code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowerCAmelCase = logging.get_logger(__name__) # General docstring __lowerCAmelCase = 'MobileNetV1Config' # Base docstring __lowerCAmelCase = 'google/mobilenet_v1_1.0_224' __lowerCAmelCase = [1, 1_024, 7, 7] # Image classification docstring __lowerCAmelCase = 'google/mobilenet_v1_1.0_224' __lowerCAmelCase = 'tabby, tabby cat' __lowerCAmelCase = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): _snake_case = {} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = model.mobilenet_va else: _snake_case = model _snake_case = """MobilenetV1/Conv2d_0/""" _snake_case = backbone.conv_stem.convolution.weight _snake_case = backbone.conv_stem.normalization.bias _snake_case = backbone.conv_stem.normalization.weight _snake_case = backbone.conv_stem.normalization.running_mean _snake_case = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case = i + 1 _snake_case = i * 2 _snake_case = backbone.layer[pt_index] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var _snake_case = backbone.layer[pt_index + 1] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _snake_case = model.classifier.weight _snake_case = model.classifier.bias return tf_to_pt_map def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _snake_case = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) _snake_case = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) _snake_case = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = array # Build TF to PyTorch weights loading map _snake_case = _build_tf_to_pytorch_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue _snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _snake_case = np.transpose(_SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case = array.squeeze().transpose() else: _snake_case = np.transpose(_SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) _snake_case = torch.from_numpy(_SCREAMING_SNAKE_CASE ) tf_weights.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp_1""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/ExponentialMovingAverage""" , _SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case, _snake_case = features.shape[-2:] _snake_case, _snake_case = conv_layer.stride _snake_case, _snake_case = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case = max(kernel_height - stride_height , 0 ) else: _snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case = max(kernel_width - stride_width , 0 ) else: _snake_case = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case = pad_along_width // 2 _snake_case = pad_along_width - pad_left _snake_case = pad_along_height // 2 _snake_case = pad_along_height - pad_top _snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """constant""" , 0.0 ) class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = True , ) -> None: super().__init__() _snake_case = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case = nn.Convad( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=UpperCAmelCase , groups=UpperCAmelCase , bias=UpperCAmelCase , padding_mode="""zeros""" , ) if use_normalization: _snake_case = nn.BatchNormad( num_features=UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase , track_running_stats=UpperCAmelCase , ) else: _snake_case = None if use_activation: if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase ): _snake_case = ACTaFN[config.hidden_act] else: _snake_case = config.hidden_act else: _snake_case = None def lowercase (self , UpperCAmelCase ) -> torch.Tensor: if self.config.tf_padding: _snake_case = apply_tf_padding(UpperCAmelCase , self.convolution ) _snake_case = self.convolution(UpperCAmelCase ) if self.normalization is not None: _snake_case = self.normalization(UpperCAmelCase ) if self.activation is not None: _snake_case = self.activation(UpperCAmelCase ) return features class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = MobileNetVaConfig lowerCAmelCase_ = load_tf_weights_in_mobilenet_va lowerCAmelCase_ = "mobilenet_v1" lowerCAmelCase_ = "pixel_values" lowerCAmelCase_ = False def lowercase (self , UpperCAmelCase ) -> None: if isinstance(UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowerCAmelCase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __snake_case , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase = True ) -> Dict: super().__init__(UpperCAmelCase ) _snake_case = config _snake_case = 32 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case = MobileNetVaConvLayer( UpperCAmelCase , in_channels=config.num_channels , out_channels=UpperCAmelCase , kernel_size=3 , stride=2 , ) _snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case = nn.ModuleList() for i in range(13 ): _snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=1 , ) ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase (self , UpperCAmelCase ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _snake_case = self.conv_stem(UpperCAmelCase ) _snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case = layer_module(UpperCAmelCase ) if output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = hidden_states if self.pooler is not None: _snake_case = torch.flatten(self.pooler(UpperCAmelCase ) , start_dim=1 ) else: _snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=UpperCAmelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __snake_case , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase ) -> None: super().__init__(UpperCAmelCase ) _snake_case = config.num_labels _snake_case = MobileNetVaModel(UpperCAmelCase ) _snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase ) _snake_case = nn.Linear(UpperCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.mobilenet_va(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(self.dropout(UpperCAmelCase ) ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = """single_label_classification""" else: _snake_case = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , )
585
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
585
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __lowercase , unittest.TestCase ): _a = ReformerTokenizer _a = ReformerTokenizerFast _a = True _a = False _a = True def __lowercase ( self : str ): super().setUp() lowerCAmelCase = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[str] ): lowerCAmelCase = "<s>" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : int ): lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase ) , 1000 ) def __lowercase ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __lowercase ( self : Tuple ): if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = "I was born in 92000, and this is falsé." lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(lowerCAmelCase ) lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : List[str]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input lowerCAmelCase = "This is a simple input" lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase = ("This is a simple input", "This is a pair") lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="""max_length""" , ) def __lowercase ( self : List[Any] ): pass def __lowercase ( self : Optional[Any] ): lowerCAmelCase = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __lowercase ( self : Dict ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = "Hello World!" lowerCAmelCase = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __lowercase ( self : Dict ): lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @require_torch @slow def __lowercase ( self : Any ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase = " ".join(lowerCAmelCase ) lowerCAmelCase = self.big_tokenizer.encode_plus(lowerCAmelCase , return_tensors="""pt""" ) lowerCAmelCase = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) lowerCAmelCase = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowerCAmelCase = encoded_sequence["input_ids"].shape lowerCAmelCase = ReformerModel(lowerCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase ) model(**lowerCAmelCase ) @slow def __lowercase ( self : int ): # fmt: off lowerCAmelCase = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowerCAmelCase = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=lowerCAmelCase , sequences=lowerCAmelCase , )
706
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def lowercase (snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase = os.path.abspath(snake_case__ ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model lowerCAmelCase = tf.train.list_variables(snake_case__ ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowerCAmelCase = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' lowerCAmelCase = name[1:] # figure out how many levels deep the name is lowerCAmelCase = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(snake_case__ ) # read data lowerCAmelCase = tf.train.load_variable(snake_case__ , snake_case__ ) names.append("""/""".join(snake_case__ ) ) arrays.append(snake_case__ ) logger.info(f'''Read a total of {len(snake_case__ ):,} layers''' ) # Sanity check if len(set(snake_case__ ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(snake_case__ ) )})''' ) lowerCAmelCase = list(set(snake_case__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(snake_case__ , snake_case__ ): lowerCAmelCase = full_name.split("""/""" ) lowerCAmelCase = model lowerCAmelCase = [] for i, m_name in enumerate(snake_case__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowerCAmelCase = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowerCAmelCase = getattr(snake_case__ , """encoder""" ) lowerCAmelCase = getattr(snake_case__ , """layer""" ) lowerCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """pooler""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """token_type_embeddings""" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) lowerCAmelCase = getattr(snake_case__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowerCAmelCase = getattr(snake_case__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowerCAmelCase = getattr(snake_case__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowerCAmelCase = getattr(snake_case__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """intermediate""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowerCAmelCase = getattr(snake_case__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowerCAmelCase = getattr(snake_case__ , """weight""" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary lowerCAmelCase = """.""".join(snake_case__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , snake_case__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , snake_case__ ): lowerCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowerCAmelCase = array.transpose() if pointer.shape == array.shape: lowerCAmelCase = torch.from_numpy(snake_case__ ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowercase (snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ) -> str: '''simple docstring''' logger.info(f'''Loading model based on config from {config_path}...''' ) lowerCAmelCase = BertConfig.from_json_file(snake_case__ ) lowerCAmelCase = BertModel(snake_case__ ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) a = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
529
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = 'laion/clap-htsat-unfused' UpperCamelCase_: Optional[Any] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Dict , **snake_case_ : str ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Dict ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: str = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[int] = self.get_feature_extractor() UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Any = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: int = floats_list((3, 1000) ) UpperCamelCase_: str = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: List[str] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: List[str] = 'This is a test string' UpperCamelCase_: Any = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: Optional[int] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: int = processor.batch_decode(snake_case_ ) UpperCamelCase_: int = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: int = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
548
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def UpperCAmelCase_ ( __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = DPTConfig() if "large" in checkpoint_url: _lowerCamelCase : Optional[Any] = 10_24 _lowerCamelCase : List[str] = 40_96 _lowerCamelCase : Union[str, Any] = 24 _lowerCamelCase : Any = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : Optional[int] = [2_56, 5_12, 10_24, 10_24] _lowerCamelCase : List[str] = (1, 3_84, 3_84) if "ade" in checkpoint_url: _lowerCamelCase : Any = True _lowerCamelCase : List[str] = 1_50 _lowerCamelCase : int = 'huggingface/label-files' _lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' _lowerCamelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='dataset' ) ) , 'r' ) ) _lowerCamelCase : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} _lowerCamelCase : int = idalabel _lowerCamelCase : Any = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCAmelCase_ ( __a : Tuple ): '''simple docstring''' _lowerCamelCase : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def UpperCAmelCase_ ( __a : Dict ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : Optional[Any] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCamelCase : Any = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _lowerCamelCase : str = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCamelCase : int = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCamelCase : Tuple = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCamelCase : Optional[int] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCamelCase : Optional[int] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCamelCase : Dict = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCamelCase : Tuple = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCamelCase : Tuple = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCamelCase : Tuple = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCamelCase : List[Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : Union[str, Any] = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCamelCase : Optional[Any] = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCamelCase : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCamelCase : List[str] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCamelCase : List[Any] = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCamelCase : Optional[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : str = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : List[str] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCamelCase : Any = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCamelCase : Tuple = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCamelCase : str = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCamelCase : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def UpperCAmelCase_ ( __a : Tuple , __a : Any ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCamelCase : Dict = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Tuple = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : Optional[int] = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __a : Optional[int] , __a : int , __a : str , __a : List[str] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] = get_dpt_config(__a ) # load original state_dict from URL _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__a ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : str = state_dict.pop(__a ) _lowerCamelCase : str = val # read in qkv matrices read_in_q_k_v(__a , __a ) # load HuggingFace model _lowerCamelCase : List[str] = DPTForSemanticSegmentation(__a ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__a ) model.load_state_dict(__a ) model.eval() # Check outputs on an image _lowerCamelCase : str = 4_80 if 'ade' in checkpoint_url else 3_84 _lowerCamelCase : Optional[Any] = DPTImageProcessor(size=__a ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : str = image_processor(__a , return_tensors='pt' ) # forward pass _lowerCamelCase : Tuple = model(**__a ).logits if 'ade' in checkpoint_url else model(**__a ).predicted_depth # Assert logits _lowerCamelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _lowerCamelCase : List[Any] = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __a , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __a ) ) Path(__a ).mkdir(exist_ok=__a ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__a , ) image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__a , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) a_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
437
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
233
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE__ : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE__ : int = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""") def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Dict = { 'Authorization': F'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
233
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *_a , **_a ) -> List[str]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Any: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ["""flax""", """transformers"""] def __init__( self , *_a , **_a ) -> Dict: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = ["""flax""", """transformers"""] def __init__( self , *_a , **_a ) -> Tuple: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Any: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = ["""flax""", """transformers"""] def __init__( self , *_a , **_a ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] )
680
"""simple docstring""" import numpy as np import qiskit def _lowercase ( __lowerCAmelCase = 8 , __lowerCAmelCase = None ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = np.random.default_rng(seed=__lowerCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ : List[str] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ : List[Any] = rng.integers(2 , size=__lowerCAmelCase ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ : Optional[Any] = rng.integers(2 , size=__lowerCAmelCase ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ : str = rng.integers(2 , size=__lowerCAmelCase ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ : Union[str, Any] = qiskit.QuantumCircuit(__lowerCAmelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(__lowerCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ : str = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ : Optional[int] = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1 , seed_simulator=__lowerCAmelCase ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ : int = job.result().get_counts(__lowerCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ : Optional[int] = gen_key[:key_len] if len(__lowerCAmelCase ) >= key_len else gen_key.ljust(__lowerCAmelCase , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
680
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available snake_case_ = logging.getLogger(__name__) @dataclass class snake_case_ : lowerCamelCase :str lowerCamelCase :List[str] lowerCamelCase :Optional[List[str]] @dataclass class snake_case_ : lowerCamelCase :List[int] lowerCamelCase :List[int] lowerCamelCase :Optional[List[int]] = None lowerCamelCase :Optional[List[int]] = None class snake_case_ ( _A): lowerCamelCase :Union[str, Any] = "train" lowerCamelCase :List[Any] = "dev" lowerCamelCase :Optional[int] = "test" class snake_case_ : @staticmethod def __lowercase ( __lowercase , __lowercase ) -> List[InputExample]: raise NotImplementedError @staticmethod def __lowercase ( __lowercase ) -> List[str]: raise NotImplementedError @staticmethod def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase="[CLS]" , __lowercase=1 , __lowercase="[SEP]" , __lowercase=False , __lowercase=False , __lowercase=0 , __lowercase=0 , __lowercase=-1_0_0 , __lowercase=0 , __lowercase=True , ) -> List[InputFeatures]: lowerCamelCase : List[Any] ={label: i for i, label in enumerate(__lowercase )} lowerCamelCase : List[str] =[] for ex_index, example in enumerate(__lowercase ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , __lowercase , len(__lowercase ) ) lowerCamelCase : Any =[] lowerCamelCase : Optional[Any] =[] for word, label in zip(example.words , example.labels ): lowerCamelCase : Optional[int] =tokenizer.tokenize(__lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowercase ) > 0: tokens.extend(__lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCamelCase : List[Any] =tokenizer.num_special_tokens_to_add() if len(__lowercase ) > max_seq_length - special_tokens_count: lowerCamelCase : Any =tokens[: (max_seq_length - special_tokens_count)] lowerCamelCase : Optional[int] =label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCamelCase : int =[sequence_a_segment_id] * len(__lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCamelCase : List[str] =[cls_token] + tokens lowerCamelCase : Any =[pad_token_label_id] + label_ids lowerCamelCase : List[str] =[cls_token_segment_id] + segment_ids lowerCamelCase : Dict =tokenizer.convert_tokens_to_ids(__lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCamelCase : Any =[1 if mask_padding_with_zero else 0] * len(__lowercase ) # Zero-pad up to the sequence length. lowerCamelCase : Optional[Any] =max_seq_length - len(__lowercase ) if pad_on_left: lowerCamelCase : Optional[int] =([pad_token] * padding_length) + input_ids lowerCamelCase : int =([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCamelCase : int =([pad_token_segment_id] * padding_length) + segment_ids lowerCamelCase : Optional[Any] =([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length assert len(__lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase : Optional[Any] =None features.append( InputFeatures( input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , label_ids=__lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class snake_case_ ( _A): lowerCamelCase :List[InputFeatures] lowerCamelCase :int = nn.CrossEntropyLoss().ignore_index def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase=False , __lowercase = Split.train , ) -> List[Any]: # Load data features from cache or dataset file lowerCamelCase : Tuple =os.path.join( __lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase : Optional[int] =cached_features_file + '''.lock''' with FileLock(__lowercase ): if os.path.exists(__lowercase ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) lowerCamelCase : List[str] =torch.load(__lowercase ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) lowerCamelCase : Optional[Any] =token_classification_task.read_examples_from_file(__lowercase , __lowercase ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase : Dict =token_classification_task.convert_examples_to_features( __lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , __lowercase ) def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , __lowercase ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class snake_case_ : lowerCamelCase :List[InputFeatures] lowerCamelCase :int = -100 def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase=False , __lowercase = Split.train , ) -> Optional[Any]: lowerCamelCase : Optional[Any] =token_classification_task.read_examples_from_file(__lowercase , __lowercase ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase : str =token_classification_task.convert_examples_to_features( __lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase : int =tf.data.Dataset.from_generator( __lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCamelCase : Optional[Any] =tf.data.Dataset.from_generator( __lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __lowercase ( self ) -> Union[str, Any]: lowerCamelCase : int =self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , __lowercase ) -> InputFeatures: return self.features[i]
262
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
262
1
import math UpperCamelCase = 10 UpperCamelCase = 7 UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def __magic_name__ ( SCREAMING_SNAKE_CASE = 20 ) -> str: _lowercase : Tuple = math.comb(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE ) _lowercase : int = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
66
"""simple docstring""" _snake_case = 6_5521 def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = 1 _a : Optional[int] = 0 for plain_chr in plain_text: _a : Dict = (a + ord(UpperCamelCase__ )) % MOD_ADLER _a : List[Any] = (b + a) % MOD_ADLER return (b << 1_6) | a
389
0
import os from math import logaa def snake_case_ ( lowercase__ : str = "base_exp.txt" ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): _lowerCAmelCase , _lowerCAmelCase =list(map(lowercase__ , line.split(""",""" ) ) ) if x * logaa(lowercase__ ) > largest: _lowerCAmelCase =x * logaa(lowercase__ ) _lowerCAmelCase =i + 1 return result if __name__ == "__main__": print(solution())
701
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self : int , lowerCamelCase_ : str , ): _lowerCAmelCase =parent _lowerCAmelCase =13 _lowerCAmelCase =7 _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =99 _lowerCAmelCase =32 _lowerCAmelCase =2 _lowerCAmelCase =4 _lowerCAmelCase =37 _lowerCAmelCase ="""gelu""" _lowerCAmelCase =0.1 _lowerCAmelCase =0.1 _lowerCAmelCase =512 _lowerCAmelCase =16 _lowerCAmelCase =2 _lowerCAmelCase =0.02 _lowerCAmelCase =3 _lowerCAmelCase =4 _lowerCAmelCase =None def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Any ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.prepare_config_and_inputs() _lowerCAmelCase =True _lowerCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): _lowerCAmelCase =TFEsmModel(config=lowerCamelCase_ ) _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , ): _lowerCAmelCase =True _lowerCAmelCase =TFEsmModel(config=lowerCamelCase_ ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ) # Also check the case where encoder outputs are not passed _lowerCAmelCase =model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): _lowerCAmelCase =TFEsmForMaskedLM(config=lowerCamelCase_ ) _lowerCAmelCase =model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFEsmForTokenClassification(config=lowerCamelCase_ ) _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase =model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: int = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) a_: Union[str, Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) a_: List[str] = False a_: List[Any] = False def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =TFEsmModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Dict ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def lowerCAmelCase__ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFEsmModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase__ ( self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : int ): _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(lowerCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase =model.get_bias() assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for k, v in name.items(): assert isinstance(lowerCamelCase_ , tf.Variable ) else: _lowerCAmelCase =model.get_output_embeddings() assert x is None _lowerCAmelCase =model.get_bias() assert name is None @require_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase =model(lowerCamelCase_ )[0] _lowerCAmelCase =[1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase_ ) # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase =model(lowerCamelCase_ )[0] # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
149
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""transformers""", """torch""", """note_seq"""] def __init__( self: List[str] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Dict ): '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def UpperCAmelCase_ ( cls: Tuple , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Tuple ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def UpperCAmelCase_ ( cls: Union[str, Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: int ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
380
def lowerCAmelCase_ ( A_): UpperCamelCase__: Optional[int] = len(A_) for i in range(1 ,A_): UpperCamelCase__: List[Any] = collection[i] UpperCamelCase__: Tuple = 0 UpperCamelCase__: Union[str, Any] = i - 1 while low <= high: UpperCamelCase__: Any = (low + high) // 2 if val < collection[mid]: UpperCamelCase__: str = mid - 1 else: UpperCamelCase__: str = mid + 1 for j in range(A_ ,A_ ,-1): UpperCamelCase__: Optional[int] = collection[j - 1] UpperCamelCase__: Optional[Any] = val return collection if __name__ == "__main__": A__: Dict = input('''Enter numbers separated by a comma:\n''').strip() A__: Optional[int] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
380
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Tuple = set(range(3 , snake_case__ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__ ) ) ) _snake_case : Union[str, Any] = [float(snake_case__ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
28
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
1
'''simple docstring''' import random def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : bool = False ): __a : dict = {i: [] for i in range(_SCREAMING_SNAKE_CASE )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_SCREAMING_SNAKE_CASE ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if random.random() < probability: graph[i].append(_SCREAMING_SNAKE_CASE ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_SCREAMING_SNAKE_CASE ) return graph def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): return { i: [j for j in range(_SCREAMING_SNAKE_CASE ) if i != j] for i in range(_SCREAMING_SNAKE_CASE ) } if __name__ == "__main__": import doctest doctest.testmod()
476
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : float ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) def lowerCamelCase (): __a : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34_423] __a : List[str] = math.log(len(_SCREAMING_SNAKE_CASE ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
476
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' a = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' a = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[List[List[str]]] , UpperCamelCase__ : List[List[str]] , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__ , hypotheses=UpperCamelCase__ , min_len=UpperCamelCase__ , max_len=UpperCamelCase__ ) }
650
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = (UnCLIPScheduler,) def UpperCAmelCase__ ( self : int , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase__ ) return config def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=UpperCamelCase__ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=UpperCamelCase__ ) - -0.0_010_011 < 1e-5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass
650
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig a__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" __UpperCamelCase : Optional[Any] = question_encoder __UpperCamelCase : int = generator __UpperCamelCase : Optional[Any] = self.question_encoder def lowerCamelCase__ ( self : Any , lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if os.path.isfile(a__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(a__ , exist_ok=a__ ) __UpperCamelCase : Tuple = os.path.join(a__ , """question_encoder_tokenizer""" ) __UpperCamelCase : Tuple = os.path.join(a__ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(a__ ) self.generator.save_pretrained(a__ ) @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : Any , **lowerCAmelCase : List[str] ) -> str: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer __UpperCamelCase : List[Any] = kwargs.pop("""config""" , a__ ) if config is None: __UpperCamelCase : List[str] = RagConfig.from_pretrained(a__ ) __UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained( a__ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __UpperCamelCase : int = AutoTokenizer.from_pretrained( a__ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=a__ , generator=a__ ) def __call__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return self.current_tokenizer(*a__ , **a__ ) def lowerCamelCase__ ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str ) -> Tuple: """simple docstring""" return self.generator.batch_decode(*a__ , **a__ ) def lowerCamelCase__ ( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" return self.generator.decode(*a__ , **a__ ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __UpperCamelCase : Any = self.question_encoder def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : Dict = self.generator def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = "longest" , lowerCAmelCase : str = None , lowerCAmelCase : bool = True , **lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , a__ , ) if max_length is None: __UpperCamelCase : Any = self.current_tokenizer.model_max_length __UpperCamelCase : str = self( a__ , add_special_tokens=a__ , return_tensors=a__ , max_length=a__ , padding=a__ , truncation=a__ , **a__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __UpperCamelCase : List[str] = self.current_tokenizer.model_max_length __UpperCamelCase : Optional[Any] = self( text_target=a__ , add_special_tokens=a__ , return_tensors=a__ , padding=a__ , max_length=a__ , truncation=a__ , **a__ , ) __UpperCamelCase : str = labels['''input_ids'''] return model_inputs
279
"""simple docstring""" from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( snake_case : int , snake_case : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:Optional[Any] = [] _lowerCAmelCase:Dict = 11 _lowerCAmelCase:int = int('''1''' + '''0''' * digit_len ) for num in range(snake_case , snake_case ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(snake_case , snake_case ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 _lowerCAmelCase:Optional[Any] = 10 return solutions def UpperCAmelCase ( snake_case : int = 2 ): _lowerCAmelCase:Optional[int] = 1.0 for fraction in fraction_list(snake_case ): _lowerCAmelCase:Any = Fraction(snake_case ) result *= frac.denominator / frac.numerator return int(snake_case ) if __name__ == "__main__": print(solution())
227
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """FlavaImageProcessor""" lowercase_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ): '''simple docstring''' __A =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __A =kwargs.pop('''feature_extractor''' ) __A =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) __A =self.image_processor def __call__( self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __A =self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if images is not None: __A =self.image_processor( lowercase__ , return_image_mask=lowercase__ , return_codebook_pixels=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if text is not None and images is not None: encoding.update(lowercase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer.model_input_names __A =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
516
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
516
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class lowercase__ ( A_ ): __UpperCAmelCase = '''switch_transformers''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , SCREAMING_SNAKE_CASE=3_2128 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0.01 , SCREAMING_SNAKE_CASE="float32" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0_01 , SCREAMING_SNAKE_CASE=0.0_01 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , **SCREAMING_SNAKE_CASE , ) -> Any: _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : Tuple = d_kv _lowerCamelCase : Any = d_ff _lowerCamelCase : str = num_sparse_encoder_layers _lowerCamelCase : Tuple = num_layers _lowerCamelCase : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase : Optional[int] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCamelCase : Union[str, Any] = self.num_layers // self.num_sparse_encoder_layers else: _lowerCamelCase : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCamelCase : str = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCamelCase : Tuple = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCamelCase : Dict = num_heads _lowerCamelCase : List[Any] = num_experts _lowerCamelCase : Dict = expert_capacity _lowerCamelCase : Tuple = router_bias _lowerCamelCase : Any = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}') _lowerCamelCase : List[Any] = router_dtype _lowerCamelCase : List[Any] = router_ignore_padding_tokens _lowerCamelCase : Optional[int] = relative_attention_num_buckets _lowerCamelCase : List[str] = relative_attention_max_distance _lowerCamelCase : Tuple = dropout_rate _lowerCamelCase : List[Any] = layer_norm_epsilon _lowerCamelCase : Dict = initializer_factor _lowerCamelCase : List[Any] = feed_forward_proj _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : str = add_router_probs _lowerCamelCase : Optional[Any] = router_z_loss_coef _lowerCamelCase : int = router_aux_loss_coef _lowerCamelCase : Union[str, Any] = self.feed_forward_proj.split("""-""") _lowerCamelCase : Any = act_info[-1] _lowerCamelCase : Any = act_info[0] == """gated""" if len(SCREAMING_SNAKE_CASE) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""") # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCamelCase : Dict = """gelu_new""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
88
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
61
0
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : int ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Tuple ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : int ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Any ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Tuple ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Any ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Dict ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Dict ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) def snake_case ( *UpperCAmelCase : Tuple, **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : Optional[int], **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : List[Any], **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : int, **UpperCAmelCase : Optional[int] ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : Optional[Any], **UpperCAmelCase : Optional[int] ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : Any, **UpperCAmelCase : str ): requires_backends(UpperCAmelCase, ['torch'] ) def snake_case ( *UpperCAmelCase : Dict, **UpperCAmelCase : List[str] ): requires_backends(UpperCAmelCase, ['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Tuple ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : List[str] ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[str] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : str ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : int ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Dict ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : int ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Dict ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Dict ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Any ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : int ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Dict ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : str ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[Any] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : int ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : str ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Dict ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[str] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Dict ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[str] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : List[str] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : int ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : str ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : str ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : str ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Dict ) -> List[str]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : int ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Dict ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Dict ) -> str: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Any: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[str] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : int ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Tuple ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Union[str, Any] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : List[Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : str ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[str] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Any ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[int] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Dict: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : Dict ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : List[Any] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Optional[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : int ,*_SCREAMING_SNAKE_CASE : Dict ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Optional[Any] ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Optional[int] ,*_SCREAMING_SNAKE_CASE : List[str] ,**_SCREAMING_SNAKE_CASE : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Any: '''simple docstring''' requires_backends(cls ,['torch'] ) class UpperCamelCase ( metaclass=snake_case__ ): """simple docstring""" snake_case = ["torch"] def __init__( self : Union[str, Any] ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self ,['torch'] ) @classmethod def A( cls : Any ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['torch'] ) @classmethod def A( cls : str ,*_SCREAMING_SNAKE_CASE : Tuple ,**_SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['torch'] )
110
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase_ = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def snake_case ( UpperCAmelCase : str = "mumbai" ): A = BeautifulSoup(requests.get(url + location ).content, 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div', attrs={'data-tn-component': 'organicJob'} ): A = job.find('a', attrs={'data-tn-element': 'jobTitle'} ).text.strip() A = job.find('span', {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
110
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , ) -> Dict: super().__init__() _UpperCAmelCase = value_function _UpperCAmelCase = unet _UpperCAmelCase = scheduler _UpperCAmelCase = env _UpperCAmelCase = env.get_dataset() _UpperCAmelCase = {} for key in self.data.keys(): try: _UpperCAmelCase = self.data[key].mean() except: # noqa: E722 pass _UpperCAmelCase = {} for key in self.data.keys(): try: _UpperCAmelCase = self.data[key].std() except: # noqa: E722 pass _UpperCAmelCase = env.observation_space.shape[0] _UpperCAmelCase = env.action_space.shape[0] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: return (x_in - self.means[key]) / self.stds[key] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: return x_in * self.stds[key] + self.means[key] def lowerCamelCase_ ( self , snake_case ) -> Any: if type(snake_case ) is dict: return {k: self.to_torch(snake_case ) for k, v in x_in.items()} elif torch.is_tensor(snake_case ): return x_in.to(self.unet.device ) return torch.tensor(snake_case , device=self.unet.device ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> int: for key, val in cond.items(): _UpperCAmelCase = val.clone() return x_in def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = x.shape[0] _UpperCAmelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _UpperCAmelCase = torch.full((batch_size,) , snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , snake_case ).sample _UpperCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0] _UpperCAmelCase = self.scheduler._get_variance(snake_case ) _UpperCAmelCase = torch.exp(0.5 * posterior_variance ) _UpperCAmelCase = model_std * grad _UpperCAmelCase = 0 _UpperCAmelCase = x.detach() _UpperCAmelCase = x + scale * grad _UpperCAmelCase = self.reset_xa(snake_case , snake_case , self.action_dim ) _UpperCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _UpperCAmelCase = self.scheduler.step(snake_case , snake_case , snake_case , predict_epsilon=snake_case )['prev_sample'] # apply conditions to the trajectory (set the initial state) _UpperCAmelCase = self.reset_xa(snake_case , snake_case , self.action_dim ) _UpperCAmelCase = self.to_torch(snake_case ) return x, y def __call__( self , snake_case , snake_case=64 , snake_case=32 , snake_case=2 , snake_case=0.1 ) -> str: # normalize the observations and create batch dimension _UpperCAmelCase = self.normalize(snake_case , 'observations' ) _UpperCAmelCase = obs[None].repeat(snake_case , axis=0 ) _UpperCAmelCase = {0: self.to_torch(snake_case )} _UpperCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCAmelCase = randn_tensor(snake_case , device=self.unet.device ) _UpperCAmelCase = self.reset_xa(snake_case , snake_case , self.action_dim ) _UpperCAmelCase = self.to_torch(snake_case ) # run the diffusion process _UpperCAmelCase , _UpperCAmelCase = self.run_diffusion(snake_case , snake_case , snake_case , snake_case ) # sort output trajectories by value _UpperCAmelCase = y.argsort(0 , descending=snake_case ).squeeze() _UpperCAmelCase = x[sorted_idx] _UpperCAmelCase = sorted_values[:, :, : self.action_dim] _UpperCAmelCase = actions.detach().cpu().numpy() _UpperCAmelCase = self.de_normalize(snake_case , key='actions' ) # select the action with the highest value if y is not None: _UpperCAmelCase = 0 else: # if we didn't run value guiding, select a random action _UpperCAmelCase = np.random.randint(0 , snake_case ) _UpperCAmelCase = denorm_actions[selected_index, 0] return denorm_actions
573
"""simple docstring""" def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
573
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } _SCREAMING_SNAKE_CASE : Optional[int] = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["input_ids", "attention_mask"] a = [] def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int="<unk>" , __lowerCamelCase : str="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : List[Any]="<pad>" , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : str="[MASK]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Union[str, Any] , ) -> None: SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , mask_token=__lowerCamelCase , cls_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def lowercase_ ( self : Tuple ) -> Tuple: return self.sp_model.get_piece_size() def lowercase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : int , __lowerCamelCase : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Any , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : List[Any] ) -> Optional[int]: return self.sp_model.piece_to_id(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.sp_model.IdToPiece(__lowerCamelCase ) return token def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def lowercase_ ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Union[str, Any] , ) -> str: SCREAMING_SNAKE_CASE__ = kwargs.pop('''use_source_tokenizer''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE__ = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE__ = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def lowercase_ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
472
from importlib import import_module from .logging import get_logger _SCREAMING_SNAKE_CASE : Optional[int] = get_logger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=None ) -> int: SCREAMING_SNAKE_CASE__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = module._original_module if isinstance(__lowerCamelCase , _PatchedModuleObj ) else module class UpperCAmelCase__ : """simple docstring""" a = [] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None ) -> Any: SCREAMING_SNAKE_CASE__ = obj SCREAMING_SNAKE_CASE__ = target SCREAMING_SNAKE_CASE__ = new SCREAMING_SNAKE_CASE__ = target.split('''.''' )[0] SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = attrs or [] def __enter__( self : int ) -> Tuple: *SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__lowerCamelCase ) ): try: SCREAMING_SNAKE_CASE__ = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): SCREAMING_SNAKE_CASE__ = obj_attr # patch at top level setattr(self.obj , __lowerCamelCase , _PatchedModuleObj(__lowerCamelCase , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__lowerCamelCase , __lowerCamelCase , _PatchedModuleObj(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , __lowerCamelCase ) # finally set the target attribute setattr(__lowerCamelCase , __lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: SCREAMING_SNAKE_CASE__ = getattr(import_module('''.'''.join(__lowerCamelCase ) ) , __lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __lowerCamelCase ) is attr_value: SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) setattr(self.obj , __lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" SCREAMING_SNAKE_CASE__ = globals()['''__builtins__'''][target_attr] setattr(self.obj , __lowerCamelCase , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : Optional[Any] , *__lowerCamelCase : Tuple ) -> List[str]: for attr in list(self.original ): setattr(self.obj , __lowerCamelCase , self.original.pop(__lowerCamelCase ) ) def lowercase_ ( self : List[Any] ) -> Optional[Any]: self.__enter__() self._active_patches.append(self ) def lowercase_ ( self : int ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
472
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __A = { "RUCAIBox/mvp": 1_024, } class A ( __UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple = ["""input_ids""", """attention_mask"""] lowerCamelCase : Dict = MvpTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCamelCase__ ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = """post_processor""" lowercase__ = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["""sep"""] ) if "cls" in state: lowercase__ = tuple(state["""cls"""] ) lowercase__ = False if state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("""trim_offsets""" , lowerCamelCase__ ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCamelCase__ , state.pop("""type""" ) ) lowercase__ = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value lowercase__ = value def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__ = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
325
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __A = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __A = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __A = BeautifulSoup(res.text, "html.parser") __A = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
325
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( a__ ): def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , "num_attention_heads" ) ) class _snake_case : def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : str=3 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Optional[int]=[128, 256, 384] , UpperCAmelCase : str=[4, 6, 8] , UpperCAmelCase : Tuple=[2, 3, 4] , UpperCAmelCase : Dict=[16, 16, 16] , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : List[Any]=[2, 2, 2] , UpperCAmelCase : Dict=[2, 2, 2] , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[Any]=2 , ): __lowerCamelCase : str = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : Dict = image_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = kernel_size __lowerCamelCase : Optional[Any] = stride __lowerCamelCase : Optional[Any] = padding __lowerCamelCase : List[str] = hidden_sizes __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Optional[Any] = depths __lowerCamelCase : Dict = key_dim __lowerCamelCase : Union[str, Any] = drop_path_rate __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Any = attention_ratio __lowerCamelCase : Optional[int] = mlp_ratio __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Tuple = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : Optional[int] = use_labels __lowerCamelCase : Optional[Any] = num_labels __lowerCamelCase : Union[str, Any] = initializer_range def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = None if self.use_labels: __lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : Union[str, Any] = LevitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : List[str] = model(UpperCAmelCase ) __lowerCamelCase : int = (self.image_size, self.image_size) __lowerCamelCase , __lowerCamelCase : Dict = image_size[0], image_size[1] for _ in range(4 ): __lowerCamelCase : Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowerCamelCase : Optional[int] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : str ): __lowerCamelCase : str = self.num_labels __lowerCamelCase : Tuple = LevitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Any = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = config_and_inputs __lowerCamelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : str ): __lowerCamelCase : str = LevitModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : str ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowerCamelCase__ ( self : List[str] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowerCamelCase__ ( self : str ): pass @unittest.skip(reason="Levit does not output attentions" ) def lowerCamelCase__ ( self : List[Any] ): pass def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Tuple = model_class(UpperCAmelCase ) __lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[int] = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): def check_hidden_states_output(UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : Optional[Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase : List[str] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase : str = outputs.hidden_states __lowerCamelCase : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) __lowerCamelCase : Dict = (self.model_tester.image_size, self.model_tester.image_size) __lowerCamelCase , __lowerCamelCase : Tuple = image_size[0], image_size[1] for _ in range(4 ): __lowerCamelCase : List[str] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowerCamelCase : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase__ ( self : Optional[int] ): pass def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str=False ): __lowerCamelCase : Tuple = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowerCamelCase : Optional[int] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() __lowerCamelCase : Any = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = model(**UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCamelCase : int = False __lowerCamelCase : int = True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowerCamelCase : Optional[int] = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() __lowerCamelCase : Union[str, Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCamelCase : Optional[int] = model(**UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): __lowerCamelCase : List[str] = problem_type["title"] __lowerCamelCase : List[str] = problem_type["num_labels"] __lowerCamelCase : Union[str, Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() __lowerCamelCase : Dict = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if problem_type["num_labels"] > 1: __lowerCamelCase : Tuple = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCamelCase : List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCAmelCase ) as warning_list: __lowerCamelCase : str = model(**UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowerCamelCase__ ( self : int ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = LevitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Optional[int] ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Optional[int] = prepare_img() __lowerCamelCase : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] = model(**UpperCAmelCase ) # verify the logits __lowerCamelCase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
366
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __A = logging.get_logger('''transformers.models.speecht5''') def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: List[Any] , _lowerCamelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' hf_model.apply_weight_norm() __lowerCamelCase : Union[str, Any] = checkpoint["input_conv.weight_g"] __lowerCamelCase : int = checkpoint["input_conv.weight_v"] __lowerCamelCase : Dict = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __lowerCamelCase : Dict = checkpoint[F"""upsamples.{i}.1.weight_g"""] __lowerCamelCase : Optional[int] = checkpoint[F"""upsamples.{i}.1.weight_v"""] __lowerCamelCase : Any = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCamelCase : List[str] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] __lowerCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] __lowerCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] __lowerCamelCase : str = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] __lowerCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] __lowerCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] __lowerCamelCase : Any = checkpoint["output_conv.1.weight_g"] __lowerCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] __lowerCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any=None , _lowerCamelCase: Optional[int]=None , ) -> Optional[int]: '''simple docstring''' if config_path is not None: __lowerCamelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_lowerCamelCase ) else: __lowerCamelCase : Tuple = SpeechTaHifiGanConfig() __lowerCamelCase : List[Any] = SpeechTaHifiGan(_lowerCamelCase ) __lowerCamelCase : int = torch.load(_lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Dict = np.load(_lowerCamelCase ) __lowerCamelCase : List[str] = stats[0].reshape(-1 ) __lowerCamelCase : Optional[int] = stats[1].reshape(-1 ) __lowerCamelCase : int = torch.from_numpy(_lowerCamelCase ).float() __lowerCamelCase : List[str] = torch.from_numpy(_lowerCamelCase ).float() model.save_pretrained(_lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __A = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
366
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: Tuple = KandinskyVaaImgaImgPipeline _lowercase: Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase: int = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase: Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase: Any = False @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: return 32 @property def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: return 32 @property def lowercase__ ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> List[Any]: return self.time_input_dim * 4 @property def lowercase__ ( self : str ) -> Dict: return 1_00 @property def lowercase__ ( self : List[str] ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**__snake_case ) return model @property def lowercase__ ( self : str ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Any ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : List[Any] ) -> Optional[Any]: _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**__snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any]=0 ) -> int: _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> Optional[int]: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) _lowerCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> int: _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = """A red cartoon frog, 4k""" _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
207
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase ( snake_case_ ): def __init__( self : Union[str, Any] , __snake_case : Callable , __snake_case : Optional[Features] = None , __snake_case : str = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[dict] = None , __snake_case : Optional[int] = None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: super().__init__( features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) _lowerCAmelCase = Generator( cache_dir=__snake_case , features=__snake_case , generator=__snake_case , gen_kwargs=__snake_case , **__snake_case , ) def lowercase__ ( self : str ) -> Dict: # Build iterable dataset if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split="""train""" , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset
207
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE )) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) A_ : Dict = parent_a[:random_slice] + parent_a[random_slice:] A_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[int] = list(SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: A_ : str = random.choice(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): A_ : List[str] = [] # Generate more children proportionally to the fitness score. A_ : Any = int(parent_a[1] * 100 ) + 1 A_ : Dict = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE ): A_ : List[Any] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE )][0] A_ , A_ : str = crossover(parent_a[0] , SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return pop def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: A_ : Union[str, Any] = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. A_ : str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: A_ : Any = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(SCREAMING_SNAKE_CASE ) # Generate random starting population. A_ : int = [] for _ in range(SCREAMING_SNAKE_CASE ): population.append(''''''.join([random.choice(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. A_ , A_ : Dict = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. A_ : str = [evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. A_ : int = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] , reverse=SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. A_ : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. A_ : int = [ (item, score / len(SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCamelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
152
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DiTPipeline snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : str = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = AutoencoderKL() A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Union[str, Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Any = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ : Tuple = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) A_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) A_ : Any = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] A_ : Any = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self )->str: '''simple docstring''' A_ : Tuple = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) A_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) A_ : List[str] = ['''vase''', '''umbrella'''] A_ : List[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Tuple = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
152
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('T') class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = data _snake_case = None def __str__(self ) -> str: return f"""{self.data}""" class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: _snake_case = None def __iter__(self ) -> Iterator[T]: _snake_case = self.top while node: yield node.data _snake_case = node.next def __str__(self ) -> str: return "->".join([str(UpperCAmelCase ) for item in self] ) def __len__(self ) -> int: return len(tuple(iter(self ) ) ) def lowercase (self ) -> bool: return self.top is None def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if not self.is_empty(): _snake_case = self.top _snake_case = node def lowercase (self ) -> T: if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , UpperCAmelCase ) _snake_case = self.top _snake_case = self.top.next return pop_node.data def lowercase (self ) -> T: if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowercase (self ) -> None: _snake_case = None if __name__ == "__main__": from doctest import testmod testmod()
585
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase = None __lowerCAmelCase = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "PIL.Image.Image" lowerCAmelCase_ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ = field(default="Image" , init=__snake_case , repr=__snake_case ) def __call__(self ) -> Optional[int]: return self.pa_type def lowercase (self , UpperCAmelCase ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = np.array(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase ) elif isinstance(UpperCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: _snake_case = {} _snake_case, _snake_case = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(UpperCAmelCase ): _snake_case = PIL.Image.open(UpperCAmelCase ) else: _snake_case = path.split("""::""" )[-1] try: _snake_case = string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] _snake_case = token_per_repo_id.get(UpperCAmelCase ) except ValueError: _snake_case = None with xopen(UpperCAmelCase , """rb""" , use_auth_token=UpperCAmelCase ) as f: _snake_case = BytesIO(f.read() ) _snake_case = PIL.Image.open(bytes_ ) else: _snake_case = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowercase (self , UpperCAmelCase ) -> pa.StructArray: if pa.types.is_string(storage.type ): _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) _snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _snake_case = storage.field("""bytes""" ) else: _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _snake_case = storage.field("""path""" ) else: _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _snake_case = pa.array( [encode_np_array(np.array(UpperCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _snake_case = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) _snake_case = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def lowercase (self , UpperCAmelCase ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase ): with xopen(UpperCAmelCase , """rb""" ) as f: _snake_case = f.read() return bytes_ _snake_case = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _snake_case = pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def __SCREAMING_SNAKE_CASE ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _snake_case = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = BytesIO() if image.format in list_image_compression_formats(): _snake_case = image.format else: _snake_case = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_SCREAMING_SNAKE_CASE , format=_SCREAMING_SNAKE_CASE ) return buffer.getvalue() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) _snake_case = array.dtype _snake_case = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _snake_case = dtype.kind _snake_case = dtype.itemsize _snake_case = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _snake_case = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _snake_case = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _snake_case = dtype_byteorder + dtype_kind + str(_SCREAMING_SNAKE_CASE ) _snake_case = np.dtype(_SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _snake_case = PIL.Image.fromarray(array.astype(_SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: _snake_case, _snake_case = first_non_null_value(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): _snake_case = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): _snake_case = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
585
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase : Union[str, Any] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase_ ( UpperCamelCase_ ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A_ ) def lowerCamelCase_ ( UpperCamelCase_ ): from diffusers.utils.testing_utils import pytest_terminal_summary_main _a : str = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(A_ , id=A_ )
710
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def snake_case_ ( self : Any ) -> Any: _a : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__snake_case , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__snake_case , '''num_attention_heads''' ) ) class lowerCamelCase : def __init__( self : str , __snake_case : List[str] , __snake_case : Optional[int]=13 , __snake_case : Any=32 , __snake_case : Union[str, Any]=2 , __snake_case : List[str]=3 , __snake_case : List[str]=640 , __snake_case : Any=4 , __snake_case : Union[str, Any]="silu" , __snake_case : Union[str, Any]=3 , __snake_case : str=32 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.02 , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Tuple=10 , __snake_case : List[Any]=None , ) -> int: _a : int = parent _a : Any = batch_size _a : Dict = image_size _a : int = patch_size _a : List[Any] = num_channels _a : Dict = last_hidden_size _a : Tuple = num_attention_heads _a : List[str] = hidden_act _a : Optional[Any] = conv_kernel_size _a : Optional[Any] = output_stride _a : int = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[int] = classifier_dropout_prob _a : List[str] = use_labels _a : Union[str, Any] = is_training _a : Optional[int] = num_labels _a : Dict = initializer_range _a : List[str] = scope def snake_case_ ( self : Dict ) -> Union[str, Any]: _a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = None _a : List[Any] = None if self.use_labels: _a : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _a : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : int = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self : Union[str, Any] ) -> Tuple: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self : Optional[Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] ) -> Union[str, Any]: _a : Optional[Any] = MobileViTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : int = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : Dict , __snake_case : List[str] , __snake_case : int , __snake_case : int , __snake_case : Optional[Any] ) -> str: _a : Any = self.num_labels _a : List[Any] = MobileViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _a : Tuple = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Dict ) -> Optional[int]: _a : List[Any] = self.num_labels _a : Dict = MobileViTForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _a : List[str] = model(__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _a : Any = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self : int ) -> str: _a : List[str] = self.prepare_config_and_inputs() _a , _a , _a , _a : int = config_and_inputs _a : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : Optional[int] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase : Optional[int] = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : str = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = False def snake_case_ ( self : List[Any] ) -> List[Any]: _a : str = MobileViTModelTester(self ) _a : List[Any] = MobileViTConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def snake_case_ ( self : Any ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def snake_case_ ( self : List[str] ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def snake_case_ ( self : List[str] ) -> str: pass def snake_case_ ( self : List[str] ) -> Union[str, Any]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(__snake_case ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : int ) -> Dict: pass def snake_case_ ( self : int ) -> Union[str, Any]: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : Tuple ) -> Optional[int]: def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any] ): _a : List[Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _a : Optional[Any] = outputs.hidden_states _a : Union[str, Any] = 5 self.assertEqual(len(__snake_case ) , __snake_case ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _a : Optional[Any] = 2 for i in range(len(__snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case_ ( self : Tuple ) -> List[str]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def snake_case_ ( self : Dict ) -> Union[str, Any]: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) @slow def snake_case_ ( self : Any ) -> str: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = MobileViTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase_ ( ): _a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def snake_case_ ( self : List[str] ) -> Dict: return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def snake_case_ ( self : Tuple ) -> int: _a : str = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(__snake_case ) _a : Tuple = self.default_image_processor _a : Union[str, Any] = prepare_img() _a : List[Any] = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): _a : Dict = model(**__snake_case ) # verify the logits _a : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) _a : Dict = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @slow def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _a : int = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a : Union[str, Any] = model.to(__snake_case ) _a : Optional[int] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a : List[Any] = prepare_img() _a : int = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): _a : Dict = model(**__snake_case ) _a : Union[str, Any] = outputs.logits # verify the logits _a : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __snake_case ) _a : str = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def snake_case_ ( self : Tuple ) -> Optional[int]: _a : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a : Tuple = model.to(__snake_case ) _a : Dict = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _a : Tuple = prepare_img() _a : Tuple = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): _a : List[Any] = model(**__snake_case ) _a : List[str] = outputs.logits.detach().cpu() _a : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(50, 60)] ) _a : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __snake_case ) _a : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) _a : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __snake_case )
249
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''Salesforce/blip-image-captioning-base''' _UpperCamelCase : Dict = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) _UpperCamelCase : Dict = '''image_captioner''' _UpperCamelCase : str = AutoModelForVisionaSeq _UpperCamelCase : int = ['''image'''] _UpperCamelCase : Tuple = ['''text'''] def __init__( self : Optional[Any] , *_A : str , **_A : List[Any] ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_snake_case , **_snake_case ) def __a ( self : List[str] , _A : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(images=_snake_case , return_tensors='''pt''' ) def __a ( self : Tuple , _A : List[Any] ) -> str: """simple docstring""" return self.model.generate(**_snake_case ) def __a ( self : Union[str, Any] , _A : Optional[Any] ) -> int: """simple docstring""" return self.pre_processor.batch_decode(_snake_case , skip_special_tokens=_snake_case )[0].strip()
217
def __lowerCAmelCase ( a__ , a__ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
219
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any]): a : str = 3 a : Any = 250 a : List[Any] = ids_tensor((batch_size, length) , __UpperCAmelCase) a : Tuple = torch.ones((batch_size, length) , device=__UpperCAmelCase , dtype=torch.float) / length return input_ids, scores def __snake_case ( self : Optional[Any]): a , a : Tuple = self._get_tensors(5) a : Optional[int] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : List[Any] = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : Union[str, Any] = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def __snake_case ( self : str): a : Tuple = MaxLengthCriteria(max_length=10) a , a : Optional[Any] = self._get_tensors(5) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : List[str] = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : str = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def __snake_case ( self : str): a : List[str] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5) a , a : Optional[Any] = self._get_tensors(5) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : Tuple = self._get_tensors(9) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a , a : List[str] = self._get_tensors(10) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) a : Optional[int] = StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length , 10) def __snake_case ( self : Any): a , a : Any = self._get_tensors(5) a : Optional[int] = MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase)) a : Any = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase)) def __snake_case ( self : Union[str, Any]): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 10) with self.assertWarns(__UpperCAmelCase): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 11) a : List[Any] = validate_stopping_criteria(StoppingCriteriaList() , 11) self.assertEqual(len(__UpperCAmelCase) , 1)
135
"""simple docstring""" import unittest from knapsack import knapsack as k class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Dict): a : Tuple = 0 a : Any = [0] a : List[Any] = [0] a : List[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) a : List[str] = [60] a : Dict = [10] a : Optional[int] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) def __snake_case ( self : Optional[Any]): a : Union[str, Any] = 3 a : Any = [1, 2, 3] a : List[Any] = [3, 2, 1] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5) def __snake_case ( self : str): a : int = 50 a : Dict = [60, 100, 120] a : Tuple = [10, 20, 30] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220) if __name__ == "__main__": unittest.main()
135
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
518
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(snake_case , snake_case ) return k def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> PegasusForConditionalGeneration: _UpperCAmelCase = DEFAULTS.copy() cfg_kwargs.update(snake_case ) _UpperCAmelCase = PegasusConfig(**snake_case ) _UpperCAmelCase = PegasusForConditionalGeneration(snake_case ) _UpperCAmelCase = torch_model.model.state_dict() _UpperCAmelCase = {} for k, v in tf_weights.items(): _UpperCAmelCase = rename_state_dict_key(snake_case ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: _UpperCAmelCase = v.T _UpperCAmelCase = torch.tensor(snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected _UpperCAmelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _UpperCAmelCase = mapping["""shared.weight"""] _UpperCAmelCase = mapping["""shared.weight"""] _UpperCAmelCase = {k: torch.zeros_like(snake_case ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = torch_model.model.load_state_dict(snake_case , strict=snake_case ) _UpperCAmelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def _SCREAMING_SNAKE_CASE ( snake_case="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: _UpperCAmelCase = tf.train.list_variables(snake_case ) _UpperCAmelCase = {} _UpperCAmelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(snake_case , desc="""converting tf checkpoint to dict""" ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(snake_case , snake_case ) _UpperCAmelCase = array return tf_weights def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[str]: # save tokenizer first _UpperCAmelCase = Path(snake_case ).parent.name _UpperCAmelCase = task_specific_params[f"summarization_{dataset}"]["""max_position_embeddings"""] _UpperCAmelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case ) # convert model _UpperCAmelCase = get_tf_weights_as_numpy(snake_case ) _UpperCAmelCase = task_specific_params[f"summarization_{dataset}"] if dataset == "large": _UpperCAmelCase = task_specific_params _UpperCAmelCase = convert_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) _UpperCAmelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(snake_case , Path(snake_case ) / """pytorch_model.bin""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a = parser.parse_args() if args.save_dir is None: a = Path(args.tf_ckpt_path).parent.name a = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
518
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __a ( __UpperCamelCase ): __lowercase : Dict = 'gpt_neo' __lowercase : Tuple = ['past_key_values'] __lowercase : Union[str, Any] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , lowerCAmelCase__=50_257 , lowerCAmelCase__=2_048 , lowerCAmelCase__=2_048 , lowerCAmelCase__=24 , lowerCAmelCase__=[[["global", "local"], 12]] , lowerCAmelCase__=16 , lowerCAmelCase__=None , lowerCAmelCase__=256 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=50_256 , lowerCAmelCase__=50_256 , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = vocab_size lowercase__: List[Any] = max_position_embeddings lowercase__: Dict = hidden_size lowercase__: Optional[Any] = num_layers lowercase__: int = num_heads lowercase__: Optional[Any] = intermediate_size lowercase__: Dict = window_size lowercase__: Any = activation_function lowercase__: Tuple = resid_dropout lowercase__: Tuple = embed_dropout lowercase__: Dict = attention_dropout lowercase__: List[Any] = classifier_dropout lowercase__: Dict = layer_norm_epsilon lowercase__: Dict = initializer_range lowercase__: Optional[int] = use_cache lowercase__: Any = bos_token_id lowercase__: List[Any] = eos_token_id lowercase__: str = attention_types lowercase__: Union[str, Any] = self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[int] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: import torch lowercase__: List[str] = input.size() lowercase__: Optional[Any] = len(snake_case ) lowercase__: Optional[int] = shape[dimension] lowercase__: List[Any] = torch.arange(0 , snake_case , snake_case ) lowercase__: Any = torch.div(sizedim - size , snake_case , rounding_mode='floor' ) + 1 lowercase__: Any = torch.arange(snake_case ) + low_indices[:min_length][:, None] lowercase__: int = [slice(snake_case )] * rank lowercase__: Optional[Any] = indices lowercase__: int = input[s] lowercase__: int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case ) def snake_case_ ( snake_case , snake_case ) -> List[Any]: import torch lowercase__: List[str] = torch.arange(1 , snake_case ) lowercase__: Optional[int] = torch.remainder(snake_case , snake_case ) lowercase__: Tuple = remainders == 0 lowercase__: int = candidates[divisor_indices] lowercase__: Optional[Any] = torch.max(snake_case ) return largest_divisor, torch.div(snake_case , snake_case , rounding_mode='floor' ) class __a ( __UpperCamelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase__: List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction='inputs' ) lowercase__: Any = {0: 'batch', 1: 'past_sequence + sequence'} else: lowercase__: Optional[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self._config.num_heads def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase__: List[str] = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() lowercase__: Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase__ , lowercase__: int = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase__: Optional[Any] = seqlen + 2 lowercase__: Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__: str = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] lowercase__: Union[str, Any] = common_inputs['attention_mask'] if self.use_past: lowercase__: str = ordered_inputs['attention_mask'].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return 13
335
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a ( __UpperCamelCase ): __lowercase : List[str] = 'perceiver' def __init__( self , lowerCAmelCase__=256 , lowerCAmelCase__=1_280 , lowerCAmelCase__=768 , lowerCAmelCase__=1 , lowerCAmelCase__=26 , lowerCAmelCase__=8 , lowerCAmelCase__=8 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="kv" , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=True , lowerCAmelCase__=262 , lowerCAmelCase__=2_048 , lowerCAmelCase__=56 , lowerCAmelCase__=[368, 496] , lowerCAmelCase__=16 , lowerCAmelCase__=1_920 , lowerCAmelCase__=16 , lowerCAmelCase__=[1, 16, 224, 224] , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowercase__: Tuple = num_latents lowercase__: Dict = d_latents lowercase__: Tuple = d_model lowercase__: Tuple = num_blocks lowercase__: List[Any] = num_self_attends_per_block lowercase__: Any = num_self_attention_heads lowercase__: Optional[int] = num_cross_attention_heads lowercase__: Dict = qk_channels lowercase__: Any = v_channels lowercase__: Dict = cross_attention_shape_for_attention lowercase__: int = self_attention_widening_factor lowercase__: Tuple = cross_attention_widening_factor lowercase__: Optional[Any] = hidden_act lowercase__: Union[str, Any] = attention_probs_dropout_prob lowercase__: str = initializer_range lowercase__: str = layer_norm_eps lowercase__: List[Any] = use_query_residual # masked language modeling attributes lowercase__: List[Any] = vocab_size lowercase__: str = max_position_embeddings # image classification attributes lowercase__: Optional[Any] = image_size # flow attributes lowercase__: int = train_size # multimodal autoencoding attributes lowercase__: Dict = num_frames lowercase__: int = audio_samples_per_frame lowercase__: Optional[int] = samples_per_patch lowercase__: Tuple = output_shape class __a ( __UpperCamelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase__: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: '''simple docstring''' return 1E-4 def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 40 , lowerCAmelCase__ = 40 , ) -> Mapping[str, Any]: '''simple docstring''' # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__: Dict = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__: int = preprocessor.num_special_tokens_to_add(lowerCAmelCase__ ) lowercase__: Optional[int] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence lowercase__: str = [' '.join(['a'] ) * seq_length] * batch_size lowercase__: Optional[int] = dict(preprocessor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) lowercase__: str = inputs.pop('input_ids' ) return inputs elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__: str = compute_effective_axis_dimension(lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase__: str = self._generate_dummy_images(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: str = dict(preprocessor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) lowercase__: Union[str, Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
335
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
38
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = False ): __A : str = scheduler __A : Union[str, Any] = optimizers if isinstance(__UpperCAmelCase , (list, tuple) ) else [optimizers] __A : Any = split_batches __A : Tuple = step_with_optimizer __A : Optional[Any] = GradientState() def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __A : Optional[Any] = AcceleratorState().num_processes for _ in range(__UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self ): return self.scheduler.get_last_lr() def __UpperCAmelCase( self ): return self.scheduler.state_dict() def __UpperCAmelCase( self , __UpperCAmelCase ): self.scheduler.load_state_dict(__UpperCAmelCase ) def __UpperCAmelCase( self ): return self.scheduler.get_lr() def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.scheduler.print_lr(*__UpperCAmelCase , **__UpperCAmelCase )
520
0
'''simple docstring''' import numpy # List of input, output pairs lowerCAmelCase: List[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowerCAmelCase: str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowerCAmelCase: Optional[Any] = [2, 4, 1, 5] lowerCAmelCase: List[str] = len(train_data) lowerCAmelCase: Optional[int] = 0.009 def lowerCamelCase__ ( _A , _A="train" ): return calculate_hypothesis_value(_A , _A ) - output( _A , _A ) def lowerCamelCase__ ( _A ): a : Any = 0 for i in range(len(_A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase__ ( _A , _A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase__ ( _A , _A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase__ ( _A , _A=m ): a : List[Any] = 0 for i in range(_A ): if index == -1: summation_value += _error(_A ) else: summation_value += _error(_A ) * train_data[i][0][index] return summation_value def lowerCamelCase__ ( _A ): a : List[str] = summation_of_cost_derivative(_A , _A ) / m return cost_derivative_value def lowerCamelCase__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output a : List[str] = 0.000002 a : Union[str, Any] = 0 a : Union[str, Any] = 0 while True: j += 1 a : str = [0, 0, 0, 0] for i in range(0 , len(_A ) ): a : Optional[Any] = get_cost_derivative(i - 1 ) a : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _A , _A , atol=_A , rtol=_A , ): break a : str = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCamelCase__ ( ): for i in range(len(_A ) ): print(('Actual output value:', output(_A , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_A , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
195
'''simple docstring''' from math import factorial, pi def lowerCamelCase__ ( _A , _A = 30 ): if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) a : List[Any] = float(_A ) a : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_A ) ) def lowerCamelCase__ ( _A , _A = 30 ): if not isinstance(_A , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) a : List[str] = float(_A ) a : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
195
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase_ : List[Any] = '<<<<<<< This should probably be modified because it mentions: ' UpperCAmelCase_ : List[str] = '=======\n>>>>>>>\n' UpperCAmelCase_ : int = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] UpperCAmelCase_ : List[Any] = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase__ ( _snake_case ): '''simple docstring''' @staticmethod def UpperCAmelCase_ ( __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=__snake_case , required=__snake_case , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=__snake_case , required=__snake_case , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__snake_case ) def __init__( self , __snake_case , __snake_case , *__snake_case ): _SCREAMING_SNAKE_CASE : Tuple = get_logger("""datasets-cli/converting""" ) _SCREAMING_SNAKE_CASE : str = tfds_path _SCREAMING_SNAKE_CASE : Dict = datasets_directory def UpperCAmelCase_ ( self ): if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE : int = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _SCREAMING_SNAKE_CASE : List[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) _SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : Any = {} if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE : Tuple = os.listdir(__snake_case ) else: _SCREAMING_SNAKE_CASE : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(__snake_case , __snake_case ) if not os.path.isfile(__snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__snake_case , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE : Any = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : List[str] = [] for line in lines: _SCREAMING_SNAKE_CASE : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE : Tuple = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE : int = """""" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE : Tuple = """from datasets import logging\n""" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE : int = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Union[str, Any] = list(filter(lambda __snake_case : e in out_line , __snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__snake_case ) + """\n""" ) out_lines.append(__snake_case ) out_lines.append(__snake_case ) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE : str = re.sub(__snake_case , __snake_case , __snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE : Union[str, Any] = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) _SCREAMING_SNAKE_CASE : Any = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE : Optional[Any] = True out_lines.append(__snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE : Optional[int] = f_name.replace(""".py""" , """""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = os.path.join(__snake_case , __snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__snake_case ) if needs_manual_update: with_manual_update.append(__snake_case ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.writelines(__snake_case ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE : List[Any] = os.path.basename(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__snake_case , __snake_case ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
533
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Optional[Any] = 16 UpperCAmelCase_ : List[str] = 32 def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 16 , SCREAMING_SNAKE_CASE__ = "bert-base-cased" ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _SCREAMING_SNAKE_CASE : str = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" model.eval() _SCREAMING_SNAKE_CASE : Dict = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Tuple = model(**SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: _SCREAMING_SNAKE_CASE : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _SCREAMING_SNAKE_CASE : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) _SCREAMING_SNAKE_CASE : str = metric.compute() return eval_metric["accuracy"] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE : Optional[int] = config["""lr"""] _SCREAMING_SNAKE_CASE : Any = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE : Tuple = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE : List[str] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer _SCREAMING_SNAKE_CASE : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _SCREAMING_SNAKE_CASE : Any = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: _SCREAMING_SNAKE_CASE : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _SCREAMING_SNAKE_CASE : List[Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE__ , ) else: _SCREAMING_SNAKE_CASE : Any = DummyScheduler(SCREAMING_SNAKE_CASE__ , total_num_steps=SCREAMING_SNAKE_CASE__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over _SCREAMING_SNAKE_CASE : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : Tuple = evaluate.load("""glue""" , """mrpc""" ) _SCREAMING_SNAKE_CASE : int = num_epochs if args.partial_train_epoch is not None: _SCREAMING_SNAKE_CASE : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _SCREAMING_SNAKE_CASE : Any = args.resume_from_checkpoint.split("""epoch_""" )[1] _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _SCREAMING_SNAKE_CASE : int = int(SCREAMING_SNAKE_CASE__ ) + 1 _SCREAMING_SNAKE_CASE : List[str] = evaluation_loop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.print("""resumed checkpoint performance:""" , SCREAMING_SNAKE_CASE__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: _SCREAMING_SNAKE_CASE : Any = json.load(SCREAMING_SNAKE_CASE__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _SCREAMING_SNAKE_CASE : int = {} for epoch in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs.loss _SCREAMING_SNAKE_CASE : int = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _SCREAMING_SNAKE_CASE : int = f"""epoch_{epoch}""" _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = evaluation_loop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Dict = accuracy _SCREAMING_SNAKE_CASE : Any = lr_scheduler.get_lr()[0] _SCREAMING_SNAKE_CASE : Any = optimizer.param_groups[0]["""lr"""] _SCREAMING_SNAKE_CASE : Dict = epoch _SCREAMING_SNAKE_CASE : Union[str, Any] = overall_step accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( """--output_dir""" , type=SCREAMING_SNAKE_CASE__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=SCREAMING_SNAKE_CASE__ , default=2 , help="""Number of train epochs.""" , ) _SCREAMING_SNAKE_CASE : str = parser.parse_args() _SCREAMING_SNAKE_CASE : int = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
533
1
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Tuple = nn.BatchNormad(4 ) A__ : Any = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def _UpperCamelCase ( self : List[Any] , snake_case : Optional[Any] , *snake_case : List[str] , **snake_case : Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : str ): '''simple docstring''' return output + 1 class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = ModelForTest() A__ : Optional[int] = ModelHook() add_hook_to_module(snake_case , snake_case ) self.assertEqual(test_model._hf_hook , snake_case ) self.assertTrue(hasattr(snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(snake_case ) self.assertFalse(hasattr(snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(snake_case , """_old_forward""" ) ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : List[Any] = ModelForTest() A__ : int = ModelHook() add_hook_to_module(snake_case , snake_case ) add_hook_to_module(snake_case , snake_case , append=snake_case ) self.assertEqual(isinstance(test_model._hf_hook , snake_case ) , snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(snake_case ) self.assertFalse(hasattr(snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(snake_case , """_old_forward""" ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[Any] = ModelForTest() A__ : Any = torch.randn(2 , 3 ) A__ : str = test_model(x + 1 ) A__ : str = test_model(x + 2 ) A__ : Any = PreForwardHook() add_hook_to_module(snake_case , snake_case ) A__ : List[str] = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ : Any = PreForwardHook() add_hook_to_module(snake_case , snake_case ) A__ : Union[str, Any] = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(snake_case , snake_case ) A__ : List[str] = test_model(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-5 ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Any = ModelForTest() A__ : int = torch.randn(2 , 3 ) A__ : Dict = test_model(snake_case ) A__ : Optional[int] = PostForwardHook() add_hook_to_module(snake_case , snake_case ) A__ : Dict = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A__ : List[str] = PostForwardHook() add_hook_to_module(snake_case , snake_case ) A__ : int = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A__ : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(snake_case , snake_case ) A__ : Any = test_model(snake_case ) assert torch.allclose(snake_case , output + 2 , atol=1e-5 ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Union[str, Any] = ModelForTest() A__ : Any = torch.randn(2 , 3 ) A__ : Any = test_model(snake_case ) A__ : Optional[Any] = PostForwardHook() add_hook_to_module(snake_case , snake_case ) A__ : str = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) A__ : Tuple = True A__ : Any = test_model(snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A__ : List[str] = torch.randn(2 , 3 ) A__ : Union[str, Any] = model(snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(snake_case , AlignDevicesHook(io_same_device=snake_case ) ) A__ : str = torch.randn(2 , 3 ).to(0 ) A__ : Any = model(snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A__ : Any = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) A__ : Optional[int] = torch.randn(2 , 3 ) A__ : Union[str, Any] = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload A__ : Union[str, Any] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A__ : str = torch.randn(2 , 3 ) A__ : Optional[Any] = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A__ : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(snake_case , execution_device=snake_case , offload=snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ : Tuple = torch.device(snake_case ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) A__ : int = torch.randn(2 , 3 ) A__ : Dict = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(snake_case , execution_device=snake_case , offload=snake_case , offload_buffers=snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A__ : Optional[int] = torch.randn(2 , 3 ) A__ : Optional[Any] = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A__ : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( snake_case , execution_device=snake_case , offload=snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A__ : Union[str, Any] = torch.device(snake_case ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) A__ : str = torch.randn(2 , 3 ) A__ : List[Any] = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( snake_case , execution_device=snake_case , offload=snake_case , weights_map=model.state_dict() , offload_buffers=snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A__ : int = torch.randn(2 , 3 ) A__ : Dict = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
498
"""simple docstring""" from timeit import timeit def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : Optional[int] = 0 while number: number &= number - 1 result += 1 return result def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _lowerCAmelCase ( ) ->None: def do_benchmark(UpperCAmelCase__ : int ) -> None: A__ : Optional[int] = """import __main__ as z""" print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(UpperCAmelCase__ ) = }' ) A__ : Any = timeit("""z.get_set_bits_count_using_modulo_operator(25)""", setup=UpperCAmelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(UpperCAmelCase__ ) = }' ) A__ : List[str] = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""", setup=UpperCAmelCase__, ) print(f'timeit() runs in {timing} seconds' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(UpperCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
498
1
import pytest import datasets # Import fixture modules as plugins snake_case_ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=__lowercase ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = tmp_path_factory.getbasetemp() / 'cache' lowercase__ : List[Any] = test_hf_cache_home / 'datasets' lowercase__ : Any = test_hf_cache_home / 'metrics' lowercase__ : str = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(__lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(__lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(__lowercase ) ) lowercase__ : Union[str, Any] = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(__lowercase ) ) lowercase__ : List[Any] = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__lowercase ) ) @pytest.fixture(autouse=__lowercase , scope='session' ) def snake_case__ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=__lowercase ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , __lowercase ) @pytest.fixture def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , __lowercase )
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE :Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :List[str] = ['''ChineseCLIPFeatureExtractor'''] __SCREAMING_SNAKE_CASE :List[str] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Union[str, Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
236
0
import requests from bsa import BeautifulSoup def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : Dict = BeautifulSoup(requests.get(A__ , params=A__ ).content , 'html.parser' ) snake_case__ : Any = soup.find('div' , attrs={'class': 'gs_ri'} ) snake_case__ : Optional[Any] = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ : int = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 20_18, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
699
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
699
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class a : """simple docstring""" __UpperCAmelCase : List[str] = XGLMConfig __UpperCAmelCase : Dict = {} __UpperCAmelCase : Union[str, Any] = "gelu" def __init__( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[Any]=14 , lowerCamelCase : Dict=7 , lowerCamelCase : str=True , lowerCamelCase : Any=True , lowerCamelCase : str=True , lowerCamelCase : List[Any]=99 , lowerCamelCase : Tuple=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : List[Any]=4 , lowerCamelCase : Tuple=37 , lowerCamelCase : str="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : str=512 , lowerCamelCase : List[str]=0.02 , ) -> str: __snake_case : str = parent __snake_case : Any = batch_size __snake_case : Optional[int] = seq_length __snake_case : Union[str, Any] = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : str = use_labels __snake_case : List[Any] = vocab_size __snake_case : Union[str, Any] = d_model __snake_case : Tuple = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : List[Any] = ffn_dim __snake_case : List[Any] = activation_function __snake_case : Dict = activation_dropout __snake_case : str = attention_dropout __snake_case : Tuple = max_position_embeddings __snake_case : str = initializer_range __snake_case : Optional[Any] = None __snake_case : List[str] = 0 __snake_case : Tuple = 2 __snake_case : Any = 1 def __snake_case ( self : Optional[Any] ) -> int: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def __snake_case ( self : Union[str, Any] ) -> Tuple: __snake_case : str = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __snake_case : Dict = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[Any] = self.get_config() __snake_case : List[str] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __snake_case ( self : Any ) -> Optional[Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase , ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = config_and_inputs __snake_case : List[Any] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class a (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCAmelCase : str = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCAmelCase : Optional[Any] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = False def __snake_case ( self : Dict ) -> Any: __snake_case : Optional[int] = TFXGLMModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase , n_embd=37 ) def __snake_case ( self : str ) -> List[Any]: self.config_tester.run_common_tests() @slow def __snake_case ( self : int ) -> List[str]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = TFXGLMModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def __snake_case ( self : Dict ) -> Tuple: super().test_resize_token_embeddings() @require_tf class a (unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any]=True ) -> List[Any]: __snake_case : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __snake_case : Tuple = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __snake_case : Dict = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __snake_case : Optional[int] = model.generate(lowerCamelCase , do_sample=lowerCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase ) @slow def __snake_case ( self : List[Any] ) -> Tuple: __snake_case : Dict = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __snake_case : List[str] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) __snake_case : str = tokenizer("Today is a nice day and" , return_tensors="tf" ) __snake_case : List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): __snake_case : Optional[int] = model.generate(lowerCamelCase , do_sample=lowerCamelCase , seed=[7, 0] ) __snake_case : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase ) __snake_case : Tuple = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) @slow def __snake_case ( self : Union[str, Any] ) -> Dict: __snake_case : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) __snake_case : Any = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) __snake_case : int = "left" # use different length sentences to test batching __snake_case : List[Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] __snake_case : int = tokenizer(lowerCamelCase , return_tensors="tf" , padding=lowerCamelCase ) __snake_case : Optional[int] = inputs["input_ids"] __snake_case : int = model.generate(input_ids=lowerCamelCase , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) __snake_case : Optional[Any] = tokenizer(sentences[0] , return_tensors="tf" ).input_ids __snake_case : int = model.generate(input_ids=lowerCamelCase , max_new_tokens=12 ) __snake_case : List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids __snake_case : Tuple = model.generate(input_ids=lowerCamelCase , max_new_tokens=12 ) __snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) __snake_case : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase ) __snake_case : str = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase ) __snake_case : List[Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertListEqual(lowerCamelCase , [non_padded_sentence, padded_sentence] )
81
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : List[str] = "informer" lowerCAmelCase__ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Optional[Any] , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "student_t" , lowerCamelCase : str = "nll" , lowerCamelCase : int = 1 , lowerCamelCase : List[int] = None , lowerCamelCase : Optional[Union[str, bool]] = "mean" , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : int = 0 , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : int = 6_4 , lowerCamelCase : int = 3_2 , lowerCamelCase : int = 3_2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : bool = True , lowerCamelCase : str = "gelu" , lowerCamelCase : float = 0.05 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , lowerCamelCase : int = 1_0_0 , lowerCamelCase : float = 0.02 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : str = "prob" , lowerCamelCase : int = 5 , lowerCamelCase : bool = True , **lowerCamelCase : Dict , ): '''simple docstring''' # time series specific configuration a__ = prediction_length a__ = context_length or prediction_length a__ = distribution_output a__ = loss a__ = input_size a__ = num_time_features a__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] a__ = scaling a__ = num_dynamic_real_features a__ = num_static_real_features a__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) a__ = cardinality else: a__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) a__ = embedding_dimension else: a__ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] a__ = num_parallel_samples # Transformer architecture configuration a__ = input_size * len(self.lags_sequence ) + self._number_of_features a__ = d_model a__ = encoder_attention_heads a__ = decoder_attention_heads a__ = encoder_ffn_dim a__ = decoder_ffn_dim a__ = encoder_layers a__ = decoder_layers a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = activation_function a__ = init_std a__ = use_cache # Informer a__ = attention_type a__ = sampling_factor a__ = distil super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def __a ( self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
489
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCamelCase ( __a, __a=0.9_9_9, __a="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(__a ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) SCREAMING_SNAKE_CASE_ = [] for i in range(__a ): SCREAMING_SNAKE_CASE_ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ), __a ) ) return torch.tensor(__a, dtype=torch.floataa ) class snake_case ( __lowercase , __lowercase ): UpperCAmelCase__ = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ = 2 @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = 0.0_00_85 , SCREAMING_SNAKE_CASE_ = 0.0_12 , SCREAMING_SNAKE_CASE_ = "linear" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "linspace" , SCREAMING_SNAKE_CASE_ = 0 , ): """simple docstring""" if trained_betas is not None: SCREAMING_SNAKE_CASE_ = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE_ = torch.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) SCREAMING_SNAKE_CASE_ = 1.0 - self.betas SCREAMING_SNAKE_CASE_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = use_karras_sigmas def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" if schedule_timesteps is None: SCREAMING_SNAKE_CASE_ = self.timesteps SCREAMING_SNAKE_CASE_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE_ = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep SCREAMING_SNAKE_CASE_ = self._index_counter[timestep_int] return indices[pos].item() @property def _lowercase (self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] SCREAMING_SNAKE_CASE_ = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = num_inference_steps SCREAMING_SNAKE_CASE_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE_ = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ = (np.arange(SCREAMING_SNAKE_CASE_ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) SCREAMING_SNAKE_CASE_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE_ = np.log(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.interp(SCREAMING_SNAKE_CASE_ , np.arange(0 , len(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ ) if self.config.use_karras_sigmas: SCREAMING_SNAKE_CASE_ = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE_ , num_inference_steps=self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for sigma in sigmas] ) SCREAMING_SNAKE_CASE_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): # mps does not support float64 SCREAMING_SNAKE_CASE_ = timesteps.to(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ = timesteps.to(device=SCREAMING_SNAKE_CASE_ ) # empty dt and derivative SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE_ = defaultdict(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = np.log(SCREAMING_SNAKE_CASE_ ) # get distribution SCREAMING_SNAKE_CASE_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range SCREAMING_SNAKE_CASE_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE_ = low_idx + 1 SCREAMING_SNAKE_CASE_ = log_sigmas[low_idx] SCREAMING_SNAKE_CASE_ = log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE_ = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE_ = np.clip(SCREAMING_SNAKE_CASE_ , 0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE_ = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE_ = t.reshape(sigma.shape ) return t def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = in_sigmas[-1].item() SCREAMING_SNAKE_CASE_ = in_sigmas[0].item() SCREAMING_SNAKE_CASE_ = 7.0 # 7.0 is the value used in the paper SCREAMING_SNAKE_CASE_ = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = sigma_min ** (1 / rho) SCREAMING_SNAKE_CASE_ = sigma_max ** (1 / rho) SCREAMING_SNAKE_CASE_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowercase (self ): """simple docstring""" return self.dt is None def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] SCREAMING_SNAKE_CASE_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method SCREAMING_SNAKE_CASE_ = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE_ = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: SCREAMING_SNAKE_CASE_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE_ = sigma_next - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE_ = derivative SCREAMING_SNAKE_CASE_ = dt SCREAMING_SNAKE_CASE_ = sample else: # 2. 2nd order / Heun's method SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_next SCREAMING_SNAKE_CASE_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample SCREAMING_SNAKE_CASE_ = self.dt SCREAMING_SNAKE_CASE_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for t in timesteps] SCREAMING_SNAKE_CASE_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE_ = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = original_samples + noise * sigma return noisy_samples def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
628
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase__ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase__ = logging.get_logger(__name__) class snake_case ( __lowercase ): UpperCAmelCase__ = '''maskformer''' UpperCAmelCase__ = {'''hidden_size''': '''mask_feature_size'''} UpperCAmelCase__ = ['''resnet''', '''swin'''] UpperCAmelCase__ = ['''detr'''] def __init__(self , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = 20.0 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE_ = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE_ = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE_ = ( decoder_config.pop('''model_type''' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE_ = fpn_feature_size SCREAMING_SNAKE_CASE_ = mask_feature_size # initializer SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE_ = cross_entropy_weight SCREAMING_SNAKE_CASE_ = dice_weight SCREAMING_SNAKE_CASE_ = mask_weight SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = no_object_weight SCREAMING_SNAKE_CASE_ = output_auxiliary_logits SCREAMING_SNAKE_CASE_ = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE_ = self.decoder_config.num_hidden_layers super().__init__(**SCREAMING_SNAKE_CASE_ ) @classmethod def _lowercase (cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" return cls( backbone_config=SCREAMING_SNAKE_CASE_ , decoder_config=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
628
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ = model(_snake_case )["last_hidden_state"] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
159
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
1
from itertools import count def lowerCamelCase_ ( A : int = 50 ): """simple docstring""" lowerCAmelCase_ = [1] * min_block_length for n in count(A ): fill_count_functions.append(1 ) for block_length in range(A , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
701
import torch def lowerCamelCase_ ( ): """simple docstring""" if torch.cuda.is_available(): lowerCAmelCase_ = torch.cuda.device_count() else: lowerCAmelCase_ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
413
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if dataset.ndim != value_array.ndim: lowercase__ = ( "Wrong input data's dimensions... " f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) try: if dataset.shape[1] != value_array.shape[1]: lowercase__ = ( "Wrong input data's shape... " f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: lowercase__ = ( "Input data have different datatype... " f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(SCREAMING_SNAKE_CASE_ ) lowercase__ = [] for value in value_array: lowercase__ = euclidean(SCREAMING_SNAKE_CASE_ , dataset[0] ) lowercase__ = dataset[0].tolist() for dataset_value in dataset[1:]: lowercase__ = euclidean(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if dist > temp_dist: lowercase__ = temp_dist lowercase__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / (norm(SCREAMING_SNAKE_CASE_ ) * norm(SCREAMING_SNAKE_CASE_ )) if __name__ == "__main__": import doctest doctest.testmod()
413
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase_ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowercase_ = cvtColor(img, COLOR_BGR2GRAY) def __lowerCAmelCase ( ): lowercase__ = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCAmelCase ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __lowerCAmelCase ( ): lowercase__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCAmelCase ( ): lowercase__ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase__ = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def __lowerCAmelCase ( ): assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def __lowerCAmelCase ( ): # laplace diagonals lowercase__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase__ = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def __lowerCAmelCase ( ): assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def __lowerCAmelCase ( ): lowercase__ , lowercase__ = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def __lowerCAmelCase ( ): lowercase__ = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ): lowercase__ = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ): lowercase__ = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCAmelCase ( ): lowercase__ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. lowercase__ = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowercase__ = 0 lowercase__ = 0 lowercase__ = image[x_coordinate][y_coordinate] lowercase__ = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowercase__ = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
413
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowercase ( ) -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__UpperCamelCase ): requests.request('GET' ,'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' ,'https://huggingface.co' ,timeout=1.0 ) @pytest.mark.integration def _lowercase ( ) -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' ,'https://huggingface.co' ) def _lowercase ( ) -> int: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__UpperCamelCase ): http_head('https://huggingface.co' )
713
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__UpperCamelCase ): __magic_name__ = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = FlaxAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) @slow def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__UpperCamelCase ): __magic_name__ = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = FlaxAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) @slow def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: __magic_name__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) __magic_name__ = FlaxBertModel.from_pretrained(__UpperCamelCase ) __magic_name__ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCamelCase: Optional[Any] ): return model(**__UpperCamelCase ) eval(**__UpperCamelCase ).block_until_ready() @slow def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: __magic_name__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) __magic_name__ = FlaxRobertaModel.from_pretrained(__UpperCamelCase ) __magic_name__ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCamelCase: Any ): return model(**__UpperCamelCase ) eval(**__UpperCamelCase ).block_until_ready() def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): __magic_name__ = FlaxAutoModel.from_pretrained('bert-base' ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __magic_name__ = FlaxAutoModel.from_pretrained(__UpperCamelCase , revision='aaaaaa' ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): __magic_name__ = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' with self.assertRaisesRegex(__UpperCamelCase , 'Use `from_pt=True` to load this model' ): __magic_name__ = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
184
0
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig A_ : Union[str, Any] = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'ernie_m' lowerCamelCase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , __UpperCAmelCase : int = 2_5_0_0_0_2 , __UpperCAmelCase : int = 7_6_8 , __UpperCAmelCase : int = 1_2 , __UpperCAmelCase : int = 1_2 , __UpperCAmelCase : int = 3_0_7_2 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 5_1_4 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : float = 1e-05 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Union[str, Any]=0.0 , **__UpperCAmelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = is_decoder SCREAMING_SNAKE_CASE__ = act_dropout
196
"""simple docstring""" A_ : Any = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
196
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "rwkv" lowerCAmelCase : Tuple = {"max_position_embeddings": "context_length"} def __init__( self : Any ,_snake_case : Dict=50_277 ,_snake_case : List[Any]=1_024 ,_snake_case : Optional[int]=4_096 ,_snake_case : Optional[int]=32 ,_snake_case : str=None ,_snake_case : Dict=None ,_snake_case : List[Any]=1e-5 ,_snake_case : List[Any]=0 ,_snake_case : Optional[Any]=0 ,_snake_case : str=6 ,_snake_case : Any=False ,_snake_case : Any=True ,**_snake_case : List[str] ,) -> Optional[int]: """simple docstring""" lowercase__ : Any = vocab_size lowercase__ : Tuple = context_length lowercase__ : Optional[int] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : Optional[Any] = layer_norm_epsilon lowercase__ : Tuple = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : Any = bos_token_id lowercase__ : Any = eos_token_id super().__init__( tie_word_embeddings=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase )
707
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase_ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = TOKEN HfFolder.save_token(_snake_case ) @classmethod def UpperCAmelCase ( cls : List[str] ) -> str: """simple docstring""" try: delete_repo(token=cls._token ,repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''test-dynamic-config''' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('''test-config''' ,use_auth_token=self._token ) lowercase__ : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case ,repo_id='''test-config''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : List[str] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' ,use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case ,repo_id='''valid_org/test-config-org''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" CustomConfig.register_for_auto_class() lowercase__ : int = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) lowercase__ : Optional[Any] = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" ,trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'''CustomConfig''' ) self.assertEqual(new_config.attribute ,42 ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : Tuple = c.n_embd + 1 # int lowercase__ : int = c.resid_pdrop + 1.0 # float lowercase__ : str = not c.scale_attn_weights # bool lowercase__ : Union[str, Any] = c.summary_type + '''foo''' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_snake_case ,c.n_embd ,'''mismatch for key: n_embd''' ) self.assertEqual(_snake_case ,c.resid_pdrop ,'''mismatch for key: resid_pdrop''' ) self.assertEqual(_snake_case ,c.scale_attn_weights ,'''mismatch for key: scale_attn_weights''' ) self.assertEqual(_snake_case ,c.summary_type ,'''mismatch for key: summary_type''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : List[str] = PretrainedConfig() lowercase__ : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case ,['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) lowercase__ : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case ,_snake_case )] if len(_snake_case ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f""" {", ".join(_snake_case )}.""" ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) lowercase__ : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ,subfolder='''bert''' ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : Any = mock.Mock() lowercase__ : Dict = 500 lowercase__ : Any = {} lowercase__ : Optional[int] = HTTPError lowercase__ : Optional[int] = {} # Download this model to make sure it's in the cache. lowercase__ : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' ,return_value=_snake_case ) as mock_head: lowercase__ : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Dict = AutoConfig.from_pretrained('''bert-base-cased''' ) lowercase__ : int = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case ) lowercase__ : Optional[int] = 2 json.dump(configuration.to_dict() ,open(os.path.join(_snake_case ,'''config.4.0.0.json''' ) ,'''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Dict = ['''config.42.0.0.json'''] lowercase__ : Optional[Any] = 768 configuration.save_pretrained(_snake_case ) shutil.move(os.path.join(_snake_case ,'''config.4.0.0.json''' ) ,os.path.join(_snake_case ,'''config.42.0.0.json''' ) ) lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size ,768 ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers lowercase__ : Optional[int] = '''v4.0.0''' lowercase__ , lowercase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case ,return_unused_kwargs=_snake_case ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Optional[Any] = '''v3.0.0''' lowercase__ : Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case ) self.assertEqual(old_configuration.hidden_size ,768 )
122
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = 'switch_transformers' _UpperCamelCase : Optional[int] = ['past_key_values'] _UpperCamelCase : Optional[int] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , snake_case=32128 , snake_case=768 , snake_case=64 , snake_case=2048 , snake_case=64 , snake_case=12 , snake_case=3 , snake_case=12 , snake_case=3 , snake_case=12 , snake_case=8 , snake_case=False , snake_case=0.01 , snake_case="float32" , snake_case=False , snake_case=32 , snake_case=128 , snake_case=0.1 , snake_case=1E-6 , snake_case=0.001 , snake_case=0.001 , snake_case=1.0 , snake_case="relu" , snake_case=True , snake_case=False , snake_case=True , snake_case=0 , snake_case=1 , **snake_case , ): '''simple docstring''' UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_sparse_encoder_layers UpperCamelCase__ = num_layers UpperCamelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase__ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCamelCase__ = self.num_layers // self.num_sparse_encoder_layers else: UpperCamelCase__ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCamelCase__ = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCamelCase__ = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCamelCase__ = num_heads UpperCamelCase__ = num_experts UpperCamelCase__ = expert_capacity UpperCamelCase__ = router_bias UpperCamelCase__ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCamelCase__ = router_dtype UpperCamelCase__ = router_ignore_padding_tokens UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = feed_forward_proj UpperCamelCase__ = use_cache UpperCamelCase__ = add_router_probs UpperCamelCase__ = router_z_loss_coef UpperCamelCase__ = router_aux_loss_coef UpperCamelCase__ = self.feed_forward_proj.split("-" ) UpperCamelCase__ = act_info[-1] UpperCamelCase__ = act_info[0] == "gated" if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase__ = "gelu_new" super().__init__( pad_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , **snake_case , )
551
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
551
1
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __UpperCamelCase ='''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =1 __UpperCamelCase =1 __UpperCamelCase ={1: 1} for inputa in range(2 , __UpperCamelCase ): __UpperCamelCase =0 __UpperCamelCase =inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __UpperCamelCase =(3 * number) + 1 counter += 1 if inputa not in counters: __UpperCamelCase =counter if counter > pre_counter: __UpperCamelCase =inputa __UpperCamelCase =counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
296
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os from distutils.util import strtobool def snake_case__ ( _A: int , _A: List[Any] ) -> Union[str, Any]: '''simple docstring''' for e in env_keys: lowerCAmelCase = int(os.environ.get(_A , -1 ) ) if val >= 0: return val return default def snake_case__ ( _A: str , _A: List[Any]=False ) -> int: '''simple docstring''' lowerCAmelCase = os.environ.get(_A , str(_A ) ) return strtobool(_A ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case__ ( _A: Dict , _A: List[Any]="no" ) -> str: '''simple docstring''' lowerCAmelCase = os.environ.get(_A , str(_A ) ) return value
370
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a ( snake_case__: List[Any]=32 , snake_case__: Tuple=10 , snake_case__: Optional[Any]=100 , snake_case__: List[Any]=1_026 , snake_case__: int=True , snake_case__: Tuple="data/tokenized_stories_train_wikitext103.jbl" , snake_case__: Dict="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set lowercase_ , lowercase_ = generate_datasets( snake_case__ , snake_case__ , number=snake_case__ , min_len=1_026 , trim=snake_case__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowercase_ = load_gpta('''gpt2''' ).to(snake_case__ ) print('''computing perplexity on objective set''' ) lowercase_ = compute_perplexity(snake_case__ , snake_case__ , snake_case__ ).item() print('''perplexity on objective set:''' , snake_case__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a ( snake_case__: Dict , snake_case__: Optional[int]=15 , snake_case__: Tuple=128 , snake_case__: List[Any]=100 , snake_case__: Union[str, Any]="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model lowercase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowercase_ = SecondaryLearner(snake_case__ ) # Train secondary learner lowercase_ = train_secondary_learner( snake_case__ , snake_case__ , max_epochs=snake_case__ , batch_size=snake_case__ , eval_freq=100 , igf_model_path=snake_case__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a ( snake_case__: int , snake_case__: Dict , snake_case__: Optional[Any] , snake_case__: str=32 , snake_case__: List[Any]=1_000 , snake_case__: Any=16 , snake_case__: Optional[Any]=1.0 , snake_case__: int=recopy_gpta , snake_case__: List[Any]=None , snake_case__: int=10 , snake_case__: List[Any]="gpt2_finetuned.pt" , ): '''simple docstring''' lowercase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowercase_ = RandomSampler(snake_case__ ) lowercase_ = DataLoader(snake_case__ , sampler=snake_case__ ) lowercase_ = max_steps // (len(snake_case__ )) + 1 lowercase_ = 0 lowercase_ = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case__ ) lowercase_ , lowercase_ , lowercase_ = recopy_model(snake_case__ , snake_case__ , snake_case__ ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case__ ) secondary_learner.eval() lowercase_ = [] lowercase_ = 0 lowercase_ = [] lowercase_ = [] # Compute the performance of the transformer model at the beginning lowercase_ = compute_perplexity(snake_case__ , snake_case__ , snake_case__ ) test_perps.append(snake_case__ ) print('''Test perplexity, step''' , snake_case__ , ''':''' , snake_case__ ) for epoch in range(int(snake_case__ ) ): for step, example in enumerate(snake_case__ ): torch.cuda.empty_cache() lowercase_ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase_ = model(snake_case__ , labels=snake_case__ ) lowercase_ = True if secondary_learner is not None: lowercase_ = secondary_learner.forward( torch.tensor(snake_case__ , dtype=torch.long , device=snake_case__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase_ = -1 if predicted_q < threshold: lowercase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase_ = compute_perplexity(snake_case__ , snake_case__ , snake_case__ ) test_perps.append(snake_case__ ) print('''Test perplexity, step''' , snake_case__ , ''':''' , snake_case__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=snake_case__ , default=snake_case__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=snake_case__ , default=snake_case__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=snake_case__ , type=snake_case__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=snake_case__ , default=snake_case__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=snake_case__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=snake_case__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=snake_case__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=snake_case__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=snake_case__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=snake_case__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=snake_case__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=snake_case__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=snake_case__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=snake_case__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=snake_case__ , type=snake_case__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=snake_case__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=snake_case__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=snake_case__ , type=snake_case__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=snake_case__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowercase_ = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowercase_ = training_secondary_learner( snake_case__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowercase_ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase_ , lowercase_ = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=snake_case__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case__ , snake_case__ , snake_case__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=snake_case__ , secondary_learner=snake_case__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
409
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
409
1
"""simple docstring""" def snake_case ( A__ ,A__ ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ : str = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Optional[int] = str(bin(A__ ) )[2:] # remove the leading "0b" UpperCAmelCase_ : str = max(len(A__ ) ,len(A__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) ,b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
95
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __UpperCamelCase : Optional[Any] = 6_378_137.0 __UpperCamelCase : Any = 6_356_752.314_245 __UpperCamelCase : Optional[int] = 6378137 def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): """simple docstring""" __lowerCamelCase : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __lowerCamelCase : Tuple = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) __lowerCamelCase : Dict = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __lowerCamelCase : Any = haversine_distance(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __lowerCamelCase : Dict = (b_lata + b_lata) / 2 __lowerCamelCase : Union[str, Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __lowerCamelCase : str = (sin(UpperCAmelCase ) ** 2) * (cos(UpperCAmelCase ) ** 2) __lowerCamelCase : List[Any] = cos(sigma / 2 ) ** 2 __lowerCamelCase : Dict = (sigma - sin(UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __lowerCamelCase : Tuple = (cos(UpperCAmelCase ) ** 2) * (sin(UpperCAmelCase ) ** 2) __lowerCamelCase : List[str] = sin(sigma / 2 ) ** 2 __lowerCamelCase : List[str] = (sigma + sin(UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
519
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__: str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__: ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __magic_name__: ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __magic_name__: str = "question" __magic_name__: str = "context" __magic_name__: str = "answers" @property def UpperCAmelCase_ ( self : int ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
534
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
534
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) UpperCAmelCase_ : List[str] = Vector() def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , '(0,0,0,0,0,1)' ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = Vector([1, 2] ) UpperCAmelCase_ : List[Any] = Vector([1, 2, 3, 4, 5] ) UpperCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCAmelCase_ : List[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = Vector([1, 2, 3] ) UpperCAmelCase_ : Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[str] = Vector([1, 2, 3] ) UpperCAmelCase_ : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = Vector([1, 2, 3] ) UpperCAmelCase_ : List[str] = Vector([2, -1, 4] ) # for test of dot product UpperCAmelCase_ : List[str] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def __UpperCAmelCase ( self ) -> Dict: self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def __UpperCAmelCase ( self ) -> Optional[int]: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = Vector([1, 2, 3] ) UpperCAmelCase_ : List[str] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , '(3,4,7)' ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : List[str] = Vector([1, 0, 0, 0, 0, 0] ) UpperCAmelCase_ : Tuple = x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Tuple = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , '(0,1,0)' ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase_ ) ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : List[Any] = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : int = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[int] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) UpperCAmelCase_ : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase_ ) ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) UpperCAmelCase_ : Any = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def __UpperCAmelCase ( self ) -> str: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
406
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __A ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowerCAmelCase_ : str = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": lowerCAmelCase : int = CursorInfo() lowerCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCAmelCase, ctypes.byref(_UpperCAmelCase ) ) lowerCAmelCase : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCAmelCase, ctypes.byref(_UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' if os.name == "nt": lowerCAmelCase : str = CursorInfo() lowerCAmelCase : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCAmelCase, ctypes.byref(_UpperCAmelCase ) ) lowerCAmelCase : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCAmelCase, ctypes.byref(_UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
343
0
"""simple docstring""" import sys import turtle def __lowerCAmelCase ( lowercase : tuple[float, float] , lowercase : tuple[float, float] ) -> tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __lowerCAmelCase ( lowercase : tuple[float, float] , lowercase : tuple[float, float] , lowercase : tuple[float, float] , lowercase : int , ) -> None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) triangle(lowercase , get_mid(lowercase , lowercase ) , get_mid(lowercase , lowercase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __snake_case = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __snake_case = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
117
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): snake_case : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[Any] = "sshleifer/tiny-gpt2" snake_case : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : Dict = PyTorchBenchmark(UpperCamelCase__ ) snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : str = "sgugger/tiny-distilbert-classification" snake_case : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) snake_case : Union[str, Any] = PyTorchBenchmark(UpperCamelCase__ ) snake_case : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = "sshleifer/tiny-gpt2" snake_case : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , torchscript=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : int = PyTorchBenchmark(UpperCamelCase__ ) snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = "sshleifer/tiny-gpt2" snake_case : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , fpaa=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : List[Any] = PyTorchBenchmark(UpperCamelCase__ ) snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = "sshleifer/tiny-gpt2" snake_case : int = AutoConfig.from_pretrained(UpperCamelCase__ ) # set architectures equal to `None` snake_case : str = None snake_case : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : List[Any] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) snake_case : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Tuple = "sshleifer/tiny-gpt2" snake_case : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : List[str] = PyTorchBenchmark(UpperCamelCase__ ) snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Optional[Any] = "sshleifer/tiny-gpt2" snake_case : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) snake_case : Optional[int] = PyTorchBenchmark(UpperCamelCase__ ) snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = "sshleifer/tiny-gpt2" snake_case : List[Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) snake_case : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : Union[str, Any] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Optional[int] = "sshleifer/tinier_bart" snake_case : List[str] = AutoConfig.from_pretrained(UpperCamelCase__ ) snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : Union[str, Any] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) snake_case : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Optional[Any] = "sshleifer/tiny-gpt2" snake_case : str = AutoConfig.from_pretrained(UpperCamelCase__ ) snake_case : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : Optional[int] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : str = "sshleifer/tinier_bart" snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) snake_case : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) snake_case : Union[str, Any] = PyTorchBenchmark(UpperCamelCase__ , configs=[config] ) snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(UpperCamelCase__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(UpperCamelCase__ , "train_time.csv" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , "env.csv" ) , multi_process=UpperCamelCase__ , ) snake_case : List[Any] = PyTorchBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "env.csv" ) ).exists() ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(UpperCamelCase__ ): self.assertTrue(hasattr(UpperCamelCase__ , "sequential" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "cumulative" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "current" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , "log.txt" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) snake_case : Dict = PyTorchBenchmark(UpperCamelCase__ ) snake_case : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , "log.txt" ) ).exists() )
117
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __lowerCAmelCase = [ 'good first issue', 'feature request', 'wip', ] def _UpperCAmelCase ( ): a_ : Optional[int] = Github(os.environ['''GITHUB_TOKEN'''] ) a_ : Tuple = g.get_repo('''huggingface/accelerate''' ) a_ : Optional[Any] = repo.get_issues(state='''open''' ) for issue in open_issues: a_ : int = sorted([comment for comment in issue.get_comments()] , key=lambda __A : i.created_at , reverse=__A ) a_ : int = comments[0] if len(__A ) > 0 else None a_ : Optional[int] = dt.utcnow() a_ : int = (current_time - issue.updated_at).days a_ : int = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
466
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def _UpperCAmelCase ( __A : str , __A : Optional[Any]=1_00 , __A : int=" " ): a_ : Optional[int] = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def _UpperCAmelCase ( __A : dict ): a_ , a_ : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else '''''' ) texts.append(__A ) return {"title": titles, "text": texts} def _UpperCAmelCase ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ): a_ : int = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] a_ : List[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _UpperCAmelCase ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ): ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a_ : List[str] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a_ : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings a_ : str = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) a_ : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a_ : Union[str, Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space a_ : Union[str, Any] = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset a_ : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a_ : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__A ) # And save the index a_ : Optional[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
466
1
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _snake_case ( snake_case__ : Callable[[int | float], int | float] , snake_case__ : int | float , snake_case__ : int | float , snake_case__ : int = 100 , ): A = x_start A = fnc(snake_case__ ) A = 0.0 for _ in range(snake_case__ ): # Approximates curve as a sequence of linear lines and sums their length A = (x_end - x_start) / steps + xa A = fnc(snake_case__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A = xa A = fxa return length if __name__ == "__main__": def _snake_case ( snake_case__ : Dict ): return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') _lowercase = 10 while i <= 10_00_00: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
import baseaa def _lowerCamelCase( __snake_case ) -> bytes: return baseaa.aaaencode(string.encode("utf-8" ) ) def _lowerCamelCase( __snake_case ) -> str: return baseaa.aaadecode(__snake_case ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
524
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCamelCase__ = '▁' # Segments (not really needed) lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 class UpperCamelCase ( snake_case__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = """left""" __UpperCamelCase = XLNetTokenizer def __init__( self : List[str] ,_lowerCAmelCase : List[Any]=None ,_lowerCAmelCase : Optional[Any]=None ,_lowerCAmelCase : Optional[Any]=False ,_lowerCAmelCase : int=True ,_lowerCAmelCase : List[str]=False ,_lowerCAmelCase : Union[str, Any]="<s>" ,_lowerCAmelCase : str="</s>" ,_lowerCAmelCase : Tuple="<unk>" ,_lowerCAmelCase : Tuple="<sep>" ,_lowerCAmelCase : str="<pad>" ,_lowerCAmelCase : Any="<cls>" ,_lowerCAmelCase : Any="<mask>" ,_lowerCAmelCase : List[Any]=["<eop>", "<eod>"] ,**_lowerCAmelCase : Any ,): """simple docstring""" __snake_case = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token super().__init__( vocab_file=_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,remove_space=_lowerCAmelCase ,keep_accents=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,**_lowerCAmelCase ,) __snake_case = 3 __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def UpperCamelCase_ ( self : str ,_lowerCAmelCase : List[int] ,_lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self : Any ,_lowerCAmelCase : List[int] ,_lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self : List[Any] ,_lowerCAmelCase : str ,_lowerCAmelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case = os.path.join( _lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file ,_lowerCAmelCase ) return (out_vocab_file,)
524
1
def __lowerCamelCase ( A__ : int ) -> Union[str, Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowerCamelCase_ : Union[str, Any] = 0 lowerCamelCase_ : int = str(UpperCAmelCase__ ) while len(UpperCAmelCase__ ) != 1: lowerCamelCase_ : Dict = [int(UpperCAmelCase__ ) for i in num_string] lowerCamelCase_ : Tuple = 1 for i in range(0 , len(UpperCAmelCase__ ) ): total *= numbers[i] lowerCamelCase_ : List[Any] = str(UpperCAmelCase__ ) steps += 1 return steps def __lowerCamelCase ( A__ : int ) -> Dict: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowerCamelCase_ : str = 0 lowerCamelCase_ : Optional[Any] = str(UpperCAmelCase__ ) while len(UpperCAmelCase__ ) != 1: lowerCamelCase_ : List[Any] = [int(UpperCAmelCase__ ) for i in num_string] lowerCamelCase_ : Union[str, Any] = 0 for i in range(0 , len(UpperCAmelCase__ ) ): total += numbers[i] lowerCamelCase_ : Tuple = str(UpperCAmelCase__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCamelCase ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : Tuple=1e-12 ) -> str: lowerCamelCase_ : Optional[int] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T lowerCamelCase_ : List[str] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T return jnp.matmul(A__ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE_ (nn.Module ): '''simple docstring''' _a = 42 _a = jnp.floataa def _lowerCAmelCase ( self : str ) ->str: lowerCamelCase_ : Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase_ : Optional[int] = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) lowerCamelCase_ : str = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowerCamelCase_ : List[Any] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCamelCase_ : List[Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) lowerCamelCase_ : List[Any] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , __a : Dict ) ->Optional[Any]: lowerCamelCase_ : Optional[int] = self.vision_model(__a )[1] lowerCamelCase_ : str = self.visual_projection(__a ) lowerCamelCase_ : Tuple = jax_cosine_distance(__a , self.special_care_embeds ) lowerCamelCase_ : Any = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase_ : Dict = 0.0 lowerCamelCase_ : Optional[int] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase_ : int = jnp.round(__a , 3 ) lowerCamelCase_ : str = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept lowerCamelCase_ : List[Any] = is_special_care * 0.01 lowerCamelCase_ : List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase_ : Union[str, Any] = jnp.round(__a , 3 ) lowerCamelCase_ : Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = CLIPConfig _a = "clip_input" _a = FlaxStableDiffusionSafetyCheckerModule def __init__( self : List[Any] , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : int , ) ->List[Any]: if input_shape is None: lowerCamelCase_ : str = (1, 224, 224, 3) lowerCamelCase_ : List[Any] = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def _lowerCAmelCase ( self : Tuple , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ) ->FrozenDict: # init input tensor lowerCamelCase_ : Optional[Any] = jax.random.normal(__a , __a ) lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = jax.random.split(__a ) lowerCamelCase_ : Dict = {"""params""": params_rng, """dropout""": dropout_rng} lowerCamelCase_ : Tuple = self.module.init(__a , __a )["""params"""] return random_params def __call__( self : List[Any] , __a : List[str] , __a : dict = None , ) ->int: lowerCamelCase_ : List[str] = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
171
0
"""simple docstring""" def _snake_case ( __snake_case : int ): """simple docstring""" return str(__snake_case ) == str(__snake_case )[::-1] def _snake_case ( __snake_case : int ): """simple docstring""" return int(__snake_case ) + int(str(__snake_case )[::-1] ) def _snake_case ( __snake_case : int = 10000 ): """simple docstring""" _lowerCamelCase : str = [] for num in range(1 , __snake_case ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = num while iterations < 50: _lowerCamelCase : str = sum_reverse(__snake_case ) iterations += 1 if is_palindrome(__snake_case ): break else: lychrel_nums.append(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
88
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( a__ ): lowerCAmelCase :UNetaDModel lowerCAmelCase :ScoreSdeVeScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2000 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = self.unet.config.sample_size UpperCAmelCase__ : Any = (batch_size, 3, img_size, img_size) UpperCAmelCase__ : Optional[int] = self.unet UpperCAmelCase__ : Any = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase) * self.scheduler.init_noise_sigma UpperCAmelCase__ : Optional[int] = sample.to(self.device) self.scheduler.set_timesteps(_lowerCamelCase) self.scheduler.set_sigmas(_lowerCamelCase) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): UpperCAmelCase__ : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): UpperCAmelCase__ : List[str] = self.unet(_lowerCamelCase , _lowerCamelCase).sample UpperCAmelCase__ : List[Any] = self.scheduler.step_correct(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase).prev_sample # prediction step UpperCAmelCase__ : Any = model(_lowerCamelCase , _lowerCamelCase).sample UpperCAmelCase__ : Union[str, Any] = self.scheduler.step_pred(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ : Optional[Any] = sample_mean.clamp(0 , 1) UpperCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase__ : str = self.numpy_to_pil(_lowerCamelCase) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCamelCase)
407
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __A : Optional[Any] = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": A__ : Optional[Any] = CursorInfo() A__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case__ ( ) -> Dict: """simple docstring""" if os.name == "nt": A__ : List[str] = CursorInfo() A__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case__ ( ) -> Optional[int]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
182
0
from __future__ import annotations from typing import Any class snake_case_ : def __init__( self , __lowerCAmelCase = 6 ): SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None self.create_linked_list(__UpperCamelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = Node() SCREAMING_SNAKE_CASE_ : Dict = current_node SCREAMING_SNAKE_CASE_ : List[str] = current_node SCREAMING_SNAKE_CASE_ : int = current_node for _ in range(1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : int = Node() SCREAMING_SNAKE_CASE_ : Any = current_node SCREAMING_SNAKE_CASE_ : Optional[int] = previous_node SCREAMING_SNAKE_CASE_ : List[Any] = current_node SCREAMING_SNAKE_CASE_ : List[str] = self.front SCREAMING_SNAKE_CASE_ : int = previous_node def __A ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __A ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def __A ( self , __lowerCAmelCase ): if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = self.rear.next if self.rear: SCREAMING_SNAKE_CASE_ : Optional[Any] = data def __A ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.front.data SCREAMING_SNAKE_CASE_ : Tuple = None return data SCREAMING_SNAKE_CASE_ : str = self.front SCREAMING_SNAKE_CASE_ : str = old_front.next SCREAMING_SNAKE_CASE_ : Dict = old_front.data SCREAMING_SNAKE_CASE_ : Optional[int] = None return data def __A ( self ): if self.is_empty(): raise Exception('Empty Queue' ) def __A ( self ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class snake_case_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Any | None = None SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
345
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCamelCase : Union[str, Any] = "" __lowerCamelCase : Dict = "" __lowerCamelCase : Optional[int] = "" __lowerCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def SCREAMING_SNAKE_CASE__ ( ) -> None: A__ , A__ : Optional[int] =get_dataset(snake_case_, snake_case_ ) print('''Processing...''' ) A__ , A__ , A__ : List[Any] =update_image_and_anno(snake_case_, snake_case_, snake_case_ ) for index, image in enumerate(snake_case_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ : List[Any] =random_chars(3_2 ) A__ : Union[str, Any] =paths[index].split(os.sep )[-1].rsplit('''.''', 1 )[0] A__ : Any =f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg', snake_case_, [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Success {index+1}/{len(snake_case_ )} with {file_name}' ) A__ : str =[] for anno in new_annos[index]: A__ : Optional[Any] =f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(snake_case_ ) with open(f'/{file_root}.txt', '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> tuple[list, list]: A__ : int =[] A__ : int =[] for label_file in glob.glob(os.path.join(snake_case_, '''*.txt''' ) ): A__ : Optional[int] =label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(snake_case_ ) as in_file: A__ : Union[str, Any] =in_file.readlines() A__ : Union[str, Any] =os.path.join(snake_case_, f'{label_name}.jpg' ) A__ : Optional[Any] =[] for obj_list in obj_lists: A__ : Optional[int] =obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 1 ) -> tuple[list, list, list]: A__ : List[Any] =[] A__ : List[str] =[] A__ : Any =[] for idx in range(len(snake_case_ ) ): A__ : int =[] A__ : Any =img_list[idx] path_list.append(snake_case_ ) A__ : str =anno_list[idx] A__ : List[str] =cva.imread(snake_case_ ) if flip_type == 1: A__ : Optional[int] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : List[str] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A__ : List[str] =cva.flip(snake_case_, snake_case_ ) for bbox in img_annos: A__ : Optional[int] =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case_ ) new_imgs_list.append(snake_case_ ) return new_imgs_list, new_annos_lists, path_list def SCREAMING_SNAKE_CASE__ ( snake_case_ = 3_2 ) -> str: assert number_char > 1, "The number of character should greater than 1" A__ : Optional[int] =ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print("DONE ✅")
416
0
def __UpperCAmelCase ( __A , __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = [1] for i in range(2 , __A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ = [] UpperCAmelCase__ = list(range(__A ) ) # Find permutation while factorials: UpperCAmelCase__ = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ = divmod(__A , __A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
701
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A = logging.get_logger(__name__) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *_lowercase : Any , **_lowercase : Optional[int] ): """simple docstring""" warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
277
0
def a__ ( A__, A__ ): return int((input_a, input_a).count(1 ) != 0 ) def a__ ( ): assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
101
"""simple docstring""" from collections.abc import Sequence def _lowerCAmelCase(a : Sequence[float] , a : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a ) ) def _lowerCAmelCase(a : Sequence[float] , a : float ) -> float: _SCREAMING_SNAKE_CASE =0.0 for coeff in reversed(a ): _SCREAMING_SNAKE_CASE =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : Dict = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
255
0
'''simple docstring''' def _snake_case ( lowercase ) -> int: __a : Any = [] for data in source_data: for i, el in enumerate(__lowerCAmelCase ): if len(__lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCAmelCase ) ) return data_lists def _snake_case ( lowercase , lowercase ) -> Any: __a : Dict = [] for dlist, weight in zip(__lowerCAmelCase , __lowerCAmelCase ): __a : Optional[Any] = min(__lowerCAmelCase ) __a : List[str] = max(__lowerCAmelCase ) __a : List[str] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __a : Tuple = F"""Invalid weight of {weight:f} provided""" raise ValueError(__lowerCAmelCase ) score_lists.append(__lowerCAmelCase ) return score_lists def _snake_case ( lowercase ) -> Optional[Any]: __a : int = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCAmelCase ): __a : Dict = final_scores[j] + ele return final_scores def _snake_case ( lowercase , lowercase ) -> int: __a : str = get_data(__lowerCAmelCase ) __a : Optional[int] = calculate_each_score(__lowerCAmelCase , __lowerCAmelCase ) __a : List[str] = generate_final_scores(__lowerCAmelCase ) # append scores to source data for i, ele in enumerate(__lowerCAmelCase ): source_data[i].append(__lowerCAmelCase ) return source_data
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = '''Speech2TextFeatureExtractor''' SCREAMING_SNAKE_CASE__ : Any = '''Speech2TextTokenizer''' def __init__( self : int , snake_case : List[Any] , snake_case : int ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _snake_case : Tuple = self.feature_extractor _snake_case : int = False def __call__( self : List[Any] , *snake_case : List[Any] , **snake_case : List[Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case : int = kwargs.pop('raw_speech' ) else: _snake_case : Union[str, Any] = kwargs.pop('audio' , _lowercase ) _snake_case : int = kwargs.pop('sampling_rate' , _lowercase ) _snake_case : Dict = kwargs.pop('text' , _lowercase ) if len(_lowercase ) > 0: _snake_case : Tuple = args[0] _snake_case : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case : str = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _snake_case : List[str] = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : List[str] = encodings['input_ids'] return inputs def __UpperCAmelCase ( self : Any , *snake_case : Union[str, Any] , **snake_case : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def __UpperCAmelCase ( self : List[Any] , *snake_case : Dict , **snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def __UpperCAmelCase ( self : int ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case : int = True _snake_case : Tuple = self.tokenizer yield _snake_case : Optional[Any] = self.feature_extractor _snake_case : Optional[int] = False
517
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
0
def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 ,number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
700
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __SCREAMING_SNAKE_CASE : Any =logging.get_logger(__name__) # General docstring __SCREAMING_SNAKE_CASE : Union[str, Any] ='''PoolFormerConfig''' # Base docstring __SCREAMING_SNAKE_CASE : List[Any] ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] =[1, 512, 7, 7] # Image classification docstring __SCREAMING_SNAKE_CASE : Any ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] ='''tabby, tabby cat''' __SCREAMING_SNAKE_CASE : Tuple =[ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = False ): if drop_prob == 0.0 or not training: return input lowercase = 1 - drop_prob lowercase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase = keep_prob + torch.rand(lowerCAmelCase__ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize lowercase = input.div(lowerCAmelCase__ ) * random_tensor return output class A_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Optional[float] = None ): super().__init__() lowercase = drop_prob def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : torch.Tensor ): return drop_path(snake_case__ , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return "p={}".format(self.drop_prob ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[str]=None ): super().__init__() lowercase = patch_size if isinstance(snake_case__ , collections.abc.Iterable ) else (patch_size, patch_size) lowercase = stride if isinstance(snake_case__ , collections.abc.Iterable ) else (stride, stride) lowercase = padding if isinstance(snake_case__ , collections.abc.Iterable ) else (padding, padding) lowercase = nn.Convad(snake_case__ , snake_case__ , kernel_size=snake_case__ , stride=snake_case__ , padding=snake_case__ ) lowercase = norm_layer(snake_case__ ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[Any] ): lowercase = self.projection(snake_case__ ) lowercase = self.norm(snake_case__ ) return embeddings class A_ ( nn.GroupNorm ): def __init__( self : Union[str, Any] , snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(1 , snake_case__ , **snake_case__ ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any ): super().__init__() lowercase = nn.AvgPoolad(snake_case__ , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Union[str, Any] ): return self.pool(snake_case__ ) - hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Dict ): super().__init__() lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = PoolFormerDropPath(snake_case__ ) if isinstance(config.hidden_act , snake_case__ ): lowercase = ACTaFN[config.hidden_act] else: lowercase = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self : int , snake_case__ : Dict ): lowercase = self.conva(snake_case__ ) lowercase = self.act_fn(snake_case__ ) lowercase = self.drop(snake_case__ ) lowercase = self.conva(snake_case__ ) lowercase = self.drop(snake_case__ ) return hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[str] ): super().__init__() lowercase = PoolFormerPooling(snake_case__ ) lowercase = PoolFormerOutput(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) # Useful for training neural nets lowercase = PoolFormerDropPath(snake_case__ ) if drop_path > 0.0 else nn.Identity() lowercase = config.use_layer_scale if config.use_layer_scale: lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : List[str] ): if self.use_layer_scale: lowercase = self.pooling(self.before_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = () lowercase = self.output(self.after_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = (output,) + outputs return outputs else: lowercase = self.drop_path(self.pooling(self.before_norm(snake_case__ ) ) ) # First residual connection lowercase = pooling_output + hidden_states lowercase = () # Second residual connection inside the PoolFormerOutput block lowercase = self.drop_path(self.output(self.after_norm(snake_case__ ) ) ) lowercase = hidden_states + layer_output lowercase = (output,) + outputs return outputs class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[Any] ): super().__init__() lowercase = config # stochastic depth decay rule lowercase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase = nn.ModuleList(snake_case__ ) # Transformer blocks lowercase = [] lowercase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(snake_case__ ) ) lowercase = nn.ModuleList(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True ): lowercase = () if output_hidden_states else None lowercase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase , lowercase = layers # Get patch embeddings from hidden_states lowercase = embedding_layer(snake_case__ ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case__ ): lowercase = blk(snake_case__ ) lowercase = layer_outputs[0] if output_hidden_states: lowercase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) class A_ ( __a ): _A :Any = PoolFormerConfig _A :int = '''poolformer''' _A :Union[str, Any] = '''pixel_values''' _A :str = True def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Union[str, Any] ): if isinstance(snake_case__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[int]=False ): if isinstance(snake_case__ , snake_case__ ): lowercase = value __SCREAMING_SNAKE_CASE : Optional[Any] =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __SCREAMING_SNAKE_CASE : str =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __a , ) class A_ ( __a ): def __init__( self : Union[str, Any] , snake_case__ : int ): super().__init__(snake_case__ ) lowercase = config lowercase = PoolFormerEncoder(snake_case__ ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowercase = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case__ , hidden_states=encoder_outputs.hidden_states , ) class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[int] ): super().__init__() lowercase = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : str ): lowercase = self.dense(snake_case__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __a , ) class A_ ( __a ): def __init__( self : Dict , snake_case__ : Any ): super().__init__(snake_case__ ) lowercase = config.num_labels lowercase = PoolFormerModel(snake_case__ ) # Final norm lowercase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.LongTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.poolformer( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = outputs[0] lowercase = self.classifier(self.norm(snake_case__ ).mean([-2, -1] ) ) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = """single_label_classification""" else: lowercase = """multi_label_classification""" if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase = loss_fct(snake_case__ , snake_case__ ) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(snake_case__ , snake_case__ ) if not return_dict: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
72
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Union[str, Any] ): _snake_case = logging.get_logger() # the current default level is logging.WARNING _snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__UpperCAmelCase ) def lowercase ( self : str ): _snake_case = logging.get_verbosity() _snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(__UpperCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def lowercase ( self : Optional[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , __UpperCAmelCase ) _snake_case = logging.log_levels[env_level_str] _snake_case = logging.get_verbosity() self.assertEqual( __UpperCAmelCase , __UpperCAmelCase , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level _snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def lowercase ( self : List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _snake_case = logging.logging.getLogger() with CaptureLogger(__UpperCAmelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def lowercase ( self : List[str] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) _snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning_advice(__UpperCAmelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__UpperCAmelCase ) as cl: logger.warning_advice(__UpperCAmelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def _UpperCAmelCase ( ) -> List[Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
224
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "x" , lowerCamelCase_ = 10**-10 , lowerCamelCase_ = 1 , ): A : int = symbols(lowerCamelCase_ ) A : List[str] = lambdify(lowerCamelCase_ , lowerCamelCase_ ) A : Tuple = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) ) A : Optional[int] = starting_point while True: if diff_function(lowerCamelCase_ ) != 0: A : Union[str, Any] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function( lowerCamelCase_ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess A : Tuple = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
542
0
from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["flax", "transformers"] def __init__( self : Tuple, *_UpperCAmelCase : Any, **_UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ["flax", "transformers"] ) @classmethod def A_ ( cls : Optional[Any], *_UpperCAmelCase : List[str], **_UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) @classmethod def A_ ( cls : Any, *_UpperCAmelCase : List[str], **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["flax", "transformers"] def __init__( self : Tuple, *_UpperCAmelCase : str, **_UpperCAmelCase : Dict ) -> int: """simple docstring""" requires_backends(self, ["flax", "transformers"] ) @classmethod def A_ ( cls : int, *_UpperCAmelCase : Union[str, Any], **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) @classmethod def A_ ( cls : str, *_UpperCAmelCase : Union[str, Any], **_UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["flax", "transformers"] def __init__( self : Optional[Any], *_UpperCAmelCase : Optional[Any], **_UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" requires_backends(self, ["flax", "transformers"] ) @classmethod def A_ ( cls : Optional[Any], *_UpperCAmelCase : List[str], **_UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) @classmethod def A_ ( cls : Any, *_UpperCAmelCase : List[str], **_UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["flax", "transformers"] def __init__( self : str, *_UpperCAmelCase : Optional[Any], **_UpperCAmelCase : Any ) -> Any: """simple docstring""" requires_backends(self, ["flax", "transformers"] ) @classmethod def A_ ( cls : Optional[int], *_UpperCAmelCase : Dict, **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" requires_backends(cls, ["flax", "transformers"] ) @classmethod def A_ ( cls : List[str], *_UpperCAmelCase : List[str], **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ["flax", "transformers"] )
157
import math from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "data2vec-audio" def __init__( self : List[str], _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : str=7_6_8, _UpperCAmelCase : Dict=1_2, _UpperCAmelCase : List[Any]=1_2, _UpperCAmelCase : Dict=3_0_7_2, _UpperCAmelCase : str="gelu", _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Any=0.1, _UpperCAmelCase : Tuple=0.0, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Any=0.02, _UpperCAmelCase : Tuple=1E-5, _UpperCAmelCase : Union[str, Any]="gelu", _UpperCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2), _UpperCAmelCase : str=(5, 2, 2, 2, 2, 2, 2), _UpperCAmelCase : int=(1_0, 3, 3, 3, 3, 2, 2), _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : List[str]=1_6, _UpperCAmelCase : Any=1_9, _UpperCAmelCase : List[Any]=5, _UpperCAmelCase : Dict=0.05, _UpperCAmelCase : Union[str, Any]=1_0, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : Optional[Any]=0.0, _UpperCAmelCase : List[Any]=1_0, _UpperCAmelCase : Optional[Any]=0, _UpperCAmelCase : Optional[Any]="sum", _UpperCAmelCase : str=False, _UpperCAmelCase : Any=False, _UpperCAmelCase : Optional[int]=2_5_6, _UpperCAmelCase : Optional[int]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0), _UpperCAmelCase : int=(5, 3, 3, 1, 1), _UpperCAmelCase : Optional[int]=(1, 2, 3, 1, 1), _UpperCAmelCase : Optional[Any]=5_1_2, _UpperCAmelCase : int=0, _UpperCAmelCase : Tuple=1, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : List[str]=False, _UpperCAmelCase : Dict=3, _UpperCAmelCase : Any=2, _UpperCAmelCase : Dict=3, _UpperCAmelCase : Dict=None, **_UpperCAmelCase : Any, ) -> Any: """simple docstring""" super().__init__(**_UpperCAmelCase, pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract_activation SCREAMING_SNAKE_CASE__ : Optional[int] = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = conv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ : Tuple = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ : Tuple = conv_pos_kernel_size SCREAMING_SNAKE_CASE__ : List[str] = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout SCREAMING_SNAKE_CASE__ : int = attention_dropout SCREAMING_SNAKE_CASE__ : Dict = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = feat_proj_dropout SCREAMING_SNAKE_CASE__ : List[str] = final_dropout SCREAMING_SNAKE_CASE__ : Tuple = layerdrop SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : int = mask_time_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = mask_time_length SCREAMING_SNAKE_CASE__ : List[str] = mask_time_min_masks SCREAMING_SNAKE_CASE__ : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE__ : Dict = mask_feature_length SCREAMING_SNAKE_CASE__ : Optional[Any] = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE__ : Optional[int] = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : List[Any] = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE__ : int = add_adapter SCREAMING_SNAKE_CASE__ : Dict = adapter_kernel_size SCREAMING_SNAKE_CASE__ : Optional[int] = adapter_stride SCREAMING_SNAKE_CASE__ : Dict = num_adapter_layers SCREAMING_SNAKE_CASE__ : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Any = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = xvector_output_dim @property def A_ ( self : List[str] ) -> str: """simple docstring""" return math.prod(self.conv_stride )
157
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : int = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
540
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = StableDiffusionSAGPipeline _A : Any = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Optional[int] = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Union[str, Any] = CLIPTextModel(_lowercase ) a_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[int] = torch.manual_seed(_lowercase ) else: a_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Optional[int] = """.""" a_ : int = torch.manual_seed(0 ) a_ : Any = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Any = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : str = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = """.""" a_ : Dict = torch.manual_seed(0 ) a_ : Union[str, Any] = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Optional[Any] = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> Any: a_ : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : Optional[Any] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = """.""" a_ : str = torch.manual_seed(0 ) a_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) a_ : Any = output.images assert image.shape == (1, 512, 768, 3)
540
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def a__ ( *_SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = list(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): UpperCamelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def a__ ( _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 128 ): """simple docstring""" if function is None: return functools.partial(lowerCamelCase__ , starting_batch_size=lowerCamelCase__ ) UpperCamelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase = list(inspect.signature(lowerCamelCase__ ).parameters.keys() ) # Guard against user error if len(lowerCamelCase__ ) < (len(lowerCamelCase__ ) + 1): UpperCamelCase = ", ".join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) except Exception as e: if should_reduce_batch_size(lowerCamelCase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
715
"""simple docstring""" lowerCAmelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
544
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def A ( ): """simple docstring""" snake_case_ :Optional[Any] = 9 snake_case_ :Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case_ :List[Any] = kruskal(_A, _A ) snake_case_ :Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_A ) == sorted(_A )
584
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Optional[Any] = 0 snake_case_ :Dict = 0 snake_case_ :Any = {} def _a ( self , a ): """simple docstring""" if vertex not in self.adjacency: snake_case_ :str = {} self.num_vertices += 1 def _a ( self , a , a , a ): """simple docstring""" self.add_vertex(a ) self.add_vertex(a ) if head == tail: return snake_case_ :List[Any] = weight snake_case_ :str = weight def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = self.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge edges.remove((tail, head, weight) ) for i in range(len(a ) ): snake_case_ :Dict = list(edges[i] ) edges.sort(key=lambda a : e[2] ) for i in range(len(a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case_ :Tuple = edges[i][2] + 1 for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge snake_case_ :Dict = weight snake_case_ :int = weight def __str__( self ): """simple docstring""" snake_case_ :List[Any] = "" for tail in self.adjacency: for head in self.adjacency[tail]: snake_case_ :List[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _a ( self ): """simple docstring""" snake_case_ :int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _a ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def _a ( a=None , a=None ): """simple docstring""" snake_case_ :Optional[Any] = Graph() if vertices is None: snake_case_ :int = [] if edges is None: snake_case_ :Any = [] for vertex in vertices: g.add_vertex(a ) for edge in edges: g.add_edge(*a ) return g class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Dict = {} snake_case_ :Optional[int] = {} def __len__( self ): """simple docstring""" return len(self.parent ) def _a ( self , a ): """simple docstring""" if item in self.parent: return self.find(a ) snake_case_ :Optional[Any] = item snake_case_ :str = 0 return item def _a ( self , a ): """simple docstring""" if item not in self.parent: return self.make_set(a ) if item != self.parent[item]: snake_case_ :Optional[int] = self.find(self.parent[item] ) return self.parent[item] def _a ( self , a , a ): """simple docstring""" snake_case_ :Any = self.find(a ) snake_case_ :str = self.find(a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case_ :Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: snake_case_ :Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case_ :Union[str, Any] = roota return roota return None @staticmethod def _a ( a ): """simple docstring""" snake_case_ :Any = graph.num_vertices snake_case_ :Any = Graph.UnionFind() snake_case_ :Optional[Any] = [] while num_components > 1: snake_case_ :List[Any] = {} for vertex in graph.get_vertices(): snake_case_ :str = -1 snake_case_ :Tuple = graph.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge snake_case_ :List[Any] = union_find.find(a ) snake_case_ :Union[str, Any] = union_find.find(a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case_ , snake_case_ , snake_case_ :List[Any] = cheap_edge[vertex] if union_find.find(a ) != union_find.find(a ): union_find.union(a , a ) mst_edges.append(cheap_edge[vertex] ) snake_case_ :List[Any] = num_components - 1 snake_case_ :Any = Graph.build(edges=a ) return mst
584
1
def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCamelCase = '''''' _lowerCamelCase = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(snake_case_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCamelCase = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCamelCase = [1 for i in range(len(snake_case_ ) )] # for each character in new_string find corresponding palindromic string _lowerCamelCase = 0 for j in range(len(snake_case_ ) ): _lowerCamelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(snake_case_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCamelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCamelCase = j - k + 1 # noqa: E741 _lowerCamelCase = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCamelCase = length[j] _lowerCamelCase = j # create that string _lowerCamelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
719
def _lowerCamelCase ( _a ): """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _lowerCamelCase = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): _lowerCamelCase = int(sequence[i] , 2 ) return sequence def _lowerCamelCase ( _a ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCamelCase = gray_code_sequence_string(bit_count - 1 ) _lowerCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCamelCase = '''0''' + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCamelCase = '''1''' + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
297
0
'''simple docstring''' def __snake_case ( _UpperCAmelCase : list[int], _UpperCAmelCase : list[int]): UpperCamelCase = len(_UpperCAmelCase) print('''The following activities are selected:''') # The first activity is always selected UpperCamelCase = 0 print(_UpperCAmelCase, end=''',''') # Consider rest of the activities for j in range(_UpperCAmelCase): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_UpperCAmelCase, end=''',''') UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Tuple = [1, 3, 0, 5, 8, 5] snake_case_ : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
212
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Any = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''donut-swin''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=2_2_4 , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=9_6 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[3, 6, 1_2, 2_4] , lowerCamelCase__=7 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase__ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) )
212
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a : str = logging.get_logger(__name__) a : List[str] = {'''vocab_file''': '''spiece.model'''} a : Optional[int] = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class a_ ( _UpperCAmelCase ): def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int=False , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : int="<unk>" , __UpperCamelCase : List[Any]="<sep>" , __UpperCamelCase : Optional[int]="<pad>" , __UpperCamelCase : List[str]="<cls>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : List[Any]=["<eop>", "<eod>"] , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Any , ) ->None: '''simple docstring''' _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _UpperCAmelCase = jieba _UpperCAmelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' return len(self.sp_model ) def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' if self.remove_space: _UpperCAmelCase = """ """.join(inputs.strip().split() ) else: _UpperCAmelCase = inputs _UpperCAmelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _UpperCAmelCase = unicodedata.normalize("""NFKD""" , __UpperCamelCase ) _UpperCAmelCase = """""".join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: _UpperCAmelCase = outputs.lower() return outputs def _snake_case ( self : Union[str, Any] , __UpperCamelCase : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase = self.preprocess_text(__UpperCamelCase ) _UpperCAmelCase = self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) _UpperCAmelCase = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _UpperCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase = cur_pieces[1:] else: _UpperCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def _snake_case ( self : int , __UpperCamelCase : str ) ->str: '''simple docstring''' return self.sp_model.PieceToId(__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : Optional[int] ) ->Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(__UpperCamelCase ) def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip() return out_string def _snake_case ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1] return ([0] * len(__UpperCamelCase )) + [1, 1] def _snake_case ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = super()._decode(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
711
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=__snake_case ): A__ = ['onnx'] def __init__( self : Union[str, Any] , *_a : Tuple , **_a : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def A ( cls : Dict , *_a : Optional[int] , **_a : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def A ( cls : Optional[Any] , *_a : int , **_a : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['onnx'] )
405
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
0
from random import randint from tempfile import TemporaryFile import numpy as np def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: '''simple docstring''' A__ = 0 if start < end: A__ = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = a[end] A__ = a[pivot] A__ = temp A__ , A__ = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: '''simple docstring''' A__ = 0 A__ = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = a[end] A__ = a[pivot] A__ = temp A__ = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A__ = new_pivot_index + 1 A__ = a[new_pivot_index] A__ = a[index] A__ = temp A__ = a[new_pivot_index + 1] A__ = a[end] A__ = temp return new_pivot_index + 1, count lowercase_ = TemporaryFile() lowercase_ = 100 # 1000 elements are to be sorted lowercase_ , lowercase_ = 0, 1 # mean and standard deviation lowercase_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array lowercase_ = np.load(outfile) lowercase_ = len(M) - 1 lowercase_ = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
703
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: A__ = 128 elif "12-12" in model_name: A__ = 12 A__ = 12 elif "14-14" in model_name: A__ = 14 A__ = 14 elif "16-16" in model_name: A__ = 16 A__ = 16 else: raise ValueError('Model not supported' ) A__ = 'huggingface/label-files' if "speech-commands" in model_name: A__ = 35 A__ = 'speech-commands-v2-id2label.json' else: A__ = 527 A__ = 'audioset-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' if "module.v" in name: A__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: A__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: A__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: A__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: A__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: A__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: A__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: A__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: A__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[3] ) A__ = config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' A__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE__ ) A__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE__ ) # rename some keys A__ = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load 🤗 model A__ = ASTForAudioClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 A__ = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 A__ = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 A__ = 1024 if 'speech-commands' not in model_name else 128 A__ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) if "speech-commands" in model_name: A__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) A__ = dataset[0]['audio']['array'] else: A__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) A__ , A__ = torchaudio.load(SCREAMING_SNAKE_CASE__ ) A__ = waveform.squeeze().numpy() A__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=16000 , return_tensors='pt' ) # forward pass A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": A__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": A__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": A__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": A__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": A__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": A__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": A__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": A__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
586
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: if len(__lowerCAmelCase ) < k or k < 0: raise ValueError('''Invalid Input''' ) snake_case__ = snake_case__ = sum(array[:k] ) for i in range(len(__lowerCAmelCase ) - k ): snake_case__ = current_sum - array[i] + array[i + k] snake_case__ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCamelCase__ : List[Any] = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] lowerCamelCase__ : List[Any] = randint(0, 1_1_0) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : int = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
73
0
"""simple docstring""" import functools def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = len(UpperCAmelCase_ ) UpperCamelCase = len(UpperCAmelCase_ ) @functools.cache def min_distance(UpperCAmelCase_ , UpperCAmelCase_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCAmelCase_ ) , 1 + min_distance(UpperCAmelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __a ( _lowerCAmelCase ): UpperCamelCase_ : Optional[int] = '''upernet''' def __init__( self : int , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[Any]=[1, 2, 3, 6] , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=0.4 , UpperCAmelCase_ : Union[str, Any]=384 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : str , )-> Tuple: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = backbone_config.get("model_type" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(UpperCAmelCase_ ) UpperCamelCase = backbone_config UpperCamelCase = hidden_size UpperCamelCase = initializer_range UpperCamelCase = pool_scales UpperCamelCase = use_auxiliary_head UpperCamelCase = auxiliary_loss_weight UpperCamelCase = auxiliary_in_channels UpperCamelCase = auxiliary_channels UpperCamelCase = auxiliary_num_convs UpperCamelCase = auxiliary_concat_input UpperCamelCase = loss_ignore_index def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
556
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Union[str, Any] = StableDiffusionPanoramaPipeline __A : Tuple = TEXT_TO_IMAGE_PARAMS __A : str = TEXT_TO_IMAGE_BATCH_PARAMS __A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler() torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(_UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = '''french fries''' _UpperCAmelCase = sd_pipe(**_UpperCamelCase , negative_prompt=_UpperCamelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase , view_batch_size=2 ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCamelCase ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self , _UpperCamelCase=0 ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCAmelCase = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCamelCase ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCAmelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = 0 def callback_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**_UpperCamelCase , callback=_UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
32
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __magic_name__ ( _lowerCamelCase : Callable[[int | float], int | float] , _lowerCamelCase : int | float , _lowerCamelCase : int | float , _lowerCamelCase : int = 1_0_0 , ): __a : int = x_start __a : Optional[Any] = fnc(_lowerCamelCase ) __a : Tuple = 0.0 for _ in range(_lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length __a : Dict = (x_end - x_start) / steps + xa __a : List[Any] = fnc(_lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __a : int = xa __a : Union[str, Any] = fxa return length if __name__ == "__main__": def __magic_name__ ( _lowerCamelCase : List[str] ): return math.sin(1_0 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowercase__ = 10 while i <= 100000: print(f'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
581
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : Optional[int] = 2 _a : str = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''dinat''' __lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=64 , _UpperCAmelCase=[3, 4, 6, 5] , _UpperCAmelCase=[2, 4, 8, 16] , _UpperCAmelCase=7 , _UpperCAmelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _UpperCAmelCase=3.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Union[str, Any] = patch_size __a : Union[str, Any] = num_channels __a : str = embed_dim __a : Dict = depths __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[Any] = num_heads __a : List[str] = kernel_size __a : List[Any] = dilations __a : int = mlp_ratio __a : Optional[int] = qkv_bias __a : Optional[int] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Optional[Any] = drop_path_rate __a : List[str] = hidden_act __a : Union[str, Any] = layer_norm_eps __a : Any = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __a : List[str] = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) __a : Optional[Any] = layer_scale_init_value __a : Optional[Any] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )] __a , __a : Any = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
import math from collections.abc import Callable def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : float = xa lowerCamelCase__ : float = xa while True: if x_n == x_na or function(UpperCAmelCase ) == function(UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowerCamelCase__ : float = x_na - ( function(UpperCAmelCase ) / ((function(UpperCAmelCase ) - function(UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCamelCase__ : Any = x_na lowerCamelCase__ : int = x_na def _a ( UpperCAmelCase ) -> float: """simple docstring""" return math.pow(UpperCAmelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
315
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _lowercase ( ) -> tuple[list[int], int]: """simple docstring""" __UpperCAmelCase : str = [randint(-1000 , 1000 ) for i in range(10 )] __UpperCAmelCase : Dict = randint(-5000 , 5000 ) return (arr, r) _a : str = make_dataset() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(lowerCamelCase__ , 3 ): if sum(lowerCamelCase__ ) == target: return tuple(sorted(lowerCamelCase__ ) ) return (0, 0, 0) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() __UpperCAmelCase : List[Any] = len(lowerCamelCase__ ) for i in range(n - 1 ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _lowercase ( ) -> tuple[float, float]: """simple docstring""" __UpperCAmelCase : Optional[Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" __UpperCAmelCase : Optional[Any] = "\ntriplet_sum1(*dataset)\n" __UpperCAmelCase : List[Any] = "\ntriplet_sum2(*dataset)\n" __UpperCAmelCase : Any = repeat(setup=lowerCamelCase__ , stmt=lowerCamelCase__ , repeat=5 , number=1_0000 ) __UpperCAmelCase : int = repeat(setup=lowerCamelCase__ , stmt=lowerCamelCase__ , repeat=5 , number=1_0000 ) return (min(lowerCamelCase__ ), min(lowerCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() _a : Tuple = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Optional[int] = 'xglm' a :int = ['past_key_values'] a :Union[str, Any] = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2_5_6_0_0_8 , SCREAMING_SNAKE_CASE_ : List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE_ : str=4_0_9_6 , SCREAMING_SNAKE_CASE_ : int=2_4 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : Any=2 , **SCREAMING_SNAKE_CASE_ : str , ) -> str: lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = ffn_dim lowercase_ = num_layers lowercase_ = attention_heads lowercase_ = activation_function lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = layerdrop lowercase_ = init_std lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
97
from __future__ import annotations from math import pi, sqrt def a ( snake_case__: float , snake_case__: float ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
97
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def __lowerCamelCase ( self , __A ): __UpperCAmelCase = GenerationConfig( do_sample=__A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , config_name=__A ) __UpperCAmelCase = GenerationConfig.from_pretrained(__A , config_name=__A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __A ) def __lowerCamelCase ( self ): __UpperCAmelCase = AutoConfig.from_pretrained('gpt2' ) __UpperCAmelCase = GenerationConfig.from_model_config(__A ) __UpperCAmelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__A , __A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __lowerCamelCase ( self ): __UpperCAmelCase = GenerationConfig() __UpperCAmelCase = { 'max_new_tokens': 1_024, 'foo': 'bar', } __UpperCAmelCase = copy.deepcopy(__A ) __UpperCAmelCase = generation_config.update(**__A ) # update_kwargs was not modified (no side effects) self.assertEqual(__A , __A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__A , {'foo': 'bar'} ) def __lowerCamelCase ( self ): __UpperCAmelCase = GenerationConfig() __UpperCAmelCase = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(__A ) __UpperCAmelCase = GenerationConfig.from_pretrained(__A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) __UpperCAmelCase = GenerationConfig.from_model_config(__A ) assert not hasattr(__A , 'foo' ) # no new kwargs should be initialized if from config def __lowerCamelCase ( self ): __UpperCAmelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __A ) self.assertEqual(default_config.num_beams , 1 ) __UpperCAmelCase = GenerationConfig( do_sample=__A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) __UpperCAmelCase = GenerationConfig.from_pretrained(__A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def __lowerCamelCase ( cls ): __UpperCAmelCase = TOKEN HfFolder.save_token(__A ) @classmethod def __lowerCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __lowerCamelCase ( self ): __UpperCAmelCase = GenerationConfig( do_sample=__A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) __UpperCAmelCase = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='test-generation-config' , push_to_hub=__A , use_auth_token=self._token ) __UpperCAmelCase = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = GenerationConfig( do_sample=__A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) __UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-generation-config-org' , push_to_hub=__A , use_auth_token=self._token ) __UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) )
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A: List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Union[str, Any] = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _A: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
617
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __a :List[str] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Any , **UpperCAmelCase : List[str] ): super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type(UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase : Union[str, List[str]] = None , **UpperCAmelCase : List[Any] , ): if "text_queries" in kwargs: A_ = kwargs.pop("text_queries" ) if isinstance(UpperCAmelCase , (str, Image.Image) ): A_ = {"image": image, "candidate_labels": candidate_labels} else: A_ = image A_ = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def __A ( self : int , **UpperCAmelCase : Tuple ): A_ = {} if "threshold" in kwargs: A_ = kwargs["threshold"] if "top_k" in kwargs: A_ = kwargs["top_k"] return {}, {}, postprocess_params def __A ( self : List[str] , UpperCAmelCase : Dict ): A_ = load_image(inputs["image"] ) A_ = inputs["candidate_labels"] if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = candidate_labels.split("," ) A_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): A_ = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) A_ = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __A ( self : str , UpperCAmelCase : int ): A_ = model_inputs.pop("target_size" ) A_ = model_inputs.pop("candidate_label" ) A_ = model_inputs.pop("is_last" ) A_ = self.model(**UpperCAmelCase ) A_ = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[int]=None ): A_ = [] for model_output in model_outputs: A_ = model_output["candidate_label"] A_ = BaseModelOutput(UpperCAmelCase ) A_ = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): A_ = outputs["scores"][index].item() A_ = self._get_bounding_box(outputs["boxes"][index][0] ) A_ = {"score": score, "label": label, "box": box} results.append(UpperCAmelCase ) A_ = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: A_ = results[:top_k] return results def __A ( self : List[str] , UpperCAmelCase : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) A_ , A_ , A_ , A_ = box.int().tolist() A_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
86
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> float: if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
453
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __magic_name__( unittest.TestCase ): @slow def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) snake_case__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCamelCase ) from datasets import load_dataset snake_case__ = load_dataset("""nielsr/rvlcdip-demo""" ) snake_case__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) snake_case__ = image_processor(__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ = model(**__UpperCamelCase ) snake_case__ = outputs.logits snake_case__ = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case__ = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=__UpperCamelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
566
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def snake_case__ ( a ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def snake_case__ ( a , a , a ) -> np.ndarray: '''simple docstring''' snake_case__ = np.nan for i in range(a ): snake_case__ = features[:, labels == i] snake_case__ = data.mean(1 ) # Centralize the data of class i snake_case__ = data - column_reshape(a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ = np.dot(a , centered_data.T ) return covariance_sum / features.shape[1] def snake_case__ ( a , a , a ) -> np.ndarray: '''simple docstring''' snake_case__ = features.mean(1 ) snake_case__ = np.nan for i in range(a ): snake_case__ = features[:, labels == i] snake_case__ = data.shape[1] snake_case__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(a ) - column_reshape(a ) , (column_reshape(a ) - column_reshape(a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ = device_data * np.dot( column_reshape(a ) - column_reshape(a ) , (column_reshape(a ) - column_reshape(a )).T , ) return covariance_sum / features.shape[1] def snake_case__ ( a , a ) -> np.ndarray: '''simple docstring''' if features.any(): snake_case__ = features.mean(1 ) # Center the dataset snake_case__ = features - np.reshape(a , (data_mean.size, 1) ) snake_case__ = np.dot(a , centered_data.T ) / features.shape[1] snake_case__ , snake_case__ = np.linalg.eigh(a ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case__ = np.dot(filtered_eigenvectors.T , a ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=a ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case__ ( a , a , a , a ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: snake_case__ , snake_case__ = eigh( covariance_between_classes(a , a , a ) , covariance_within_classes(a , a , a ) , ) snake_case__ = eigenvectors[:, ::-1][:, :dimensions] snake_case__ , snake_case__ , snake_case__ = np.linalg.svd(a ) snake_case__ = svd_matrix[:, 0:dimensions] snake_case__ = np.dot(filtered_svd_matrix.T , a ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=a ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case__ ( ) -> None: '''simple docstring''' snake_case__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case__ = np.array([0, 0, 0, 1, 1] ) snake_case__ = 2 snake_case__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(a ) as error_info: snake_case__ = linear_discriminant_analysis( a , a , a , a ) if isinstance(a , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def snake_case__ ( ) -> None: '''simple docstring''' snake_case__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case__ = 2 snake_case__ = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(a ) as error_info: snake_case__ = principal_component_analysis(a , a ) if not np.allclose(a , a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
566
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> Any: A : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } A : Optional[int] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ) -> Optional[Any]: A : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , x.transpose() ) ) A : int = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case ( self ) -> Optional[Any]: A : Union[str, Any] = np.random.randn(3 , 4 ) A : List[str] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , transpose(__UpperCAmelCase ).numpy() ) ) A : Tuple = np.random.randn(3 , 4 , 5 ) A : Tuple = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , transpose(__UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case ( self ) -> Union[str, Any]: A : int = np.random.randn(3 , 4 ) A : Tuple = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , transpose(__UpperCAmelCase ).numpy() ) ) A : str = np.random.randn(3 , 4 , 5 ) A : Optional[Any] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , transpose(__UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case ( self ) -> List[Any]: A : Optional[int] = np.random.randn(3 , 4 ) A : str = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase ) , np.asarray(transpose(__UpperCAmelCase ) ) ) ) A : Union[str, Any] = np.random.randn(3 , 4 , 5 ) A : str = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def snake_case ( self ) -> str: A : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , np.reshape(__UpperCAmelCase , (4, 3) ) ) ) A : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , np.reshape(__UpperCAmelCase , (12, 5) ) ) ) @require_torch def snake_case ( self ) -> List[Any]: A : List[Any] = np.random.randn(3 , 4 ) A : Tuple = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , reshape(__UpperCAmelCase , (4, 3) ).numpy() ) ) A : Union[str, Any] = np.random.randn(3 , 4 , 5 ) A : Union[str, Any] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , reshape(__UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def snake_case ( self ) -> List[str]: A : List[str] = np.random.randn(3 , 4 ) A : Union[str, Any] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , reshape(__UpperCAmelCase , (4, 3) ).numpy() ) ) A : List[str] = np.random.randn(3 , 4 , 5 ) A : List[str] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , reshape(__UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def snake_case ( self ) -> Dict: A : Optional[Any] = np.random.randn(3 , 4 ) A : List[Any] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3) ) , np.asarray(reshape(__UpperCAmelCase , (4, 3) ) ) ) ) A : List[str] = np.random.randn(3 , 4 , 5 ) A : Dict = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5) ) , np.asarray(reshape(__UpperCAmelCase , (12, 5) ) ) ) ) def snake_case ( self ) -> Optional[int]: A : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , np.squeeze(__UpperCAmelCase ) ) ) A : Any = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , np.squeeze(__UpperCAmelCase , axis=2 ) ) ) @require_torch def snake_case ( self ) -> List[str]: A : List[str] = np.random.randn(1 , 3 , 4 ) A : List[str] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , squeeze(__UpperCAmelCase ).numpy() ) ) A : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) A : List[str] = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , squeeze(__UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def snake_case ( self ) -> List[Any]: A : Any = np.random.randn(1 , 3 , 4 ) A : Any = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , squeeze(__UpperCAmelCase ).numpy() ) ) A : int = np.random.randn(1 , 4 , 1 , 5 ) A : List[str] = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , squeeze(__UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def snake_case ( self ) -> List[Any]: A : Optional[int] = np.random.randn(1 , 3 , 4 ) A : List[str] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase ) , np.asarray(squeeze(__UpperCAmelCase ) ) ) ) A : Any = np.random.randn(1 , 4 , 1 , 5 ) A : List[str] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2 ) , np.asarray(squeeze(__UpperCAmelCase , axis=2 ) ) ) ) def snake_case ( self ) -> Dict: A : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , np.expand_dims(__UpperCAmelCase , axis=1 ) ) ) @require_torch def snake_case ( self ) -> str: A : str = np.random.randn(3 , 4 ) A : Tuple = torch.tensor(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , expand_dims(__UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def snake_case ( self ) -> int: A : int = np.random.randn(3 , 4 ) A : Tuple = tf.constant(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , expand_dims(__UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def snake_case ( self ) -> List[str]: A : Optional[int] = np.random.randn(3 , 4 ) A : Optional[int] = jnp.array(__UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(__UpperCAmelCase , axis=1 ) ) ) )
542
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase : Dict = logging.get_logger(__name__) lowercase : Dict = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) lowercase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def snake_case__ ( lowerCamelCase_ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A : Optional[Any] = model_type_to_module_name(lowerCamelCase_ ) A : Optional[int] = importlib.import_module(F'.{module_name}' , '''transformers.models''' ) try: return getattr(lowerCamelCase_ , lowerCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase_ , '''__name__''' , lowerCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A : Any = importlib.import_module('''transformers''' ) if hasattr(lowerCamelCase_ , lowerCamelCase_ ): return getattr(lowerCamelCase_ , lowerCamelCase_ ) return None def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , **lowerCamelCase_ , ): A : Optional[Any] = get_file_from_repo( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCamelCase_ , encoding='''utf-8''' ) as reader: return json.load(lowerCamelCase_ ) class __lowercase : """simple docstring""" def __init__( self ) -> int: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def snake_case ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: A : Tuple = kwargs.pop('''config''' , __UpperCAmelCase ) A : Union[str, Any] = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) A : str = True A , A : str = ImageProcessingMixin.get_image_processor_dict(__UpperCAmelCase , **__UpperCAmelCase ) A : List[Any] = config_dict.get('''image_processor_type''' , __UpperCAmelCase ) A : List[Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): A : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A : List[str] = config_dict.pop('''feature_extractor_type''' , __UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) A : Tuple = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): A : Any = config_dict['''auto_map''']['''AutoFeatureExtractor'''] A : int = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : List[str] = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.image_processor_type`` A : Any = getattr(__UpperCAmelCase , '''image_processor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: A : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: A : str = image_processor_class_from_name(__UpperCAmelCase ) A : int = image_processor_auto_map is not None A : List[str] = image_processor_class is not None or type(__UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING A : Optional[Any] = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: A : Tuple = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) A : Optional[Any] = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: A : Tuple = IMAGE_PROCESSOR_MAPPING[type(__UpperCAmelCase )] return image_processor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def snake_case ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: IMAGE_PROCESSOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
542
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
454
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def _A ( ): """simple docstring""" __lowercase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase =get_sagemaker_input() else: __lowercase =get_cluster_input() return config def _A ( _lowerCAmelCase=None ): """simple docstring""" if subparsers is not None: __lowercase =subparsers.add_parser('config' , description=_lowerCAmelCase ) else: __lowercase =argparse.ArgumentParser('Accelerate config command' , description=_lowerCAmelCase ) parser.add_argument( '--config_file' , default=_lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =get_user_input() if args.config_file is not None: __lowercase =args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) __lowercase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def _A ( ): """simple docstring""" __lowercase =config_command_parser() __lowercase =parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
454
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __lowerCamelCase ): def __init__( self :str , lowercase :TransformeraDModel , lowercase :AutoencoderKL , lowercase :KarrasDiffusionSchedulers , lowercase :Optional[Dict[int, str]] = None , ) -> int: """simple docstring""" super().__init__() self.register_modules(transformer=lowercase , vae=lowercase , scheduler=lowercase ) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): SCREAMING_SNAKE_CASE = int(lowercase ) SCREAMING_SNAKE_CASE = dict(sorted(self.labels.items() ) ) def snake_case__ ( self :List[Any] , lowercase :Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE = list(lowercase ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :Union[str, Any] , lowercase :List[int] , lowercase :float = 4.0 , lowercase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase :int = 5_0 , lowercase :Optional[str] = "pil" , lowercase :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE = len(lowercase ) SCREAMING_SNAKE_CASE = self.transformer.config.sample_size SCREAMING_SNAKE_CASE = self.transformer.config.in_channels SCREAMING_SNAKE_CASE = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE = torch.tensor(lowercase , device=self.device ).reshape(-1 ) SCREAMING_SNAKE_CASE = torch.tensor([1_0_0_0] * batch_size , device=self.device ) SCREAMING_SNAKE_CASE = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: SCREAMING_SNAKE_CASE = latent_model_input[: len(lowercase ) // 2] SCREAMING_SNAKE_CASE = torch.cat([half, half] , dim=0 ) SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(lowercase , lowercase ) SCREAMING_SNAKE_CASE = t if not torch.is_tensor(lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE = latent_model_input.device.type == '''mps''' if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output SCREAMING_SNAKE_CASE = self.transformer( lowercase , timestep=lowercase , class_labels=lowercase ).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(lowercase , len(lowercase ) // 2 , dim=0 ) SCREAMING_SNAKE_CASE = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE = torch.cat([half_eps, half_eps] , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(lowercase , lowercase , dim=1 ) else: SCREAMING_SNAKE_CASE = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = latent_model_input.chunk(2 , dim=0 ) else: SCREAMING_SNAKE_CASE = latent_model_input SCREAMING_SNAKE_CASE = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE = self.vae.decode(lowercase ).sample SCREAMING_SNAKE_CASE = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase )
201
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : int = (DDPMParallelScheduler,) def snake_case__ ( self :Any , **lowercase :str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowercase ) return config def snake_case__ ( self :Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase ) def snake_case__ ( self :List[Any] ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase , beta_end=lowercase ) def snake_case__ ( self :Any ) -> List[str]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase ) def snake_case__ ( self :Optional[int] ) -> List[str]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase ) def snake_case__ ( self :Any ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def snake_case__ ( self :str ) -> str: """simple docstring""" self.check_over_configs(thresholding=lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , ) def snake_case__ ( self :Union[str, Any] ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def snake_case__ ( self :List[str] ) -> Optional[int]: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowercase ) def snake_case__ ( self :List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def snake_case__ ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = len(lowercase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE = samplea.shape[0] SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE = torch.arange(lowercase )[0:3, None].repeat(1 , lowercase ) SCREAMING_SNAKE_CASE = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowercase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 11_53.18_33 ) < 1e-2 assert abs(result_mean.item() - 0.50_05 ) < 1e-3 def snake_case__ ( self :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = len(lowercase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(lowercase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowercase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1e-2 assert abs(result_mean.item() - 0.33_72 ) < 1e-3 def snake_case__ ( self :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = len(lowercase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(lowercase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowercase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1e-2 assert abs(result_mean.item() - 0.26_31 ) < 1e-3 def snake_case__ ( self :Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowercase ) SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(lowercase ): if i == len(lowercase ) - 1: SCREAMING_SNAKE_CASE = -1 else: SCREAMING_SNAKE_CASE = timesteps[i + 1] SCREAMING_SNAKE_CASE = scheduler.previous_timestep(lowercase ) SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(lowercase , lowercase ) def snake_case__ ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowercase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase ) def snake_case__ ( self :Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = [1_0_0, 8_7, 5_0, 1, 0] SCREAMING_SNAKE_CASE = len(lowercase ) with self.assertRaises(lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase , timesteps=lowercase ) def snake_case__ ( self :str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowercase ) SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowercase )
201
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[complex, complex]: if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) a__: Optional[Any] = b * b - 4 * a * c a__: str = (-b + sqrt(_SCREAMING_SNAKE_CASE )) / (2 * a) a__: Tuple = (-b - sqrt(_SCREAMING_SNAKE_CASE )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ) ->Tuple: a__ , a__: int = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
217
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __snake_case ( __lowerCAmelCase ): a__ = """speech_to_text""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase=1_00_00 , lowercase=12 , lowercase=20_48 , lowercase=4 , lowercase=6 , lowercase=20_48 , lowercase=4 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="relu" , lowercase=2_56 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=60_00 , lowercase=10_24 , lowercase=2 , lowercase=(5, 5) , lowercase=10_24 , lowercase=80 , lowercase=1 , **lowercase , ) -> List[str]: '''simple docstring''' a__: int = vocab_size a__: Any = d_model a__: List[str] = encoder_ffn_dim a__: int = encoder_layers a__: int = encoder_attention_heads a__: int = decoder_ffn_dim a__: Optional[int] = decoder_layers a__: Optional[Any] = decoder_attention_heads a__: str = dropout a__: List[Any] = attention_dropout a__: Union[str, Any] = activation_dropout a__: Tuple = activation_function a__: Optional[Any] = init_std a__: List[str] = encoder_layerdrop a__: Optional[int] = decoder_layerdrop a__: Union[str, Any] = use_cache a__: Union[str, Any] = encoder_layers a__: str = scale_embedding # scale factor will be sqrt(d_model) if True a__: Tuple = max_source_positions a__: Union[str, Any] = max_target_positions a__: List[str] = num_conv_layers a__: Union[str, Any] = list(lowercase) a__: Dict = conv_channels a__: List[Any] = input_feat_per_channel a__: Any = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.') super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , **lowercase , )
217
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
403
def __lowerCamelCase (UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ): # Base Case if index == len(UpperCAmelCase__ ): return True # Recursive Step for i in range(UpperCAmelCase__ ): if valid_coloring(graph[index] , UpperCAmelCase__ , UpperCAmelCase__ ): # Color current vertex SCREAMING_SNAKE_CASE = i # Validate coloring if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , index + 1 ): return True # Backtrack SCREAMING_SNAKE_CASE = -1 return False def __lowerCamelCase (UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [-1] * len(UpperCAmelCase__ ) if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , 0 ): return colored_vertices return []
403
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCAmelCase_ ( lowercase: Optional[int] , lowercase: Any , lowercase: str , lowercase: List[str] , lowercase: Optional[int] ) -> int: '''simple docstring''' # load base model _UpperCamelCase: Optional[int] = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCamelCase: List[str] = load_file(lowercase ) _UpperCamelCase: Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCamelCase: int = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _UpperCamelCase: str = pipeline.text_encoder else: _UpperCamelCase: Optional[Any] = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _UpperCamelCase: Any = pipeline.unet # find the target layer _UpperCamelCase: Union[str, Any] = layer_infos.pop(0 ) while len(lowercase ) > -1: try: _UpperCamelCase: Union[str, Any] = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: _UpperCamelCase: Tuple = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCamelCase: List[Any] = layer_infos.pop(0 ) _UpperCamelCase: Any = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCamelCase: str = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCamelCase: Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCamelCase: str = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCamelCase: Dict = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.7_5, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.base_model_path UpperCAmelCase_ = args.checkpoint_path UpperCAmelCase_ = args.dump_path UpperCAmelCase_ = args.lora_prefix_unet UpperCAmelCase_ = args.lora_prefix_text_encoder UpperCAmelCase_ = args.alpha UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : Optional[int] = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ["PoolFormerFeatureExtractor"] _snake_case : List[Any] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
81
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[str] = MvpTokenizer _UpperCamelCase : Any = MvpTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = filter_roberta_detectors def snake_case__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ = dict(zip(snake_case , range(len(snake_case ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case ) ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , padding=snake_case , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case ) self.assertIn("attention_mask" , snake_case ) self.assertNotIn("labels" , snake_case ) self.assertNotIn("decoder_attention_mask" , snake_case ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(text_target=snake_case , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def snake_case__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=snake_case , truncation=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization."] UpperCamelCase__ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , text_target=snake_case , return_tensors="pt" ) UpperCamelCase__ = inputs["input_ids"] UpperCamelCase__ = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = "A, <mask> AllenNLP sentence." UpperCamelCase__ = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) UpperCamelCase__ = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
551
0
def lowerCAmelCase_( lowercase_ : Optional[Any] = 1_00_00_00 ) -> str: _lowerCamelCase = limit + 1 _lowerCamelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCamelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCamelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
710
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> bool: _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCamelCase = True for i in range(lowercase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCamelCase = True if a[i].islower(): _lowerCamelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
623
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : str = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class __lowercase ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "switch_transformers" SCREAMING_SNAKE_CASE : int = ["past_key_values"] SCREAMING_SNAKE_CASE : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , A_=32128 , A_=768 , A_=64 , A_=2048 , A_=64 , A_=12 , A_=3 , A_=12 , A_=3 , A_=12 , A_=8 , A_=False , A_=0.01 , A_="float32" , A_=False , A_=32 , A_=128 , A_=0.1 , A_=1e-6 , A_=0.001 , A_=0.001 , A_=1.0 , A_="relu" , A_=True , A_=False , A_=True , A_=0 , A_=1 , **A_ , )-> Optional[Any]: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_kv _SCREAMING_SNAKE_CASE = d_ff _SCREAMING_SNAKE_CASE = num_sparse_encoder_layers _SCREAMING_SNAKE_CASE = num_layers _SCREAMING_SNAKE_CASE = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _SCREAMING_SNAKE_CASE = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_layers // self.num_sparse_encoder_layers else: _SCREAMING_SNAKE_CASE = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _SCREAMING_SNAKE_CASE = self.num_decoder_layers // self.num_sparse_decoder_layers else: _SCREAMING_SNAKE_CASE = self.num_decoder_layers # HACK: this will create 0 sparse layers _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = num_experts _SCREAMING_SNAKE_CASE = expert_capacity _SCREAMING_SNAKE_CASE = router_bias _SCREAMING_SNAKE_CASE = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _SCREAMING_SNAKE_CASE = router_dtype _SCREAMING_SNAKE_CASE = router_ignore_padding_tokens _SCREAMING_SNAKE_CASE = relative_attention_num_buckets _SCREAMING_SNAKE_CASE = relative_attention_max_distance _SCREAMING_SNAKE_CASE = dropout_rate _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = feed_forward_proj _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = add_router_probs _SCREAMING_SNAKE_CASE = router_z_loss_coef _SCREAMING_SNAKE_CASE = router_aux_loss_coef _SCREAMING_SNAKE_CASE = self.feed_forward_proj.split('-' ) _SCREAMING_SNAKE_CASE = act_info[-1] _SCREAMING_SNAKE_CASE = act_info[0] == '''gated''' if len(UpperCAmelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _SCREAMING_SNAKE_CASE = '''gelu_new''' super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , )
605
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _lowerCAmelCase ( __magic_name__ : jnp.ndarray , __magic_name__ : int , __magic_name__ : float = 1 , __magic_name__ : float = 1 , __magic_name__ : float = 1.0E4 , __magic_name__ : bool = False , __magic_name__ : float = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowercase : int =float(embedding_dim // 2 ) lowercase : Optional[int] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase : Any =min_timescale * jnp.exp(jnp.arange(__magic_name__ , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase : List[Any] =jnp.expand_dims(__magic_name__ , 1 ) * jnp.expand_dims(__magic_name__ , 0 ) # scale embeddings lowercase : Tuple =scale * emb if flip_sin_to_cos: lowercase : Dict =jnp.concatenate([jnp.cos(__magic_name__ ), jnp.sin(__magic_name__ )] , axis=1 ) else: lowercase : Any =jnp.concatenate([jnp.sin(__magic_name__ ), jnp.cos(__magic_name__ )] , axis=1 ) lowercase : List[str] =jnp.reshape(__magic_name__ , [jnp.shape(__magic_name__ )[0], embedding_dim] ) return signal class __SCREAMING_SNAKE_CASE ( nn.Module ): lowerCamelCase_ = 32 lowerCamelCase_ = jnp.floataa @nn.compact def __call__( self : Tuple , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : List[Any] =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(UpperCAmelCase__ ) lowercase : Any =nn.silu(UpperCAmelCase__ ) lowercase : int =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(UpperCAmelCase__ ) return temb class __SCREAMING_SNAKE_CASE ( nn.Module ): lowerCamelCase_ = 32 lowerCamelCase_ = False lowerCamelCase_ = 1 @nn.compact def __call__( self : int , UpperCAmelCase__ : str ): '''simple docstring''' return get_sinusoidal_embeddings( UpperCAmelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
92
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A_ ( lowercase_ , lowercase_ , lowercase_ ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE = MobileBertForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
702
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class a_( unittest.TestCase ): """simple docstring""" def __UpperCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer('This is me' , return_tensors='pt') SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) SCREAMING_SNAKE_CASE = model.generate(**lowerCAmelCase__) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())) SCREAMING_SNAKE_CASE = model_reloaded.generate(**lowerCAmelCase__) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__)) def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5' SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase__): model.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase__)
259
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( lowercase : Tuple, lowercase : List[str], lowercase : Optional[int], lowercase : List[str], lowercase : List[str]=True, lowercase : str="pt" ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {'''add_prefix_space''': True} if isinstance(lowercase, lowercase ) and not line.startswith(''' ''' ) else {} _UpperCamelCase = padding_side return tokenizer( [line], max_length=lowercase, padding='''max_length''' if pad_to_max_length else None, truncation=lowercase, return_tensors=lowercase, add_special_tokens=lowercase, **lowercase, ) def a__ ( lowercase : str, lowercase : int, lowercase : Tuple=None, ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = input_ids.ne(lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str="train" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict="" , ) -> Any: '''simple docstring''' super().__init__() _UpperCamelCase = Path(lowerCAmelCase__ ).joinpath(type_path + '''.source''' ) _UpperCamelCase = Path(lowerCAmelCase__ ).joinpath(type_path + '''.target''' ) _UpperCamelCase = self.get_char_lens(self.src_file ) _UpperCamelCase = max_source_length _UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" _UpperCamelCase = tokenizer _UpperCamelCase = prefix if n_obs is not None: _UpperCamelCase = self.src_lens[:n_obs] _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang def __len__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Optional[Any] , lowerCAmelCase__ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = index + 1 # linecache starts at 1 _UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) _UpperCamelCase = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) _UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer _UpperCamelCase = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , '''right''' ) _UpperCamelCase = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , '''right''' ) _UpperCamelCase = source_inputs['''input_ids'''].squeeze() _UpperCamelCase = target_inputs['''input_ids'''].squeeze() _UpperCamelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = torch.stack([x['''input_ids'''] for x in batch] ) _UpperCamelCase = torch.stack([x['''attention_mask'''] for x in batch] ) _UpperCamelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) _UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) _UpperCamelCase = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowercase__ : Union[str, Any] = getLogger(__name__) def a__ ( lowercase : List[List] ) -> Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(lowercase ) ) def a__ ( lowercase : str ) -> None: """simple docstring""" _UpperCamelCase = get_git_info() save_json(lowercase, os.path.join(lowercase, '''git_log.json''' ) ) def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : str=4, **lowercase : Optional[Any] ) -> Any: """simple docstring""" with open(lowercase, '''w''' ) as f: json.dump(lowercase, lowercase, indent=lowercase, **lowercase ) def a__ ( lowercase : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(lowercase ) as f: return json.load(lowercase ) def a__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = git.Repo(search_parent_directories=lowercase ) _UpperCamelCase = { '''repo_id''': str(lowercase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def a__ ( lowercase : Callable, lowercase : Iterable ) -> List: """simple docstring""" return list(map(lowercase, lowercase ) ) def a__ ( lowercase : List[Any], lowercase : Dict ) -> Optional[int]: """simple docstring""" with open(lowercase, '''wb''' ) as f: return pickle.dump(lowercase, lowercase ) def a__ ( lowercase : Tuple ) -> Tuple: """simple docstring""" def remove_articles(lowercase : Tuple ): return re.sub(r'''\b(a|an|the)\b''', ''' ''', lowercase ) def white_space_fix(lowercase : Tuple ): return " ".join(text.split() ) def remove_punc(lowercase : Optional[int] ): _UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) ) def a__ ( lowercase : Tuple, lowercase : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCamelCase = normalize_answer(lowercase ).split() _UpperCamelCase = normalize_answer(lowercase ).split() _UpperCamelCase = Counter(lowercase ) & Counter(lowercase ) _UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCamelCase = 1.0 * num_same / len(lowercase ) _UpperCamelCase = 1.0 * num_same / len(lowercase ) _UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def a__ ( lowercase : Tuple, lowercase : Any ) -> List[str]: """simple docstring""" return normalize_answer(lowercase ) == normalize_answer(lowercase ) def a__ ( lowercase : List[str], lowercase : List[str] ) -> Dict: """simple docstring""" assert len(lowercase ) == len(lowercase ) _UpperCamelCase = 0 for hypo, pred in zip(lowercase, lowercase ): em += exact_match_score(lowercase, lowercase ) if len(lowercase ) > 0: em /= len(lowercase ) return {"em": em} def a__ ( lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" return model_prefix.startswith('''rag''' ) def a__ ( lowercase : int, lowercase : List[Any], lowercase : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCamelCase = '''dropout_rate''' for p in extra_params: if getattr(lowercase, lowercase, lowercase ): if not hasattr(lowercase, lowercase ) and not hasattr(lowercase, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase ) ) delattr(lowercase, lowercase ) continue _UpperCamelCase = p if hasattr(lowercase, lowercase ) else equivalent_param[p] setattr(lowercase, lowercase, getattr(lowercase, lowercase ) ) delattr(lowercase, lowercase ) return hparams, config
98
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 50 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , **lowerCAmelCase__ : Optional[int] , ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = len(lowerCAmelCase__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCAmelCase__ )}.""" ) # get prompt text embeddings _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_embeddings.shape _UpperCamelCase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) _UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCamelCase = 42 if negative_prompt is None: _UpperCamelCase = [''''''] elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=""" f""" {type(lowerCAmelCase__ )}.""" ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: _UpperCamelCase = negative_prompt _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = uncond_embeddings.shape[1] _UpperCamelCase = uncond_embeddings.repeat(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) _UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _UpperCamelCase = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to(self.device ) _UpperCamelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to( self.device ) else: _UpperCamelCase = torch.randn( lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) _UpperCamelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _UpperCamelCase = latents_reference.to(self.device ) _UpperCamelCase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _UpperCamelCase = (latents_shape[3] - latents_shape_reference[3]) // 2 _UpperCamelCase = (latents_shape[2] - latents_shape_reference[2]) // 2 _UpperCamelCase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _UpperCamelCase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _UpperCamelCase = 0 if dx < 0 else dx _UpperCamelCase = 0 if dy < 0 else dy _UpperCamelCase = max(-dx , 0 ) _UpperCamelCase = max(-dy , 0 ) # import pdb # pdb.set_trace() _UpperCamelCase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase = {} if accepts_eta: _UpperCamelCase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual _UpperCamelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2 ) _UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = 1 / 0.18215 * latents _UpperCamelCase = self.vae.decode(lowerCAmelCase__ ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _UpperCamelCase = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase__ ) , return_tensors='''pt''' ).to( self.device ) _UpperCamelCase , _UpperCamelCase = self.safety_checker( images=lowerCAmelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _UpperCamelCase = None if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
98
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="attention" ): """simple docstring""" lowercase__ = lowercase__ = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase__ = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase__ = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase__ = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" if split_mlp_wi: lowercase__ = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase__ = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase__ = (wi_a, wi_a) else: lowercase__ = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase__ = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def _a ( SCREAMING_SNAKE_CASE , *, SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = traverse_util.flatten_dict(variables['''target'''] ) lowercase__ = {'''/'''.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase__ = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE ) lowercase__ = collections.OrderedDict() # Shared embeddings. lowercase__ = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). lowercase__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' ) lowercase__ = layer_norm lowercase__ = k.T lowercase__ = o.T lowercase__ = q.T lowercase__ = v.T # Block i, layer 1 (MLP). lowercase__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' ) lowercase__ , lowercase__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , SCREAMING_SNAKE_CASE ) lowercase__ = layer_norm if split_mlp_wi: lowercase__ = wi[0].T lowercase__ = wi[1].T else: lowercase__ = wi.T lowercase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' ).T lowercase__ = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowercase__ = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , '''encoder''' ).T lowercase__ = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). lowercase__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' ) lowercase__ = layer_norm lowercase__ = k.T lowercase__ = o.T lowercase__ = q.T lowercase__ = v.T # Block i, layer 1 (Cross Attention). lowercase__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' ) lowercase__ = layer_norm lowercase__ = k.T lowercase__ = o.T lowercase__ = q.T lowercase__ = v.T # Block i, layer 2 (MLP). lowercase__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' ) lowercase__ , lowercase__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , SCREAMING_SNAKE_CASE ) lowercase__ = layer_norm if split_mlp_wi: lowercase__ = wi[0].T lowercase__ = wi[1].T else: lowercase__ = wi.T lowercase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' ).T lowercase__ = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase__ = old['''decoder/logits_dense/kernel'''].T return new def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase__ = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase__ = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowercase__ = state_dict['''shared.weight'''] return state_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowercase__ = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE , scalable_attention=SCREAMING_SNAKE_CASE ) lowercase__ = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , ): """simple docstring""" lowercase__ = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase__ = UMTaEncoderModel(SCREAMING_SNAKE_CASE ) else: lowercase__ = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('''Done''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
429
import math def _a ( SCREAMING_SNAKE_CASE = 1_00 ): """simple docstring""" lowercase__ = sum(i * i for i in range(1 , n + 1 ) ) lowercase__ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
429
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : str ="roberta" def __init__( self , lowerCamelCase=50265 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.0_2 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) __magic_name__ : Dict = vocab_size __magic_name__ : str = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Tuple = num_attention_heads __magic_name__ : Optional[Any] = hidden_act __magic_name__ : str = intermediate_size __magic_name__ : str = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : Dict = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : Tuple = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : str = position_embedding_type __magic_name__ : List[Any] = use_cache __magic_name__ : List[str] = classifier_dropout class A__ ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __magic_name__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
154
def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True __magic_name__ : Tuple = 4 __magic_name__ : List[str] = (1 << p) - 1 for _ in range(p - 2 ): __magic_name__ : str = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
154
1
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": snake_case_ = input("""Enter image url: """).strip() print(f'''Downloading image from {url} ...''') snake_case_ = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image snake_case_ = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] snake_case_ = requests.get(image_url).content snake_case_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
537
'''simple docstring''' def _lowerCamelCase( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Optional[Any]: A : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _lowerCamelCase( UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ) -> Any: A : str = 0 while b > 0: if b & 1: A : List[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
537
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Any = logging.get_logger(__name__) _A : int = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Optional[int] = """swin""" lowerCamelCase__ : List[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A_=2_24 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1E-5 , A_=32 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(A_ ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(A_ ) - 1) ) SCREAMING_SNAKE_CASE__ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(A_ ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : int = version.parse("""1.11""" ) @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase_ ( self ): '''simple docstring''' return 1E-4
100
import os def __A ( ) -> Dict: with open(os.path.dirname(__lowerCamelCase ) + """/p022_names.txt""" ) as file: a = str(file.readlines()[0] ) a = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() a = 0 a = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score a = 0 return total_score if __name__ == "__main__": print(solution())
468
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def lowerCAmelCase__ ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @require_beam def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: snake_case_ : Tuple = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) snake_case_ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _lowerCAmelCase ( self ) -> Tuple: import apache_beam as beam snake_case_ : List[Any] = beam.io.parquetio.WriteToParquet snake_case_ : str = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: snake_case_ : int = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: snake_case_ : Union[str, Any] = partial(_SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) snake_case_ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _lowerCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: snake_case_ : Any = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Any = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: snake_case_ : List[Any] = NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) snake_case_ : Any = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
114
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ : '''simple docstring''' A : str A : str A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ : '''simple docstring''' A : List[int] A : Optional[List[int]] = None A : Optional[List[int]] = None A : Optional[Union[int, float]] = None A : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[InputFeatures] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE = False , ) -> Union[str, Any]: snake_case_ : str = hans_processors[task]() snake_case_ : Tuple = os.path.join( _SCREAMING_SNAKE_CASE , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , ) , ) snake_case_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ , snake_case_ : Any = label_list[2], label_list[1] snake_case_ : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Dict = cached_features_file + ".lock" with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) snake_case_ : Dict = torch.load(_SCREAMING_SNAKE_CASE ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) snake_case_ : Any = ( processor.get_dev_examples(_SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(_SCREAMING_SNAKE_CASE ) ) logger.info("Training examples: %s" , len(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Union[str, Any] = hans_convert_examples_to_features(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info("Saving features into cached file %s" , _SCREAMING_SNAKE_CASE ) torch.save(self.features , _SCREAMING_SNAKE_CASE ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i] def _lowerCAmelCase ( self ) -> Dict: return self.label_list if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : '''simple docstring''' A : List[InputFeatures] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE = False , ) -> Optional[int]: snake_case_ : Tuple = hans_processors[task]() snake_case_ : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ , snake_case_ : List[str] = label_list[2], label_list[1] snake_case_ : Dict = label_list snake_case_ : int = processor.get_dev_examples(_SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(_SCREAMING_SNAKE_CASE ) snake_case_ : str = hans_convert_examples_to_features(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(_SCREAMING_SNAKE_CASE )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) snake_case_ : List[Any] = tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _lowerCAmelCase ( self ) -> int: return self.dataset def __len__( self ) -> int: return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> InputFeatures: return self.features[i] def _lowerCAmelCase ( self ) -> Dict: return self.label_list class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: return self._create_examples(self._read_tsv(os.path.join(_SCREAMING_SNAKE_CASE , "heuristics_train_set.txt" ) ) , "train" ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(_SCREAMING_SNAKE_CASE , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _lowerCAmelCase ( self ) -> Dict: return ["contradiction", "entailment", "neutral"] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : Optional[Any] = [] for i, line in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: continue snake_case_ : List[Any] = "%s-%s" % (set_type, line[0]) snake_case_ : int = line[5] snake_case_ : str = line[6] snake_case_ : Any = line[7][2:] if line[7].startswith("ex" ) else line[7] snake_case_ : Dict = line[0] examples.append(InputExample(guid=_SCREAMING_SNAKE_CASE , text_a=_SCREAMING_SNAKE_CASE , text_b=_SCREAMING_SNAKE_CASE , label=_SCREAMING_SNAKE_CASE , pairID=_SCREAMING_SNAKE_CASE ) ) return examples def lowerCAmelCase__ ( _a : List[InputExample] , _a : List[str] , _a : int , _a : PreTrainedTokenizer , ): snake_case_ : Optional[Any] = {label: i for i, label in enumerate(_a )} snake_case_ : Optional[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_a ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) snake_case_ : Optional[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_a , max_length=_a , padding="max_length" , truncation=_a , return_overflowing_tokens=_a , ) snake_case_ : Dict = label_map[example.label] if example.label in label_map else 0 snake_case_ : Optional[Any] = int(example.pairID ) features.append(InputFeatures(**_a , label=_a , pairID=_a ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features lowercase : List[str] = { '''hans''': 3, } lowercase : int = { '''hans''': HansProcessor, }
114
1
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , A : Any=0 ) ->Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCamelCase__ : Dict = n lowerCamelCase__ : List[Any] = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight lowerCamelCase__ : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def __lowerCamelCase ( self : Tuple , A : str , A : int , A : Any ) ->Dict: lowerCamelCase__ : Optional[int] = w def __lowerCamelCase ( self : Tuple ) ->Dict: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCamelCase__ : Tuple = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCamelCase ( self : Optional[int] , A : Any , A : Optional[int] ) ->List[str]: return self.dp[u][v] if __name__ == "__main__": _A : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
315
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Dict = DownBlockaD # noqa F405 _UpperCAmelCase : List[Any] = "down" def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: lowerCamelCase__ : List[str] = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Tuple = ResnetDownsampleBlockaD # noqa F405 _UpperCAmelCase : Dict = "down" def __lowerCamelCase ( self : Optional[Any] ) ->int: lowerCamelCase__ : int = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = AttnDownBlockaD # noqa F405 _UpperCAmelCase : Dict = "down" def __lowerCamelCase ( self : Union[str, Any] ) ->List[str]: lowerCamelCase__ : List[Any] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 _UpperCAmelCase : int = "down" def __lowerCamelCase ( self : List[str] ) ->int: lowerCamelCase__ , lowerCamelCase__ : Any = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = 3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Optional[Any] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = SimpleCrossAttnDownBlockaD # noqa F405 _UpperCAmelCase : Union[str, Any] = "down" @property def __lowerCamelCase ( self : Any ) ->Union[str, Any]: return super().get_dummy_input(include_encoder_hidden_states=A ) def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Optional[int] = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowerCamelCase ( self : Optional[Any] ) ->Tuple: lowerCamelCase__ : Optional[Any] = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[int] = SkipDownBlockaD # noqa F405 _UpperCAmelCase : List[Any] = "down" @property def __lowerCamelCase ( self : Union[str, Any] ) ->List[str]: return super().get_dummy_input(include_skip_sample=A ) def __lowerCamelCase ( self : str ) ->int: lowerCamelCase__ : Optional[int] = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Any = AttnSkipDownBlockaD # noqa F405 _UpperCAmelCase : Any = "down" @property def __lowerCamelCase ( self : Optional[Any] ) ->Optional[Any]: return super().get_dummy_input(include_skip_sample=A ) def __lowerCamelCase ( self : Any ) ->Dict: lowerCamelCase__ : Any = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Dict = DownEncoderBlockaD # noqa F405 _UpperCAmelCase : Dict = "down" @property def __lowerCamelCase ( self : List[Any] ) ->str: return super().get_dummy_input(include_temb=A ) def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : List[Any] = { '''in_channels''': 3_2, '''out_channels''': 3_2, } lowerCamelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Dict ) ->int: lowerCamelCase__ : str = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Tuple = AttnDownEncoderBlockaD # noqa F405 _UpperCAmelCase : str = "down" @property def __lowerCamelCase ( self : str ) ->List[Any]: return super().get_dummy_input(include_temb=A ) def __lowerCamelCase ( self : Tuple ) ->List[str]: lowerCamelCase__ : Optional[Any] = { '''in_channels''': 3_2, '''out_channels''': 3_2, } lowerCamelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = UNetMidBlockaD # noqa F405 _UpperCAmelCase : Tuple = "mid" def __lowerCamelCase ( self : Optional[int] ) ->Dict: lowerCamelCase__ : Any = { '''in_channels''': 3_2, '''temb_channels''': 1_2_8, } lowerCamelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Tuple ) ->List[str]: lowerCamelCase__ : Tuple = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = UNetMidBlockaDCrossAttn # noqa F405 _UpperCAmelCase : List[str] = "mid" def __lowerCamelCase ( self : List[str] ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ : Any = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : List[str] = 3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Dict ) ->Tuple: lowerCamelCase__ : int = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 _UpperCAmelCase : int = "mid" @property def __lowerCamelCase ( self : List[str] ) ->List[str]: return super().get_dummy_input(include_encoder_hidden_states=A ) def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ , lowerCamelCase__ : Any = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Optional[int] = 3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : List[Any] = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Tuple = UpBlockaD # noqa F405 _UpperCAmelCase : Any = "up" @property def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: lowerCamelCase__ : Optional[Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = ResnetUpsampleBlockaD # noqa F405 _UpperCAmelCase : Optional[Any] = "up" @property def __lowerCamelCase ( self : Union[str, Any] ) ->List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def __lowerCamelCase ( self : List[Any] ) ->List[str]: lowerCamelCase__ : List[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = CrossAttnUpBlockaD # noqa F405 _UpperCAmelCase : Optional[Any] = "up" @property def __lowerCamelCase ( self : Union[str, Any] ) ->Dict: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def __lowerCamelCase ( self : Optional[int] ) ->Any: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Tuple = 3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[int] ) ->Optional[Any]: lowerCamelCase__ : Dict = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = SimpleCrossAttnUpBlockaD # noqa F405 _UpperCAmelCase : Any = "up" @property def __lowerCamelCase ( self : Tuple ) ->int: return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A ) def __lowerCamelCase ( self : Any ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ : Any = super().prepare_init_args_and_inputs_for_common() lowerCamelCase__ : Tuple = 3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Tuple ) ->List[str]: lowerCamelCase__ : str = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = AttnUpBlockaD # noqa F405 _UpperCAmelCase : Dict = "up" @property def __lowerCamelCase ( self : Optional[int] ) ->int: return super().get_dummy_input(include_res_hidden_states_tuple=A ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowerCamelCase ( self : Optional[int] ) ->List[str]: lowerCamelCase__ : Optional[int] = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = SkipUpBlockaD # noqa F405 _UpperCAmelCase : List[Any] = "up" @property def __lowerCamelCase ( self : Dict ) ->str: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def __lowerCamelCase ( self : List[str] ) ->Optional[Any]: lowerCamelCase__ : List[str] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : int = AttnSkipUpBlockaD # noqa F405 _UpperCAmelCase : Optional[Any] = "up" @property def __lowerCamelCase ( self : List[str] ) ->str: return super().get_dummy_input(include_res_hidden_states_tuple=A ) def __lowerCamelCase ( self : str ) ->Tuple: lowerCamelCase__ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Dict = UpDecoderBlockaD # noqa F405 _UpperCAmelCase : Tuple = "up" @property def __lowerCamelCase ( self : int ) ->int: return super().get_dummy_input(include_temb=A ) def __lowerCamelCase ( self : int ) ->Any: lowerCamelCase__ : List[str] = {'''in_channels''': 3_2, '''out_channels''': 3_2} lowerCamelCase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = AttnUpDecoderBlockaD # noqa F405 _UpperCAmelCase : Union[str, Any] = "up" @property def __lowerCamelCase ( self : Dict ) ->Union[str, Any]: return super().get_dummy_input(include_temb=A ) def __lowerCamelCase ( self : Any ) ->int: lowerCamelCase__ : Optional[int] = {'''in_channels''': 3_2, '''out_channels''': 3_2} lowerCamelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any] ) ->int: lowerCamelCase__ : Tuple = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(A )
315
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
313
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'dandelin/vilt-b32-finetuned-vqa' lowerCAmelCase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowerCAmelCase__ = 'image_qa' lowerCAmelCase__ = AutoProcessor lowerCAmelCase__ = AutoModelForVisualQuestionAnswering lowerCAmelCase__ = ['image', 'text'] lowerCAmelCase__ = ['text'] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["vision"] ) super().__init__(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Tuple: return self.pre_processor(lowercase , lowercase , return_tensors="pt" ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: with torch.no_grad(): return self.model(**lowercase ).logits def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
313
1