations import math def _snake_case (__lowercase): if num <= 0: UpperCamelCase_ = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__lowercase) UpperCamelCase_ = [True] * (num + 1) UpperCamelCase_ = [] UpperCamelCase_ = 2 UpperCamelCase_ = int(math.sqrt(__lowercase)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__lowercase) # Set multiples of start be False for i in range(start * start , num + 1 , __lowercase): if sieve[i] is True: UpperCamelCase_ = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(__lowercase) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
23
"""simple docstring""" def _lowerCAmelCase ( ) -> int: return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9 ) for b in range(lowerCamelCase__, 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
572
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> set[str]: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: lowerCAmelCase__ : Optional[int] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored lowerCamelCase__ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
69
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( __magic_name__ , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ : Any = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowerCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : List[str] , a : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = 'lower newer' lowerCAmelCase__ : Any = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Optional[int] = 'lower' lowerCAmelCase__ : Optional[Any] = ['low', 'er</w>'] lowerCAmelCase__ : Dict = tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Tuple = tokens + ['<unk>'] lowerCAmelCase__ : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) lowerCAmelCase__ : Any = tokenizer.encode('sequence builders' , add_special_tokens=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) lowerCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
69
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } SCREAMING_SNAKE_CASE = '▁' # Segments (not really needed) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = '''left''' UpperCamelCase_ = XLNetTokenizer def __init__( self : int , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : str=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Optional[Any]="<sep>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Optional[Any]="<cls>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : int=["<eop>", "<eod>"] , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : Dict =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =3 lowercase : Union[str, Any] =do_lower_case lowercase : Any =remove_space lowercase : int =keep_accents lowercase : int =vocab_file lowercase : Union[str, Any] =False if not self.vocab_file else True def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[int] =[self.sep_token_id] lowercase : Union[str, Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Dict =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
94
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Any = 16 a__ : str = 32 def UpperCAmelCase_ ( _UpperCAmelCase :Accelerator , _UpperCAmelCase :int = 16 ) -> int: '''simple docstring''' A_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCAmelCase :Optional[Any] ): # max_length=None => use the model max length (it's actually the default) A_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCAmelCase :List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ = 16 elif accelerator.mixed_precision != "no": A_ = 8 else: A_ = None return tokenizer.pad( _UpperCAmelCase , padding='''longest''' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A_ = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) A_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Optional[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( _UpperCAmelCase :List[str] , _UpperCAmelCase :Dict ) -> Dict: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _UpperCAmelCase ) == "1": A_ = 2 # New Code # A_ = int(args.gradient_accumulation_steps ) A_ = int(args.local_sgd_steps ) # Initialize accelerator A_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ = config['''lr'''] A_ = int(config['''num_epochs'''] ) A_ = int(config['''seed'''] ) A_ = int(config['''batch_size'''] ) A_ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_UpperCAmelCase ) A_ , A_ = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ = model.to(accelerator.device ) # Instantiate optimizer A_ = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler A_ = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): A_ = model(**_UpperCAmelCase ) A_ = output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ = model(**_UpperCAmelCase ) A_ = outputs.logits.argmax(dim=-1 ) A_ , A_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) A_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' A_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCAmelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=_UpperCAmelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A_ = parser.parse_args() A_ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
188
0
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets UpperCAmelCase: Union[str, Any] = datasets.logging.get_logger(__name__) UpperCAmelCase: Tuple = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ UpperCAmelCase: Tuple = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ UpperCAmelCase: Union[str, Any] = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://unbabel.github.io/COMET/html/index.html""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """sources""": datasets.Value("""string""" ,id="""sequence""" ), """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/Unbabel/COMET"""] ,reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.config_name == "default": _lowercase : Any = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: _lowercase : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_=False ): if gpus is None: _lowercase : Optional[Any] = 1 if torch.cuda.is_available() else 0 _lowercase : str = {"""src""": sources, """mt""": predictions, """ref""": references} _lowercase : Optional[Any] = [dict(zip(UpperCAmelCase_ ,UpperCAmelCase_ ) ) for t in zip(*data.values() )] _lowercase : Optional[Any] = self.scorer.predict(UpperCAmelCase_ ,gpus=UpperCAmelCase_ ,progress_bar=UpperCAmelCase_ ) return {"mean_score": mean_score, "scores": scores}
716
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase: str = """base_with_context""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : Optional[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = ly_weight["""attention"""] _lowercase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : int = weights[F"""layers_{lyr_num}"""] _lowercase : Any = ly_weight["""attention"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowercase : List[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _lowercase : int = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = ly_weight["""self_attention"""] _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = ly_weight["""MultiHeadDotProductAttention_0"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowercase : List[Any] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) _lowercase : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _lowercase : List[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _lowercase : Optional[int] = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : Optional[Any] = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) _lowercase : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _lowercase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowercase : str = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) _lowercase : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) _lowercase : List[str] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) _lowercase : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _lowercase : str = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase: Any = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'{MODEL}/checkpoint_500000', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase: Optional[Any] = parser.parse_args() main(args)
600
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE_ ( _a ): '''simple docstring''' lowercase : Dict = """Wav2Vec2FeatureExtractor""" lowercase : Tuple = """AutoTokenizer""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =self.feature_extractor A : Dict =False @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: try: return super().from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , SCREAMING_SNAKE_CASE__ , ) A : Optional[Any] =WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : int =WavaVecaCTCTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return cls(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) def __call__( self : int , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A : Any =kwargs.pop('raw_speech' ) else: A : Union[str, Any] =kwargs.pop('audio' , SCREAMING_SNAKE_CASE__ ) A : int =kwargs.pop('sampling_rate' , SCREAMING_SNAKE_CASE__ ) A : Optional[int] =kwargs.pop('text' , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: A : Optional[int] =args[0] A : Union[str, Any] =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A : Union[str, Any] =self.feature_extractor(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None: A : List[str] =self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is None: return inputs elif audio is None: return encodings else: A : Any =encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> int: if self._in_target_context_manager: return self.current_processor.pad(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Optional[int] =kwargs.pop('input_features' , SCREAMING_SNAKE_CASE__ ) A : Dict =kwargs.pop('labels' , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: A : List[str] =args[0] A : List[Any] =args[1:] if input_features is not None: A : Optional[int] =self.feature_extractor.pad(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if labels is not None: A : Dict =self.tokenizer.pad(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if labels is None: return input_features elif input_features is None: return labels else: A : Any =labels['input_ids'] return input_features def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A : Optional[int] =True A : int =self.tokenizer yield A : Any =self.feature_extractor A : List[Any] =False
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] SCREAMING_SNAKE_CASE : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): _lowerCamelCase : Dict = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: _lowerCamelCase : List[str] = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : Optional[int] = numpy_to_pil(UpperCamelCase_ ) return images def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' if images.ndim == 3: _lowerCAmelCase : int = images[None, ...] _lowerCAmelCase : List[Any] = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase : Optional[int] = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: _lowerCAmelCase : List[str] = [Image.fromarray(UpperCamelCase_ ) for image in images] return pil_images
196
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] , _UpperCAmelCase : int=[1, 1, 2, 1] , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : int=3 , _UpperCAmelCase : int=None , ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : List[str] = embeddings_size _lowerCAmelCase : int = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : int = is_training _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Optional[int] = len(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = TFResNetForImageClassification(_UpperCAmelCase ) _lowerCAmelCase : str = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case (_a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[int] = TFResNetModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _lowerCAmelCase : Dict = model_class(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Tuple = layer_type _lowerCAmelCase : Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Optional[int] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : int = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" ) # forward pass _lowerCAmelCase : int = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1E-4 ) )
196
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ (__A : Optional[int] ) -> Dict: __lowerCAmelCase : int = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 1_8, 2] __lowerCAmelCase : List[Any] = True if """large""" in model_name or """huge""" in model_name else False __lowerCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False __lowerCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase : Union[str, Any] = [3, 3, 3, 3] __lowerCAmelCase : Dict = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase : str = [4, 4, 4, 4] __lowerCAmelCase : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase : Any = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase : List[Any] = [3, 3, 3, 3] else: __lowerCAmelCase : str = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase : List[str] = 9_6 elif "small" in model_name: __lowerCAmelCase : Dict = 9_6 elif "base" in model_name: __lowerCAmelCase : int = 1_2_8 elif "large" in model_name: __lowerCAmelCase : Dict = 1_9_2 elif "xlarge" in model_name: __lowerCAmelCase : List[str] = 2_5_6 elif "huge" in model_name: __lowerCAmelCase : int = 3_5_2 # set label information __lowerCAmelCase : List[str] = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __lowerCAmelCase : Any = """imagenet-22k-id2label.json""" else: __lowerCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __lowerCAmelCase : str = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : Optional[Any] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __lowerCAmelCase : List[str] = FocalNetConfig( embed_dim=__A , depths=__A , focal_levels=__A , focal_windows=__A , use_conv_embed=__A , idalabel=__A , labelaid=__A , use_post_layernorm=__A , use_layerscale=__A , ) return config def snake_case_ (__A : Optional[Any] ) -> Dict: if "patch_embed.proj" in name: __lowerCAmelCase : Tuple = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowerCAmelCase : Dict = """encoder.""" + name if "encoder.layers" in name: __lowerCAmelCase : int = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __lowerCAmelCase : Dict = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __lowerCAmelCase : int = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase : Tuple = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase : Optional[Any] = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __lowerCAmelCase : Dict = """layernorm.weight""" if name == "norm.bias": __lowerCAmelCase : Optional[int] = """layernorm.bias""" if "head" in name: __lowerCAmelCase : Dict = name.replace("""head""" , """classifier""" ) else: __lowerCAmelCase : List[Any] = """focalnet.""" + name return name def snake_case_ (__A : List[str] , __A : Union[str, Any] , __A : List[Any]=False ) -> Optional[Any]: # fmt: off __lowerCAmelCase : Optional[int] = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __lowerCAmelCase : List[Any] = model_name_to_url[model_name] print("""Checkpoint URL: """ , __A ) __lowerCAmelCase : Dict = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase : Union[str, Any] = state_dict.pop(__A ) __lowerCAmelCase : List[Any] = val __lowerCAmelCase : str = get_focalnet_config(__A ) __lowerCAmelCase : List[Any] = FocalNetForImageClassification(__A ) model.eval() # load state dict model.load_state_dict(__A ) # verify conversion __lowerCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Optional[Any] = BitImageProcessor( do_resize=__A , size={"""shortest_edge""": 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__A , crop_size=2_2_4 , do_normalize=__A , image_mean=__A , image_std=__A , ) __lowerCAmelCase : Tuple = Image.open(requests.get(__A , stream=__A ).raw ) __lowerCAmelCase : Optional[int] = processor(images=__A , return_tensors="""pt""" ) __lowerCAmelCase : Dict = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowerCAmelCase : List[Any] = image_transforms(__A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __A , atol=1e-4 ) __lowerCAmelCase : List[Any] = model(**__A ) __lowerCAmelCase : Tuple = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCAmelCase : List[Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase : str = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __lowerCAmelCase : Optional[int] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __lowerCAmelCase : Tuple = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __lowerCAmelCase : int = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __lowerCAmelCase : Union[str, Any] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) __UpperCAmelCase = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __UpperCAmelCase = False @skip_mps class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] =StableDiffusionAttendAndExcitePipeline lowerCamelCase : List[Any] =False lowerCamelCase : int =TEXT_TO_IMAGE_PARAMS lowerCamelCase : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) lowerCamelCase : Optional[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ) -> int: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str ) -> List[Any]: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase , ) __lowerCAmelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) __lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCAmelCase : Optional[int] = CLIPTextModel(lowerCAmelCase ) __lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : str=0 ) -> Dict: """simple docstring""" if str(lowerCAmelCase ).startswith("""mps""" ): __lowerCAmelCase : List[Any] = torch.manual_seed(lowerCAmelCase ) else: __lowerCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowerCAmelCase : str = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = """cpu""" __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : Dict = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase ) __lowerCAmelCase : int = pipe(**lowerCAmelCase ).images __lowerCAmelCase : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __lowerCAmelCase : Union[str, Any] = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) __lowerCAmelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" super().test_save_load_local(expected_max_difference=5e-4 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] ) -> List[str]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] ) -> Tuple: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = torch.manual_seed(51 ) __lowerCAmelCase : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __lowerCAmelCase : int = """a painting of an elephant with glasses""" __lowerCAmelCase : Dict = [5, 7] __lowerCAmelCase : Union[str, Any] = pipe( prompt=lowerCAmelCase , token_indices=lowerCAmelCase , guidance_scale=7.5 , generator=lowerCAmelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] __lowerCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
651
1
def _UpperCAmelCase ( UpperCamelCase: list , UpperCamelCase: list ): """simple docstring""" _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) ) def _UpperCAmelCase ( UpperCamelCase: list[float] ): """simple docstring""" if point: if isinstance(UpperCamelCase , UpperCamelCase ): for item in point: if not isinstance(UpperCamelCase , (int, float) ): __lowerCAmelCase = ( "Expected a list of numbers as input, found " F"{type(UpperCamelCase ).__name__}" ) raise TypeError(UpperCamelCase ) else: __lowerCAmelCase = F"Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}" raise TypeError(UpperCamelCase ) else: raise ValueError("Missing an input" ) def _UpperCAmelCase ( UpperCamelCase: list , UpperCamelCase: list ): """simple docstring""" _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __UpperCAmelCase ): @staticmethod @abstractmethod def UpperCAmelCase__ ( snake_case__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : Any ): """simple docstring""" raise NotImplementedError()
376
1
SCREAMING_SNAKE_CASE__ : Dict = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 3, 5, 7, 9] def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase__ : Optional[int] = 0 for digit in range(10 ): UpperCAmelCase__ : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __lowerCamelCase , __lowerCamelCase ) return result UpperCAmelCase__ : Dict = 0 for digita in range(10 ): UpperCAmelCase__ : Union[str, Any] = digita if (remainder + digita) % 2 == 0: UpperCAmelCase__ : Any = ODD_DIGITS else: UpperCAmelCase__ : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase__ : Optional[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCamelCase , __lowerCamelCase , ) return result def _lowerCamelCase ( __lowerCamelCase = 9 ) -> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(f'''{solution() = }''')
79
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[int] = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length, 2) , _SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Optional[int] = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length) , _SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(_SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCamelCase :int = tensor[:sequence_length] else: __UpperCamelCase :List[str] = tensor[:sequence_length] else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCamelCase :Tuple = tensor[:sequence_length] else: __UpperCamelCase :Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = ord(_SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __UpperCamelCase :List[str] = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : PreTrainedTokenizerBase a__ : Union[bool, str, PaddingStrategy] = True a__ : Optional[int] = None a__ : Optional[int] = None a__ : int = -1_0_0 a__ : str = "pt" def UpperCamelCase__ ( self , __lowercase) -> str: import torch __UpperCamelCase :Tuple = '''label''' if '''label''' in features[0].keys() else '''labels''' __UpperCamelCase :Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __UpperCamelCase :str = self.tokenizer.pad( __lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __UpperCamelCase :int = torch.tensor(batch['''entity_ids''']).shape[1] __UpperCamelCase :Optional[Any] = self.tokenizer.padding_side if padding_side == "right": __UpperCamelCase :List[str] = [ list(__lowercase) + [self.label_pad_token_id] * (sequence_length - len(__lowercase)) for label in labels ] else: __UpperCamelCase :Tuple = [ [self.label_pad_token_id] * (sequence_length - len(__lowercase)) + list(__lowercase) for label in labels ] __UpperCamelCase :Tuple = [feature['''ner_tags'''] for feature in features] __UpperCamelCase :int = padding_tensor(__lowercase , -1 , __lowercase , __lowercase) __UpperCamelCase :str = [feature['''original_entity_spans'''] for feature in features] __UpperCamelCase :Union[str, Any] = padding_tensor(__lowercase , (-1, -1) , __lowercase , __lowercase) __UpperCamelCase :Optional[Any] = {k: torch.tensor(__lowercase , dtype=torch.intaa) for k, v in batch.items()} return batch
701
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return 1 if input_a == input_a else 0 def lowerCamelCase ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
452
0
from __future__ import annotations def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Tuple = get_failure_array(lowerCamelCase_ ) # 2) Step through text searching for pattern A , A : Dict = 0, 0 # index into text, pattern while i < len(lowerCamelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCamelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: A : Any = failure[j - 1] continue i += 1 return False def snake_case__ ( lowerCamelCase_ ): A : Optional[Any] = [0] A : Optional[int] = 0 A : Union[str, Any] = 1 while j < len(lowerCamelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: A : Tuple = failure[i - 1] continue j += 1 failure.append(lowerCamelCase_ ) return failure if __name__ == "__main__": # Test 1) lowercase : List[str] = "abc1abc12" lowercase : Tuple = "alskfjaldsabc1abc1abc12k23adsfabcabc" lowercase : Tuple = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowercase : List[str] = "ABABX" lowercase : Optional[int] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) lowercase : Tuple = "AAAB" lowercase : Tuple = "ABAAAAAB" assert kmp(pattern, text) # Test 4) lowercase : List[Any] = "abcdabcy" lowercase : Union[str, Any] = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) lowercase : Optional[Any] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
542
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowercase : Dict = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ : Optional[datasets.Features] = None def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , ): import pyspark def generate_fn(): A : Dict = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: A : Optional[Any] = df_with_partition_id.select('''*''' ).where(F'part_id = {partition_id}' ).drop('''part_id''' ) A : Dict = partition_df.collect() A : List[str] = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class __lowercase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , ) -> List[str]: A : List[Any] = df A : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) A : Optional[int] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> str: yield from self.generate_examples_fn() def snake_case ( self , __UpperCAmelCase ) -> "SparkExamplesIterable": A : Tuple = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> "SparkExamplesIterable": A : Tuple = self.split_shard_indices_by_worker(__UpperCAmelCase , __UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase ) @property def snake_case ( self ) -> int: return len(self.partition_order ) class __lowercase ( datasets.DatasetBuilder ): """simple docstring""" UpperCAmelCase_ : List[str] = SparkConfig def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: import pyspark A : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() A : List[Any] = df A : List[Any] = working_dir super().__init__( cache_dir=__UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **__UpperCAmelCase , ) def snake_case ( self ) -> Optional[Any]: # Returns the path of the created file. def create_cache_and_write_probe(__UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__UpperCAmelCase ) A : Optional[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__UpperCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: A : Optional[int] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def snake_case ( self ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self , __UpperCAmelCase ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def snake_case ( self , __UpperCAmelCase ) -> List[Any]: import pyspark def get_arrow_batch_size(__UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) A : Any = self.df.count() A : Tuple = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. A : Dict = ( self.df.limit(__UpperCAmelCase ) .repartition(1 ) .mapInArrow(__UpperCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) A : str = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. A : Union[str, Any] = min(__UpperCAmelCase , int(approx_total_size / max_shard_size ) ) A : List[Any] = self.df.repartition(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark A : Dict = ParquetWriter if file_format == '''parquet''' else ArrowWriter A : Optional[Any] = os.path.join(self._working_dir , os.path.basename(__UpperCAmelCase ) ) if self._working_dir else fpath A : int = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. A : Any = self.config.features A : Any = self._writer_batch_size A : int = self._fs.storage_options def write_arrow(__UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. A : List[Any] = pyspark.TaskContext().taskAttemptId() A : Union[str, Any] = next(__UpperCAmelCase , __UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) A : Optional[int] = 0 A : Optional[int] = writer_class( features=__UpperCAmelCase , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , ) A : Tuple = pa.Table.from_batches([first_batch] ) writer.write_table(__UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: A , A : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 A : List[str] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , ) A : str = pa.Table.from_batches([batch] ) writer.write_table(__UpperCAmelCase ) if writer._num_bytes > 0: A , A : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__UpperCAmelCase ) ): A : Union[str, Any] = os.path.join(os.path.dirname(__UpperCAmelCase ) , os.path.basename(__UpperCAmelCase ) ) shutil.move(__UpperCAmelCase , __UpperCAmelCase ) A : Union[str, Any] = ( self.df.mapInArrow(__UpperCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = "arrow" , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: self._validate_cache_dir() A : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__UpperCAmelCase ) A : Any = not is_remote_filesystem(self._fs ) A : Union[str, Any] = os.path.join if is_local else posixpath.join A : Any = '''-TTTTT-SSSSS-of-NNNNN''' A : Any = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' A : List[Any] = path_join(self._output_dir , __UpperCAmelCase ) A : Union[str, Any] = 0 A : Any = 0 A : Tuple = 0 A : Union[str, Any] = [] A : List[str] = [] for task_id, content in self._prepare_split_single(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): ( ( A ) , ( A ) , ( A ) , ( A ) , ) : List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__UpperCAmelCase ) A : List[str] = total_num_examples A : List[str] = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: A : Tuple = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. A : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): rename( __UpperCAmelCase , fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , f'{global_shard_id:05d}' ).replace('''NNNNN''' , f'{total_shards:05d}' ) , ) A : Tuple = [] A : Optional[int] = 0 for i in range(len(__UpperCAmelCase ) ): A , A : Tuple = task_id_and_num_shards[i] for shard_id in range(__UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__UpperCAmelCase , len(__UpperCAmelCase ) ).map(lambda __UpperCAmelCase : _rename_shard(*__UpperCAmelCase ) ).collect() else: # don't use any pattern A : int = 0 A : Tuple = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace(__UpperCAmelCase , '''''' ) , ) def snake_case ( self , __UpperCAmelCase , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
542
1
def snake_case__ ( __lowercase , __lowercase ) -> bool: """simple docstring""" A__ : Any = len(__lowercase ) + 1 A__ : Dict = len(__lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. A__ : List[str] = [[0 for i in range(__lowercase )] for j in range(__lowercase )] # since string of zero length match pattern of zero length A__ : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowercase ): A__ : int = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowercase ): A__ : Dict = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": A__ : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: A__ : str = 1 elif pattern[j - 2] in (input_string[i - 1], "."): A__ : Tuple = dp[i - 1][j] else: A__ : Dict = 0 else: A__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") snake_case : List[Any] ='aab' snake_case : Optional[int] ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
715
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" def get_masked_lm_array(__lowercase ): A__ : int = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Dict = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : Any = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_array(__lowercase ): A__ : Dict = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Tuple = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : str = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_layer_array(__lowercase , __lowercase ): A__ : int = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : Dict = tf.train.load_variable(__lowercase , __lowercase ) if "kernel" in name: A__ : Any = array.transpose() return torch.from_numpy(__lowercase ) def get_encoder_attention_layer_array(__lowercase , __lowercase , __lowercase ): A__ : List[str] = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' A__ : List[Any] = tf.train.load_variable(__lowercase , __lowercase ) A__ : int = array.reshape(__lowercase ) if "kernel" in name: A__ : Union[str, Any] = array.transpose() return torch.from_numpy(__lowercase ) print(F'Loading model based on config from {config_path}...' ) A__ : Tuple = BertConfig.from_json_file(__lowercase ) A__ : List[str] = BertForMaskedLM(__lowercase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention A__ : BertSelfAttention = layer.attention.self A__ : Optional[Any] = get_encoder_attention_layer_array( __lowercase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) A__ : List[Any] = get_encoder_attention_layer_array( __lowercase , "_query_dense/bias" , self_attn.query.bias.data.shape ) A__ : int = get_encoder_attention_layer_array( __lowercase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) A__ : Tuple = get_encoder_attention_layer_array( __lowercase , "_key_dense/bias" , self_attn.key.bias.data.shape ) A__ : List[Any] = get_encoder_attention_layer_array( __lowercase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) A__ : Optional[Any] = get_encoder_attention_layer_array( __lowercase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output A__ : BertSelfOutput = layer.attention.output A__ : Tuple = get_encoder_attention_layer_array( __lowercase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) A__ : Any = get_encoder_attention_layer_array( __lowercase , "_output_dense/bias" , self_output.dense.bias.data.shape ) A__ : Dict = get_encoder_layer_array(__lowercase , "_attention_layer_norm/gamma" ) A__ : Optional[int] = get_encoder_layer_array(__lowercase , "_attention_layer_norm/beta" ) # Intermediate A__ : BertIntermediate = layer.intermediate A__ : Optional[Any] = get_encoder_layer_array(__lowercase , "_intermediate_dense/kernel" ) A__ : Any = get_encoder_layer_array(__lowercase , "_intermediate_dense/bias" ) # Output A__ : BertOutput = layer.output A__ : Dict = get_encoder_layer_array(__lowercase , "_output_dense/kernel" ) A__ : List[Any] = get_encoder_layer_array(__lowercase , "_output_dense/bias" ) A__ : Optional[Any] = get_encoder_layer_array(__lowercase , "_output_layer_norm/gamma" ) A__ : Dict = get_encoder_layer_array(__lowercase , "_output_layer_norm/beta" ) # Embeddings A__ : str = get_encoder_array("_position_embedding_layer/embeddings" ) A__ : List[str] = get_encoder_array("_type_embedding_layer/embeddings" ) A__ : List[Any] = get_encoder_array("_embedding_norm_layer/gamma" ) A__ : Optional[int] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head A__ : Optional[Any] = model.cls.predictions.transform A__ : int = get_masked_lm_array("dense/kernel" ) A__ : Tuple = get_masked_lm_array("dense/bias" ) A__ : Optional[Any] = get_masked_lm_array("layer_norm/gamma" ) A__ : Tuple = get_masked_lm_array("layer_norm/beta" ) A__ : Any = get_masked_lm_array("embedding_table" ) # Pooling A__ : Optional[Any] = BertPooler(config=__lowercase ) A__ : BertPooler = get_encoder_array("_pooler_layer/kernel" ) A__ : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__lowercase ) # Integration test - should load without any errors ;) A__ : Union[str, Any] = BertForMaskedLM.from_pretrained(__lowercase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": snake_case : str = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) snake_case : Dict = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
182
0
'''simple docstring''' import requests _snake_case : Union[str, Any] = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(f'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
22
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A : Dict = threading.Lock() A : Optional[logging.Handler] = None A : Optional[int] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A : List[str] = logging.WARNING A : str = True def a__ ( ): SCREAMING_SNAKE_CASE_ = os.getenv("TRANSFORMERS_VERBOSITY" , __UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def a__ ( ): return __name__.split("." )[0] def a__ ( ): return logging.getLogger(_get_library_name() ) def a__ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE_ = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE_ = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE_ = False def a__ ( ): global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE_ = None def a__ ( ): return log_levels def a__ ( __UpperCamelCase = None ): if name is None: SCREAMING_SNAKE_CASE_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( __UpperCamelCase ): _configure_library_root_logger() _get_library_root_logger().setLevel(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): return set_verbosity(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( __UpperCamelCase ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__UpperCamelCase ) def a__ ( __UpperCamelCase ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__UpperCamelCase ) def a__ ( ): _configure_library_root_logger() SCREAMING_SNAKE_CASE_ = False def a__ ( ): _configure_library_root_logger() SCREAMING_SNAKE_CASE_ = True def a__ ( ): SCREAMING_SNAKE_CASE_ = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE_ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(__UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__UpperCamelCase ) def a__ ( self , *__UpperCamelCase , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , __UpperCamelCase ) if no_advisory_warnings: return self.warning(*__UpperCamelCase , **__UpperCamelCase ) A : Dict = warning_advice @functools.lru_cache(__UpperCamelCase ) def a__ ( self , *__UpperCamelCase , **__UpperCamelCase ): self.warning(*__UpperCamelCase , **__UpperCamelCase ) A : Union[str, Any] = warning_once class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> int: # pylint: disable=unused-argument SCREAMING_SNAKE_CASE_ = args[0] if args else None def __iter__( self : str ) -> Optional[int]: return iter(self._iterator ) def __getattr__( self : Dict , __magic_name__ : int ) -> Optional[int]: def empty_fn(*__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ) -> Dict: return self def __exit__( self : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[str] ) -> List[str]: return class lowerCamelCase : """simple docstring""" def __call__( self : List[Any] , *__magic_name__ : List[str] , **__magic_name__ : Tuple ) -> Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm(*__magic_name__ , **__magic_name__ ) else: return EmptyTqdm(*__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , *__magic_name__ : List[Any] , **__magic_name__ : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__magic_name__ , **__magic_name__ ) def __A ( self : Optional[Any] ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm.get_lock() A : Optional[int] = _tqdm_cls() def a__ ( ): global _tqdm_active return bool(_tqdm_active ) def a__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE_ = True hf_hub_utils.enable_progress_bars() def a__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE_ = False hf_hub_utils.disable_progress_bars()
140
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} lowerCAmelCase_ : str = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } lowerCAmelCase_ : Tuple = { 'abeja/gpt-neox-japanese-2.7b': 20_48, } def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] ) -> Optional[Any]: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: _a = json.loads(f.read() ) _a = collections.OrderedDict() _a = collections.OrderedDict() _a = collections.OrderedDict() with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: _a = f.readlines() _a = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_lowerCAmelCase ): _a = b _a = idx for wd in b: _a = idx return vocab, raw_vocab, ids_to_tokens, emoji class __SCREAMING_SNAKE_CASE (__UpperCAmelCase ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =["input_ids", "attention_mask"] def __init__( self : Tuple , __a : Any , __a : Union[str, Any] , __a : Any="<|endoftext|>" , __a : Dict="<|endoftext|>" , __a : Optional[Any]="<|startoftext|>" , __a : Optional[Any]="<|endoftext|>" , __a : List[Any]=False , **__a : Tuple , ): super().__init__( unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , do_clean_text=_lowerCamelCase , **_lowerCamelCase , ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) _a = do_clean_text _a , _a , _a , _a = load_vocab_and_emoji(_lowerCamelCase , _lowerCamelCase ) _a = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase__ ( self : Union[str, Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCamelCase__ ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(_lowerCamelCase , clean=self.do_clean_text ) def UpperCamelCase__ ( self : Optional[int] , __a : Optional[Any] ): return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self : Tuple , __a : str ): return self.subword_tokenizer.convert_id_to_token(_lowerCamelCase ) def UpperCamelCase__ ( self : Dict , __a : Optional[Any] ): _a = "".join(_lowerCamelCase ).strip() return out_string def UpperCamelCase__ ( self : Dict , __a : "Conversation" ): _a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: _a = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase__ ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ): _a = 0 if os.path.isdir(_lowerCamelCase ): _a = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: _a = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) _a = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) _a = token_index writer.write(",".join(_lowerCamelCase ) + "\n" ) index += 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , _lowerCamelCase ) return vocab_file, emoji_file class __SCREAMING_SNAKE_CASE (__UpperCAmelCase ): """simple docstring""" def __init__( self : Dict , __a : Any , __a : Optional[int] , __a : Optional[int] ): _a = vocab # same as swe _a = ids_to_tokens # same as bpe _a = emoji _a = np.max([len(_lowerCamelCase ) for w in self.vocab.keys()] ) _a = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) _a = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) _a = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) _a = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) _a = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) _a = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) _a = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" _a = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" _a = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Optional[int] ): return len(self.ids_to_tokens ) def UpperCamelCase__ ( self : Dict , __a : Tuple ): _a = self.content_repattera.sub("<URL>" , _lowerCamelCase ) _a = self.content_repattera.sub("<EMAIL>" , _lowerCamelCase ) _a = self.content_repattera.sub("<TEL>" , _lowerCamelCase ) _a = self.content_repattera.sub("<DATE>" , _lowerCamelCase ) _a = self.content_repattera.sub("<DATE>" , _lowerCamelCase ) _a = self.content_repattera.sub("<PRICE>" , _lowerCamelCase ) _a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _a = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict , __a : Any=False ): _a = text.replace(" " , "<SP>" ) _a = text.replace(" " , "<SP>" ) _a = text.replace("\r\n" , "<BR>" ) _a = text.replace("\n" , "<BR>" ) _a = text.replace("\r" , "<BR>" ) _a = text.replace("\t" , "<TAB>" ) _a = text.replace("—" , "ー" ) _a = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: _a = text.replace(_lowerCamelCase , _lowerCamelCase ) if clean: _a = self.clean_text(_lowerCamelCase ) def check_simbol(__a : List[str] ): _a = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 2: _a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(__a : Optional[Any] ): _a = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 3: _a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False _a = 0 _a = [] while pos < len(_lowerCamelCase ): _a = min(len(_lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 _a = [] # (token_id, token, pos) for e in range(_lowerCamelCase , _lowerCamelCase , -1 ): _a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowerCamelCase ) > 2: _a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowerCamelCase ) > 0: # the smallest token_id is adopted _a , _a , _a = sorted(_lowerCamelCase , key=lambda __a : x[0] )[0] result.append(_lowerCamelCase ) _a = e else: _a = pos + 1 _a = text[pos:end] if check_simbol(_lowerCamelCase ): result.append("<KIGOU>" ) elif checkuae(_lowerCamelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) _a = end return result def UpperCamelCase__ ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any]="\n" ): _a = [] _a = [] _a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode("utf-8" , errors="replace" ) ) _a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(_lowerCamelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode("utf-8" , errors="replace" ) ) _a = "".join(_lowerCamelCase ) return text
701
'''simple docstring''' import math import sys def _lowerCamelCase ( lowercase : str ) -> str: _a = "" try: with open(lowercase , "rb" ) as binary_file: _a = binary_file.read() for dat in data: _a = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _lowerCamelCase ( lowercase : str ) -> str: _a = {"0": "0", "1": "1"} _a , _a = "", "" _a = len(lowercase ) for i in range(len(lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _a = lexicon[curr_string] result += last_match_id _a = last_match_id + "0" if math.loga(lowercase ).is_integer(): _a = {} for curr_key in list(lowercase ): _a = lexicon.pop(lowercase ) _a = new_lex _a = last_match_id + "1" index += 1 _a = "" return result def _lowerCamelCase ( lowercase : str , lowercase : str ) -> None: _a = 8 try: with open(lowercase , "wb" ) as opened_file: _a = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase ) , lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowercase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _lowerCamelCase ( lowercase : str ) -> str: _a = 0 for letter in data_bits: if letter == "1": break counter += 1 _a = data_bits[counter:] _a = data_bits[counter + 1 :] return data_bits def _lowerCamelCase ( lowercase : str , lowercase : str ) -> None: _a = read_file_binary(lowercase ) _a = remove_prefix(lowercase ) _a = decompress_data(lowercase ) write_file_binary(lowercase , lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
521
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = 'Hello, World!' __lowerCAmelCase = 'en_XX' def _UpperCAmelCase ( __A : str , __A : str , __A : bool ): a_ : str = Path('''data_bin''' ) a_ : Optional[int] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__A ).parent ) , checkpoint_file=Path(__A ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__A ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__A ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__A ) a_ : Any = xmod.model.encoder.sentence_encoder a_ : Optional[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: a_ : Optional[int] = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __A ) a_ : Optional[int] = XmodForSequenceClassification(__A ) if classification_head else XmodForMaskedLM(__A ) model.eval() # Now let's copy all the weights. # Embeddings a_ : Dict = xmod_sent_encoder.embed_tokens.weight a_ : Any = xmod_sent_encoder.embed_positions.weight a_ : Any = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. a_ : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight a_ : Tuple = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer a_ : Union[str, Any] = model.roberta.encoder.layer[i] a_ : Optional[Any] = xmod_sent_encoder.layers[i] # self attention a_ : Union[str, Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) a_ : int = xmod_layer.self_attn.q_proj.weight a_ : List[str] = xmod_layer.self_attn.q_proj.bias a_ : List[Any] = xmod_layer.self_attn.k_proj.weight a_ : List[str] = xmod_layer.self_attn.k_proj.bias a_ : Tuple = xmod_layer.self_attn.v_proj.weight a_ : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output a_ : int = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) a_ : List[Any] = xmod_layer.self_attn.out_proj.weight a_ : Optional[int] = xmod_layer.self_attn.out_proj.bias a_ : str = xmod_layer.self_attn_layer_norm.weight a_ : int = xmod_layer.self_attn_layer_norm.bias # intermediate a_ : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) a_ : Any = xmod_layer.fca.weight a_ : List[Any] = xmod_layer.fca.bias # output a_ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) a_ : Optional[Any] = xmod_layer.fca.weight a_ : Optional[Any] = xmod_layer.fca.bias a_ : Union[str, Any] = xmod_layer.final_layer_norm.weight a_ : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: a_ : str = xmod_layer.adapter_layer_norm.weight a_ : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): a_ : Any = bert_output.adapter_modules[lang_code] a_ : List[str] = xmod_layer.adapter_modules[lang_code] a_ : Tuple = from_adapter.fca.weight a_ : List[str] = from_adapter.fca.bias a_ : List[str] = from_adapter.fca.weight a_ : str = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: a_ : int = xmod_sent_encoder.layer_norm.weight a_ : Optional[int] = xmod_sent_encoder.layer_norm.bias if classification_head: a_ : Optional[Any] = xmod.model.classification_heads['''mnli'''].dense.weight a_ : List[Any] = xmod.model.classification_heads['''mnli'''].dense.bias a_ : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight a_ : List[str] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head a_ : List[str] = xmod.model.encoder.lm_head.dense.weight a_ : List[str] = xmod.model.encoder.lm_head.dense.bias a_ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight a_ : int = xmod.model.encoder.lm_head.layer_norm.bias a_ : Optional[int] = xmod.model.encoder.lm_head.weight a_ : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. a_ : List[Any] = xmod.encode(__A ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__A ) a_ : List[str] = model(__A )[0] if classification_head: a_ : Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__A ) ) else: a_ : Dict = xmod.model(__A , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) a_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 a_ : Optional[Any] = torch.allclose(__A , __A , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__A ).mkdir(parents=__A , exist_ok=__A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
466
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ = ViTImageProcessor if is_vision_available() else None @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Optional[Any] = (3, 32, 128) a_ : Optional[Any] = tempfile.mkdtemp() # fmt: off a_ : Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on a_ : List[Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) a_ : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } a_ : Any = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Optional[Any] = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) a_ : Optional[int] = Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : str = self.get_tokenizer() a_ : List[Any] = self.get_image_processor() a_ : Union[str, Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) a_ : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : Any = self.get_tokenizer() a_ : Dict = self.get_image_processor() a_ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) a_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a_ : str = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) a_ : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Dict = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : Any = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = self.prepare_image_inputs() a_ : List[Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) a_ : int = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Dict = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : int = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : Tuple = '''test''' a_ : Any = processor(text=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : Union[str, Any] = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = '''test''' a_ : str = self.prepare_image_inputs() a_ : Tuple = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : int = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : Dict = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] a_ : List[Any] = processor.char_decode(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: a_ : int = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : Any = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : Dict = None a_ : Tuple = self.prepare_image_inputs() a_ : Optional[int] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ : List[str] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Any = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) a_ : str = torch.randn(1 , 27 , 38 ) a_ : int = torch.randn(1 , 27 , 5_0257 ) a_ : Union[str, Any] = torch.randn(1 , 27 , 3_0522 ) a_ : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
466
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[str] ) -> Tuple: '''simple docstring''' _a = LxmertConfig.from_json_file(lowercase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) _a = LxmertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
702
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase ( UpperCamelCase_: str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a = model_type_to_module_name(UpperCamelCase_ ) _a = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(UpperCamelCase_ , UpperCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase_ , "__name__" , UpperCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a = importlib.import_module("transformers" ) if hasattr(UpperCamelCase_ , UpperCamelCase_ ): return getattr(UpperCamelCase_ , UpperCamelCase_ ) return None def lowerCAmelCase ( UpperCamelCase_: Union[str, os.PathLike] , UpperCamelCase_: Optional[Union[str, os.PathLike]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[Dict[str, str]] = None , UpperCamelCase_: Optional[Union[bool, str]] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , **UpperCamelCase_: Dict , ) -> Optional[int]: '''simple docstring''' _a = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase_ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase_ ) class lowercase_ : def __init__( self ) ->List[Any]: '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(a_ ) def lowerCamelCase__ ( cls , a_ , **a_ ) ->Dict: '''simple docstring''' _a = kwargs.pop("config" , a_ ) _a = kwargs.pop("trust_remote_code" , a_ ) _a = True _a , _a = ImageProcessingMixin.get_image_processor_dict(a_ , **a_ ) _a = config_dict.get("image_processor_type" , a_ ) _a = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a = config_dict.pop("feature_extractor_type" , a_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _a = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoFeatureExtractor"] _a = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a_ , a_ ): _a = AutoConfig.from_pretrained(a_ , **a_ ) # It could be in `config.image_processor_type`` _a = getattr(a_ , "image_processor_type" , a_ ) if hasattr(a_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _a = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _a = image_processor_class_from_name(a_ ) _a = image_processor_auto_map is not None _a = image_processor_class is not None or type(a_ ) in IMAGE_PROCESSOR_MAPPING _a = resolve_trust_remote_code( a_ , a_ , a_ , a_ ) if has_remote_code and trust_remote_code: _a = get_class_from_dynamic_module( a_ , a_ , **a_ ) _a = kwargs.pop("code_revision" , a_ ) if os.path.isdir(a_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a_ , **a_ ) elif image_processor_class is not None: return image_processor_class.from_dict(a_ , **a_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a_ ) in IMAGE_PROCESSOR_MAPPING: _a = IMAGE_PROCESSOR_MAPPING[type(a_ )] return image_processor_class.from_dict(a_ , **a_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( a_ , a_ ) ->Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(a_ , a_ )
612
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Any ) -> int: """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , '''vision''' ) self.check_model_type(lowerCamelCase__ ) def __call__( self : Optional[Any] , lowerCamelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase__ : str ) -> str: """simple docstring""" return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , **lowerCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" return {}, {}, {} def UpperCAmelCase_ ( self : Union[str, Any] , lowerCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" __lowercase = load_image(lowerCamelCase__ ) __lowercase = image.size __lowercase = self.image_processor(images=lowerCamelCase__ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : Dict ) -> Tuple: """simple docstring""" __lowercase = self.model(**lowerCamelCase__ ) return model_outputs def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = model_outputs.predicted_depth __lowercase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=lowerCamelCase__ ) __lowercase = prediction.squeeze().cpu().numpy() __lowercase = (output * 255 / np.max(lowerCamelCase__ )).astype('''uint8''' ) __lowercase = Image.fromarray(lowerCamelCase__ ) __lowercase = {} __lowercase = predicted_depth __lowercase = depth return output_dict
332
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Tuple = 'vit_msn' def __init__( self : List[Any] , lowerCamelCase__ : Any=768 , lowerCamelCase__ : Dict=12 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Union[str, Any]=3_072 , lowerCamelCase__ : str="gelu" , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[int]=0.0_2 , lowerCamelCase__ : List[Any]=1e-0_6 , lowerCamelCase__ : Tuple=224 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : int=True , **lowerCamelCase__ : Optional[int] , ) -> int: """simple docstring""" super().__init__(**lowerCamelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias
332
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = pad_token_id _lowerCAmelCase : List[Any] = max_length _lowerCAmelCase : Tuple = vocab _lowerCAmelCase : str = merges _lowerCAmelCase : List[str] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = [' '.join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] _lowerCAmelCase : Any = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ ): '''simple docstring''' return cls(**snake_case__ ) def a ( self ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = self.tf_tokenizer(snake_case__ ) _lowerCAmelCase : str = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length _lowerCAmelCase : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _lowerCAmelCase , _lowerCAmelCase : str = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
630
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [10, 20, 30, 40, 50, 60] _lowerCAmelCase : Union[str, Any] = [2, 4, 6, 8, 10, 12] _lowerCAmelCase : Dict = 100 self.assertEqual(kp.calc_profit(snake_case__ , snake_case__ , snake_case__ ) , 210 ) def a ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , 'max_weight must greater than zero.' ) def a ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , 'Weight can not be negative.' ) def a ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , 'Profit can not be negative.' ) def a ( self ): '''simple docstring''' self.assertRaisesRegex(snake_case__ , 'max_weight must greater than zero.' ) def a ( self ): '''simple docstring''' self.assertRaisesRegex( snake_case__ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
630
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('sample_euler' ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('sample_euler' ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_A , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_A , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
148
from __future__ import annotations import requests lowerCAmelCase__ : Any =set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def __lowercase ( a__ , a__ = 1 , a__ = "new" , a__ = None ) -> dict: __SCREAMING_SNAKE_CASE = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a__ ) - valid_terms ) ): __SCREAMING_SNAKE_CASE = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(a__ ) __SCREAMING_SNAKE_CASE = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , ) if response.status_code == 4_29: raise requests.HTTPError __SCREAMING_SNAKE_CASE = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a__ )} __SCREAMING_SNAKE_CASE = {} for id_ in range(a__ ): __SCREAMING_SNAKE_CASE = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
148
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( UpperCAmelCase ): @staticmethod @abstractmethod def _UpperCAmelCase ( A_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self ): '''simple docstring''' raise NotImplementedError()
708
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> int: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : List[Any] = 0 for chara, chara in zip(lowerCAmelCase , lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
467
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase (metaclass=a_ ): snake_case_ = ["""keras_nlp"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase )-> Union[str, Any]: requires_backends(self , ["keras_nlp"] )
367
'''simple docstring''' import re def lowerCAmelCase__ ( lowerCamelCase : str ): if len(re.findall('[ATCG]' ,lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' ,'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False __a = logging.get_logger(__name__) __a = 'ybelkada/fonts' def lowerCamelCase__ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' requires_backends(_lowercase , ['''torch'''] ) _check_torch_version() UpperCAmelCase_ : Tuple = image_tensor.unsqueeze(0 ) UpperCAmelCase_ : Union[str, Any] = torch.nn.functional.unfold(_lowercase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCAmelCase_ : int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _lowercase , _lowercase , -1 ) UpperCAmelCase_ : List[str] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCamelCase__ ( _lowercase , _lowercase = 36 , _lowercase = "black" , _lowercase = "white" , _lowercase = 5 , _lowercase = 5 , _lowercase = 5 , _lowercase = 5 , _lowercase = None , _lowercase = None , ): '''simple docstring''' requires_backends(_lowercase , '''vision''' ) # Add new lines so that each line is no more than 80 characters. UpperCAmelCase_ : Optional[Any] = textwrap.TextWrapper(width=80 ) UpperCAmelCase_ : Dict = wrapper.wrap(text=_lowercase ) UpperCAmelCase_ : Optional[Any] = '''\n'''.join(_lowercase ) if font_bytes is not None and font_path is None: UpperCAmelCase_ : str = io.BytesIO(_lowercase ) elif font_path is not None: UpperCAmelCase_ : List[str] = font_path else: UpperCAmelCase_ : Optional[Any] = hf_hub_download(_lowercase , '''Arial.TTF''' ) UpperCAmelCase_ : Optional[Any] = ImageFont.truetype(_lowercase , encoding='''UTF-8''' , size=_lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCAmelCase_ : Optional[int] = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , _lowercase ) ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = temp_draw.textbbox((0, 0) , _lowercase , _lowercase ) # Create the actual image with a bit of padding around the text. UpperCAmelCase_ : Optional[int] = text_width + left_padding + right_padding UpperCAmelCase_ : Dict = text_height + top_padding + bottom_padding UpperCAmelCase_ : Any = Image.new('''RGB''' , (image_width, image_height) , _lowercase ) UpperCAmelCase_ : str = ImageDraw.Draw(_lowercase ) draw.text(xy=(left_padding, top_padding) , text=_lowercase , fill=_lowercase , font=_lowercase ) return image def lowerCamelCase__ ( _lowercase , _lowercase , **_lowercase ): '''simple docstring''' requires_backends(_lowercase , '''vision''' ) # Convert to PIL image if necessary UpperCAmelCase_ : List[str] = to_pil_image(_lowercase ) UpperCAmelCase_ : Dict = render_text(_lowercase , **_lowercase ) UpperCAmelCase_ : List[str] = max(header_image.width , image.width ) UpperCAmelCase_ : int = int(image.height * (new_width / image.width) ) UpperCAmelCase_ : List[Any] = int(header_image.height * (new_width / header_image.width) ) UpperCAmelCase_ : Union[str, Any] = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCAmelCase_ : Optional[Any] = to_numpy_array(_lowercase ) if infer_channel_dimension_format(_lowercase ) == ChannelDimension.LAST: UpperCAmelCase_ : List[Any] = to_channel_dimension_format(_lowercase , ChannelDimension.LAST ) return new_image class __a( _a ): """simple docstring""" lowerCAmelCase = ['''flattened_patches'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 2_048 ,_SCREAMING_SNAKE_CASE = False ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : List[str] = do_convert_rgb UpperCAmelCase_ : List[Any] = max_patches UpperCAmelCase_ : Optional[Any] = is_vqa def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> np.ndarray: requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch UpperCAmelCase_ : int = to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,ChannelDimension.FIRST ) UpperCAmelCase_ : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = patch_size['''height'''], patch_size['''width'''] UpperCAmelCase_, UpperCAmelCase_ : Dict = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCAmelCase_ : Optional[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCAmelCase_ : str = max(min(math.floor(scale * image_height / patch_height ) ,_SCREAMING_SNAKE_CASE ) ,1 ) UpperCAmelCase_ : str = max(min(math.floor(scale * image_width / patch_width ) ,_SCREAMING_SNAKE_CASE ) ,1 ) UpperCAmelCase_ : Optional[int] = max(num_feasible_rows * patch_height ,1 ) UpperCAmelCase_ : List[Any] = max(num_feasible_cols * patch_width ,1 ) UpperCAmelCase_ : List[Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=_SCREAMING_SNAKE_CASE ,antialias=_SCREAMING_SNAKE_CASE ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCAmelCase_ : str = torch_extract_patches(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = patches.shape UpperCAmelCase_ : Tuple = patches_shape[1] UpperCAmelCase_ : Optional[int] = patches_shape[2] UpperCAmelCase_ : Optional[Any] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCAmelCase_ : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCAmelCase_ : List[Any] = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 ,_SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCAmelCase_ : List[str] = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCAmelCase_ : List[str] = row_ids.to(torch.floataa ) UpperCAmelCase_ : str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCAmelCase_ : Union[str, Any] = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCAmelCase_ : Any = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE ,[0, 0, 0, max_patches - (rows * columns)] ).float() UpperCAmelCase_ : str = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ) -> np.ndarray: if image.dtype == np.uinta: UpperCAmelCase_ : Optional[int] = image.astype(np.floataa ) # take mean across the whole `image` UpperCAmelCase_ : str = np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.std(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = max(_SCREAMING_SNAKE_CASE ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> ImageInput: UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Any = patch_size if patch_size is not None else self.patch_size UpperCAmelCase_ : Any = max_patches if max_patches is not None else self.max_patches UpperCAmelCase_ : int = self.is_vqa if kwargs.get('''data_format''' ,_SCREAMING_SNAKE_CASE ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) UpperCAmelCase_ : Optional[Any] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : Union[str, Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) UpperCAmelCase_ : List[str] = kwargs.pop('''font_bytes''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = kwargs.pop('''font_path''' ,_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[Any] = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = [ render_header(_SCREAMING_SNAKE_CASE ,header_text[i] ,font_bytes=_SCREAMING_SNAKE_CASE ,font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCAmelCase_ : Union[str, Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCAmelCase_ : Any = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE ,max_patches=_SCREAMING_SNAKE_CASE ,patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCAmelCase_ : Dict = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCAmelCase_ : int = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
300
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt'} __a = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ConvBertTokenizer def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE="[UNK]" ,_SCREAMING_SNAKE_CASE="[SEP]" ,_SCREAMING_SNAKE_CASE="[PAD]" ,_SCREAMING_SNAKE_CASE="[CLS]" ,_SCREAMING_SNAKE_CASE="[MASK]" ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: super().__init__( _SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,do_lower_case=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,tokenize_chinese_chars=_SCREAMING_SNAKE_CASE ,strip_accents=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE ,normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : Dict = strip_accents UpperCAmelCase_ : Optional[Any] = tokenize_chinese_chars UpperCAmelCase_ : Union[str, Any] = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = do_lower_case def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Dict: UpperCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE ,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
300
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case : Union[str, Any] = 16 _snake_case : Optional[Any] = 32 def a_ ( lowerCAmelCase_ : Accelerator, lowerCAmelCase_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCAmelCase = load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) __lowerCAmelCase = DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case : Union[str, Any] = mocked_dataloaders # noqa: F811 def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['lr'] __lowerCAmelCase = int(config['num_epochs'] ) __lowerCAmelCase = int(config['seed'] ) __lowerCAmelCase = int(config['batch_size'] ) __lowerCAmelCase = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
53
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a__ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase , cache_dir=lowercase) a__ : Any = [t[-1] for t in os.walk(os.path.join(lowercase , os.listdir(lowercase)[0] , 'snapshots'))] a__ : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase) a__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Tuple = jax.random.PRNGKey(0) a__ : str = 4 a__ : Dict = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : str = replicate(lowercase) a__ : Dict = jax.random.split(lowercase , lowercase) a__ : Dict = shard(lowercase) a__ : List[str] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1e-3 assert np.abs(np.abs(lowercase , dtype=np.floataa).sum() - 4_99_47.8_75) < 5e-1 a__ : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowercase) == num_samples def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : int = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowercase) a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : Any = 50 a__ : Tuple = jax.device_count() a__ : Optional[int] = num_samples * [prompt] a__ : Optional[int] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : int = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : str = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5e-1 def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase) a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[int] = jax.random.PRNGKey(0) a__ : Dict = 50 a__ : List[Any] = jax.device_count() a__ : Dict = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : Optional[Any] = replicate(lowercase) a__ : List[Any] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Optional[Any] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) a__ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[Any] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : int = jax.device_count() a__ : Tuple = num_samples * [prompt] a__ : Dict = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : int = replicate(lowercase) a__ : List[str] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=lowercase , steps_offset=1 , ) a__ , a__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowercase , safety_checker=lowercase , ) a__ : str = scheduler.create_state() a__ : List[str] = scheduler_state a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : Tuple = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : List[Any] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : Any = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : Optional[int] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5e-1 def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[Any] = jax.device_count() a__ : List[str] = num_samples * [prompt] a__ : List[str] = jax.random.split(jax.random.PRNGKey(0) , lowercase) a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , ) a__ : List[str] = replicate(lowercase) a__ : int = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) a__ : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , use_memory_efficient_attention=lowercase , ) a__ : int = replicate(lowercase) a__ : str = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : int = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) a__ : Dict = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
302
0
"""simple docstring""" import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __UpperCAmelCase = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') __UpperCAmelCase = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = get_test_to_tester_mapping(__A ) lowerCAmelCase_ :str = get_test_to_tester_mapping(__A ) lowerCAmelCase_ :Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} lowerCAmelCase_ :int = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Tuple = get_model_to_test_mapping(__A ) lowerCAmelCase_ :Any = get_model_to_test_mapping(__A ) lowerCAmelCase_ :Tuple = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } lowerCAmelCase_ :Optional[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Optional[Any] = get_model_to_tester_mapping(__A ) lowerCAmelCase_ :Union[str, Any] = get_model_to_tester_mapping(__A ) lowerCAmelCase_ :Any = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } lowerCAmelCase_ :List[str] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A )
708
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _snake_case ( lowercase__ : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _snake_case ( lowercase__ : float , lowercase__ : float ) -> float: '''simple docstring''' return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
256
0
'''simple docstring''' import numpy as np def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1e-12 , SCREAMING_SNAKE_CASE_ = 1_00 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[1] # Ensure proper dimensionality. assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCamelCase__ ) == np.iscomplexobj(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = np.iscomplexobj(UpperCamelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCamelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1e12 while not convergence: # Multiple matrix by the vector. _SCREAMING_SNAKE_CASE = np.dot(UpperCamelCase__ , UpperCamelCase__ ) # Normalize the resulting output vector. _SCREAMING_SNAKE_CASE = w / np.linalg.norm(UpperCamelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T _SCREAMING_SNAKE_CASE = np.dot(UpperCamelCase__ , np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # Check convergence. _SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = lambda_ if is_complex: _SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) _SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) _SCREAMING_SNAKE_CASE = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _SCREAMING_SNAKE_CASE = real_input_matrix _SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": _SCREAMING_SNAKE_CASE = complex_input_matrix _SCREAMING_SNAKE_CASE = complex_vector # Our implementation. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = power_iteration(UpperCamelCase__ , UpperCamelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = np.linalg.eigh(UpperCamelCase__ ) # Last eigenvalue is the maximum one. _SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCamelCase__ ) - np.abs(UpperCamelCase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
591
from string import ascii_uppercase __A = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) __lowerCamelCase = '' __lowerCamelCase = 0 __lowerCamelCase = 0 while div != 1: __lowerCamelCase , __lowerCamelCase = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: __lowerCamelCase = ALPHABET_VALUES[str(UpperCamelCase__ )] else: __lowerCamelCase = str(UpperCamelCase__ ) new_value += actual_value __lowerCamelCase = num // base __lowerCamelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
469
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = (UnCLIPScheduler,) def snake_case_ ( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**SCREAMING_SNAKE_CASE_ ) return config def snake_case_ ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ,prev_timestep=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Any = self.scheduler_classes[0] snake_case : Union[str, Any] = self.get_scheduler_config(variance_type="""fixed_small_log""" ) snake_case : Any = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case_ ( self ): '''simple docstring''' snake_case : str = self.scheduler_classes[0] snake_case : List[str] = self.get_scheduler_config(variance_type="""learned_range""" ) snake_case : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = 0.5 assert scheduler._get_variance(1 ,predicted_variance=SCREAMING_SNAKE_CASE_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 ,predicted_variance=SCREAMING_SNAKE_CASE_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 ,predicted_variance=SCREAMING_SNAKE_CASE_ ) - -0.0_01_00_11 < 1E-5 def snake_case_ ( self ): '''simple docstring''' snake_case : int = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config() snake_case : str = scheduler_class(**SCREAMING_SNAKE_CASE_ ) snake_case : int = scheduler.timesteps snake_case : Dict = self.dummy_model() snake_case : Any = self.dummy_sample_deter snake_case : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 snake_case : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ).prev_sample snake_case : Dict = pred_prev_sample snake_case : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) snake_case : List[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.scheduler_classes[0] snake_case : List[str] = self.get_scheduler_config() snake_case : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(25 ) snake_case : Dict = scheduler.timesteps snake_case : List[Any] = self.dummy_model() snake_case : int = self.dummy_sample_deter snake_case : int = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual snake_case : List[Any] = model(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if i + 1 == timesteps.shape[0]: snake_case : List[Any] = None else: snake_case : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 snake_case : Optional[int] = scheduler.step( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,prev_timestep=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ).prev_sample snake_case : str = pred_prev_sample snake_case : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) snake_case : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' pass
315
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase ( __A : Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowercase ( __A : Tuple , __A : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowercase ( __A : str ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") ) return token def lowercase ( ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowercase ( __A : int , __A : Union[str, Any] , __A : Dict , __A : Dict ) -> int: '''simple docstring''' snake_case : Dict = """imagenet-1k-id2label.json""" snake_case : Tuple = 1000 snake_case : List[Any] = """huggingface/label-files""" snake_case : List[str] = num_labels snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="""dataset""" ) ) , """r""" ) ) snake_case : str = {int(__A ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Optional[Any] = CvtConfig(num_labels=__A , idalabel=__A , labelaid=__A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case : Dict = [2, 2, 20] snake_case : List[str] = [3, 12, 16] snake_case : int = [192, 768, 1024] snake_case : Union[str, Any] = CvtForImageClassification(__A ) snake_case : int = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case : Union[str, Any] = image_size snake_case : Dict = torch.load(__A , map_location=torch.device("""cpu""" ) ) snake_case : List[str] = OrderedDict() snake_case : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case : Optional[int] = list_of_state_dict + cls_token(__A ) snake_case : Dict = list_of_state_dict + embeddings(__A ) for cnt in range(config.depth[idx] ): snake_case : Any = list_of_state_dict + attention(__A , __A ) snake_case : Tuple = list_of_state_dict + final() for gg in list_of_state_dict: print(__A ) for i in range(len(__A ) ): snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase : List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
315
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _UpperCAmelCase : def __init__( self , a__ , a__=1_3 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=9_9 , a__=3_2 , a__=2 , a__=4 , a__=3_7 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=1_6 , a__=2 , a__=0.0_2 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = relative_attention A__ = position_biased_input A__ = pos_att_type A__ = scope def snake_case_ ( self): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__): A__ = TFDebertaVaModel(config=a__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = [input_ids, input_mask] A__ = model(a__) A__ = model(a__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__): A__ = TFDebertaVaForMaskedLM(config=a__) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__): A__ = self.num_labels A__ = TFDebertaVaForSequenceClassification(config=a__) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__): A__ = self.num_labels A__ = TFDebertaVaForTokenClassification(config=a__) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__): A__ = TFDebertaVaForQuestionAnswering(config=a__) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(a__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): UpperCamelCase__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def snake_case_ ( self): A__ = TFDebertaVaModelTester(self) A__ = ConfigTester(self , config_class=a__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__) @slow def snake_case_ ( self): A__ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') self.assertIsNotNone(a__) @require_tf class _UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''') def snake_case_ ( self): pass @slow def snake_case_ ( self): A__ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') A__ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) A__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) A__ = model(a__ , attention_mask=a__)[0] A__ = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , a__ , atol=1e-4)
632
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( A__ , A__ , A__ ): UpperCamelCase__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , a__ , a__ , a__ = None , a__ = 5_0_2_5_7 , a__ = 1_0_2_4 , a__ = 7_6_8 , a__ = 1_2 , a__ = 1_2 , a__ = None , a__ = "gelu_new" , a__ = 0.1 , a__ = 0.1 , a__ = 0.1 , a__ = 1e-5 , a__ = 0.0_2 , a__ = True , a__ = True , a__ = False , a__ = False , ): super().__init__() A__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal.") A__ = prefix_inner_dim A__ = prefix_hidden_dim A__ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ = ( nn.Linear(self.prefix_hidden_dim , a__) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ = GPTaConfig( vocab_size=a__ , n_positions=a__ , n_embd=a__ , n_layer=a__ , n_head=a__ , n_inner=a__ , activation_function=a__ , resid_pdrop=a__ , embd_pdrop=a__ , attn_pdrop=a__ , layer_norm_epsilon=a__ , initializer_range=a__ , scale_attn_weights=a__ , use_cache=a__ , scale_attn_by_inverse_layer_idx=a__ , reorder_and_upcast_attn=a__ , ) A__ = GPTaLMHeadModel(a__) def snake_case_ ( self , a__ , a__ , a__ = None , a__ = None , ): A__ = self.transformer.transformer.wte(a__) A__ = self.encode_prefix(a__) A__ = self.decode_prefix(a__) A__ = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: A__ = self.get_dummy_token(input_ids.shape[0] , input_ids.device) A__ = torch.cat((dummy_token, input_ids) , dim=1) A__ = self.transformer(inputs_embeds=a__ , labels=a__ , attention_mask=a__) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case_ ( self , a__ , a__): return torch.zeros(a__ , self.prefix_length , dtype=torch.intaa , device=a__) def snake_case_ ( self , a__): return self.encode_prefix(a__) @torch.no_grad() def snake_case_ ( self , a__ , a__ , a__): A__ = torch.split(a__ , 1 , dim=0) A__ = [] A__ = [] for feature in features: A__ = self.decode_prefix(feature.to(a__)) # back to the clip feature # Only support beam search for now A__ , A__ = self.generate_beam( input_embeds=a__ , device=a__ , eos_token_id=a__) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) A__ = torch.stack(a__) A__ = torch.stack(a__) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case_ ( self , a__=None , a__=None , a__=None , a__ = 5 , a__ = 6_7 , a__ = 1.0 , a__ = None , ): A__ = eos_token_id A__ = None A__ = None A__ = torch.ones(a__ , device=a__ , dtype=torch.int) A__ = torch.zeros(a__ , device=a__ , dtype=torch.bool) if input_embeds is not None: A__ = input_embeds else: A__ = self.transformer.transformer.wte(a__) for i in range(a__): A__ = self.transformer(inputs_embeds=a__) A__ = outputs.logits A__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A__ = logits.softmax(-1).log() if scores is None: A__ , A__ = logits.topk(a__ , -1) A__ = generated.expand(a__ , *generated.shape[1:]) A__ , A__ = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: A__ = next_tokens else: A__ = tokens.expand(a__ , *tokens.shape[1:]) A__ = torch.cat((tokens, next_tokens) , dim=1) else: A__ = -float(np.inf) A__ = 0 A__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A__ = scores_sum / seq_lengths[:, None] A__ , A__ = scores_sum_average.view(-1).topk(a__ , -1) A__ = next_tokens // scores_sum.shape[1] A__ = seq_lengths[next_tokens_source] A__ = next_tokens % scores_sum.shape[1] A__ = next_tokens.unsqueeze(1) A__ = tokens[next_tokens_source] A__ = torch.cat((tokens, next_tokens) , dim=1) A__ = generated[next_tokens_source] A__ = scores_sum_average * seq_lengths A__ = is_stopped[next_tokens_source] A__ = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) A__ = torch.cat((generated, next_token_embed) , dim=1) A__ = is_stopped + next_tokens.eq(a__).squeeze() if is_stopped.all(): break A__ = scores / seq_lengths A__ = scores.argsort(descending=a__) # tokens tensors are already padded to max_seq_length A__ = [tokens[i] for i in order] A__ = torch.stack(a__ , dim=0) A__ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
632
1
import warnings from .generation import TFGenerationMixin class snake_case__ (_UpperCamelCase ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , _UpperCamelCase , )
662
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : List[str] = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } __lowerCAmelCase : Any = '▁' class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = BigBirdTokenizer SCREAMING_SNAKE_CASE_ : str = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self : int , __lowerCamelCase : Any=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : Tuple="[SEP]" , __lowerCamelCase : Dict="[MASK]" , __lowerCamelCase : Tuple="[CLS]" , **__lowerCamelCase : Optional[Any] , ) -> List[Any]: a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) a = vocab_file a = False if not self.vocab_file else True def __UpperCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
662
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = '''pix2struct_text_model''' lowerCamelCase_ : str = ['''past_key_values'''] lowerCamelCase_ : Any = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self , __magic_name__=5_0244 , __magic_name__=768 , __magic_name__=64 , __magic_name__=2048 , __magic_name__=12 , __magic_name__=12 , __magic_name__=32 , __magic_name__=128 , __magic_name__=0.1 , __magic_name__=1e-6 , __magic_name__=1.0 , __magic_name__="gelu_new" , __magic_name__=0 , __magic_name__=False , __magic_name__=0 , __magic_name__=1 , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Tuple: '''simple docstring''' snake_case_ : str = vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Union[str, Any] = d_kv snake_case_ : Dict = d_ff snake_case_ : str = num_layers snake_case_ : Tuple = num_heads snake_case_ : int = relative_attention_num_buckets snake_case_ : Optional[int] = relative_attention_max_distance snake_case_ : int = dropout_rate snake_case_ : Optional[Any] = layer_norm_epsilon snake_case_ : Tuple = initializer_factor snake_case_ : Union[str, Any] = use_cache snake_case_ : str = eos_token_id snake_case_ : Dict = decoder_start_token_id # for backwards compatibility snake_case_ : Tuple = dense_act_fn super().__init__( pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , is_decoder=__magic_name__ , **__magic_name__ , ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__magic_name__ ) snake_case_ , snake_case_ : Optional[int] = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": snake_case_ : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = '''pix2struct_vision_model''' def __init__(self , __magic_name__=768 , __magic_name__=768 , __magic_name__=2048 , __magic_name__=64 , __magic_name__=12 , __magic_name__=12 , __magic_name__="gelu_new" , __magic_name__=1e-6 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=1e-10 , __magic_name__=1.0 , __magic_name__=4096 , __magic_name__=32 , __magic_name__=128 , **__magic_name__ , ) -> Dict: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : Any = hidden_size snake_case_ : int = patch_embed_hidden_size snake_case_ : List[Any] = d_ff snake_case_ : str = dropout_rate snake_case_ : str = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = initializer_range snake_case_ : Any = initializer_factor snake_case_ : str = attention_dropout snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Optional[int] = dense_act_fn snake_case_ : List[str] = seq_len snake_case_ : Optional[int] = relative_attention_num_buckets snake_case_ : List[str] = relative_attention_max_distance snake_case_ : Tuple = d_kv @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__magic_name__ ) snake_case_ , snake_case_ : Optional[int] = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": snake_case_ : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : str = '''pix2struct''' lowerCamelCase_ : List[str] = True def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=1.0 , __magic_name__=0.02 , __magic_name__=False , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> str: '''simple docstring''' super().__init__(tie_word_embeddings=__magic_name__ , is_encoder_decoder=__magic_name__ , **__magic_name__ ) if text_config is None: snake_case_ : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: snake_case_ : Union[str, Any] = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) snake_case_ : Optional[Any] = PixaStructTextConfig(**__magic_name__ ) snake_case_ : Optional[int] = PixaStructVisionConfig(**__magic_name__ ) snake_case_ : Optional[int] = self.text_config.decoder_start_token_id snake_case_ : Tuple = self.text_config.pad_token_id snake_case_ : List[str] = self.text_config.eos_token_id snake_case_ : int = initializer_factor snake_case_ : List[str] = initializer_range snake_case_ : Tuple = self.initializer_range snake_case_ : List[Any] = self.initializer_range snake_case_ : int = is_vqa @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = copy.deepcopy(self.__dict__ ) snake_case_ : Dict = self.text_config.to_dict() snake_case_ : Dict = self.vision_config.to_dict() snake_case_ : int = self.__class__.model_type return output
60
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ ="""roberta""" def __init__( self : Optional[int] , snake_case : int=50_265 , snake_case : Dict=768 , snake_case : Any=12 , snake_case : Optional[Any]=12 , snake_case : int=3_072 , snake_case : Dict="gelu" , snake_case : List[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : Any=512 , snake_case : Any=2 , snake_case : List[str]=0.02 , snake_case : Dict=1e-12 , snake_case : str=1 , snake_case : Tuple=0 , snake_case : Tuple=2 , snake_case : Tuple="absolute" , snake_case : str=True , snake_case : Union[str, Any]=None , **snake_case : Optional[Any] , ): super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCAmelCase_ :List[str] = vocab_size UpperCAmelCase_ :Union[str, Any] = hidden_size UpperCAmelCase_ :Dict = num_hidden_layers UpperCAmelCase_ :Dict = num_attention_heads UpperCAmelCase_ :int = hidden_act UpperCAmelCase_ :int = intermediate_size UpperCAmelCase_ :Tuple = hidden_dropout_prob UpperCAmelCase_ :Any = attention_probs_dropout_prob UpperCAmelCase_ :List[str] = max_position_embeddings UpperCAmelCase_ :Optional[Any] = type_vocab_size UpperCAmelCase_ :Tuple = initializer_range UpperCAmelCase_ :Optional[Any] = layer_norm_eps UpperCAmelCase_ :int = position_embedding_type UpperCAmelCase_ :Optional[Any] = use_cache UpperCAmelCase_ :Dict = classifier_dropout class _snake_case ( A__ ): '''simple docstring''' @property def snake_case_ ( self : Optional[int] ): if self.task == "multiple-choice": UpperCAmelCase_ :Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ :Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
608
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __A : Dict = 5 __A : str = 10 @require_sentencepiece @require_tokenizers class lowercase_ ( lowerCAmelCase__ , unittest.TestCase ): __UpperCamelCase = SpeechaTextTokenizer __UpperCamelCase = False __UpperCamelCase = True def _lowercase ( self: Dict): '''simple docstring''' super().setUp() __lowerCAmelCase = sp.SentencePieceProcessor() spm_model.Load(_lowercase) __lowerCAmelCase = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(_lowercase))] __lowerCAmelCase = dict(zip(_lowercase, range(len(_lowercase)))) __lowerCAmelCase = Path(self.tmpdirname) save_json(_lowercase, save_dir / VOCAB_FILES_NAMES["""vocab_file"""]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase, save_dir / VOCAB_FILES_NAMES["""spm_file"""]) __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def _lowercase ( self: Any): '''simple docstring''' __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase), _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase), _lowercase) def _lowercase ( self: List[str]): '''simple docstring''' __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], """<s>""") self.assertEqual(vocab_keys[1], """<pad>""") self.assertEqual(vocab_keys[-1], """j""") self.assertEqual(len(_lowercase), 1001) def _lowercase ( self: List[str]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1001) def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) __lowerCAmelCase = tokenizer.tokenize("""This is a test""") self.assertListEqual(_lowercase, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase), [289, 50, 14, 174, 386], ) __lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowercase, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""], ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual(_lowercase, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""], ) @slow def _lowercase ( self: List[Any]): '''simple docstring''' __lowerCAmelCase = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase, model_name="""facebook/s2t-small-mustc-en-de-st""", revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""", ) @require_sentencepiece class lowercase_ ( unittest.TestCase ): __UpperCamelCase = "valhalla/s2t_mustc_multilinguial_medium" __UpperCamelCase = "C\'est trop cool" __UpperCamelCase = "Esto es genial" @classmethod def _lowercase ( cls: str): '''simple docstring''' __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def _lowercase ( self: List[Any]): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""], 4) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""], 6) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""], 9) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""], 11) def _lowercase ( self: str): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size, 10000) def _lowercase ( self: Any): '''simple docstring''' self.assertIn(_lowercase, self.tokenizer.all_special_ids) __lowerCAmelCase = [ES_CODE, 4, 1601, 47, 7647, 2] __lowerCAmelCase = self.tokenizer.decode(_lowercase, skip_special_tokens=_lowercase) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_lowercase) self.assertEqual(_lowercase, _lowercase) self.assertNotIn(self.tokenizer.eos_token, _lowercase) def _lowercase ( self: Optional[int]): '''simple docstring''' __lowerCAmelCase = """fr""" __lowerCAmelCase = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0], _lowercase) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id) def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE]) __lowerCAmelCase = """es""" self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE])
708
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __A : Optional[Any] = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCAmelCase = int(re.match(R""".*layer_(\d*).*""" , UpperCamelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def UpperCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 __lowerCAmelCase = re.search(R"""[^\d](\d+)$""" , str(UpperCamelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) __lowerCAmelCase = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if bloom_config_file == "": __lowerCAmelCase = BloomConfig() else: __lowerCAmelCase = BloomConfig.from_json_file(UpperCamelCase__ ) if shard_model: __lowerCAmelCase = os.listdir(UpperCamelCase__ ) __lowerCAmelCase = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) __lowerCAmelCase = {"""weight_map""": {}, """metadata""": {}} __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = BloomConfig() for j, file in enumerate(UpperCamelCase__ ): print("""Processing file: {}""".format(UpperCamelCase__ ) ) __lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files __lowerCAmelCase = file.replace("""model_00""" , F'''model_0{i}''' ) __lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names __lowerCAmelCase = list(temp.keys() ) for key in keys: __lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: __lowerCAmelCase = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase = tensors[key] / pretraining_tp torch.save( UpperCamelCase__ , os.path.join( UpperCamelCase__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCAmelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCAmelCase = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) __lowerCAmelCase = BloomConfig() __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME __lowerCAmelCase = total_size with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: __lowerCAmelCase = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) else: __lowerCAmelCase = BloomModel(UpperCamelCase__ ) __lowerCAmelCase = os.listdir(UpperCamelCase__ ) __lowerCAmelCase = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) __lowerCAmelCase = None for i, file in enumerate(UpperCamelCase__ ): __lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files __lowerCAmelCase = file.replace("""model_00""" , F'''model_0{i}''' ) __lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names __lowerCAmelCase = list(temp.keys() ) for key in keys: __lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: __lowerCAmelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase = tensors[key] / pretraining_tp __lowerCAmelCase = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __lowerCAmelCase = set(other_keys.missing_keys ) else: __lowerCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __lowerCAmelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __A : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
334
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _A ( A__ , A__ , A__=None , A__=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OPTConfig SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[int] = 'gelu' def __init__( self : int ,lowercase__ : Any ,lowercase__ : Tuple=1_3 ,lowercase__ : int=7 ,lowercase__ : str=True ,lowercase__ : Any=False ,lowercase__ : Optional[Any]=9_9 ,lowercase__ : List[Any]=1_6 ,lowercase__ : List[str]=2 ,lowercase__ : Tuple=4 ,lowercase__ : Tuple=4 ,lowercase__ : Any="gelu" ,lowercase__ : str=0.1 ,lowercase__ : str=0.1 ,lowercase__ : Union[str, Any]=2_0 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : int=1 ,lowercase__ : List[Any]=0 ,lowercase__ : Optional[Any]=1_6 ,lowercase__ : Optional[int]=1_6 ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) __lowercase = tf.concat([input_ids, eos_tensor] ,axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=lowercase__ ,**self.config_updates ,) __lowercase = prepare_opt_inputs_dict(lowercase__ ,lowercase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ): __lowercase = TFOPTModel(config=lowercase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,use_cache=lowercase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] ,axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ ,lowercase__ ,rtol=1e-3 ) @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE : List[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE : List[str] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = 1_0 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase__ : Optional[int] ,lowercase__ : List[str] ): if hasattr(lowercase__ ,'''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase__ ,'''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __lowercase = model_class(config=lowercase__ ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase__ ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] ,lowercase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowercase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] ,lowercase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowercase__ ) def _A ( A__ ): """simple docstring""" return tf.constant(A__ , dtype=tf.intaa ) @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 9_9 def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tf.ones((4, 1) ,dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size ,hidden_size=2_4 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=3_2 ,max_position_embeddings=4_8 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = tf.not_equal(lowercase__ ,model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowercase__ ,attention_mask=lowercase__ ).last_hidden_state __lowercase = (1, 1_1, 5_1_2) self.assertEqual(output.shape ,lowercase__ ) __lowercase = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase__ ,atol=4e-3 ) ) __lowercase = tf.function(lowercase__ ,jit_compile=lowercase__ ) __lowercase = xla_generate(lowercase__ ,lowercase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase__ ,atol=4e-2 ) ) @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() __lowercase = '''facebook/opt-350m''' def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ,padding=lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) __lowercase = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-4 ) ) __lowercase = tf.function(lowercase__ ,jit_compile=lowercase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-4 ) ) @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : str ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowercase__ ,max_length=1_0 ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) predicted_outputs += generated_string self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ,padding=lowercase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowercase__ ,attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowercase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] ,tf.intaa ) ) __lowercase = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowercase__ ,max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) __lowercase = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=lowercase__ ) __lowercase = tokenizer.decode(output_padded[0] ,skip_special_tokens=lowercase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowercase__ ,lowercase__ ) self.assertListEqual(lowercase__ ,[non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowercase__ ,max_length=1_0 ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) predicted_outputs += generated_string self.assertListEqual(lowercase__ ,lowercase__ )
41
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def __snake_case ( self : List[str]) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any]) -> List[str]: A_ = (3, 32, 128) A_ = tempfile.mkdtemp() # fmt: off A_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on A_ = dict(zip(_lowercase , range(len(_lowercase)))) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_lowercase) + '\n') A_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } A_ = os.path.join(self.tmpdirname , _lowercase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_lowercase , _lowercase) def __snake_case ( self : int , **_lowercase : Optional[int]) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase) def __snake_case ( self : Optional[int] , **_lowercase : Optional[int]) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase) def __snake_case ( self : Dict) -> str: shutil.rmtree(self.tmpdirname) def __snake_case ( self : Union[str, Any]) -> Any: A_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) A_ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) return image_input def __snake_case ( self : Optional[Any]) -> List[Any]: A_ = self.get_tokenizer() A_ = self.get_image_processor() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) A_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __snake_case ( self : Union[str, Any]) -> Optional[Any]: A_ = self.get_tokenizer() A_ = self.get_image_processor() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) A_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') A_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) A_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __snake_case ( self : List[Any]) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = self.prepare_image_inputs() A_ = image_processor(_lowercase , return_tensors='np') A_ = processor(images=_lowercase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def __snake_case ( self : Any) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = 'test' A_ = processor(text=_lowercase) A_ = tokenizer(_lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __snake_case ( self : str) -> Dict: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = 'test' A_ = self.prepare_image_inputs() A_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __snake_case ( self : Union[str, Any]) -> Optional[int]: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.char_decode(_lowercase) A_ = tokenizer.batch_decode(_lowercase) A_ = [seq.replace(' ' , '') for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase) def __snake_case ( self : List[str]) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = None A_ = self.prepare_image_inputs() A_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def __snake_case ( self : List[str]) -> Any: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = torch.randn(1 , 27 , 38) A_ = torch.randn(1 , 27 , 50_257) A_ = torch.randn(1 , 27 , 30_522) A_ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
366
0
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' for i in range(0 , UpperCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def UpperCAmelCase__ ( UpperCAmelCase__ :str ): '''simple docstring''' for i in range(UpperCAmelCase__ , 0 , -1 ): for _ in range(UpperCAmelCase__ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def UpperCAmelCase__ ( UpperCAmelCase__ :List[str] ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(UpperCAmelCase__ ) # upper half reverse_floyd(UpperCAmelCase__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') A_ : Optional[Any] = 1 while K: A_ : int = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) A_ : Optional[Any] = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
715
A_ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Tuple = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Optional[int] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :int , UpperCAmelCase__ :int ): '''simple docstring''' assert len(str(UpperCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a = year // 1_00 a = (5 * (century % 4) + 2) % 7 a = year % 1_00 a = centurian % 12 a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(snake_case_ , """_dynamo""" ): return False return isinstance(snake_case_ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : bool = True ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(snake_case_ ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(snake_case_ , """forward""" ) __lowerCAmelCase = model.__dict__.pop("""_original_forward""" , snake_case_ ) if original_forward is not None: while hasattr(snake_case_ , """__wrapped__""" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(snake_case_ , """_converted_to_transformer_engine""" , snake_case_ ): convert_model(snake_case_ , to_transformer_engine=snake_case_ ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def UpperCamelCase_ ( ) -> Any: '''simple docstring''' PartialState().wait_for_everyone() def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Any ) -> Dict: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case_ , snake_case_ ) elif PartialState().local_process_index == 0: torch.save(snake_case_ , snake_case_ ) @contextmanager def UpperCamelCase_ ( **snake_case_ : List[str] ) -> Any: '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(snake_case_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if not hasattr(snake_case_ , """__qualname__""" ) and not hasattr(snake_case_ , """__name__""" ): __lowerCAmelCase = getattr(snake_case_ , """__class__""" , snake_case_ ) if hasattr(snake_case_ , """__qualname__""" ): return obj.__qualname__ if hasattr(snake_case_ , """__name__""" ): return obj.__name__ return str(snake_case_ ) def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for key, value in source.items(): if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = destination.setdefault(snake_case_ , {} ) merge_dicts(snake_case_ , snake_case_ ) else: __lowerCAmelCase = value return destination def UpperCamelCase_ ( snake_case_ : int = None ) -> bool: '''simple docstring''' if port is None: __lowerCAmelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
427
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_ ( snake_case_ : int ) -> list[int]: '''simple docstring''' __lowerCAmelCase = str(snake_case_ ) __lowerCAmelCase = [n] for i in range(1 , len(snake_case_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase_ ( snake_case_ : int ) -> bool: '''simple docstring''' if len(str(snake_case_ ) ) > 3: if not is_prime(int(str(snake_case_ )[-3:] ) ) or not is_prime(int(str(snake_case_ )[:3] ) ): return False return True def UpperCamelCase_ ( snake_case_ : int = 11 ) -> list[int]: '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 13 while len(snake_case_ ) != count: if validate(snake_case_ ): __lowerCAmelCase = list_truncated_nums(snake_case_ ) if all(is_prime(snake_case_ ) for i in list_nums ): list_truncated_primes.append(snake_case_ ) num += 2 return list_truncated_primes def UpperCamelCase_ ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'{sum(compute_truncated_primes(11)) = }')
427
1
from __future__ import annotations def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[float] ): """simple docstring""" __a = 0.00 __a = 0 for resistor in resistors: if resistor <= 0: __a = f"Resistor at index {index} has a negative or zero value!" raise ValueError(_SCREAMING_SNAKE_CASE ) first_sum += 1 / float(_SCREAMING_SNAKE_CASE ) index += 1 return 1 / first_sum def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list[float] ): """simple docstring""" __a = 0.00 __a = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __a = f"Resistor at index {index} has a negative value!" raise ValueError(_SCREAMING_SNAKE_CASE ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
705
from math import sqrt def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1_0001 ): """simple docstring""" __a = 0 __a = 1 while count != nth and number < 3: number += 1 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
547
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = "pytorch_model.bin" @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _snake_case : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) _snake_case : Optional[str] = dataclasses.field( default=lowercase , metadata={"""help""": """The name of the task to train on."""} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=lowercase , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _snake_case : Optional[str] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) _snake_case : Optional[str] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) _snake_case : Optional[int] = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) _snake_case : Optional[bool] = dataclasses.field( default=lowercase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) _snake_case : Optional[int] = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) _snake_case : Optional[int] = dataclasses.field( default=lowercase , metadata={"""help""": """Random seed for initialization."""} , ) def A ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] ) -> List[str]: UpperCamelCase__ :Union[str, Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCamelCase__ :List[str] = dataset.filter(lambda lowercase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCamelCase__ :Any = int(eval_result * len(lowercase__ ) ) print(lowercase__ ) UpperCamelCase__ :Optional[Any] = dataset.sort("""probability""" , reverse=lowercase__ ) UpperCamelCase__ :Optional[Any] = dataset.select(range(lowercase__ ) ) UpperCamelCase__ :int = dataset.remove_columns(["""label""", """probability"""] ) UpperCamelCase__ :str = dataset.rename_column("""prediction""" , """label""" ) UpperCamelCase__ :Optional[Any] = dataset.map(lambda lowercase__ : {"label": idalabel[example["label"]]} ) UpperCamelCase__ :Dict = dataset.shuffle(seed=args.seed ) UpperCamelCase__ :int = os.path.join(lowercase__ , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(lowercase__ , index=lowercase__ ) else: dataset.to_json(lowercase__ ) def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , **lowercase__ : Dict ) -> Tuple: UpperCamelCase__ :int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCamelCase__ :List[str] = STModelArguments(model_name_or_path=lowercase__ ) UpperCamelCase__ :str = STDataArguments(train_file=lowercase__ , infer_file=lowercase__ ) UpperCamelCase__ :List[Any] = STTrainingArguments(output_dir=lowercase__ ) UpperCamelCase__ :List[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase__ ).items(): setattr(lowercase__ , lowercase__ , lowercase__ ) for key, value in kwargs.items(): if hasattr(lowercase__ , lowercase__ ): setattr(lowercase__ , lowercase__ , lowercase__ ) # Sanity checks UpperCamelCase__ :Tuple = {} UpperCamelCase__ :Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCamelCase__ :Optional[Any] = args.train_file UpperCamelCase__ :Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCamelCase__ :Optional[Any] = args.eval_file for key in data_files: UpperCamelCase__ :Dict = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: UpperCamelCase__ :Any = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCamelCase__ :Optional[int] = f"""{args.output_dir}/self-train_iter-{{}}""".format UpperCamelCase__ :str = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) accelerator.wait_for_everyone() UpperCamelCase__ :Union[str, Any] = None UpperCamelCase__ :str = None UpperCamelCase__ :List[str] = 0 UpperCamelCase__ :Optional[int] = False # Show the progress bar UpperCamelCase__ :Optional[int] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCamelCase__ :int = data_dir_format(lowercase__ ) assert os.path.exists(lowercase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCamelCase__ :Tuple = os.path.join(lowercase__ , """stage-1""" ) UpperCamelCase__ :Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase__ , lowercase__ ): arguments_dict.update({key: value} ) UpperCamelCase__ :Union[str, Any] = os.path.join(lowercase__ , """best-checkpoint""" , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , lowercase__ , lowercase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , lowercase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCamelCase__ :List[Any] = os.path.join(lowercase__ , """best-checkpoint""" ) UpperCamelCase__ :List[Any] = os.path.join(lowercase__ , """stage-2""" ) # Update arguments_dict UpperCamelCase__ :List[Any] = model_path UpperCamelCase__ :Any = data_files["""train"""] UpperCamelCase__ :Optional[int] = current_output_dir UpperCamelCase__ :str = os.path.join(lowercase__ , """best-checkpoint""" , lowercase__ ) if os.path.exists(lowercase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , lowercase__ , lowercase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , lowercase__ ) finetune(**lowercase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowercase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , lowercase__ ) UpperCamelCase__ :Tuple = iteration UpperCamelCase__ :List[Any] = data_dir_format(iteration + 1 ) UpperCamelCase__ :Optional[Any] = AutoConfig.from_pretrained(os.path.join(lowercase__ , """best-checkpoint""" ) ) UpperCamelCase__ :List[str] = config.idalabel UpperCamelCase__ :Union[str, Any] = os.path.join(lowercase__ , """eval_results_best-checkpoint.json""" ) UpperCamelCase__ :Dict = os.path.join(lowercase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(lowercase__ ) with open(lowercase__ , """r""" ) as f: UpperCamelCase__ :List[Any] = float(json.load(lowercase__ )[args.eval_metric] ) UpperCamelCase__ :Any = os.path.join(lowercase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(lowercase__ ) # Loading the dataset from local csv or json files. UpperCamelCase__ :Any = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCamelCase__ :Optional[int] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(lowercase__ , exist_ok=lowercase__ ) shutil.copy(lowercase__ , os.path.join(lowercase__ , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(lowercase__ ): shutil.copy(lowercase__ , os.path.join(lowercase__ , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.wait_for_everyone() UpperCamelCase__ :List[str] = os.path.join(lowercase__ , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCamelCase__ :List[Any] = eval_result if best_iteration is None: UpperCamelCase__ :Union[str, Any] = new_iteration UpperCamelCase__ :List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCamelCase__ :Optional[Any] = new_iteration UpperCamelCase__ :Optional[int] = new_eval_result UpperCamelCase__ :Optional[int] = 0 else: if new_eval_result == best_eval_result: UpperCamelCase__ :str = new_iteration UpperCamelCase__ :Dict = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCamelCase__ :Optional[int] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , lowercase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(lowercase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase__ , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(lowercase__ , """eval_results_best-iteration.json""" ) , )
45
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
164
0
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[int]: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a_ : List[str] = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" a_ : int = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" a_ : Optional[int] = max(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ), b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> float: _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> None: if point: if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__, (int, float) ): a_ : int = ( "Expected a list of numbers as input, found " F"""{type(SCREAMING_SNAKE_CASE__ ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: a_ : Dict = F"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError("Missing an input" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> float: _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = '''xglm''' __UpperCAmelCase : Dict = ['''past_key_values'''] __UpperCAmelCase : Optional[int] = { '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , UpperCamelCase__=25_6008 , UpperCamelCase__=2048 , UpperCamelCase__=1024 , UpperCamelCase__=4096 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = vocab_size snake_case : Optional[int] = max_position_embeddings snake_case : Optional[Any] = d_model snake_case : List[Any] = ffn_dim snake_case : Any = num_layers snake_case : Optional[int] = attention_heads snake_case : Union[str, Any] = activation_function snake_case : int = dropout snake_case : Optional[Any] = attention_dropout snake_case : str = activation_dropout snake_case : List[str] = layerdrop snake_case : Optional[Any] = init_std snake_case : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : Tuple = use_cache super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
178
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Dict , lowercase : str ) -> Optional[int]: """simple docstring""" snake_case : Tuple = AlbertConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case : int = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
178
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = CanineTokenizer __UpperCAmelCase = False def __magic_name__ ( self : List[Any] ): '''simple docstring''' super().setUp() snake_case__ : str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __magic_name__ ( self : Union[str, Any] , **snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) snake_case__ : Any = 1_0_2_4 return tokenizer @require_torch def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Any = self.canine_tokenizer snake_case__ : Dict = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off snake_case__ : List[str] = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on snake_case__ : Dict = tokenizer(snake_case_ , padding=snake_case_ , return_tensors='''pt''' ) self.assertIsInstance(snake_case_ , snake_case_ ) snake_case__ : Any = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : int = self.canine_tokenizer snake_case__ : int = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] snake_case__ : Dict = tokenizer(snake_case_ , padding=snake_case_ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , snake_case_ ) self.assertIn('''attention_mask''' , snake_case_ ) self.assertIn('''token_type_ids''' , snake_case_ ) @require_torch def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : int = self.canine_tokenizer snake_case__ : str = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] snake_case__ : List[Any] = tokenizer( text_target=snake_case_ , max_length=3_2 , padding='''max_length''' , truncation=snake_case_ , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case__ : str = tempfile.mkdtemp() snake_case__ : Any = ''' He is very happy, UNwant\u00E9d,running''' snake_case__ : str = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) snake_case__ : Dict = tokenizer.__class__.from_pretrained(snake_case_ ) snake_case__ : List[str] = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) shutil.rmtree(snake_case_ ) snake_case__ : int = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : Any = ''' He is very happy, UNwant\u00E9d,running''' snake_case__ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case__ : Tuple = chr(0xE007 ) additional_special_tokens.append(snake_case_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) snake_case__ : Tuple = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) snake_case__ : List[Any] = tokenizer.__class__.from_pretrained(snake_case_ ) snake_case__ : str = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertIn(snake_case_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case__ : List[Any] = tokenizer.__class__.from_pretrained(snake_case_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : Dict = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ , snake_case__ : Dict = self.get_clean_sequence(snake_case_ ) # a special token for Canine can be defined as follows: snake_case__ : Dict = 0xE005 snake_case__ : List[str] = chr(snake_case_ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) snake_case__ : Optional[Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) snake_case__ : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=snake_case_ ) snake_case__ : Optional[int] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : Dict = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , input_encoded + special_token_id ) snake_case__ : Any = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Any = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : List[str] = chr(0xE005 ) snake_case__ : Optional[int] = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=snake_case_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) snake_case__ : List[Any] = tokenizer.tokenize(snake_case_ ) snake_case__ : Any = tokenizer.tokenize(snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(token_a[0] , snake_case_ ) self.assertEqual(token_a[0] , snake_case_ ) @require_tokenizers def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Optional[int] = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: snake_case__ : Union[str, Any] = 0xE006 snake_case__ : Any = chr(snake_case_ ) snake_case__ : Any = AddedToken(snake_case_ , lstrip=snake_case_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(snake_case_ ) tokenizer.from_pretrained(snake_case_ ) def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: snake_case__ : Union[str, Any] = json.load(snake_case_ ) with open(os.path.join(snake_case_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: snake_case__ : List[Any] = json.load(snake_case_ ) # a special token for Canine can be defined as follows: snake_case__ : Optional[Any] = 0xE006 snake_case__ : List[Any] = chr(snake_case_ ) snake_case__ : List[str] = [new_token_a] snake_case__ : int = [new_token_a] with open(os.path.join(snake_case_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(snake_case_ , snake_case_ ) with open(os.path.join(snake_case_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(snake_case_ , snake_case_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case__ : Dict = tokenizer_class.from_pretrained(snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) snake_case__ : str = 0xE007 snake_case__ : Dict = chr(snake_case_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case__ : Tuple = [AddedToken(snake_case_ , lstrip=snake_case_ )] snake_case__ : Optional[int] = tokenizer_class.from_pretrained( snake_case_ , additional_special_tokens=snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : Any = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : str = '''hello world''' if self.space_between_special_tokens: snake_case__ : int = '''[CLS] hello world [SEP]''' else: snake_case__ : List[str] = input snake_case__ : Optional[Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : Optional[int] = tokenizer.decode(snake_case_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(snake_case_ , [output, output.lower()] ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : Union[str, Any] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] snake_case__ : Tuple = '''a''' snake_case__ : List[str] = ord(snake_case_ ) for attr in attributes_list: setattr(snake_case_ , attr + '''_id''' , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + '''_id''' ) , snake_case_ ) setattr(snake_case_ , attr + '''_id''' , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + '''_id''' ) , snake_case_ ) setattr(snake_case_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(snake_case_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(snake_case_ , '''additional_special_tokens_ids''' ) , [] ) snake_case__ : Any = 0xE006 snake_case__ : List[Any] = chr(snake_case_ ) setattr(snake_case_ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(snake_case_ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(snake_case_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __magic_name__ ( self : str ): '''simple docstring''' pass def __magic_name__ ( self : str ): '''simple docstring''' pass def __magic_name__ ( self : List[str] ): '''simple docstring''' pass def __magic_name__ ( self : List[Any] ): '''simple docstring''' pass def __magic_name__ ( self : List[Any] ): '''simple docstring''' pass def __magic_name__ ( self : List[Any] ): '''simple docstring''' pass def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' pass def __magic_name__ ( self : Dict ): '''simple docstring''' pass
502
'''simple docstring''' def _a ( __lowerCAmelCase : int ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True snake_case__ : Any = 4 snake_case__ : int = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ : Tuple = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
502
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def snake_case ( self ): with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def snake_case ( self ): with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE_ : Any = pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE_ : Any = pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def snake_case ( self ): import PIL.Image SCREAMING_SNAKE_CASE_ : Union[str, Any] = PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case__ ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE_ : Optional[int] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case__ ) self.assertFalse(kwargs['optimize_list_casting'] ) def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = pa.BufferReader(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , pa.Buffer ) else pa.memory_map(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = pa.ipc.open_stream(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_ : Any = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_ : int = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCamelCase_ , features=lowerCamelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE_ : List[str] = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_ : Tuple = pa.ipc.open_stream(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : pa.Table = f.read_all() SCREAMING_SNAKE_CASE_ : int = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase_ ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: with pytest.raises(lowerCamelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ , hash_salt='split_name' , check_duplicates=lowerCamelCase_ , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_ : int = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_ : int = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pa.BufferOutputStream() SCREAMING_SNAKE_CASE_ : Optional[int] = pa.schema(lowerCamelCase_ ) if fields else None with ArrowWriter(stream=lowerCamelCase_ , schema=lowerCamelCase_ , writer_batch_size=lowerCamelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE_ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = {'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE_ : Any = os.path.join(lowerCamelCase_ , 'test.arrow' ) with ArrowWriter(path=lowerCamelCase_ , schema=pa.schema(lowerCamelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase_ , metadata=writer._schema.metadata ) _check_output(lowerCamelCase_ , 1 ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if pa.types.is_list(lowerCamelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> List[Any]: """simple docstring""" if isinstance(lst[0] , lowerCamelCase_ ): change_first_primitive_element_in_list(lst[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : int = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pa.array(TypedSequence(lowerCamelCase_ , optimized_int_type=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pa.array(OptimizedTypedSequence(lowerCamelCase_ , col=lowerCamelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCamelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'mock://dataset-train.arrow' with ArrowWriter(path=lowerCamelCase_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowerCamelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase_ ) def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_ : pa.Table = pq.read_table(lowerCamelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ) -> Union[str, Any]: """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE_ : Tuple = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCamelCase_ , format='png' ) SCREAMING_SNAKE_CASE_ : Optional[int] = pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase_ , features=Features({'image': Image()} ) , embed_local_files=lowerCamelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE_ : Tuple = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE_ : pa.Table = pq.read_table(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , lowerCamelCase_ ) with open(lowerCamelCase_ , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pa.schema([pa.field('col_1' , pa.string() , nullable=lowerCamelCase_ )] ) SCREAMING_SNAKE_CASE_ : List[Any] = pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCamelCase_ ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
105
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, Any] ) ->Tuple: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _SCREAMING_SNAKE_CASE( ) ->str: '''simple docstring''' with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" _lowercase : str = [1, 2, 3] with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ , snake_case_ , num_proc=2 ) with pytest.raises(snake_case_ ): with parallel_backend('''unsupported backend''' ): map_nested(snake_case_ , snake_case_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _SCREAMING_SNAKE_CASE( snake_case_ : Tuple ) ->Dict: '''simple docstring''' _lowercase : Any = [1, 2] _lowercase : str = {'''a''': 1, '''b''': 2} _lowercase : Tuple = {'''a''': [1, 2], '''b''': [3, 4]} _lowercase : Optional[Any] = {'''a''': {'''1''': 1}, '''b''': 2} _lowercase : int = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} _lowercase : Dict = [2, 3] _lowercase : Optional[int] = {'''a''': 2, '''b''': 3} _lowercase : Dict = {'''a''': [2, 3], '''b''': [4, 5]} _lowercase : Optional[int] = {'''a''': {'''1''': 2}, '''b''': 3} _lowercase : Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa assert map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) == expected_map_nested_sa
411
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' snake_case_ = StableDiffusionSAGPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = False def __lowercase ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _lowercase : int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _lowercase : Dict = CLIPTextModel(UpperCamelCase_ ) _lowercase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowercase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=0 ) -> Any: '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): _lowercase : Any = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : Union[str, Any] = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : Tuple ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : str ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _lowercase : int = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Union[str, Any] = '''.''' _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : Tuple = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _lowercase : int = output.images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : List[Any] = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : str = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowercase : str = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : int = '''.''' _lowercase : Tuple = torch.manual_seed(0 ) _lowercase : int = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _lowercase : Union[str, Any] = output.images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : List[str] = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowercase : List[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Optional[int] = '''.''' _lowercase : Any = torch.manual_seed(0 ) _lowercase : int = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) _lowercase : Dict = output.images assert image.shape == (1, 512, 768, 3)
411
1
'''simple docstring''' from collections.abc import Generator def __A ( ): _UpperCAmelCase , _UpperCAmelCase : Any = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase : Tuple = b, a + b yield b def __A ( lowerCAmelCase_ = 1000 ): _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : List[Any] = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
414
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class __lowerCAmelCase ( __a ): def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case_ (self , lowerCAmelCase__=None ): _UpperCAmelCase : Any = {} if top_k is not None: _UpperCAmelCase : Tuple = top_k return {}, {}, postprocess_params def __call__(self , lowerCAmelCase__ , **lowerCAmelCase__ ): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = load_image(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Any = self.model(**lowerCAmelCase__ ) return model_outputs def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=5 ): if top_k > self.model.config.num_labels: _UpperCAmelCase : Dict = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase : Tuple = model_outputs.logits.softmax(-1 )[0] _UpperCAmelCase , _UpperCAmelCase : Dict = probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": _UpperCAmelCase : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] _UpperCAmelCase : Any = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) _UpperCAmelCase : str = scores.tolist() _UpperCAmelCase : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
414
1
from __future__ import annotations from math import gcd def _SCREAMING_SNAKE_CASE ( a , a = 2 , a = 1 , a = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(a , a , a ) -> int: return (pow(a , 2 ) + step) % modulus for _ in range(a ): # These track the position within the cycle detection logic. __A : Dict = seed __A : Optional[int] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __A : Tuple = rand_fn(a , a , a ) __A : Dict = rand_fn(a , a , a ) __A : Optional[Any] = rand_fn(a , a , a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __A : Optional[int] = gcd(hare - tortoise , a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __A : int = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) UpperCAmelCase : Optional[Any] = parser.parse_args() UpperCAmelCase : Tuple = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: UpperCAmelCase : Tuple = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
77
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if len(a ) != 2 or len(a[0] ) != 2 or len(a ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __A : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE ( a , a ) -> str: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a ) ) ] def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[int]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a ) ) ] def _SCREAMING_SNAKE_CASE ( a ) -> tuple[list, list, list, list]: if len(a ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __A : str = len(a ) __A : List[Any] = matrix_length // 2 __A : List[str] = [[a[i][j] for j in range(a , a )] for i in range(a )] __A : Dict = [ [a[i][j] for j in range(a , a )] for i in range(a , a ) ] __A : int = [[a[i][j] for j in range(a )] for i in range(a )] __A : Any = [[a[i][j] for j in range(a )] for i in range(a , a )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE ( a ) -> tuple[int, int]: return len(a ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE ( a ) -> None: print('\n'.join(str(a ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if matrix_dimensions(a ) == (2, 2): return default_matrix_multiplication(a , a ) __A , __A , __A , __A : str = split_matrix(a ) __A , __A , __A , __A : List[Any] = split_matrix(a ) __A : Any = actual_strassen(a , matrix_subtraction(a , a ) ) __A : Tuple = actual_strassen(matrix_addition(a , a ) , a ) __A : List[str] = actual_strassen(matrix_addition(a , a ) , a ) __A : Optional[int] = actual_strassen(a , matrix_subtraction(a , a ) ) __A : Any = actual_strassen(matrix_addition(a , a ) , matrix_addition(a , a ) ) __A : Any = actual_strassen(matrix_subtraction(a , a ) , matrix_addition(a , a ) ) __A : List[Any] = actual_strassen(matrix_subtraction(a , a ) , matrix_addition(a , a ) ) __A : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a , a ) , a ) , a ) __A : Union[str, Any] = matrix_addition(a , a ) __A : str = matrix_addition(a , a ) __A : Dict = matrix_subtraction(matrix_subtraction(matrix_addition(a , a ) , a ) , a ) # construct the new matrix from our 4 quadrants __A : List[Any] = [] for i in range(len(a ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE ( a , a ) -> list: if matrix_dimensions(a )[1] != matrix_dimensions(a )[0]: __A : Dict = ( 'Unable to multiply these matrices, please check the dimensions.\n' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a ) __A : int = matrix_dimensions(a ) __A : Any = matrix_dimensions(a ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __A : List[Any] = max(*a , *a ) __A : Optional[Any] = int(math.pow(2 , math.ceil(math.loga(a ) ) ) ) __A : Union[str, Any] = matrixa __A : Optional[int] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __A : str = actual_strassen(a , a ) # Removing the additional zeros for i in range(0 , a ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
77
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available SCREAMING_SNAKE_CASE = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *snake_case__ : str , **snake_case__ : List[str] ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Optional[int] , *snake_case__ : Any , **snake_case__ : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : List[str] , *snake_case__ : Any , **snake_case__ : Tuple ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : Tuple = ["torch", "transformers", "onnx"] def __init__( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Any ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Dict , *snake_case__ : Any , **snake_case__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : int , *snake_case__ : Dict , **snake_case__ : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : str , *snake_case__ : Optional[int] , **snake_case__ : str ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Any , *snake_case__ : List[str] , **snake_case__ : Dict ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : str , *snake_case__ : Dict , **snake_case__ : Dict ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : int = ["torch", "transformers", "onnx"] def __init__( self : Any , *snake_case__ : List[str] , **snake_case__ : str ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : List[str] , *snake_case__ : List[str] , **snake_case__ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Optional[int] , *snake_case__ : List[Any] , **snake_case__ : int ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : Dict = ["torch", "transformers", "onnx"] def __init__( self : Any , *snake_case__ : Optional[int] , **snake_case__ : Any ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Union[str, Any] , *snake_case__ : str , **snake_case__ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : int , *snake_case__ : int , **snake_case__ : Tuple ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCAmelCase_ ( metaclass=A ): '''simple docstring''' lowercase_ : Dict = ["torch", "transformers", "onnx"] def __init__( self : List[str] , *snake_case__ : Tuple , **snake_case__ : int ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : Optional[int] , *snake_case__ : Tuple , **snake_case__ : Dict ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def UpperCamelCase ( cls : List[str] , *snake_case__ : Dict , **snake_case__ : List[Any] ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] )
199
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
718
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = BertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) snake_case_ = BertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_bert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
139
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : str = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : List[Any] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_)))) __UpperCAmelCase : Dict = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __UpperCAmelCase : str = {"unk_token": "<unk>"} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCamelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCamelCase_)) __UpperCAmelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , UpperCamelCase_) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Any , **UpperCamelCase_ : Dict): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCamelCase_) def a_ ( self : Union[str, Any] , **UpperCamelCase_ : List[Any]): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCamelCase_) def a_ ( self : Tuple , **UpperCamelCase_ : Union[str, Any]): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : int = self.get_rust_tokenizer() __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) processor_slow.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_) __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) processor_fast.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") __UpperCAmelCase : str = self.get_image_processor(do_normalize=UpperCamelCase_) __UpperCAmelCase : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCamelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCamelCase_) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : str = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : List[str] = processor(images=UpperCamelCase_ , return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : str = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Tuple = "lower newer" __UpperCAmelCase : List[Any] = processor(text=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Any = tokenizer(UpperCamelCase_ , return_tensors="np") for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = "lower newer" __UpperCAmelCase : str = self.prepare_image_inputs() __UpperCAmelCase : Any = processor(text=UpperCamelCase_ , images=UpperCamelCase_) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Dict = "google/owlvit-base-patch32" __UpperCAmelCase : str = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : int = ["cat", "nasa badge"] __UpperCAmelCase : Dict = processor(text=UpperCamelCase_) __UpperCAmelCase : List[Any] = 16 self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : List[Any] = "google/owlvit-base-patch32" __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Optional[int] = [["cat", "nasa badge"], ["person"]] __UpperCAmelCase : List[str] = processor(text=UpperCamelCase_) __UpperCAmelCase : List[str] = 16 __UpperCAmelCase : str = len(UpperCamelCase_) __UpperCAmelCase : List[str] = max([len(UpperCamelCase_) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Tuple = "google/owlvit-base-patch32" __UpperCAmelCase : Dict = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Any = ["cat", "nasa badge"] __UpperCAmelCase : Optional[int] = processor(text=UpperCamelCase_) __UpperCAmelCase : Optional[int] = 16 __UpperCAmelCase : Optional[Any] = inputs["input_ids"] __UpperCAmelCase : Any = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Any = self.prepare_image_inputs() __UpperCAmelCase : List[Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_) self.assertListEqual(list(inputs.keys()) , ["query_pixel_values", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : str = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : List[str] = processor.batch_decode(UpperCamelCase_) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(UpperCamelCase_) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_)
77
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE_ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
311
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: stooge(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return arr def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE_ : Any = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE , i + t , (SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowerCAmelCase__: List[Any] = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__: Optional[Any] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
311
1