code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="altclip_text_model" def __init__( self , UpperCamelCase_=25_00_02 , UpperCamelCase_=10_24 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=40_96 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_14 , UpperCamelCase_=1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-05 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=7_68 , **UpperCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : List[str] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : int = intermediate_size __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : Dict = type_vocab_size __lowercase : int = initializer_range __lowercase : Optional[int] = initializer_factor __lowercase : Union[str, Any] = layer_norm_eps __lowercase : int = position_embedding_type __lowercase : Optional[Any] = use_cache __lowercase : Optional[Any] = project_dim class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="altclip_vision_model" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=2_24 , UpperCamelCase_=32 , UpperCamelCase_="quick_gelu" , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1.0 , **UpperCamelCase_ , ) -> Optional[int]: super().__init__(**UpperCamelCase_ ) __lowercase : Tuple = hidden_size __lowercase : Optional[int] = intermediate_size __lowercase : int = projection_dim __lowercase : Tuple = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : str = num_channels __lowercase : int = patch_size __lowercase : List[str] = image_size __lowercase : Optional[int] = initializer_range __lowercase : Union[str, Any] = initializer_factor __lowercase : Optional[int] = attention_dropout __lowercase : str = layer_norm_eps __lowercase : Dict = hidden_act @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , **UpperCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_ ) __lowercase ,__lowercase : Optional[Any] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": __lowercase : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="altclip" UpperCamelCase =True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=7_68 , UpperCamelCase_=2.6_5_9_2 , **UpperCamelCase_ ) -> Optional[int]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __lowercase : Optional[Any] = kwargs.pop('''text_config_dict''' , UpperCamelCase_ ) __lowercase : Tuple = kwargs.pop('''vision_config_dict''' , UpperCamelCase_ ) super().__init__(**UpperCamelCase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowercase : Any = {} # This is the complete result when using `text_config_dict`. __lowercase : Any = AltCLIPTextConfig(**UpperCamelCase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowercase : Union[str, Any] = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __lowercase : Tuple = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowercase : Optional[Any] = {} # This is the complete result when using `vision_config_dict`. __lowercase : List[str] = AltCLIPVisionConfig(**UpperCamelCase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowercase : Any = { str(UpperCamelCase_ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowercase : Union[str, Any] = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __lowercase : Optional[int] = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowercase : Optional[int] = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: __lowercase : Tuple = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) __lowercase : Union[str, Any] = AltCLIPTextConfig(**UpperCamelCase_ ) __lowercase : List[Any] = AltCLIPVisionConfig(**UpperCamelCase_ ) __lowercase : str = projection_dim __lowercase : str = logit_scale_init_value __lowercase : List[Any] = 1.0 @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : List[Any] = copy.deepcopy(self.__dict__ ) __lowercase : Optional[Any] = self.text_config.to_dict() __lowercase : int = self.vision_config.to_dict() __lowercase : Optional[int] = self.__class__.model_type return output
76
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> Any: _lowercase : str = 10 _lowercase : List[str] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _lowercase : Union[str, Any] = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCamelCase_ ) ), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCamelCase_ ) return filename # FILE_CONTENT + files SCREAMING_SNAKE_CASE : str = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'file.txt' _lowercase : List[str] = FILE_CONTENT with open(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ ) return filename @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: import bza _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _lowercase : Optional[Any] = bytes(lowerCamelCase_ , 'utf-8' ) with bza.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: import gzip _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _lowercase : Optional[int] = bytes(lowerCamelCase_ , 'utf-8' ) with gzip.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _lowercase : Optional[Any] = bytes(lowerCamelCase_ , 'utf-8' ) with lza.frame.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: if datasets.config.PY7ZR_AVAILABLE: import pyazr _lowercase : int = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCamelCase_ , 'w' ) as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: import tarfile _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: import lzma _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _lowercase : int = bytes(lowerCamelCase_ , 'utf-8' ) with lzma.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: import zipfile _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _lowercase : Dict = bytes(lowerCamelCase_ , 'utf-8' ) with zstd.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' _lowercase : Optional[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ ) return filename SCREAMING_SNAKE_CASE : Dict = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] SCREAMING_SNAKE_CASE : Dict = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] SCREAMING_SNAKE_CASE : Optional[Any] = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } SCREAMING_SNAKE_CASE : Tuple = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] SCREAMING_SNAKE_CASE : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[int] = datasets.Dataset.from_dict(lowerCamelCase_ ) _lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCamelCase_ ) ) as con: _lowercase : Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCamelCase_ , 'w' , newline='' ) as f: _lowercase : Tuple = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCamelCase_ , 'w' , newline='' ) as f: _lowercase : str = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: import bza _lowercase : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCamelCase_ , 'rb' ) as f: _lowercase : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _lowercase : Optional[Any] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCamelCase_ , 'wb' ) as f: _lowercase : List[str] = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ ) _lowercase : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_ ) )] for k in DATA[0]} , schema=lowerCamelCase_ ) writer.write_table(lowerCamelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : List[Any] = {'data': DATA} with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : Optional[Any] = {'data': DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: import gzip _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCamelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: import gzip _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCamelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Optional[int] = ['0', '1', '2', '3'] _lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : str = ['0', '1', '2', '3'] _lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : List[Any] = ['0', '1', '2', '3'] _lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : List[str] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> Dict: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> int: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: _lowercase : str = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
89
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : torch.FloatTensor class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=3 , __lowerCAmelCase=("DownEncoderBlock2D",) , __lowerCAmelCase=(64,) , __lowerCAmelCase=2 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase=True , ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE_ : Any = torch.nn.Convad( __lowerCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE_ : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_channel SCREAMING_SNAKE_CASE_ : int = block_out_channels[i] SCREAMING_SNAKE_CASE_ : Union[str, Any] = i == len(__lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ : Dict = get_down_block( __lowerCAmelCase , num_layers=self.layers_per_block , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__lowerCAmelCase , resnet_groups=__lowerCAmelCase , attention_head_dim=__lowerCAmelCase , temb_channels=__lowerCAmelCase , ) self.down_blocks.append(__lowerCAmelCase ) # mid SCREAMING_SNAKE_CASE_ : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=__lowerCAmelCase , temb_channels=__lowerCAmelCase , ) # out SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__lowerCAmelCase , eps=1e-6 ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.SiLU() SCREAMING_SNAKE_CASE_ : Optional[int] = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE_ : str = nn.Convad(block_out_channels[-1] , __lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x SCREAMING_SNAKE_CASE_ : Optional[int] = self.conv_in(__lowerCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__lowerCAmelCase ): def custom_forward(*__lowerCAmelCase ): return module(*__lowerCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(__lowerCAmelCase ) , __lowerCAmelCase , use_reentrant=__lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __lowerCAmelCase , use_reentrant=__lowerCAmelCase ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(__lowerCAmelCase ) , __lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __lowerCAmelCase ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : Tuple = down_block(__lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ : Optional[int] = self.mid_block(__lowerCAmelCase ) # post-process SCREAMING_SNAKE_CASE_ : Dict = self.conv_norm_out(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = self.conv_act(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = self.conv_out(__lowerCAmelCase ) return sample class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=3 , __lowerCAmelCase=("UpDecoderBlock2D",) , __lowerCAmelCase=(64,) , __lowerCAmelCase=2 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase="group" , ): super().__init__() SCREAMING_SNAKE_CASE_ : int = layers_per_block SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Convad( __lowerCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : List[str] = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ : List[Any] = in_channels if norm_type == 'spatial' else None # mid SCREAMING_SNAKE_CASE_ : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__lowerCAmelCase , temb_channels=__lowerCAmelCase , ) # up SCREAMING_SNAKE_CASE_ : Tuple = list(reversed(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = output_channel SCREAMING_SNAKE_CASE_ : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE_ : List[str] = i == len(__lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ : str = get_up_block( __lowerCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , prev_output_channel=__lowerCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__lowerCAmelCase , resnet_groups=__lowerCAmelCase , attention_head_dim=__lowerCAmelCase , temb_channels=__lowerCAmelCase , resnet_time_scale_shift=__lowerCAmelCase , ) self.up_blocks.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE_ : Union[str, Any] = SpatialNorm(block_out_channels[0] , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__lowerCAmelCase , eps=1e-6 ) SCREAMING_SNAKE_CASE_ : Dict = nn.SiLU() SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Convad(block_out_channels[0] , __lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ : str = False def __A ( self , __lowerCAmelCase , __lowerCAmelCase=None ): SCREAMING_SNAKE_CASE_ : List[Any] = z SCREAMING_SNAKE_CASE_ : Any = self.conv_in(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__lowerCAmelCase ): def custom_forward(*__lowerCAmelCase ): return module(*__lowerCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle SCREAMING_SNAKE_CASE_ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __lowerCAmelCase , __lowerCAmelCase , use_reentrant=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = sample.to(__lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase , use_reentrant=__lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = sample.to(__lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint(create_custom_forward(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ : List[str] = self.mid_block(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = sample.to(__lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : Optional[int] = up_block(__lowerCAmelCase , __lowerCAmelCase ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE_ : Tuple = self.conv_norm_out(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = self.conv_norm_out(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = self.conv_act(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = self.conv_out(__lowerCAmelCase ) return sample class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="random" , __lowerCAmelCase=False , __lowerCAmelCase=True ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[int] = n_e SCREAMING_SNAKE_CASE_ : Optional[Any] = vq_embed_dim SCREAMING_SNAKE_CASE_ : Union[str, Any] = beta SCREAMING_SNAKE_CASE_ : Tuple = legacy SCREAMING_SNAKE_CASE_ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE_ : List[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.used.shape[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE_ : Dict = self.re_embed SCREAMING_SNAKE_CASE_ : Dict = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = n_e SCREAMING_SNAKE_CASE_ : Union[str, Any] = sane_index_shape def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = inds.shape assert len(__lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ : Optional[int] = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.used.to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE_ : int = match.argmax(-1 ) SCREAMING_SNAKE_CASE_ : List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE_ : str = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE_ : Any = self.unknown_index return new.reshape(__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = inds.shape assert len(__lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.used.to(__lowerCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE_ : Any = 0 # simply set to zero SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __lowerCAmelCase ) return back.reshape(__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): # reshape z -> (batch, height, width, channel) and flatten SCREAMING_SNAKE_CASE_ : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE_ : str = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE_ : Dict = torch.argmin(torch.cdist(__lowerCAmelCase , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.embedding(__lowerCAmelCase ).view(z.shape ) SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Dict = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE_ : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE_ : List[str] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE_ : List[str] = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE_ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE_ : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ : Any = self.remap_to_used(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE_ : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): # shape specifying (batch, height, width, channel) if self.remap is not None: SCREAMING_SNAKE_CASE_ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ : Optional[int] = self.unmap_to_all(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE_ : List[Any] = self.embedding(__lowerCAmelCase ) if shape is not None: SCREAMING_SNAKE_CASE_ : Dict = z_q.view(__lowerCAmelCase ) # reshape back to match original input shape SCREAMING_SNAKE_CASE_ : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Tuple = parameters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.chunk(__lowerCAmelCase , 2 , dim=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE_ : Dict = deterministic SCREAMING_SNAKE_CASE_ : List[Any] = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE_ : List[str] = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __A ( self , __lowerCAmelCase = None ): # make sure sample is on the same device as the parameters and has same dtype SCREAMING_SNAKE_CASE_ : int = randn_tensor( self.mean.shape , generator=__lowerCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE_ : Any = self.mean + self.std * sample return x def __A ( self , __lowerCAmelCase=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE_ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__lowerCAmelCase ) def __A ( self ): return self.mean
311
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__: Dict = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: List[str] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Union[str, Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase__: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
1
"""simple docstring""" from __future__ import annotations import time import numpy as np UpperCAmelCase =[8, 5, 9, 7] UpperCAmelCase =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCAmelCase =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> None: A = claim_vector A = allocated_resources_table A = maximum_claim_table def UpperCamelCase__ ( self ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase__ ( self ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase__ ( self ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase__ ( self ) -> dict[int, list[int]]: return {self.__need().index(lowerCamelCase_ ): i for i in self.__need()} def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> None: A = self.__need() A = self.__allocated_resources_table A = self.__available_resources() A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 5_0 + """\n""" ) while need_list: A = False for each_need in need_list: A = True for index, need in enumerate(lowerCamelCase_ ): if need > available_resources[index]: A = False break if execution: A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A = original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(lowerCamelCase_ ) # update available/freed resources stack A = np.array(lowerCamelCase_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(lowerCamelCase_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCamelCase__ ( self ) -> Union[str, Any]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(lowerCamelCase_ ) + 1}' + """ """.join(f'{it:>8}' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(lowerCamelCase_ ) + 1}' + """ """.join(f'{it:>8}' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(lowerCamelCase_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(lowerCamelCase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
617
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase ={ "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _A ( _a : str ): """simple docstring""" A = list(s_dict.keys() ) for key in keys: A = r""".*/layers_(\d+)""" A = key if re.match(_a , _a ): A = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , _a ) A = r"""(encoder|decoder)\/""" if re.match(_a , _a ): A = re.match(_a , _a ).groups() if groups[0] == "encoder": A = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , _a ) elif groups[0] == "decoder": A = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , _a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A = new_key.replace(_a , _a ) print(f'{key} -> {new_key}' ) A = s_dict.pop(_a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A = s_dict[key].shape[0] A = s_dict[key] for idx in range(_a ): A = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_a ) return s_dict UpperCAmelCase ={ "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _A ( _a : Dict , _a : int ): """simple docstring""" import regex as re with open(_a , """r""" ) as f: A = f.read() A = re.findall(r"""(.*) = ([0-9.]*)""" , _a ) A = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A = float(_a ) if """.""" in value else int(_a ) A = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , _a )[0] A = str(activation[1] ) A = num_experts A = SwitchTransformersConfig(**_a ) return config def _A ( _a : Union[str, Any] , _a : Dict , _a : Optional[Any]=None , _a : Dict="./" , _a : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) A = checkpoints.load_tax_checkpoint(_a ) if gin_file is not None: A = convert_gin_to_config(_a , _a ) else: A = SwitchTransformersConfig.from_pretrained(_a ) A = SwitchTransformersForConditionalGeneration(_a ) A = flax_params["""target"""] A = flatten_dict(_a , sep="""/""" ) A = rename_keys(_a ) A = unflatten_dict(_a , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_a , _a ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase =parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
617
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class UpperCAmelCase__ : def __init__( self ,A__ ,A__ ,A__ ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) _A : Union[str, Any] = img _A : Optional[int] = img.shape[1] _A : List[str] = img.shape[0] _A : Optional[Any] = dst_width _A : str = dst_height _A : str = self.src_w / self.dst_w _A : Dict = self.src_h / self.dst_h _A : Tuple = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def A__ ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): _A : Any = self.img[self.get_y(__A )][self.get_x(__A )] def A__ ( self ,A__ ): return int(self.ratio_x * x ) def A__ ( self ,A__ ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Optional[Any] =800, 600 _UpperCamelCase : Optional[int] =imread('image_data/lena.jpg', 1) _UpperCamelCase : Optional[int] =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase : Any ={'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] =['ViTFeatureExtractor'] _UpperCamelCase : Any =['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any =[ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int =[ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] =[ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _UpperCamelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase ( cls : Any ): lowerCAmelCase_ : Tuple = TOKEN HfFolder.save_token(a_ ) @classmethod def lowerCamelCase ( cls : Any ): try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase_ : List[str] = FlaxBertModel(a_ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) lowerCAmelCase_ : Any = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase_ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase_ : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ , repo_id="test-model-flax" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : str = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCAmelCase_ : Any = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase_ : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase_ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1e-3 , msg=f'''{key} not identical''' ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowerCAmelCase_ : Dict = FlaxBertModel(a_ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) lowerCAmelCase_ : List[str] = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) lowerCAmelCase_ : List[str] = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase_ : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( a_ , repo_id="valid_org/test-model-flax-org" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : Dict = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) lowerCAmelCase_ : List[str] = flatten_dict(unfreeze(model.params ) ) lowerCAmelCase_ : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(a_ , 1e-3 , msg=f'''{key} not identical''' ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) lowerCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCAmelCase_ : Any = False return models_are_equal @require_flax class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowerCAmelCase_ : List[Any] = FlaxBertModel(a_ ) lowerCAmelCase_ : Any = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a_ , a_ ) ) with self.assertRaises(a_ ): lowerCAmelCase_ : Any = FlaxBertModel.from_pretrained(a_ ) lowerCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertTrue(check_models_equal(a_ , a_ ) ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowerCAmelCase_ : List[str] = FlaxBertModel(a_ ) lowerCAmelCase_ : Any = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(a_ , a_ ) , max_shard_size="10KB" ) with self.assertRaises(a_ ): lowerCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(a_ ) lowerCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertTrue(check_models_equal(a_ , a_ ) ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = "bert" lowerCAmelCase_ : int = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(a_ ): lowerCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(a_ ) lowerCAmelCase_ : Any = FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertIsNotNone(a_ ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Dict = "bert" lowerCAmelCase_ : Optional[int] = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(a_ ): lowerCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(a_ ) lowerCAmelCase_ : str = FlaxBertModel.from_pretrained(a_ , subfolder=a_ ) self.assertIsNotNone(a_ )
610
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
610
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a ( ): """simple docstring""" UpperCamelCase__ : List[Any] = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return image def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Any = dct.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = val def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase__ : Optional[Any] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) UpperCamelCase__ : List[str] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict UpperCamelCase__ : Optional[Any] = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) ) UpperCamelCase__ : Union[str, Any] = qkv_bias def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : Tuple = 364 if '''coco''' in model_name else 224 UpperCamelCase__ : Dict = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase__ : Dict = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase__ : Optional[int] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: UpperCamelCase__ : Dict = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase__ : str = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCamelCase__ : Dict = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : str=False ): """simple docstring""" UpperCamelCase__ : str = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCamelCase__ : int = tokenizer('''\n''' , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] UpperCamelCase__ , UpperCamelCase__ : List[Any] = get_blipa_config(SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ : Dict = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCamelCase__ , UpperCamelCase__ : int = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCamelCase__ : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCamelCase__ : List[Any] = original_model.state_dict() UpperCamelCase__ : List[str] = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase__ : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith('''Qformer.bert''' ): UpperCamelCase__ : Union[str, Any] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCamelCase__ : str = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCamelCase__ : Dict = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCamelCase__ : str = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCamelCase__ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCamelCase__ : List[Any] = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : Any = hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase__ : str = load_demo_image() UpperCamelCase__ : Any = vis_processors['''eval'''](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) # create processor UpperCamelCase__ : Dict = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) hf_model.to(SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase__ : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCamelCase__ : Any = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits else: UpperCamelCase__ : List[Any] = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCamelCase__ : str = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase__ : List[Any] = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase__ : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase__ : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=SCREAMING_SNAKE_CASE ) else: # cast to same type UpperCamelCase__ : List[str] = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCamelCase__ : List[str] = '''''' UpperCamelCase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) UpperCamelCase__ : Dict = hf_model.generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = input_ids.shape[1] UpperCamelCase__ : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() __UpperCamelCase : List[str] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __UpperCamelCase : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
106
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int = mock.Mock() UpperCamelCase__ : Tuple = 500 UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = HTTPError UpperCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase__ : List[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: UpperCamelCase__ : Any = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = mock.Mock() UpperCamelCase__ : Any = 500 UpperCamelCase__ : str = {} UpperCamelCase__ : Optional[Any] = HTTPError UpperCamelCase__ : Tuple = {} # Download this model to make sure it's in the cache. UpperCamelCase__ : Optional[Any] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: UpperCamelCase__ : str = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' try: UpperCamelCase__ : Dict = tempfile.mktemp() with open(lowerCamelCase__ , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCamelCase__ ) UpperCamelCase__ : Dict = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : Any = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class __magic_name__ ( unittest.TestCase): A: List[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCAmelCase__ ( cls : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls : Any ) -> Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : int = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCamelCase__ : Tuple = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) UpperCamelCase__ : Union[str, Any] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ , repo_id='''test-tokenizer''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : str = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : Dict = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCamelCase__ : List[str] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) UpperCamelCase__ : Optional[Any] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ : Union[str, Any] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : List[Any] = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCamelCase__ : Any = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCamelCase__ : str = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : List[Any] = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCamelCase__ : List[Any] = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCamelCase__ : str = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) UpperCamelCase__ : int = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" , use_fast=lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def UpperCAmelCase__ ( self : str ) -> str: '''simple docstring''' UpperCamelCase__ : Dict = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Any = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[Any] = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCamelCase__ : int = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Dict = Trie() UpperCamelCase__ : Optional[Any] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ , ['''AB''', '''C'''] )
106
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCamelCase__ ( __A , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MvpTokenizer SCREAMING_SNAKE_CASE__ = MvpTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = filter_roberta_detectors def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE : List[Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE : Optional[int] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def lowerCamelCase_ ( self : Dict , **lowerCamelCase_ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[Any] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] SCREAMING_SNAKE_CASE : str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Dict = tokenizer(UpperCamelCase_ , max_length=len(UpperCamelCase_ ) , padding=UpperCamelCase_ , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that special tokens are reset @require_torch def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , UpperCamelCase_ ) self.assertIn("""attention_mask""" , UpperCamelCase_ ) self.assertNotIn("""labels""" , UpperCamelCase_ ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase_ ) @require_torch def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Dict = tokenizer(text_target=UpperCamelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Dict = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 10_24) ) @require_torch def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ["""A long paragraph for summarization."""] SCREAMING_SNAKE_CASE : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : str = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE : Optional[int] = inputs["""input_ids"""] SCREAMING_SNAKE_CASE : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE : int = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
379
import requests from bsa import BeautifulSoup def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" a_ : Optional[Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" a_ : Optional[int] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , """html.parser""" ) a_ : Tuple = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
419
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Tuple = 3 lowerCamelCase_ : List[Any] = 250 lowerCamelCase_ : Optional[int] = ids_tensor((batch_size, length) , a_ ) lowerCamelCase_ : List[str] = torch.ones((batch_size, length) , device=a_ , dtype=torch.float ) / length return input_ids, scores def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self._get_tensors(5 ) lowerCamelCase_ : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : Any = self._get_tensors(10 ) self.assertTrue(criteria(a_ , a_ ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : str = MaxLengthCriteria(max_length=10 ) lowerCamelCase_ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : Any = self._get_tensors(9 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : Dict = self._get_tensors(10 ) self.assertTrue(criteria(a_ , a_ ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCamelCase_ : str = self._get_tensors(5 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(a_ , a_ ) ) lowerCamelCase_ : List[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self._get_tensors(5 ) lowerCamelCase_ : Optional[Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(a_ , a_ ) ) lowerCamelCase_ : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(a_ , a_ ) ) def _UpperCamelCase ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(a_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCamelCase_ : Tuple = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(a_ ) , 1 )
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE = n - k # Calculate C(n,k) for i in range(UpperCAmelCase__ ): result *= n - i result //= i + 1 return result def __lowerCamelCase (UpperCAmelCase__ : List[str] ): return binomial_coefficient(2 * node_count , UpperCAmelCase__ ) // (node_count + 1) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): if n < 0: raise ValueError("factorial() not defined for negative values" ) SCREAMING_SNAKE_CASE = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): return catalan_number(UpperCAmelCase__ ) * factorial(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a__ : str = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""pixel_values"""] def __init__( self : Union[str, Any] , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Any = size if size is not None else {"""shortest_edge""": 256} _snake_case : List[Any] = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase) _snake_case : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case : int = get_size_dict(lowerCAmelCase) _snake_case : Any = do_resize _snake_case : str = size _snake_case : Optional[Any] = resample _snake_case : Optional[Any] = do_center_crop _snake_case : Optional[Any] = crop_size _snake_case : Optional[int] = do_rescale _snake_case : Tuple = rescale_factor _snake_case : Optional[Any] = do_normalize _snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" _snake_case : Optional[Any] = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _snake_case : Optional[int] = get_resize_output_image_size(lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Any , ) -> np.ndarray: """simple docstring""" _snake_case : str = get_size_dict(lowerCAmelCase) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any]) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : str = size if size is not None else self.size _snake_case : Union[str, Any] = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase) _snake_case : Optional[int] = resample if resample is not None else self.resample _snake_case : Any = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : Optional[Any] = crop_size if crop_size is not None else self.crop_size _snake_case : int = get_size_dict(lowerCAmelCase) _snake_case : Any = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : str = image_mean if image_mean is not None else self.image_mean _snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std _snake_case : List[Any] = make_list_of_images(lowerCAmelCase) if not valid_images(lowerCAmelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _snake_case : Optional[Any] = [to_numpy_array(lowerCAmelCase) for image in images] if do_resize: _snake_case : str = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase) for image in images] if do_center_crop: _snake_case : int = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase) for image in images] if do_rescale: _snake_case : Dict = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase) for image in images] if do_normalize: _snake_case : Tuple = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase) for image in images] _snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase)
718
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: # initialize config if "resnet-50" in model_name: _snake_case : List[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _snake_case : Any = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _snake_case : Union[str, Any] = DetrConfig(use_timm_backbone=SCREAMING_SNAKE_CASE__ , backbone_config=SCREAMING_SNAKE_CASE__ ) # set label attributes _snake_case : List[str] = """panoptic""" in model_name if is_panoptic: _snake_case : Optional[int] = 250 else: _snake_case : Optional[int] = 91 _snake_case : Optional[Any] = """huggingface/label-files""" _snake_case : Optional[int] = """coco-detection-id2label.json""" _snake_case : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Dict = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _snake_case : List[str] = idalabel _snake_case : str = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case : Optional[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: _snake_case : str = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : str = val def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str=False ) -> Union[str, Any]: _snake_case : Optional[Any] = """""" if is_panoptic: _snake_case : Optional[Any] = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case : List[str] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case : Optional[Any] = in_proj_weight[:256, :] _snake_case : Any = in_proj_bias[:256] _snake_case : List[Any] = in_proj_weight[256:512, :] _snake_case : Optional[int] = in_proj_bias[256:512] _snake_case : int = in_proj_weight[-256:, :] _snake_case : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _snake_case : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _snake_case : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case : Optional[int] = in_proj_weight[:256, :] _snake_case : Optional[int] = in_proj_bias[:256] _snake_case : Any = in_proj_weight[256:512, :] _snake_case : int = in_proj_bias[256:512] _snake_case : int = in_proj_weight[-256:, :] _snake_case : Tuple = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _snake_case : List[str] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _snake_case : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _snake_case : int = in_proj_weight_cross_attn[:256, :] _snake_case : Tuple = in_proj_bias_cross_attn[:256] _snake_case : int = in_proj_weight_cross_attn[256:512, :] _snake_case : Tuple = in_proj_bias_cross_attn[256:512] _snake_case : Dict = in_proj_weight_cross_attn[-256:, :] _snake_case : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowercase ( ) -> Optional[Any]: _snake_case : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[Any]: _snake_case , _snake_case : Union[str, Any] = get_detr_config(SCREAMING_SNAKE_CASE__ ) # load original model from torch hub _snake_case : Dict = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) _snake_case : List[Any] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=SCREAMING_SNAKE_CASE__ ).eval() _snake_case : Optional[int] = detr.state_dict() # rename keys for src, dest in create_rename_keys(SCREAMING_SNAKE_CASE__ ): if is_panoptic: _snake_case : int = """detr.""" + src rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ , is_panoptic=SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case : List[Any] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _snake_case : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _snake_case : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _snake_case : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _snake_case : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = val # finally, create HuggingFace model and load state dict _snake_case : int = DetrForSegmentation(SCREAMING_SNAKE_CASE__ ) if is_panoptic else DetrForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion on an image _snake_case : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _snake_case : int = DetrImageProcessor(format=SCREAMING_SNAKE_CASE__ ) _snake_case : int = processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : str = encoding["""pixel_values"""] _snake_case : Tuple = detr(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") a__ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
198
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = GPTSwaTokenizer A__ : Dict = False A__ : List[str] = True A__ : Optional[Any] = False def _a ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = GPTSwaTokenizer(_snake_case , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Any , _snake_case : Tuple ): """simple docstring""" A__ = 'This is a test' A__ = 'This is a test' return input_text, output_text def _a ( self : Any ): """simple docstring""" A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_snake_case ) , 20_00 ) def _a ( self : Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _a ( self : str ): """simple docstring""" A__ = GPTSwaTokenizer(_snake_case ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on A__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) A__ = tokenizer.convert_ids_to_tokens(_snake_case ) # fmt: off self.assertListEqual( _snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _a ( self : Tuple ): """simple docstring""" A__ = GPTSwaTokenizer(_snake_case ) A__ = ['This is a test', 'I was born in 92000, and this is falsé.'] A__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_snake_case , _snake_case ): self.assertListEqual(tokenizer.encode_fast(_snake_case ) , _snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(_snake_case , _snake_case ): self.assertEqual(tokenizer.decode_fast(_snake_case ) , _snake_case ) @slow def _a ( self : List[Any] ): """simple docstring""" A__ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off A__ = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_snake_case , )
9
import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowercase =self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase ='src/transformers' shutil.rmtree(self.transformer_dir ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> str: '''simple docstring''' _lowercase =comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase =comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowercase =black.format_str(lowerCAmelCase , mode=lowerCAmelCase ) _lowercase =os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCAmelCase , 'w' , newline='\n' ) as f: f.write(lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase ) with open(lowerCAmelCase , 'r' ) as f: self.assertTrue(f.read() , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase ) , ) # Copy consistency with a really long name _lowercase ='TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCAmelCase , lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase ) , ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) self.assertFalse(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase , lowerCAmelCase )
291
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ ) -> Tuple: super().__init__() _UpperCAmelCase = torchvision.models.resnetaaa(pretrained=__A ) _UpperCAmelCase = list(model.children() )[:-2] _UpperCAmelCase = nn.Sequential(*__A ) _UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __A ( self , snake_case_ ) -> List[Any]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _UpperCAmelCase = self.pool(self.model(__A ) ) _UpperCAmelCase = torch.flatten(__A , start_dim=2 ) _UpperCAmelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( __lowercase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: _UpperCAmelCase = [json.loads(__A ) for l in open(__A )] _UpperCAmelCase = os.path.dirname(__A ) _UpperCAmelCase = tokenizer _UpperCAmelCase = labels _UpperCAmelCase = len(__A ) _UpperCAmelCase = max_seq_length _UpperCAmelCase = transforms def __len__( self ) -> Tuple: return len(self.data ) def __getitem__( self , snake_case_ ) -> Dict: _UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__A ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1] _UpperCAmelCase = sentence[: self.max_seq_length] _UpperCAmelCase = torch.zeros(self.n_classes ) _UpperCAmelCase = 1 _UpperCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) _UpperCAmelCase = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __A ( self ) -> List[Any]: _UpperCAmelCase = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def A__ ( A__ ) -> Any: '''simple docstring''' _UpperCAmelCase = [len(row["sentence"] ) for row in batch] _UpperCAmelCase , _UpperCAmelCase = len(a__ ), max(a__ ) _UpperCAmelCase = torch.zeros(a__ , a__ , dtype=torch.long ) _UpperCAmelCase = torch.zeros(a__ , a__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a__ , a__ ) ): _UpperCAmelCase = input_row["sentence"] _UpperCAmelCase = 1 _UpperCAmelCase = torch.stack([row["image"] for row in batch] ) _UpperCAmelCase = torch.stack([row["label"] for row in batch] ) _UpperCAmelCase = torch.stack([row["image_start_token"] for row in batch] ) _UpperCAmelCase = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A__ ( ) -> Union[str, Any]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A__ ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
714
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Optional[Any] = ["image_processor", "tokenizer"] A__ : List[Any] = "BlipImageProcessor" A__ : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , snake_case_ , snake_case_ ) -> Any: _UpperCAmelCase = False super().__init__(snake_case_ , snake_case_ ) _UpperCAmelCase = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def __A ( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __A ( self , *snake_case_ , **snake_case_ ) -> Optional[int]: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __A ( self ) -> Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
579
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =DownBlockaD # noqa F405 __lowerCamelCase : List[str] ='down' def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =ResnetDownsampleBlockaD # noqa F405 __lowerCamelCase : Tuple ='down' def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =AttnDownBlockaD # noqa F405 __lowerCamelCase : Optional[int] ='down' def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] =CrossAttnDownBlockaD # noqa F405 __lowerCamelCase : int ='down' def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =SimpleCrossAttnDownBlockaD # noqa F405 __lowerCamelCase : List[str] ='down' @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=__lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] =SkipDownBlockaD # noqa F405 __lowerCamelCase : Optional[int] ='down' @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any =AttnSkipDownBlockaD # noqa F405 __lowerCamelCase : List[str] ='down' @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =DownEncoderBlockaD # noqa F405 __lowerCamelCase : List[str] ='down' @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=__lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = { """in_channels""": 32, """out_channels""": 32, } __a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any =AttnDownEncoderBlockaD # noqa F405 __lowerCamelCase : str ='down' @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = { """in_channels""": 32, """out_channels""": 32, } __a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] =UNetMidBlockaD # noqa F405 __lowerCamelCase : Union[str, Any] ='mid' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = { """in_channels""": 32, """temb_channels""": 128, } __a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =UNetMidBlockaDCrossAttn # noqa F405 __lowerCamelCase : Dict ='mid' def UpperCamelCase_ ( self : str ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] =UNetMidBlockaDSimpleCrossAttn # noqa F405 __lowerCamelCase : Optional[Any] ='mid' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=__lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] =UpBlockaD # noqa F405 __lowerCamelCase : Tuple ='up' @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] =ResnetUpsampleBlockaD # noqa F405 __lowerCamelCase : List[Any] ='up' @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =CrossAttnUpBlockaD # noqa F405 __lowerCamelCase : Union[str, Any] ='up' @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] =SimpleCrossAttnUpBlockaD # noqa F405 __lowerCamelCase : List[str] ='up' @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase , include_encoder_hidden_states=__lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =AttnUpBlockaD # noqa F405 __lowerCamelCase : int ='up' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =SkipUpBlockaD # noqa F405 __lowerCamelCase : Union[str, Any] ='up' @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =AttnSkipUpBlockaD # noqa F405 __lowerCamelCase : List[str] ='up' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : int =UpDecoderBlockaD # noqa F405 __lowerCamelCase : List[str] ='up' @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return super().get_dummy_input(include_temb=__lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = {"""in_channels""": 32, """out_channels""": 32} __a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__lowercase ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any =AttnUpDecoderBlockaD # noqa F405 __lowerCamelCase : Any ='up' @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return super().get_dummy_input(include_temb=__lowercase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {"""in_channels""": 32, """out_channels""": 32} __a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__lowercase )
225
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( __lowercase , __lowercase): '''simple docstring''' @register_to_config def __init__( self :int , a :int = 7_6_8 , ) -> List[Any]: super().__init__() __UpperCamelCase : Any = nn.Parameter(torch.zeros(1 , a ) ) __UpperCamelCase : List[str] = nn.Parameter(torch.ones(1 , a ) ) def _lowerCamelCase ( self :Any , a :Optional[Union[str, torch.device]] = None , a :Optional[torch.dtype] = None , ) -> Union[str, Any]: __UpperCamelCase : List[Any] = nn.Parameter(self.mean.to(a ).to(a ) ) __UpperCamelCase : List[str] = nn.Parameter(self.std.to(a ).to(a ) ) return self def _lowerCamelCase ( self :List[str] , a :Tuple ) -> int: __UpperCamelCase : Optional[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self :List[str] , a :List[Any] ) -> Tuple: __UpperCamelCase : Dict = (embeds * self.std) + self.mean return embeds
94
import re import string import numpy as np import datasets lowercase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowercase : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowercase : List[str] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self :int , a :Optional[Any] , a :Dict , a :Optional[int]=None , a :int=False , a :Tuple=False , a :Optional[int]=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: __UpperCamelCase : List[Any] = np.array([re.sub(a , "" , a ) for x in predictions] ) __UpperCamelCase : Optional[Any] = np.array([re.sub(a , "" , a ) for x in references] ) else: __UpperCamelCase : Optional[int] = np.asarray(a ) __UpperCamelCase : List[str] = np.asarray(a ) if ignore_case: __UpperCamelCase : Optional[int] = np.char.lower(a ) __UpperCamelCase : str = np.char.lower(a ) if ignore_punctuation: __UpperCamelCase : Tuple = string.punctuation.maketrans("" , "" , string.punctuation ) __UpperCamelCase : int = np.char.translate(a , table=a ) __UpperCamelCase : str = np.char.translate(a , table=a ) if ignore_numbers: __UpperCamelCase : List[str] = string.digits.maketrans("" , "" , string.digits ) __UpperCamelCase : Tuple = np.char.translate(a , table=a ) __UpperCamelCase : Union[str, Any] = np.char.translate(a , table=a ) __UpperCamelCase : List[Any] = predictions == references return {"exact_match": np.mean(a ) * 1_0_0}
94
1
def a ( A__ : Optional[int] ) -> List[str]: """simple docstring""" if isinstance(_A , _A ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_A , _A ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" _lowercase =False if num < 0: _lowercase =True _lowercase =-num _lowercase =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_A ) for e in binary ) return "0b" + "".join(str(_A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
291
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCamelCase ( ): lowerCAmelCase_ = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCAmelCase_ = Dataset.from_dict(_A ) return dataset class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = get_dataset() lowerCAmelCase_ = make_duplicate_clusters(UpperCamelCase__, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = get_dataset() lowerCAmelCase_ , lowerCAmelCase_ = deduplicate_dataset(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ), 2 ) print(UpperCamelCase__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], UpperCamelCase__ )
431
0
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple = "x" , SCREAMING_SNAKE_CASE_ : Optional[Any] = 10**-10 , SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 , ) -> complex: """simple docstring""" UpperCAmelCase = symbols(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = lambdify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = lambdify(SCREAMING_SNAKE_CASE_ , diff(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE_ ) != 0: UpperCAmelCase = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE_ ) / diff_function( SCREAMING_SNAKE_CASE_ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
719
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : int , a__ : Optional[Any]=3 , a__ : Tuple=32 , a__ : Optional[int]=3 , a__ : Optional[int]=10 , a__ : Optional[Any]=[8, 16, 32, 64] , a__ : List[str]=[1, 1, 2, 1] , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]="relu" , a__ : Any=3 , a__ : int=None , a__ : List[str]=["stage2", "stage3", "stage4"] , a__ : Optional[int]=[2, 3, 4] , a__ : Optional[Any]=1 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(a__ ) UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = num_groups def __snake_case ( self : Optional[int] ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self : Dict ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __snake_case ( self : Optional[Any] , a__ : str , a__ : Optional[int] , a__ : Union[str, Any] ): UpperCAmelCase = BitModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : int , a__ : List[Any] , a__ : Optional[Any] , a__ : Tuple ): UpperCAmelCase = self.num_labels UpperCAmelCase = BitForImageClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Dict , a__ : Optional[int] , a__ : str , a__ : int ): UpperCAmelCase = BitBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = BitBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCamelCase =( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : List[str] ): UpperCAmelCase = BitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def __snake_case ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Optional[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def __snake_case ( self : Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __snake_case ( self : List[str] ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __snake_case ( self : List[str] ): pass def __snake_case ( self : List[Any] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def __snake_case ( self : int ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=a__ ) for name, module in model.named_modules(): if isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __snake_case ( self : int ): def check_hidden_states_output(a__ : List[str] , a__ : Tuple , a__ : str ): UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase = layer_type UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __snake_case ( self : List[str] ): pass def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __snake_case ( self : int ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BitModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Dict ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case ( self : Optional[Any] ): UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) UpperCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(BitBackbone,) if is_torch_available() else () _lowerCamelCase =BitConfig _lowerCamelCase =False def __snake_case ( self : Dict ): UpperCAmelCase = BitModelTester(self )
570
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'spiece.model'} __lowerCAmelCase = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase = {'bert_for_seq_generation': 5_1_2} class lowerCamelCase_ ( A__ ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = [] __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<::::>" , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Any: """simple docstring""" _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def lowercase ( self ) -> Union[str, Any]: """simple docstring""" return self.sp_model.get_piece_size() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self , lowerCamelCase_ ) -> Any: """simple docstring""" return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> List[str]: """simple docstring""" return self.sp_model.piece_to_id(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.sp_model.IdToPiece(lowerCamelCase_ ) return token def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase_ ) + token _UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase_ ) out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple: """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , "wb" ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
147
import sys import turtle def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) A__ : Dict = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') A__ : Union[str, Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
183
0
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __lowercase : Optional[int] = get_logger(__name__) class _A : """simple docstring""" UpperCamelCase_ : Any = 'dummy_data' UpperCamelCase_ : List[str] = 'datasets' UpperCamelCase_ : Dict = False def __init__( self : str , A_ : str , A_ : str , A_ : Union[Version, str] , A_ : Optional[str] = None , A_ : bool = False , A_ : bool = True , A_ : Optional[List[Callable]] = None , ) -> Optional[Any]: __snake_case = 0 __snake_case = dataset_name __snake_case = cache_dir __snake_case = use_local_dummy_data __snake_case = config # download_callbacks take a single url as input __snake_case = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __snake_case = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __snake_case = str(UpperCAmelCase__ ) # to be downloaded __snake_case = None __snake_case = None @property def lowercase ( self : Optional[Any] ) -> Optional[int]: if self._dummy_file is None: __snake_case = self.download_dummy_data() return self._dummy_file @property def lowercase ( self : Tuple ) -> List[str]: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def lowercase ( self : List[Any] ) -> Optional[Any]: return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def lowercase ( self : Any ) -> Optional[Any]: __snake_case = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __snake_case = cached_path( UpperCAmelCase__ , cache_dir=self.cache_dir , extract_compressed_file=UpperCAmelCase__ , force_extract=UpperCAmelCase__ ) return os.path.join(UpperCAmelCase__ , self.dummy_file_name ) @property def lowercase ( self : List[str] ) -> str: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase ( self : int ) -> str: if self._bucket_url is None: __snake_case = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def lowercase ( self : Optional[Any] ) -> str: # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def lowercase ( self : str , A_ : Optional[int] , *A_ : Any ) -> str: if self.load_existing_dummy_data: # dummy data is downloaded and tested __snake_case = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __snake_case = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return self.create_dummy_data_dict(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , (list, tuple) ): return self.create_dummy_data_list(UpperCAmelCase__ , UpperCAmelCase__ ) else: return self.create_dummy_data_single(UpperCAmelCase__ , UpperCAmelCase__ ) def lowercase ( self : Dict , A_ : List[Any] , *A_ : Optional[int] ) -> Dict: return self.download_and_extract(UpperCAmelCase__ ) def lowercase ( self : Any , A_ : int , A_ : Optional[Any] ) -> Union[str, Any]: return self.download_and_extract(UpperCAmelCase__ ) def lowercase ( self : int , A_ : Optional[Any] , *A_ : Dict , **A_ : Any ) -> Optional[Any]: return path def lowercase ( self : List[str] ) -> List[Any]: return {} def lowercase ( self : List[str] , A_ : int , A_ : str ) -> Dict: __snake_case = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for single_url in single_urls: download_callback(UpperCAmelCase__ ) else: __snake_case = single_urls download_callback(UpperCAmelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __snake_case = [os.path.join(UpperCAmelCase__ , urllib.parse.quote_plus(Path(UpperCAmelCase__ ).name ) ) for x in single_urls] else: __snake_case = single_urls __snake_case = os.path.join(UpperCAmelCase__ , urllib.parse.quote_plus(Path(UpperCAmelCase__ ).name ) ) __snake_case = value # make sure that values are unique if all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __snake_case = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase ( self : Optional[Any] , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Any: __snake_case = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __snake_case = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , UpperCAmelCase__ ) ) for url in data_url ) __snake_case = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __snake_case = [data_url[0]] * len(UpperCAmelCase__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCAmelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(UpperCAmelCase__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(UpperCAmelCase__ ) return dummy_data_list def lowercase ( self : Dict , A_ : Optional[int] , A_ : List[str] ) -> Tuple: for download_callback in self.download_callbacks: download_callback(UpperCAmelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(UpperCAmelCase__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(UpperCAmelCase__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase ( self : Union[str, Any] ) -> int: pass def lowercase ( self : str ) -> Tuple: pass def lowercase ( self : Dict , A_ : Union[str, Any] ) -> List[Any]: def _iter_archive_members(A_ : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __snake_case = Path(self.dummy_file ).parent __snake_case = path.relative_to(UpperCAmelCase__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __snake_case = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCAmelCase__ ) __snake_case = Path(UpperCAmelCase__ ) __snake_case = _iter_archive_members(UpperCAmelCase__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(UpperCAmelCase__ ).as_posix(), file_path.open('''rb''' ) def lowercase ( self : Any , A_ : Dict ) -> List[Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __snake_case = [paths] for path in paths: if os.path.isfile(UpperCAmelCase__ ): if os.path.basename(UpperCAmelCase__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCAmelCase__ ): if os.path.basename(UpperCAmelCase__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(UpperCAmelCase__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
718
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : List[str] , A_ : List[Any]=100 , A_ : Any=13 , A_ : Dict=30 , A_ : Optional[int]=2 , A_ : str=3 , A_ : Tuple=True , A_ : str=True , A_ : Union[str, Any]=32 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=37 , A_ : Any="gelu" , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : Tuple=10 , A_ : int=0.02 , A_ : Tuple=3 , ) -> Optional[int]: __snake_case = parent __snake_case = vocab_size __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase ( self : Optional[int] , A_ : str , A_ : str , A_ : List[str] ) -> List[Any]: __snake_case = FlaxBeitModel(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : List[str] , A_ : Any , A_ : Any , A_ : str ) -> str: __snake_case = FlaxBeitForMaskedImageModeling(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase ( self : str , A_ : List[Any] , A_ : Optional[int] , A_ : List[str] ) -> str: __snake_case = self.type_sequence_label_size __snake_case = FlaxBeitForImageClassification(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case = 1 __snake_case = FlaxBeitForImageClassification(A_ ) __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case = model(A_ ) def lowercase ( self : Dict ) -> List[str]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase ( self : List[Any] ) -> None: __snake_case = FlaxBeitModelTester(self ) __snake_case = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowercase ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase ( self : int ) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(A_ ) __snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def lowercase ( self : Union[str, Any] ) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case = self._prepare_for_class(A_ , A_ ) __snake_case = model_class(A_ ) @jax.jit def model_jitted(A_ : Union[str, Any] , **A_ : Union[str, Any] ): return model(pixel_values=A_ , **A_ ) with self.subTest('''JIT Enabled''' ): __snake_case = model_jitted(**A_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __snake_case = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase ( self : str ) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def lowercase ( self : str ) -> int: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def lowercase ( self : int ) -> Optional[Any]: for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __snake_case = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A_ ) def SCREAMING_SNAKE_CASE ( ): __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @require_flax class _A ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> str: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase ( self : Union[str, Any] ) -> List[str]: __snake_case = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __snake_case = np.ones((1, 196) , dtype=A_ ) # forward pass __snake_case = model(pixel_values=A_ , bool_masked_pos=A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 196, 8_192) self.assertEqual(logits.shape , A_ ) __snake_case = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1E-2 ) ) @slow def lowercase ( self : List[Any] ) -> List[str]: __snake_case = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ) # forward pass __snake_case = model(**A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 1_000) self.assertEqual(logits.shape , A_ ) __snake_case = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __snake_case = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def lowercase ( self : int ) -> str: __snake_case = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ) # forward pass __snake_case = model(**A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 21_841) self.assertEqual(logits.shape , A_ ) __snake_case = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __snake_case = 2_396 self.assertEqual(logits.argmax(-1 ).item() , A_ )
93
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( __lowercase ): def __init__( self : int , UpperCAmelCase__ : VQModel , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : DDIMScheduler ) -> List[str]: super().__init__() self.register_modules(vqvae=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Optional[int] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase__ , ) lowerCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase = {} if accepts_eta: lowerCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual lowerCAmelCase = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase = self.vqvae.decode(UpperCAmelCase__ ).sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
133
'''simple docstring''' def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
133
1
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCamelCase__ ( __magic_name__ : Tuple=None ) -> int: '''simple docstring''' if subparsers is not None: snake_case__ : int = subparsers.add_parser("""env""" ) else: snake_case__ : Dict = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__magic_name__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = torch.__version__ snake_case__ : List[Any] = torch.cuda.is_available() snake_case__ : int = is_xpu_available() snake_case__ : List[Any] = is_npu_available() snake_case__ : List[Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__magic_name__ ): snake_case__ : str = load_config_from_file(args.config_file ).to_dict() snake_case__ : Union[str, Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(__magic_name__ ), """PyTorch NPU available""": str(__magic_name__ ), """System RAM""": f"{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB", } if pt_cuda_available: snake_case__ : List[Any] = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) snake_case__ : Any = ( """\n""".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__magic_name__ , __magic_name__ ) else f"\t{accelerate_config}" ) print(__magic_name__ ) snake_case__ : List[Any] = accelerate_config return info def UpperCamelCase__ ( ) -> int: '''simple docstring''' snake_case__ : Optional[int] = env_command_parser() snake_case__ : List[str] = parser.parse_args() env_command(__magic_name__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
716
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : int = tempfile.mkdtemp() snake_case__ : Optional[int] = 8 # DPR tok snake_case__ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Dict = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Optional[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Dict = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) snake_case__ : str = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def __UpperCamelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __UpperCamelCase ( self ): snake_case__ : Optional[int] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) snake_case__ : str = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case__ : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[int] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) snake_case__ : List[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : Tuple = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): snake_case__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) snake_case__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case__ : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
419
0
def lowerCamelCase__ ( lowercase = 50 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
62
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" def constraint_to_multiple_of(lowercase , lowercase , lowercase=0 , lowercase=None ): SCREAMING_SNAKE_CASE : Any = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE : int = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE : Tuple = (output_size, output_size) if isinstance(lowercase , lowercase ) else output_size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = get_image_size(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = output_size # determine new height and width SCREAMING_SNAKE_CASE : Tuple = output_height / input_height SCREAMING_SNAKE_CASE : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE : Optional[Any] = scale_height SCREAMING_SNAKE_CASE : int = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase ) SCREAMING_SNAKE_CASE : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase ) return (new_height, new_width) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : str = keep_aspect_ratio SCREAMING_SNAKE_CASE : int = ensure_multiple_of SCREAMING_SNAKE_CASE : Any = resample SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_factor SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ): SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = get_resize_output_image_size( UpperCAmelCase_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCAmelCase_ , multiple=UpperCAmelCase_ , ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Dict , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Any = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Tuple] = None ): SCREAMING_SNAKE_CASE : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE : str = [] for idx in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : str = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
62
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=3_0 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1_0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=0.6 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Tuple = parent __magic_name__ :Dict = batch_size __magic_name__ :Any = image_size __magic_name__ :Dict = patch_size __magic_name__ :List[Any] = num_channels __magic_name__ :int = is_training __magic_name__ :Union[str, Any] = use_labels __magic_name__ :str = hidden_size __magic_name__ :Dict = num_hidden_layers __magic_name__ :Any = num_attention_heads __magic_name__ :Dict = intermediate_size __magic_name__ :Optional[Any] = hidden_act __magic_name__ :Optional[Any] = hidden_dropout_prob __magic_name__ :Optional[int] = attention_probs_dropout_prob __magic_name__ :str = type_sequence_label_size __magic_name__ :int = initializer_range __magic_name__ :Union[str, Any] = mask_ratio __magic_name__ :Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ :Any = (image_size // patch_size) ** 2 __magic_name__ :Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :int = None if self.use_labels: __magic_name__ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ :Optional[Any] = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = TFViTMAEModel(config=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = TFViTMAEForPreTraining(__lowerCAmelCase ) __magic_name__ :Optional[int] = model(__lowerCAmelCase , training=__lowerCAmelCase ) # expected sequence length = num_patches __magic_name__ :Dict = (self.image_size // self.patch_size) ** 2 __magic_name__ :str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ :Tuple = 1 __magic_name__ :int = TFViTMAEForPreTraining(__lowerCAmelCase ) __magic_name__ :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ :Optional[Any] = model(__lowerCAmelCase , training=__lowerCAmelCase ) __magic_name__ :List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) :List[Any] = config_and_inputs __magic_name__ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :int = TFViTMAEModelTester(self ) __magic_name__ :int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Layer ) ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :Optional[Any] = model_class(__lowerCAmelCase ) __magic_name__ :str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :Union[str, Any] = [*signature.parameters.keys()] __magic_name__ :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def A ( self ): """simple docstring""" # make the mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Any = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ :Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ :Any = model_class(__lowerCAmelCase ) __magic_name__ :Tuple = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Any = model(__lowerCAmelCase , noise=__lowerCAmelCase ) __magic_name__ :Optional[Any] = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :List[str] = model(**__lowerCAmelCase , noise=__lowerCAmelCase ) __magic_name__ :Optional[Any] = outputs_dict[0].numpy() __magic_name__ :str = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def A ( self ): """simple docstring""" # make the mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowerCAmelCase ): __magic_name__ :List[Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowerCAmelCase ): __magic_name__ :Any = v.numpy() else: __magic_name__ :Optional[int] = np.array(__lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ :Dict = model_class(__lowerCAmelCase ) __magic_name__ :Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :int = prepare_numpy_arrays(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , noise=__lowerCAmelCase ) __magic_name__ :Any = model(**__lowerCAmelCase , noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" # make masks reproducible np.random.seed(2 ) __magic_name__ :List[str] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ :Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ :Optional[int] = tf.constant(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ :str = tf_noise super().check_pt_tf_models(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Optional[int] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowerCAmelCase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__lowerCAmelCase , __lowerCAmelCase ),) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowerCAmelCase , '''_keras_serializable''' , __lowerCAmelCase ) } __magic_name__ :Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ :Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ :Dict = tf.convert_to_tensor(__lowerCAmelCase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ :Tuple = main_layer_class(__lowerCAmelCase ) __magic_name__ :Optional[int] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ :List[Any] = tf.keras.Model(__lowerCAmelCase , outputs=main_layer(__lowerCAmelCase ) ) __magic_name__ :int = model(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ :Optional[Any] = os.path.join(__lowerCAmelCase , '''keras_model.h5''' ) model.save(__lowerCAmelCase ) __magic_name__ :Any = tf.keras.models.load_model( __lowerCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowerCAmelCase , tf.keras.Model ) __magic_name__ :int = model(__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase ) @slow def A ( self ): """simple docstring""" # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ :Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ :str = model_class(__lowerCAmelCase ) __magic_name__ :Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = model(__lowerCAmelCase , noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ :Optional[int] = outputs.last_hidden_state.numpy() __magic_name__ :Union[str, Any] = 0 else: __magic_name__ :Any = outputs.logits.numpy() __magic_name__ :Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase , saved_model=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = model_class.from_pretrained(__lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase , noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ :Tuple = after_outputs['''last_hidden_state'''].numpy() __magic_name__ :Optional[int] = 0 else: __magic_name__ :int = after_outputs['''logits'''].numpy() __magic_name__ :Union[str, Any] = 0 __magic_name__ :Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase , 1E-5 ) def A ( self ): """simple docstring""" # make mask reproducible np.random.seed(2 ) __magic_name__ , __magic_name__ :str = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Optional[int] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ :List[Any] = model_class(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase , noise=__lowerCAmelCase ) __magic_name__ :List[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowerCAmelCase ) __magic_name__ :int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ :Dict = model_class.from_config(model.config ) __magic_name__ :Any = new_model(__lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ :Any = new_model(__lowerCAmelCase , noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase , __lowerCAmelCase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def A ( self ): """simple docstring""" pass @slow def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def A ( self ): """simple docstring""" # make random mask reproducible across the PT and TF model np.random.seed(2 ) __magic_name__ :Union[str, Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) __magic_name__ :str = self.default_image_processor __magic_name__ :str = prepare_img() __magic_name__ :List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ :List[str] = ViTMAEConfig() __magic_name__ :Dict = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ :Dict = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ :Tuple = model(**__lowerCAmelCase , noise=__lowerCAmelCase ) # verify the logits __magic_name__ :Tuple = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :Any = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 )
180
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
180
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ) -> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: """simple docstring""" UpperCAmelCase = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = self.num_choices UpperCAmelCase = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Optional[Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _A : int = False _A : Dict = False def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = NystromformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase = model(snake_case__ )[0] UpperCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """the [MASK] of Belgium is Brussels""" UpperCAmelCase = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = tokenizer(snake_case__ , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase = model(encoding.input_ids ).logits UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , """capital""" )
673
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( a_ ): _A : int = 'wav2vec2' def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=5_12 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = xvector_output_dim @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
673
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __a = 5_0_0_0_0 __a = 5_0_0_0 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def UpperCamelCase_ ( a_ , a_ ) ->int: for i in range(lowercase__ ): A =dataset[i] @get_duration def UpperCamelCase_ ( a_ , a_ , a_ ) ->Tuple: for i in range(0 , len(lowercase__ ) , lowercase__ ): A =dataset[i : i + batch_size] @get_duration def UpperCamelCase_ ( a_ , a_ , a_ ) ->Tuple: with dataset.formatted_as(type=lowercase__ ): for i in range(lowercase__ ): A =dataset[i] @get_duration def UpperCamelCase_ ( a_ , a_ , a_ , a_ ) ->Optional[Any]: with dataset.formatted_as(type=lowercase__ ): for i in range(0 , lowercase__ , lowercase__ ): A =dataset[i : i + batch_size] def UpperCamelCase_ ( ) ->Union[str, Any]: A ={"num examples": SPEED_TEST_N_EXAMPLES} A =[ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] A =[ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) A =datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) A =generate_example_dataset( os.path.join(lowercase__ , "dataset.arrow" ) , lowercase__ , num_examples=lowercase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowercase__ ) ) A =func(lowercase__ , **lowercase__ ) print("shuffling dataset" ) A =dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowercase__ ) ) A =func( lowercase__ , **lowercase__ ) with open(lowercase__ , "wb" ) as f: f.write(json.dumps(lowercase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters A_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): # Recurse if needed if "." in tensor_name: lowerCamelCase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) lowerCamelCase_ = new_module lowerCamelCase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) lowerCamelCase_ = tensor_name in module._buffers lowerCamelCase_ = getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) lowerCamelCase_ = False lowerCamelCase_ = False if is_buffer or not is_bitsandbytes_available(): lowerCamelCase_ = False lowerCamelCase_ = False else: lowerCamelCase_ = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) lowerCamelCase_ = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: lowerCamelCase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCamelCase_ = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,torch.Tensor ): lowerCamelCase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowerCamelCase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,lowerCAmelCase__ ) and fpaa_statistics is None: lowerCamelCase_ = new_value.T lowerCamelCase_ = old_value.__dict__ if is_abit: lowerCamelCase_ = bnb.nn.IntaParams(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ ) elif is_abit: lowerCamelCase_ = bnb.nn.Paramsabit(lowerCAmelCase__ ,requires_grad=lowerCAmelCase__ ,**lowerCAmelCase__ ).to(lowerCAmelCase__ ) lowerCamelCase_ = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(lowerCAmelCase__ ) ) else: if value is None: lowerCamelCase_ = old_value.to(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,torch.Tensor ): lowerCamelCase_ = value.to(lowerCAmelCase__ ) else: lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ,device=lowerCAmelCase__ ) if is_buffer: lowerCamelCase_ = new_value else: lowerCamelCase_ = nn.Parameter(lowerCAmelCase__ ,requires_grad=old_value.requires_grad ) lowerCamelCase_ = new_value def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=False ): for name, module in model.named_children(): if current_key_name is None: lowerCamelCase_ = [] current_key_name.append(lowerCAmelCase__ ) if (isinstance(lowerCAmelCase__ ,nn.Linear ) or isinstance(lowerCAmelCase__ ,lowerCAmelCase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(lowerCAmelCase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = module.weight.shape else: lowerCamelCase_ = module.in_features lowerCamelCase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCamelCase_ = bnb.nn.LinearabitLt( lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) lowerCamelCase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCamelCase_ = bnb.nn.Linearabit( lowerCAmelCase__ ,lowerCAmelCase__ ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) lowerCamelCase_ = True # Store the module class in case we need to transpose the weight later lowerCamelCase_ = type(lowerCAmelCase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowerCAmelCase__ ) if len(list(module.children() ) ) > 0: lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,has_been_replaced=lowerCAmelCase__ ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): lowerCamelCase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowerCamelCase_ , lowerCamelCase_ = _replace_with_bnb_linear( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,lowerCAmelCase__ ,) return replace_with_bnb_linear(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def lowercase ( *lowerCAmelCase__ ,**lowerCAmelCase__ ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,lowerCAmelCase__ ,) return set_module_quantized_tensor_to_device(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCamelCase_ = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: lowerCamelCase_ = sum(lowerCAmelCase__ ,[] ) lowerCamelCase_ = len(lowerCAmelCase__ ) > 0 # Check if it is a base model lowerCamelCase_ = not hasattr(lowerCAmelCase__ ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase_ = list(model.named_children() ) lowerCamelCase_ = [list_modules[-1][0]] # add last module together with tied weights lowerCamelCase_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) lowerCamelCase_ = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys lowerCamelCase_ = ['''.weight''', '''.bias'''] lowerCamelCase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase_ = name.replace(lowerCAmelCase__ ,'''''' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCAmelCase = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' UpperCAmelCase = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' UpperCAmelCase = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase = evaluate(dataset=a_ , predictions=a_ ) return score
706
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } UpperCAmelCase = '''▁''' class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case="</s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case=100 , snake_case=None , snake_case = None , snake_case=True , **snake_case , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase = [F'''<extra_id_{i}>''' for i in range(snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase = len(set(filter(lambda snake_case : bool('extra_id' in str(snake_case ) ) , snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowercase = legacy lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , extra_ids=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case , **snake_case , ) lowercase = vocab_file lowercase = extra_ids lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case , snake_case ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ): lowercase = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case )) + [1] return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self ): return list( set(filter(lambda snake_case : bool(re.search(r'<extra_id_\d+>' , snake_case ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): return [self._convert_token_to_id(snake_case ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = self._add_eos_if_not_present(snake_case ) if token_ids_a is None: return token_ids_a else: lowercase = self._add_eos_if_not_present(snake_case ) return token_ids_a + token_ids_a def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , snake_case ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowercase = SPIECE_UNDERLINE + text.replace(snake_case , ' ' ) return super().tokenize(snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , **snake_case ): if not self.legacy: lowercase = text.startswith(snake_case ) if is_first: lowercase = text[1:] lowercase = self.sp_model.encode(snake_case , out_type=snake_case ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case ): lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token.startswith('<extra_id_' ): lowercase = re.match(r'<extra_id_(\d+)>' , snake_case ) lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if index < self.sp_model.get_piece_size(): lowercase = self.sp_model.IdToPiece(snake_case ) else: lowercase = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] lowercase = '' lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(snake_case ) lowercase = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
565
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Dict ={ """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __magic_name__ , __magic_name__ : List[Any] =input_paths_and_base_extractors[compression_format] if input_path is None: __magic_name__ : Optional[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) assert base_extractor.is_extractable(lowerCamelCase ) __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : Any =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Any =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : Tuple =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : List[str] ={ """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __magic_name__ : int =input_paths[compression_format] if input_path is None: __magic_name__ : List[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) __magic_name__ : Optional[int] =Extractor.infer_extractor_format(lowerCamelCase ) assert extractor_format is not None __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : List[str] =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Optional[int] =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : str =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import tarfile __magic_name__ : Union[str, Any] =tmp_path / """data_dot_dot""" directory.mkdir() __magic_name__ : List[str] =directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase ): import tarfile __magic_name__ : Any =tmp_path / """data_sym_link""" directory.mkdir() __magic_name__ : Dict =directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCamelCase ) with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : int ={ """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __magic_name__ : Optional[int] =insecure_tar_files[insecure_tar_file] __magic_name__ : str =tmp_path / """extracted""" TarExtractor.extract(lowerCamelCase , lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( lowerCamelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __magic_name__ : List[str] =tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __magic_name__ : Any =( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(lowerCamelCase ) assert zipfile.is_zipfile(str(lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase ) # but we're right
21
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowercase_ = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() lowercase_ = '|'.join(sys.argv[1:]) lowercase_ = re.compile(rf"""^({joined_dirs}).*?\.py$""") lowercase_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
562
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class _lowercase ( a ): _UpperCamelCase = """marian""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _UpperCAmelCase=58_101 , _UpperCAmelCase=None , _UpperCAmelCase=1_024 , _UpperCAmelCase=12 , _UpperCAmelCase=4_096 , _UpperCAmelCase=16 , _UpperCAmelCase=12 , _UpperCAmelCase=4_096 , _UpperCAmelCase=16 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="gelu" , _UpperCAmelCase=1_024 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=58_100 , _UpperCAmelCase=False , _UpperCAmelCase=58_100 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=True , **_UpperCAmelCase , ): A : Dict = vocab_size A : Optional[int] = decoder_vocab_size or vocab_size A : int = max_position_embeddings A : Union[str, Any] = d_model A : Dict = encoder_ffn_dim A : Dict = encoder_layers A : Tuple = encoder_attention_heads A : int = decoder_ffn_dim A : List[Any] = decoder_layers A : Union[str, Any] = decoder_attention_heads A : Optional[int] = dropout A : Optional[Any] = attention_dropout A : int = activation_dropout A : Dict = activation_function A : Union[str, Any] = init_std A : List[str] = encoder_layerdrop A : Optional[Any] = decoder_layerdrop A : List[str] = use_cache A : Tuple = encoder_layers A : int = scale_embedding # scale factor will be sqrt(d_model) if True A : Tuple = share_encoder_decoder_embeddings super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) class _lowercase ( a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def snake_case ( self ): if self.task in ["default", "seq2seq-lm"]: A : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A : str = {0: '''batch'''} A : Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} A : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. A : Union[str, Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A, A : Tuple = self.num_layers for i in range(_UpperCAmelCase ): A : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} A : str = {0: '''batch''', 2: '''past_sequence + sequence'''} else: A : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def snake_case ( self ): if self.task in ["default", "seq2seq-lm"]: A : Union[str, Any] = super().outputs else: A : Union[str, Any] = super(_UpperCAmelCase , self ).outputs if self.use_past: A, A : Tuple = self.num_layers for i in range(_UpperCAmelCase ): A : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} A : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): A : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Generate decoder inputs A : Any = seq_length if not self.use_past else 1 A : Any = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A : Optional[int] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A : Dict = dict(**_UpperCAmelCase , **_UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A, A : Any = common_inputs['''input_ids'''].shape A : List[Any] = common_inputs['''decoder_input_ids'''].shape[1] A, A : Union[str, Any] = self.num_attention_heads A : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A : int = decoder_seq_length + 3 A : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A : Dict = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase )] , dim=1 ) A : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A, A : Tuple = self.num_layers A : Tuple = min(_UpperCAmelCase , _UpperCAmelCase ) A : Tuple = max(_UpperCAmelCase , _UpperCAmelCase ) - min_num_layers A : List[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase ), ) ) # TODO: test this. A : Union[str, Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_UpperCAmelCase , _UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) ) return common_inputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): A : str = self._generate_dummy_inputs_for_encoder_and_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A, A : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A : int = seqlen + 2 A, A : str = self.num_layers A, A : List[Any] = self.num_attention_heads A : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A : str = common_inputs['''attention_mask'''].dtype A : Optional[int] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) A : List[Any] = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(_UpperCAmelCase ) ] return common_inputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A : int = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A : List[str] = tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) A : List[Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence A : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size A : str = dict(tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) return common_inputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: A : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) else: A : Dict = self._generate_dummy_inputs_for_causal_lm( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) return common_inputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: A : List[Any] = super()._flatten_past_key_values_(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: A : Tuple = super(_UpperCAmelCase , self )._flatten_past_key_values_( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @property def snake_case ( self ): return 1E-4
537
'''simple docstring''' from __future__ import annotations import math def _lowerCamelCase( UpperCamelCase__ : int ) -> list[int]: if num <= 0: A : str = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(UpperCamelCase__ ) A : int = [True] * (num + 1) A : Dict = [] A : str = 2 A : Any = int(math.sqrt(UpperCamelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(UpperCamelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , UpperCamelCase__ ): if sieve[i] is True: A : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(UpperCamelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
537
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase_ ( unittest.TestCase ): def __init__( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Optional[int]=30 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : int=10 , __lowerCamelCase : int=0.0_2 , ): snake_case__ : Union[str, Any] = parent snake_case__ : str = batch_size snake_case__ : List[Any] = image_size snake_case__ : List[str] = patch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : int = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : List[str] = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Union[str, Any] = type_sequence_label_size snake_case__ : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Optional[Any] = (image_size // patch_size) ** 2 snake_case__ : List[str] = num_patches + 1 def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _lowerCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): snake_case__ : Union[str, Any] = FlaxViTModel(config=__lowerCamelCase ) snake_case__ : List[Any] = model(__lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : str = (self.image_size, self.image_size) snake_case__ : Union[str, Any] = (self.patch_size, self.patch_size) snake_case__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): snake_case__ : int = self.type_sequence_label_size snake_case__ : Any = FlaxViTForImageClassification(config=__lowerCamelCase ) snake_case__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : List[Any] = 1 snake_case__ : Dict = FlaxViTForImageClassification(__lowerCamelCase ) snake_case__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Optional[int] = model(__lowerCamelCase ) def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ) : Union[str, Any] = config_and_inputs snake_case__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase_ ( lowerCAmelCase_ , unittest.TestCase ): A_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowerCAmelCase ( self : Tuple ): snake_case__ : Tuple = FlaxViTModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCAmelCase ( self : Tuple ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowerCAmelCase ( self : Tuple ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__lowerCamelCase ) snake_case__ : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCAmelCase ( self : Dict ): snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Optional[Any] = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : str , **__lowerCamelCase : str ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest('JIT Enabled' ): snake_case__ : Optional[Any] = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case__ : int = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCAmelCase ( self : str ): for model_class_name in self.all_model_classes: snake_case__ : Optional[Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) snake_case__ : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__lowerCamelCase )
270
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ = 16 A_ = 32 def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 ) -> int: snake_case__ : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) snake_case__ : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case__ : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Union[str, Any] = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : int = 16 elif accelerator.mixed_precision != "no": snake_case__ : Tuple = 8 else: snake_case__ : Tuple = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='longest' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. snake_case__ : Any = DataLoader( tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __SCREAMING_SNAKE_CASE ) == "1": snake_case__ : Optional[int] = 2 # New Code # snake_case__ : List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__SCREAMING_SNAKE_CASE ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[Any] = config['lr'] snake_case__ : Dict = int(config['num_epochs'] ) snake_case__ : Any = int(config['seed'] ) snake_case__ : List[str] = int(config['batch_size'] ) snake_case__ : Tuple = evaluate.load('glue' , 'mrpc' ) set_seed(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ : Any = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Dict = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : int = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case__ : str = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__SCREAMING_SNAKE_CASE ): snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = output.loss accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) snake_case__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Optional[int]: snake_case__ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__SCREAMING_SNAKE_CASE , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) snake_case__ : Any = parser.parse_args() snake_case__ : Dict = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
270
1
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = OmegaConf.load(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowerCAmelCase__ :Dict = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase__ :Union[str, Any] = {} lowerCAmelCase__ :Optional[Any] = 'first_stage_model.' for key in keys: if key.startswith(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase__ :Dict = {} lowerCAmelCase__ :List[Any] = 'model.diffusion_model.' for key in keys: if key.startswith(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = state_dict[key] lowerCAmelCase__ :Tuple = config.model.params.first_stage_config.params lowerCAmelCase__ :List[str] = config.model.params.unet_config.params lowerCAmelCase__ :Optional[int] = VQModel(**_SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = UNetLDMModel(**_SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ :Any = LDMPipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) __A = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
711
"""simple docstring""" from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[str] = """SpeechT5FeatureExtractor""" __magic_name__ :List[Any] = """SpeechT5Tokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = kwargs.pop('audio' , __UpperCAmelCase ) lowerCAmelCase__ :int = kwargs.pop('text' , __UpperCAmelCase ) lowerCAmelCase__ :Any = kwargs.pop('text_target' , __UpperCAmelCase ) lowerCAmelCase__ :int = kwargs.pop('audio_target' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = kwargs.pop('sampling_rate' , __UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase__ :List[str] = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) elif text is not None: lowerCAmelCase__ :str = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) else: lowerCAmelCase__ :Any = None if audio_target is not None: lowerCAmelCase__ :int = self.feature_extractor(audio_target=__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :int = targets['input_values'] elif text_target is not None: lowerCAmelCase__ :Optional[int] = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Dict = targets['input_ids'] else: lowerCAmelCase__ :Dict = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ :Union[str, Any] = labels lowerCAmelCase__ :Dict = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase__ :Dict = decoder_attention_mask return inputs def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = kwargs.pop('input_values' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = kwargs.pop('input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :Any = kwargs.pop('labels' , __UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase__ :Union[str, Any] = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif input_ids is not None: lowerCAmelCase__ :Optional[int] = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) else: lowerCAmelCase__ :int = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and "input_ids" in labels[0]): lowerCAmelCase__ :List[str] = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = targets['input_ids'] else: lowerCAmelCase__ :Optional[int] = self.feature_extractor.feature_size lowerCAmelCase__ :int = self.feature_extractor.num_mel_bins lowerCAmelCase__ :Dict = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = feature_size_hack lowerCAmelCase__ :str = targets['input_values'] else: lowerCAmelCase__ :Optional[Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase__ :Union[str, Any] = labels lowerCAmelCase__ :List[Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase__ :Tuple = decoder_attention_mask return inputs def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
560
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowercase : Tuple ={"""UserAgent""": UserAgent().random} def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Union[str, Any] = script.contents[0] lowerCamelCase_ : Optional[int] = json.loads(data[data.find('{\"config\"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase_ : def __init__( self : List[str] , lowerCamelCase : Tuple ): lowerCamelCase_ : Dict = F"https://www.instagram.com/{username}/" lowerCamelCase_ : Dict = self.get_json() def __a ( self : List[Any] ): lowerCamelCase_ : List[str] = requests.get(self.url , headers=a_ ).text lowerCamelCase_ : Optional[int] = BeautifulSoup(a_ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ): return F"{self.__class__.__name__}(\'{self.username}\')" def __str__( self : Any ): return F"{self.fullname} ({self.username}) is {self.biography}" @property def __a ( self : int ): return self.user_data["username"] @property def __a ( self : List[str] ): return self.user_data["full_name"] @property def __a ( self : Any ): return self.user_data["biography"] @property def __a ( self : int ): return self.user_data["business_email"] @property def __a ( self : Tuple ): return self.user_data["external_url"] @property def __a ( self : List[Any] ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self : Optional[int] ): return self.user_data["edge_follow"]["count"] @property def __a ( self : Optional[int] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self : Optional[int] ): return self.user_data["profile_pic_url_hd"] @property def __a ( self : Any ): return self.user_data["is_verified"] @property def __a ( self : Any ): return self.user_data["is_private"] def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ = "github" ): import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCamelCase_ : Optional[Any] = InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,__UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowercase : str =InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
364
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = ["""input_features"""] def __init__( self : int , a_ : Optional[int]=80 , a_ : Any=1_60_00 , a_ : Tuple=1_60 , a_ : Union[str, Any]=30 , a_ : int=4_00 , a_ : List[str]=0.0 , a_ : Dict=False , **a_ : Optional[Any] , ): super().__init__( feature_size=a_ , sampling_rate=a_ , padding_value=a_ , return_attention_mask=a_ , **a_ , ) lowerCAmelCase_ : Optional[int] = n_fft lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : str = chunk_length lowerCAmelCase_ : Optional[int] = chunk_length * sampling_rate lowerCAmelCase_ : Any = self.n_samples // hop_length lowerCAmelCase_ : Optional[Any] = sampling_rate lowerCAmelCase_ : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=a_ , norm="slaney" , mel_scale="slaney" , ) def lowerCamelCase ( self : Optional[int] , a_ : np.array ): lowerCAmelCase_ : List[Any] = spectrogram( a_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCAmelCase_ : Tuple = log_spec[:, :-1] lowerCAmelCase_ : Dict = np.maximum(a_ , log_spec.max() - 8.0 ) lowerCAmelCase_ : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase ( a_ : List[np.ndarray] , a_ : List[np.ndarray] , a_ : float = 0.0 ): if attention_mask is not None: lowerCAmelCase_ : Tuple = np.array(a_ , np.intaa ) lowerCAmelCase_ : Dict = [] for vector, length in zip(a_ , attention_mask.sum(-1 ) ): lowerCAmelCase_ : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Union[str, Any] = padding_value normed_input_values.append(a_ ) else: lowerCAmelCase_ : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : bool = True , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[bool] = None , a_ : Optional[str] = "max_length" , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , **a_ : Any , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Tuple = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Tuple = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_ , np.ndarray ): lowerCAmelCase_ : Optional[Any] = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : List[str] = [np.asarray([raw_speech] ).T] lowerCAmelCase_ : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ : Optional[int] = self.pad( a_ , padding=a_ , max_length=max_length if max_length else self.n_samples , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ : Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCAmelCase_ : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCAmelCase_ : Dict = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCAmelCase_ : List[Any] = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0] , a_ ): lowerCAmelCase_ : Any = [np.asarray(a_ , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ : Union[str, Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ : List[Any] = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
610
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=snake_case__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=snake_case__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=snake_case__ ) return parser.parse_args() def UpperCamelCase ( ): '''simple docstring''' __snake_case :Dict = parse_args() # Import training_script as a module. __snake_case :List[str] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __snake_case :Optional[Any] = script_fpath.stem __snake_case :Optional[int] = importlib.import_module(snake_case__ ) # Patch sys.argv __snake_case :Union[str, Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
717
from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__ , a__ , ) -> None: '''simple docstring''' __snake_case :Dict = claim_vector __snake_case :Optional[int] = allocated_resources_table __snake_case :Optional[int] = maximum_claim_table def __lowercase ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(a__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(a__ ): i for i in self.__need()} def __lowercase ( self , **a__ ) -> None: '''simple docstring''' __snake_case :Optional[int] = self.__need() __snake_case :List[Any] = self.__allocated_resources_table __snake_case :str = self.__available_resources() __snake_case :List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __snake_case :Dict = False for each_need in need_list: __snake_case :Dict = True for index, need in enumerate(a__ ): if need > available_resources[index]: __snake_case :Dict = False break if execution: __snake_case :Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case :List[str] = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(a__ ) # update available/freed resources stack __snake_case :Tuple = np.array(a__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(a__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __lowercase ( self ) -> Dict: '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(a__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(a__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
291
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __a : '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=10 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=2 , _lowerCamelCase=2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=0.9 , _lowerCamelCase=None , ) -> List[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = VideoMAEModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = VideoMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size , -1 ).bool() __lowercase = model(_lowerCamelCase , _lowerCamelCase ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( __a , __a , unittest.TestCase ): '''simple docstring''' _lowerCamelCase : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _lowerCamelCase : str = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : List[str] = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Dict = False def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> str: '''simple docstring''' __lowercase = copy.deepcopy(_lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() __lowercase = bool_masked_pos.to(_lowerCamelCase ) if return_labels: if model_class in [ *get_values(_lowerCamelCase ), ]: __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowercase = len(_lowerCamelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( ) ->Optional[int]: __lowercase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __lowercase = np.load(__magic_name__ ) return list(__magic_name__ ) @require_torch @require_vision class __a ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCamelCase , return_tensors="pt" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) __lowercase = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCamelCase , return_tensors="pt" ).to(_lowerCamelCase ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __lowercase = torch.load(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size([1, 1_408, 1_536] ) __lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_lowerCamelCase ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5142] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCamelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_lowerCamelCase ).to( _lowerCamelCase ) with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = torch.tensor(torch.tensor([0.6469] ) , device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCamelCase , atol=1e-4 ) )
118
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowercase = get_logger(__name__) class __a ( enum.Enum ): '''simple docstring''' _lowerCamelCase : Tuple = """all_checks""" _lowerCamelCase : Optional[int] = """basic_checks""" _lowerCamelCase : str = """no_checks""" class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__=None ) ->Union[str, Any]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = " for " + verification_name if verification_name is not None else "" if len(__magic_name__ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->Any: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__magic_name__ ) > 0: raise NonMatchingSplitsSizesError(str(__magic_name__ ) ) logger.info("All the splits matched successfully." ) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ = True ) ->dict: if record_checksum: __lowercase = shaaaa() with open(__magic_name__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(__magic_name__ ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(__magic_name__ ), "checksum": checksum} def lowerCAmelCase__ ( __magic_name__ ) ->List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
118
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A__ : lowerCamelCase__ : CommonSchedulerState # setable values lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : Optional[int] =None @classmethod def lowercase ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" return cls(common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase ) @dataclass class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : DDPMSchedulerState class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Optional[int] =[e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ : jnp.dtype @property def lowercase ( self ) -> Optional[int]: """simple docstring""" return True @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = 0.0_0_0_1 , lowerCamelCase = 0.0_2 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = "fixed_small" , lowerCamelCase = True , lowerCamelCase = "epsilon" , lowerCamelCase = jnp.floataa , ) -> Optional[int]: """simple docstring""" __magic_name__ : Optional[Any] = dtype def lowercase ( self , lowerCamelCase = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: __magic_name__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __magic_name__ : Dict = jnp.array(1.0 , dtype=self.dtype ) __magic_name__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase , ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None ) -> jnp.ndarray: """simple docstring""" return sample def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = () ) -> DDPMSchedulerState: """simple docstring""" __magic_name__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __magic_name__ : Union[str, Any] = (jnp.arange(0 , lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase , timesteps=lowerCamelCase , ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ) -> Optional[Any]: """simple docstring""" __magic_name__ : Optional[Any] = state.common.alphas_cumprod[t] __magic_name__ : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Optional[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __magic_name__ : Dict = jnp.clip(lowerCamelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __magic_name__ : str = jnp.log(jnp.clip(lowerCamelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": __magic_name__ : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __magic_name__ : Any = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __magic_name__ : Optional[Any] = variance __magic_name__ : Union[str, Any] = state.common.betas[t] __magic_name__ : List[Any] = (predicted_variance + 1) / 2 __magic_name__ : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __magic_name__ : Dict = timestep if key is None: __magic_name__ : Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __magic_name__ , __magic_name__ : List[str] = jnp.split(lowerCamelCase , sample.shape[1] , axis=1 ) else: __magic_name__ : Dict = None # 1. compute alphas, betas __magic_name__ : Dict = state.common.alphas_cumprod[t] __magic_name__ : List[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : int = model_output elif self.config.prediction_type == "v_prediction": __magic_name__ : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = jnp.clip(lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __magic_name__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __magic_name__ : Dict = jax.random.split(lowerCamelCase , num=1 ) __magic_name__ : int = jax.random.normal(lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase , lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise __magic_name__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __magic_name__ : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase , state=lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __len__( self ) -> Optional[Any]: """simple docstring""" return self.config.num_train_timesteps
336
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(lowerCamelCase ) def lowercase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ) -> List[Any]: """simple docstring""" __magic_name__ : List[str] = {} if frame_sampling_rate is not None: __magic_name__ : Optional[int] = frame_sampling_rate if num_frames is not None: __magic_name__ : Optional[Any] = num_frames __magic_name__ : Union[str, Any] = {} if top_k is not None: __magic_name__ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(lowerCamelCase , **lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 ) -> int: """simple docstring""" if num_frames is None: __magic_name__ : Any = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): __magic_name__ : str = BytesIO(requests.get(lowerCamelCase ).content ) __magic_name__ : Optional[int] = VideoReader(lowerCamelCase ) videoreader.seek(0 ) __magic_name__ : Union[str, Any] = 0 __magic_name__ : Tuple = num_frames * frame_sampling_rate - 1 __magic_name__ : Tuple = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa ) __magic_name__ : Union[str, Any] = videoreader.get_batch(lowerCamelCase ).asnumpy() __magic_name__ : List[str] = list(lowerCamelCase ) __magic_name__ : Tuple = self.image_processor(lowerCamelCase , return_tensors=self.framework ) return model_inputs def lowercase ( self , lowerCamelCase ) -> str: """simple docstring""" __magic_name__ : Union[str, Any] = self.model(**lowerCamelCase ) return model_outputs def lowercase ( self , lowerCamelCase , lowerCamelCase=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: __magic_name__ : Dict = self.model.config.num_labels if self.framework == "pt": __magic_name__ : Tuple = model_outputs.logits.softmax(-1 )[0] __magic_name__ , __magic_name__ : str = probs.topk(lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __magic_name__ : List[str] = scores.tolist() __magic_name__ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
336
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig a = logging.get_logger(__name__) # General docstring a = 'PoolFormerConfig' # Base docstring a = 'sail/poolformer_s12' a = [1, 512, 7, 7] # Image classification docstring a = 'sail/poolformer_s12' a = 'tabby, tabby cat' a = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a_ ( __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False ) -> Tuple: """simple docstring""" if drop_prob == 0.0 or not training: return input snake_case: List[str] =1 - drop_prob snake_case: Dict =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: int =keep_prob + torch.rand(__UpperCAmelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Tuple =input.div(__UpperCAmelCase ) * random_tensor return output class a_ ( nn.Module ): def __init__( self : Optional[int] , a_ : Optional[float] = None ) -> None: super().__init__() snake_case: Optional[int] =drop_prob def UpperCamelCase ( self : Any , a_ : torch.Tensor ) -> torch.Tensor: return drop_path(a_ , self.drop_prob , self.training ) def UpperCamelCase ( self : List[Any] ) -> str: return "p={}".format(self.drop_prob ) class a_ ( nn.Module ): def __init__( self : int , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : List[str] , a_ : List[str] , a_ : Dict , a_ : Tuple=None ) -> Dict: super().__init__() snake_case: Dict =patch_size if isinstance(a_ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: Dict =stride if isinstance(a_ , collections.abc.Iterable ) else (stride, stride) snake_case: Dict =padding if isinstance(a_ , collections.abc.Iterable ) else (padding, padding) snake_case: Optional[Any] =nn.Convad(a_ , a_ , kernel_size=a_ , stride=a_ , padding=a_ ) snake_case: Dict =norm_layer(a_ ) if norm_layer else nn.Identity() def UpperCamelCase ( self : Dict , a_ : List[str] ) -> Optional[int]: snake_case: Union[str, Any] =self.projection(a_ ) snake_case: Dict =self.norm(a_ ) return embeddings class a_ ( nn.GroupNorm ): def __init__( self : str , a_ : Optional[Any] , **a_ : str ) -> Dict: super().__init__(1 , a_ , **a_ ) class a_ ( nn.Module ): def __init__( self : Optional[Any] , a_ : Union[str, Any] ) -> int: super().__init__() snake_case: Tuple =nn.AvgPoolad(a_ , stride=1 , padding=pool_size // 2 , count_include_pad=a_ ) def UpperCamelCase ( self : List[Any] , a_ : Any ) -> Any: return self.pool(a_ ) - hidden_states class a_ ( nn.Module ): def __init__( self : Tuple , a_ : Union[str, Any] , a_ : str , a_ : Optional[Any] , a_ : Optional[Any] ) -> List[str]: super().__init__() snake_case: Any =nn.Convad(a_ , a_ , 1 ) snake_case: List[Any] =nn.Convad(a_ , a_ , 1 ) snake_case: Tuple =PoolFormerDropPath(a_ ) if isinstance(config.hidden_act , a_ ): snake_case: Optional[int] =ACTaFN[config.hidden_act] else: snake_case: Any =config.hidden_act def UpperCamelCase ( self : str , a_ : int ) -> int: snake_case: int =self.conva(a_ ) snake_case: Tuple =self.act_fn(a_ ) snake_case: List[Any] =self.drop(a_ ) snake_case: Optional[Any] =self.conva(a_ ) snake_case: Tuple =self.drop(a_ ) return hidden_states class a_ ( nn.Module ): def __init__( self : Any , a_ : List[Any] , a_ : Any , a_ : Optional[int] , a_ : str , a_ : List[str] , a_ : Union[str, Any] ) -> str: super().__init__() snake_case: Dict =PoolFormerPooling(a_ ) snake_case: List[Any] =PoolFormerOutput(a_ , a_ , a_ , a_ ) snake_case: Any =PoolFormerGroupNorm(a_ ) snake_case: List[Any] =PoolFormerGroupNorm(a_ ) # Useful for training neural nets snake_case: Any =PoolFormerDropPath(a_ ) if drop_path > 0.0 else nn.Identity() snake_case: Union[str, Any] =config.use_layer_scale if config.use_layer_scale: snake_case: List[str] =nn.Parameter( config.layer_scale_init_value * torch.ones((a_) ) , requires_grad=a_ ) snake_case: List[Any] =nn.Parameter( config.layer_scale_init_value * torch.ones((a_) ) , requires_grad=a_ ) def UpperCamelCase ( self : Optional[Any] , a_ : Union[str, Any] ) -> List[str]: if self.use_layer_scale: snake_case: int =self.pooling(self.before_norm(a_ ) ) snake_case: Optional[Any] =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: Tuple =hidden_states + self.drop_path(a_ ) snake_case: Optional[Any] =() snake_case: Optional[Any] =self.output(self.after_norm(a_ ) ) snake_case: int =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: str =hidden_states + self.drop_path(a_ ) snake_case: Dict =(output,) + outputs return outputs else: snake_case: Dict =self.drop_path(self.pooling(self.before_norm(a_ ) ) ) # First residual connection snake_case: Any =pooling_output + hidden_states snake_case: Union[str, Any] =() # Second residual connection inside the PoolFormerOutput block snake_case: List[str] =self.drop_path(self.output(self.after_norm(a_ ) ) ) snake_case: Tuple =hidden_states + layer_output snake_case: List[Any] =(output,) + outputs return outputs class a_ ( nn.Module ): def __init__( self : List[Any] , a_ : int ) -> Optional[int]: super().__init__() snake_case: int =config # stochastic depth decay rule snake_case: int =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: List[str] =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: Union[str, Any] =nn.ModuleList(a_ ) # Transformer blocks snake_case: List[str] =[] snake_case: str =0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: Optional[int] =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( a_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(a_ ) ) snake_case: Dict =nn.ModuleList(a_ ) def UpperCamelCase ( self : Any , a_ : Tuple , a_ : str=False , a_ : int=True ) -> Dict: snake_case: List[Any] =() if output_hidden_states else None snake_case: Tuple =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: str =layers # Get patch embeddings from hidden_states snake_case: List[str] =embedding_layer(a_ ) # Send the embeddings through the blocks for _, blk in enumerate(a_ ): snake_case: Optional[int] =blk(a_ ) snake_case: int =layer_outputs[0] if output_hidden_states: snake_case: str =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a_ , hidden_states=a_ ) class a_ ( snake_case ): UpperCAmelCase : int = PoolFormerConfig UpperCAmelCase : Optional[Any] = """poolformer""" UpperCAmelCase : List[str] = """pixel_values""" UpperCAmelCase : List[str] = True def UpperCamelCase ( self : Optional[Any] , a_ : List[Any] ) -> int: if isinstance(a_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a_ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCamelCase ( self : Optional[int] , a_ : Optional[Any] , a_ : Optional[Any]=False ) -> str: if isinstance(a_ , a_ ): snake_case: Any =value a = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , snake_case , ) class a_ ( snake_case ): def __init__( self : List[Any] , a_ : Dict ) -> Union[str, Any]: super().__init__(a_ ) snake_case: List[str] =config snake_case: Optional[int] =PoolFormerEncoder(a_ ) # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self : Optional[int] ) -> List[Any]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self : List[Any] , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: snake_case: Optional[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: int =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: List[str] =self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ , ) snake_case: Tuple =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=a_ , hidden_states=encoder_outputs.hidden_states , ) class a_ ( nn.Module ): def __init__( self : Optional[Any] , a_ : str ) -> Optional[int]: super().__init__() snake_case: str =nn.Linear(config.hidden_size , config.hidden_size ) def UpperCamelCase ( self : Dict , a_ : Tuple ) -> int: snake_case: Tuple =self.dense(a_ ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , snake_case , ) class a_ ( snake_case ): def __init__( self : int , a_ : int ) -> Optional[int]: super().__init__(a_ ) snake_case: List[str] =config.num_labels snake_case: List[Any] =PoolFormerModel(a_ ) # Final norm snake_case: Optional[Any] =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: List[Any] =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self : Optional[Any] , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[torch.LongTensor] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: snake_case: Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict snake_case: int =self.poolformer( a_ , output_hidden_states=a_ , return_dict=a_ , ) snake_case: Optional[Any] =outputs[0] snake_case: Any =self.classifier(self.norm(a_ ).mean([-2, -1] ) ) snake_case: int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Any ='regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict ='single_label_classification' else: snake_case: Dict ='multi_label_classification' if self.config.problem_type == "regression": snake_case: Dict =MSELoss() if self.num_labels == 1: snake_case: Any =loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: Dict =loss_fct(a_ , a_ ) elif self.config.problem_type == "single_label_classification": snake_case: str =CrossEntropyLoss() snake_case: Dict =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int =BCEWithLogitsLoss() snake_case: Union[str, Any] =loss_fct(a_ , a_ ) if not return_dict: snake_case: Optional[int] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states )
350
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a = random.Random() def a_ ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: """simple docstring""" if rng is None: snake_case: Dict =global_rng snake_case: Tuple =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): def __init__( self : int , a_ : Any , a_ : str=7 , a_ : Tuple=4_0_0 , a_ : List[Any]=2_0_0_0 , a_ : str=2_0_4_8 , a_ : List[str]=1_2_8 , a_ : int=1 , a_ : Tuple=5_1_2 , a_ : Dict=3_0 , a_ : Optional[int]=4_4_1_0_0 , ) -> Union[str, Any]: snake_case: Union[str, Any] =parent snake_case: Optional[Any] =batch_size snake_case: Union[str, Any] =min_seq_length snake_case: List[str] =max_seq_length snake_case: str =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case: int =spectrogram_length snake_case: List[str] =feature_size snake_case: Dict =num_audio_channels snake_case: int =hop_length snake_case: List[Any] =chunk_length snake_case: Optional[Any] =sampling_rate def UpperCamelCase ( self : Any ) -> Dict: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase ( self : Tuple , a_ : Optional[Any]=False , a_ : Tuple=False ) -> Optional[int]: def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: snake_case: Union[str, Any] =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case: Union[str, Any] =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case: Any =[np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : Optional[Any] = TvltFeatureExtractor def UpperCamelCase ( self : int ) -> int: snake_case: Union[str, Any] =TvltFeatureExtractionTester(self ) def UpperCamelCase ( self : Optional[Any] ) -> str: snake_case: int =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(a_ , 'feature_size' ) ) self.assertTrue(hasattr(a_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(a_ , 'hop_length' ) ) self.assertTrue(hasattr(a_ , 'chunk_length' ) ) self.assertTrue(hasattr(a_ , 'sampling_rate' ) ) def UpperCamelCase ( self : Tuple ) -> Optional[int]: snake_case: Tuple =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Optional[Any] =feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) snake_case: str =self.feature_extraction_class.from_pretrained(a_ ) snake_case: Optional[int] =feat_extract_first.to_dict() snake_case: List[str] =feat_extract_second.to_dict() snake_case: Optional[int] =dict_first.pop('mel_filters' ) snake_case: List[Any] =dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def UpperCamelCase ( self : str ) -> str: snake_case: Any =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case: int =os.path.join(a_ , 'feat_extract.json' ) feat_extract_first.to_json_file(a_ ) snake_case: Union[str, Any] =self.feature_extraction_class.from_json_file(a_ ) snake_case: Optional[Any] =feat_extract_first.to_dict() snake_case: Optional[Any] =feat_extract_second.to_dict() snake_case: Union[str, Any] =dict_first.pop('mel_filters' ) snake_case: Union[str, Any] =dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # Initialize feature_extractor snake_case: Tuple =self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case: Any =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case: Optional[Any] =[np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input snake_case: List[Any] =feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case: Any =feature_extractor(a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case: Optional[Any] =feature_extractor( a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 , mask_audio=a_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case: List[Any] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case: List[str] =np.asarray(a_ ) snake_case: str =feature_extractor(a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase ( self : Any , a_ : str ) -> Union[str, Any]: snake_case: Dict =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case: Optional[int] =ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: snake_case: Tuple =self._load_datasamples(1 ) snake_case: Any =TvltFeatureExtractor() snake_case: Any =feature_extractor(a_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) snake_case: int =torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a_ , atol=1E-4 ) )
350
1
"""simple docstring""" def lowercase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__UpperCamelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__UpperCamelCase ) == 1: return True __magic_name__ = series[1] - series[0] for index in range(len(__UpperCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowercase ( __UpperCamelCase ) -> float: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__UpperCamelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) __magic_name__ = 0 for val in series: answer += val return answer / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
190
"""simple docstring""" from __future__ import annotations from random import choice def lowercase ( __UpperCamelCase ) -> Any: return choice(__UpperCamelCase ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> int: __magic_name__ = random_pivot(__UpperCamelCase ) # partition based on pivot # linear time __magic_name__ = [e for e in lst if e < pivot] __magic_name__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCamelCase ) < k - 1: return kth_number(__UpperCamelCase , k - len(__UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
190
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE_=[2, 3, 4] , SCREAMING_SNAKE_CASE_=None , ) -> Any: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = out_indices lowerCamelCase_ = scope def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ) -> Tuple: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ConvNextModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def UpperCamelCase( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> int: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( ) -> List[Any]: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = (ConvNextBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ConvNextConfig SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ConvNextModelTester(self )
42
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'sentencepiece.model'} UpperCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCamelCase = { 'google/rembert': 256, } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Dict="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : List[Any]="[MASK]" , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = remove_space lowerCAmelCase__ = keep_accents lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor() self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def a ( self : int ) -> Union[str, Any]: return len(self.sp_model ) def a ( self : Any ) -> str: lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> List[str]: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = d lowerCAmelCase__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[int]: lowerCAmelCase__ = self.sp_model.EncodeAsPieces(SCREAMING_SNAKE_CASE__ ) return pieces def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: lowerCAmelCase__ = self.sp_model.decode_pieces(SCREAMING_SNAKE_CASE__ ) return out_string def a ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("Vocabulary path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
61
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
547
from __future__ import annotations lowerCamelCase__ = """Muhammad Umer Farooq""" lowerCamelCase__ = """MIT""" lowerCamelCase__ = """1.0.0""" lowerCamelCase__ = """Muhammad Umer Farooq""" lowerCamelCase__ = """[email protected]""" lowerCamelCase__ = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Any , __lowercase : str ): '''simple docstring''' super().__init__() __a = [] __a = domain def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : str , __lowercase : list[tuple[str, str | None]] ): '''simple docstring''' # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __a = parse.urljoin(self.domain , __lowercase ) self.urls.append(__lowercase ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" return ".".join(get_sub_domain_name(_SCREAMING_SNAKE_CASE ).split(""".""" )[-2:] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" return parse.urlparse(_SCREAMING_SNAKE_CASE ).netloc def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "https://github.com" ): """simple docstring""" __a = get_domain_name(_SCREAMING_SNAKE_CASE ) # Initialize the parser __a = Parser(_SCREAMING_SNAKE_CASE ) try: # Open URL __a = requests.get(_SCREAMING_SNAKE_CASE ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __a = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __a = requests.get(_SCREAMING_SNAKE_CASE ) # Get the valid email. __a = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_SCREAMING_SNAKE_CASE ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = emails_from_url("""https://github.com""") print(F"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
547
1
from __future__ import annotations _lowerCAmelCase = """#""" class _UpperCAmelCase : def __init__( self ): A_ : dict = {} def _lowerCamelCase ( self , a__ ): A_ : List[Any] = self._trie for char in text: if char not in trie: A_ : Tuple = {} A_ : Optional[int] = trie[char] A_ : List[Any] = True def _lowerCamelCase ( self , a__ ): A_ : int = self._trie for char in prefix: if char in trie: A_ : str = trie[char] else: return [] return self._elements(a__ ) def _lowerCamelCase ( self , a__ ): A_ : List[str] = [] for c, v in d.items(): A_ : str = [""" """] if c == END else [(c + s) for s in self._elements(a__ )] result.extend(a__ ) return tuple(a__ ) _lowerCAmelCase = Trie() _lowerCAmelCase = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : int = trie.find_word(_lowerCAmelCase ) return tuple(string + word for word in suffixes ) def _lowerCAmelCase ( ): '''simple docstring''' print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
569
from ...configuration_utils import PretrainedConfig class _UpperCAmelCase ( _lowerCamelCase ): a = '''bert-generation''' def __init__( self , a__=50358 , a__=1024 , a__=24 , a__=16 , a__=4096 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=0.02 , a__=1E-12 , a__=0 , a__=2 , a__=1 , a__="absolute" , a__=True , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) A_ : List[str] = vocab_size A_ : int = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Optional[int] = hidden_act A_ : Optional[int] = intermediate_size A_ : List[Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : Optional[Any] = initializer_range A_ : str = layer_norm_eps A_ : str = position_embedding_type A_ : List[Any] = use_cache
569
1
import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCamelCase = TypeVar('''T''') __lowerCamelCase = Union[List[T], Tuple[T, ...]] __lowerCamelCase = Union[T, List[T], Dict[str, T]] __lowerCamelCase = Union[str, bytes, os.PathLike]
708
import operator def _snake_case ( __snake_case , __snake_case = False , __snake_case = None ) -> list: '''simple docstring''' UpperCAmelCase_ : Optional[int] = operator.lt if reverse else operator.gt UpperCAmelCase_ : int = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(__snake_case ): if _operator(__snake_case , sublist[-1] ): sublist.append(__snake_case ) arr.pop(__snake_case ) # merging sublist into solution list if not solution: solution.extend(__snake_case ) else: while sublist: UpperCAmelCase_ : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(__snake_case ): if not _operator(__snake_case , __snake_case ): solution.insert(__snake_case , __snake_case ) break else: solution.append(__snake_case ) strand_sort(__snake_case , __snake_case , __snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
455
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __lowercase : List[str] = True except (ImportError, ModuleNotFoundError): __lowercase : Dict = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowerCamelCase_ ( _lowerCamelCase : str ): re.sub('''<n>''' , '''''' , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
142
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowercase : List[Any] = None __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __lowercase : Dict = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } __lowercase : Tuple = { """camembert-base""": 5_1_2, } __lowercase : List[str] = """▁""" class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Tuple = VOCAB_FILES_NAMES __lowercase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Any = ["input_ids", "attention_mask"] __lowercase :Union[str, Any] = CamembertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase__ , ) -> str: '''simple docstring''' lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
142
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __a : __a : Optional[int] = XGLMConfig __a : Dict = {} __a : Dict = "gelu" def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Dict=14 , __magic_name__ : str=7 , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : int=True , __magic_name__ : Optional[int]=99 , __magic_name__ : Dict=32 , __magic_name__ : List[Any]=2 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : Dict=0.0_2 , ) -> int: """simple docstring""" UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : Optional[int] = use_input_mask UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = d_model UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Tuple = ffn_dim UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = activation_dropout UpperCAmelCase_ : Union[str, Any] = attention_dropout UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : List[Any] = 1 def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = self.get_config() UpperCAmelCase_ : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = config_and_inputs UpperCAmelCase_ : str = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __a : Optional[int] = (TFXGLMForCausalLM,) if is_tf_available() else () __a : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __a : Any = False __a : Dict = False __a : Union[str, Any] = False def UpperCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : int = TFXGLMModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , n_embd=37 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = TFXGLMModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any]=True ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase_ : Any = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on UpperCAmelCase_ : Union[str, Any] = model.generate(__magic_name__ , do_sample=__magic_name__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __magic_name__ ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[str] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCAmelCase_ : Optional[int] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCAmelCase_ : str = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCAmelCase_ : List[str] = model.generate(__magic_name__ , do_sample=__magic_name__ , seed=[7, 0] ) UpperCAmelCase_ : List[str] = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Dict = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__magic_name__ , __magic_name__ ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase_ : Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase_ : Any = '''left''' # use different length sentences to test batching UpperCAmelCase_ : int = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCAmelCase_ : Tuple = tokenizer(__magic_name__ , return_tensors='''tf''' , padding=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = inputs['''input_ids'''] UpperCAmelCase_ : List[str] = model.generate(input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCAmelCase_ : Any = model.generate(input_ids=__magic_name__ , max_new_tokens=12 ) UpperCAmelCase_ : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCAmelCase_ : Dict = model.generate(input_ids=__magic_name__ , max_new_tokens=12 ) UpperCAmelCase_ : Any = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) UpperCAmelCase_ : Tuple = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
644
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (lowerCamelCase ): __a : List[Any] = "openai/whisper-base" __a : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __a : Any = "transcriber" __a : str = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : int = ["audio"] __a : Optional[Any] = ["text"] def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return self.model.generate(inputs=__magic_name__ ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str: """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
644
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowerCAmelCase ( __magic_name__ : str = "https://www.worldometers.info/coronavirus" ) -> dict: lowercase : List[Any] =BeautifulSoup(requests.get(__magic_name__ ).text , '''html.parser''' ) lowercase : Tuple =soup.findAll('''h1''' ) lowercase : int =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__magic_name__ , __magic_name__ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
92
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) # TODO Update this UpperCamelCase_ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'esm' def __init__( self : Optional[Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : Optional[Any]=3072 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=1026 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : Any =vocab_size lowercase : List[Any] =hidden_size lowercase : Any =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Tuple =intermediate_size lowercase : int =hidden_dropout_prob lowercase : Dict =attention_probs_dropout_prob lowercase : Optional[int] =max_position_embeddings lowercase : Union[str, Any] =initializer_range lowercase : Tuple =layer_norm_eps lowercase : Union[str, Any] =position_embedding_type lowercase : List[Any] =use_cache lowercase : Dict =emb_layer_norm_before lowercase : Optional[Any] =token_dropout lowercase : Union[str, Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase : Any =EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase : Optional[int] =EsmFoldConfig(**UpperCAmelCase__ ) lowercase : Union[str, Any] =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase : int =get_default_vocab_list() else: lowercase : Tuple =vocab_list else: lowercase : Union[str, Any] =None lowercase : Dict =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__ ): lowercase : Optional[Any] =self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = 1_28 lowerCamelCase_ = None def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' if self.trunk is None: lowercase : str =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__ ): lowercase : int =TrunkConfig(**self.trunk ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =asdict(self ) lowercase : Union[str, Any] =self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = 48 lowerCamelCase_ = 10_24 lowerCamelCase_ = 1_28 lowerCamelCase_ = 32 lowerCamelCase_ = 32 lowerCamelCase_ = 32 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = False lowerCamelCase_ = 4 lowerCamelCase_ = 1_28 lowerCamelCase_ = None def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' if self.structure_module is None: lowercase : Any =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__ ): lowercase : Union[str, Any] =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase : str =self.sequence_state_dim // self.sequence_head_width lowercase : int =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[Any] =asdict(self ) lowercase : Any =self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = 3_84 lowerCamelCase_ = 1_28 lowerCamelCase_ = 16 lowerCamelCase_ = 1_28 lowerCamelCase_ = 12 lowerCamelCase_ = 4 lowerCamelCase_ = 8 lowerCamelCase_ = 0.1 lowerCamelCase_ = 8 lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 7 lowerCamelCase_ = 10 lowerCamelCase_ = 1E-8 lowerCamelCase_ = 1E5 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return asdict(self ) def _lowerCAmelCase ( ) -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
92
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
215
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def lowerCAmelCase ( ): """simple docstring""" __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(__UpperCamelCase ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(__UpperCamelCase ) __A = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
215
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileBertTokenizer lowerCAmelCase_ = MobileBertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english lowerCAmelCase_ = '''google/mobilebert-uncased''' def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : List[str] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __SCREAMING_SNAKE_CASE : Dict = {} for i, token in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[str] = i __SCREAMING_SNAKE_CASE : str = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False __SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有'''] __SCREAMING_SNAKE_CASE : int = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE : List[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
74
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] ) class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] )
467
0
from __future__ import annotations def UpperCamelCase__ ( A__ ) -> List[Any]: snake_case__ : List[Any] = 0.0_0 snake_case__ : str = 0 for resistor in resistors: if resistor <= 0: snake_case__ : Union[str, Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(UpperCamelCase__ ) first_sum += 1 / float(UpperCamelCase__ ) index += 1 return 1 / first_sum def UpperCamelCase__ ( A__ ) -> Dict: snake_case__ : Dict = 0.0_0 snake_case__ : str = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case__ : Dict = F"""Resistor at index {index} has a negative value!""" raise ValueError(UpperCamelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ : List[Any] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(__magic_name__ ) , axis=1 ) snake_case__ : List[Any] = np.sum(np.square(__magic_name__ ) , axis=0 ) snake_case__ : Dict = np.matmul(__magic_name__ , __magic_name__ ) snake_case__ : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = x.reshape(-1 , 3 ) snake_case__ : Optional[int] = squared_euclidean_distance(__magic_name__ , __magic_name__ ) return np.argmin(__magic_name__ , axis=1 ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) if clusters is not None else None snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : int = resample snake_case__ : List[Any] = do_normalize snake_case__ : Any = do_color_quantize def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Any = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ): snake_case__ : Any = rescale(image=__SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = image - 1 return image def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): snake_case__ : str = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = size if size is not None else self.size snake_case__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) snake_case__ : str = resample if resample is not None else self.resample snake_case__ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Any = clusters if clusters is not None else self.clusters snake_case__ : List[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case__ : List[Any] = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = color_quantize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : List[Any] = images.shape[0] snake_case__ : List[str] = images.reshape(__SCREAMING_SNAKE_CASE , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Optional[int] = list(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] snake_case__ : Optional[int] = {"""input_ids""": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
38
def lowerCAmelCase__ ( a__ , a__ , a__ , a__ , a__ ) ->int: '''simple docstring''' if index == number_of_items: return 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = knapsack(a__ , a__ , a__ , a__ , index + 1 ) if weights[index] <= max_weight: _UpperCamelCase = values[index] + knapsack( a__ , a__ , a__ , max_weight - weights[index] , index + 1 ) return max(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
547
0
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : list[int | str] ): create_state_space_tree(lowerCAmelCase__ , [] , 0 , [0 for i in range(len(lowerCAmelCase__ ) )] ) def __a ( lowerCAmelCase__ : list[int | str] , lowerCAmelCase__ : list[int | str] , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , ): if index == len(lowerCAmelCase__ ): print(lowerCAmelCase__ ) return for i in range(len(lowerCAmelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) a__ : Union[str, Any] = True create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , index + 1 , lowerCAmelCase__ ) current_sequence.pop() a__ : Tuple = False __SCREAMING_SNAKE_CASE = [3, 1, 2, 4] generate_all_permutations(sequence) __SCREAMING_SNAKE_CASE = ["A", "B", "C"] generate_all_permutations(sequence_a)
340
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["pixel_values"] def __init__( self : str , A__ : bool = True , A__ : int = 3_2 , A__ : List[str]=PILImageResampling.BILINEAR , A__ : bool = True , **A__ : Tuple , ) -> None: '''simple docstring''' a__ : Optional[int] = do_resize a__ : List[str] = do_rescale a__ : Optional[int] = size_divisor a__ : Any = resample super().__init__(**A__ ) def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : int , A__ : Optional[int] , A__ : Optional[ChannelDimension] = None , **A__ : List[Any] ) -> np.ndarray: '''simple docstring''' a__ , a__ : Optional[int] = get_image_size(A__ ) # Rounds the height and width down to the closest multiple of size_divisor a__ : List[Any] = height // size_divisor * size_divisor a__ : List[str] = width // size_divisor * size_divisor a__ : int = resize(A__ , (new_h, new_w) , resample=A__ , data_format=A__ , **A__ ) return image def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : float , A__ : Optional[ChannelDimension] = None , **A__ : Optional[int] ) -> np.ndarray: '''simple docstring''' return rescale(image=A__ , scale=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , A__ : Optional[bool] = None , A__ : Optional[int] = None , A__ : int=None , A__ : Optional[bool] = None , A__ : Optional[Union[TensorType, str]] = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : str , ) -> BatchFeature: '''simple docstring''' a__ : Tuple = do_resize if do_resize is not None else self.do_resize a__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor a__ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) a__ : int = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. a__ : Any = [to_numpy_array(A__ ) for img in images] if do_resize: a__ : Optional[Any] = [self.resize(A__ , size_divisor=A__ , resample=A__ ) for image in images] if do_rescale: a__ : str = [self.rescale(A__ , scale=1 / 2_5_5 ) for image in images] a__ : Dict = [to_channel_dimension_format(A__ , A__ ) for image in images] a__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=A__ , tensor_type=A__ )
340
1
"""simple docstring""" import argparse import copy def _snake_case ( __snake_case : Tuple ): """simple docstring""" _lowerCamelCase : str = {} with open(__snake_case ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _snake_case ( __snake_case : List[Any] , __snake_case : int ): """simple docstring""" with open(__snake_case ) as f: _lowerCamelCase : str = f.read(1 ) _lowerCamelCase : Dict = start_node _lowerCamelCase : Tuple = [] _lowerCamelCase : int = start_node _lowerCamelCase : Tuple = 0 while visiting not in first_solution: _lowerCamelCase : int = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__snake_case ) and k[0] not in first_solution: _lowerCamelCase : List[Any] = k[1] _lowerCamelCase : Any = k[0] first_solution.append(__snake_case ) _lowerCamelCase : Optional[int] = distance_of_first_solution + int(__snake_case ) _lowerCamelCase : Any = best_node first_solution.append(__snake_case ) _lowerCamelCase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _snake_case ( __snake_case : List[Any] , __snake_case : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = [] for n in solution[1:-1]: _lowerCamelCase : Tuple = solution.index(__snake_case ) for kn in solution[1:-1]: _lowerCamelCase : Union[str, Any] = solution.index(__snake_case ) if n == kn: continue _lowerCamelCase : Optional[int] = copy.deepcopy(__snake_case ) _lowerCamelCase : Any = kn _lowerCamelCase : str = n _lowerCamelCase : List[str] = 0 for k in _tmp[:-1]: _lowerCamelCase : List[Any] = _tmp[_tmp.index(__snake_case ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : str = distance + int(i[1] ) _tmp.append(__snake_case ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _snake_case ( __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] ): """simple docstring""" _lowerCamelCase : Any = 1 _lowerCamelCase : str = first_solution _lowerCamelCase : int = [] _lowerCamelCase : str = distance_of_first_solution _lowerCamelCase : int = solution while count <= iters: _lowerCamelCase : Optional[Any] = find_neighborhood(__snake_case , __snake_case ) _lowerCamelCase : Tuple = 0 _lowerCamelCase : List[Any] = neighborhood[index_of_best_solution] _lowerCamelCase : List[str] = len(__snake_case ) - 1 _lowerCamelCase : Optional[int] = False while not found: _lowerCamelCase : str = 0 while i < len(__snake_case ): if best_solution[i] != solution[i]: _lowerCamelCase : Optional[Any] = best_solution[i] _lowerCamelCase : List[str] = solution[i] break _lowerCamelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : Any = best_solution[:-1] _lowerCamelCase : Dict = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : Tuple = cost _lowerCamelCase : Optional[Any] = solution else: _lowerCamelCase : Dict = index_of_best_solution + 1 _lowerCamelCase : Union[str, Any] = neighborhood[index_of_best_solution] if len(__snake_case ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Any = count + 1 return best_solution_ever, best_cost def _snake_case ( __snake_case : Any=None ): """simple docstring""" _lowerCamelCase : Dict = generate_neighbours(args.File ) _lowerCamelCase , _lowerCamelCase : Any = generate_first_solution( args.File , __snake_case ) _lowerCamelCase , _lowerCamelCase : List[str] = tabu_search( __snake_case , __snake_case , __snake_case , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
88
def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return x if y == 0 else greatest_common_divisor(_UpperCamelCase , x % y ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (x * y) // greatest_common_divisor(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase = 20 ) -> int: _a = 1 for i in range(1 , n + 1 ): _a = lcm(_UpperCamelCase , _UpperCamelCase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
487
0
'''simple docstring''' import requests _a : Optional[Any] = "YOUR API KEY" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = giphy_api_key ) -> list: """simple docstring""" __UpperCAmelCase : Tuple = "+".join(query.split() ) __UpperCAmelCase : Optional[Any] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __UpperCAmelCase : Union[str, Any] = requests.get(lowerCamelCase__ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCAmelCase__ :List[str] = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCAmelCase__ :Dict = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase__ :Dict = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
618
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowerCAmelCase__ :List[str] = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase ) class __a : _a : str _a : str _a : Optional[str] = None _a : Optional[str] = None _a : Optional[str] = None @dataclass(frozen=UpperCAmelCase ) class __a : _a : List[int] _a : Optional[List[int]] = None _a : Optional[List[int]] = None _a : Optional[Union[int, float]] = None _a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( UpperCAmelCase ): _a : List[InputFeatures] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE = False , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , ) , ) _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase = cached_features_file + '.lock' with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _UpperCAmelCase = ( processor.get_dev_examples(_SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(_SCREAMING_SNAKE_CASE ) ) logger.info('Training examples: %s' , len(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = hans_convert_examples_to_features(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info('Saving features into cached file %s' , _SCREAMING_SNAKE_CASE ) torch.save(self.features , _SCREAMING_SNAKE_CASE ) def __len__( self ) -> List[str]: """simple docstring""" return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __a : _a : List[InputFeatures] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE = False , ) -> Tuple: """simple docstring""" _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list _UpperCAmelCase = processor.get_dev_examples(_SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hans_convert_examples_to_features(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_SCREAMING_SNAKE_CASE )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _UpperCAmelCase = tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return self.dataset def __len__( self ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return self.label_list class __a ( UpperCAmelCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_SCREAMING_SNAKE_CASE , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_SCREAMING_SNAKE_CASE , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return ["contradiction", "entailment", "neutral"] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = [] for i, line in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: continue _UpperCAmelCase = '%s-%s' % (set_type, line[0]) _UpperCAmelCase = line[5] _UpperCAmelCase = line[6] _UpperCAmelCase = line[7][2:] if line[7].startswith('ex' ) else line[7] _UpperCAmelCase = line[0] examples.append(InputExample(guid=_SCREAMING_SNAKE_CASE , text_a=_SCREAMING_SNAKE_CASE , text_b=_SCREAMING_SNAKE_CASE , label=_SCREAMING_SNAKE_CASE , pairID=_SCREAMING_SNAKE_CASE ) ) return examples def lowerCAmelCase__ ( a__: List[InputExample] , a__: List[str] , a__: int , a__: PreTrainedTokenizer , ) -> str: '''simple docstring''' _UpperCAmelCase = {label: i for i, label in enumerate(a__ )} _UpperCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(a__ ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d' % (ex_index) ) _UpperCAmelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=a__ , max_length=a__ , padding='max_length' , truncation=a__ , return_overflowing_tokens=a__ , ) _UpperCAmelCase = label_map[example.label] if example.label in label_map else 0 _UpperCAmelCase = int(example.pairID ) features.append(InputFeatures(**a__ , label=a__ , pairID=a__ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features lowerCAmelCase__ :Optional[Any] = { '''hans''': 3, } lowerCAmelCase__ :Optional[int] = { '''hans''': HansProcessor, }
618
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase = datasets.utils.logging.get_logger(__name__) UpperCamelCase = ["names", "prefix"] UpperCamelCase = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] UpperCamelCase = ["encoding_errors", "on_bad_lines"] UpperCamelCase = ["date_format"] @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" _snake_case : str = "," _snake_case : Optional[str] = None _snake_case : Optional[Union[int, List[int], str]] = "infer" _snake_case : Optional[List[str]] = None _snake_case : Optional[List[str]] = None _snake_case : Optional[Union[int, str, List[int], List[str]]] = None _snake_case : Optional[Union[List[int], List[str]]] = None _snake_case : Optional[str] = None _snake_case : bool = True _snake_case : Optional[Literal["c", "python", "pyarrow"]] = None _snake_case : Dict[Union[int, str], Callable[[Any], Any]] = None _snake_case : Optional[list] = None _snake_case : Optional[list] = None _snake_case : bool = False _snake_case : Optional[Union[int, List[int]]] = None _snake_case : Optional[int] = None _snake_case : Optional[Union[str, List[str]]] = None _snake_case : bool = True _snake_case : bool = True _snake_case : bool = False _snake_case : bool = True _snake_case : Optional[str] = None _snake_case : str = "." _snake_case : Optional[str] = None _snake_case : str = '"' _snake_case : int = 0 _snake_case : Optional[str] = None _snake_case : Optional[str] = None _snake_case : Optional[str] = None _snake_case : Optional[str] = None _snake_case : bool = True _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = True _snake_case : bool = False _snake_case : Optional[str] = None _snake_case : int = 10_000 _snake_case : Optional[datasets.Features] = None _snake_case : Optional[str] = "strict" _snake_case : Literal["error", "warn", "skip"] = "error" _snake_case : Optional[str] = None def __a ( self :Optional[Any] ): if self.delimiter is not None: UpperCamelCase__ :List[str] = self.delimiter if self.column_names is not None: UpperCamelCase__ :int = self.column_names @property def __a ( self :Union[str, Any] ): UpperCamelCase__ :List[str] = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case : Optional[Any] = CsvConfig def __a ( self :int ): return datasets.DatasetInfo(features=self.config.features ) def __a ( self :int , lowerCamelCase__ :Dict ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCamelCase__ :int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): UpperCamelCase__ :int = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :int = [files] UpperCamelCase__ :Dict = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase__ :List[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :Dict = [files] UpperCamelCase__ :str = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"""files""": files} ) ) return splits def __a ( self :List[Any] , lowerCamelCase__ :pa.Table ): if self.config.features is not None: UpperCamelCase__ :Union[str, Any] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase__ :Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase__ :Union[str, Any] = table_cast(lowerCamelCase__ , lowerCamelCase__ ) return pa_table def __a ( self :List[Any] , lowerCamelCase__ :Any ): UpperCamelCase__ :Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase__ :Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): UpperCamelCase__ :Optional[int] = pd.read_csv(lowerCamelCase__ , iterator=lowerCamelCase__ , dtype=lowerCamelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase__ ): UpperCamelCase__ :Any = pa.Table.from_pandas(lowerCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase__ )}: {e}""" ) raise
383
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def A ( lowercase__ : str ) -> str: UpperCamelCase__ :int = {} UpperCamelCase__ :List[str] = os.path.join(lowercase__ , """all_results.json""" ) if os.path.exists(lowercase__ ): with open(lowercase__ , """r""" ) as f: UpperCamelCase__ :List[Any] = json.load(lowercase__ ) else: raise ValueError(f"""can't find {path}""" ) return results UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Dict ): import xla_spawn UpperCamelCase__ :Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :int = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): UpperCamelCase__ :Any = time() xla_spawn.main() UpperCamelCase__ :Optional[Any] = time() UpperCamelCase__ :Optional[Any] = get_results(lowerCamelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def __a ( self :Union[str, Any] ): import xla_spawn UpperCamelCase__ :List[str] = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): xla_spawn.main()
383
1
def lowerCAmelCase_ ( lowerCamelCase = 1000 ): __magic_name__ : Optional[int] =2**power __magic_name__ : int =0 while n: __magic_name__ , __magic_name__ : List[str] =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a__ ( A__ ): UpperCAmelCase__ = '''vision-encoder-decoder''' UpperCAmelCase__ = True def __init__( self :List[Any] , **_lowerCamelCase :List[Any] ): '''simple docstring''' super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) UpperCamelCase_ : List[Any] =kwargs.pop('encoder' ) UpperCamelCase_ : List[Any] =encoder_config.pop('model_type' ) UpperCamelCase_ : Tuple =kwargs.pop('decoder' ) UpperCamelCase_ : List[str] =decoder_config.pop('model_type' ) UpperCamelCase_ : Any =AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : Optional[int] =AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : List[str] =True @classmethod def lowerCamelCase_ ( cls :int , _lowerCamelCase :PretrainedConfig , _lowerCamelCase :PretrainedConfig , **_lowerCamelCase :Any ): '''simple docstring''' logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ : List[Any] =True UpperCamelCase_ : List[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : Dict =copy.deepcopy(self.__dict__ ) UpperCamelCase_ : Union[str, Any] =self.encoder.to_dict() UpperCamelCase_ : Dict =self.decoder.to_dict() UpperCamelCase_ : List[str] =self.__class__.model_type return output class a__ ( A__ ): UpperCAmelCase__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self :int ): '''simple docstring''' return 1E-4 @property def lowerCamelCase_ ( self :int ): '''simple docstring''' return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class a__ ( A__ ): @property def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ : int =OrderedDict() UpperCamelCase_ : Optional[Any] ={0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ : Any ={0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ : Optional[Any] ={0: 'batch', 1: 'encoder_sequence'} return common_inputs def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :"PreTrainedTokenizerBase" , _lowerCamelCase :int = -1 , _lowerCamelCase :int = -1 , _lowerCamelCase :bool = False , _lowerCamelCase :Optional["TensorType"] = None , ): '''simple docstring''' import torch UpperCamelCase_ : Union[str, Any] =OrderedDict() UpperCamelCase_ : List[str] =super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) UpperCamelCase_ : Optional[int] =dummy_input['input_ids'].shape UpperCamelCase_ : Optional[Any] =(batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ : Tuple =dummy_input.pop('input_ids' ) UpperCamelCase_ : List[Any] =dummy_input.pop('attention_mask' ) UpperCamelCase_ : str =torch.zeros(_lowerCamelCase ) return common_inputs class a__ ( A__ ): @property def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' pass def lowerCamelCase_ ( self :int , _lowerCamelCase :PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :PretrainedConfig , _lowerCamelCase :PretrainedConfig , _lowerCamelCase :str = "default" ): '''simple docstring''' UpperCamelCase_ : List[Any] =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
715
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a__ ( A__ ): def __init__( self :List[str] , *_lowerCamelCase :int , **_lowerCamelCase :str ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
395
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __snake_case : str , __snake_case : List[str]=3 , __snake_case : Optional[int]=32 , __snake_case : List[Any]=3 , __snake_case : Dict=10 , __snake_case : Tuple=[10, 20, 30, 40] , __snake_case : str=[1, 1, 2, 1] , __snake_case : Any=True , __snake_case : Any=True , __snake_case : List[Any]="relu" , __snake_case : Union[str, Any]=3 , __snake_case : List[str]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(__snake_case ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self : List[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : int , __snake_case : Optional[int] , __snake_case : str ): UpperCAmelCase_ = FlaxRegNetModel(config=__snake_case ) UpperCAmelCase_ = model(__snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : Any , __snake_case : List[Any] , __snake_case : List[str] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=__snake_case ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase : Tuple = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = FlaxRegNetModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def lowerCamelCase_ ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): return def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCamelCase_ ( self : str ): pass def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__snake_case ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCamelCase_ ( self : str ): def check_hidden_states_output(__snake_case : List[str] , __snake_case : Tuple , __snake_case : str ): UpperCAmelCase_ = model_class(__snake_case ) UpperCAmelCase_ = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__snake_case , __snake_case ) UpperCAmelCase_ = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case : Dict , **__snake_case : str ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ = model_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( ) -> str: UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class a ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self : Optional[int] ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__snake_case , return_tensors='''np''' ) UpperCAmelCase_ = model(**__snake_case ) # verify the logits UpperCAmelCase_ = (1, 10_00) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
1
"""simple docstring""" def __lowerCAmelCase ( __lowerCAmelCase : int , __lowerCAmelCase : bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis _UpperCamelCase : List[str] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] _UpperCamelCase : int = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check _UpperCamelCase : Optional[int] = primes[:idx] break _UpperCamelCase , _UpperCamelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _UpperCamelCase : List[str] = False for r in range(__lowerCAmelCase ): _UpperCamelCase : List[Any] = pow(__lowerCAmelCase , d * 2**r , __lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _UpperCamelCase : Union[str, Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
239
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """data2vec-text""" def __init__(self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Dict = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : Any = hidden_act _UpperCamelCase : Any = intermediate_size _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : List[Any] = type_vocab_size _UpperCamelCase : List[Any] = initializer_range _UpperCamelCase : Dict = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : List[Any] = use_cache _UpperCamelCase : str = classifier_dropout class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def lowercase_ (self ): '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
239
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a : List[Any] = logging.get_logger(__name__) a : str = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class a ( lowercase__ ): """simple docstring""" a : Any = 'imagegpt' a : Optional[Any] = ['past_key_values'] a : Tuple = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __lowercase : Dict=512 + 1 , __lowercase : int=32 * 32 , __lowercase : List[str]=512 , __lowercase : Dict=24 , __lowercase : Optional[int]=8 , __lowercase : Tuple=None , __lowercase : Tuple="quick_gelu" , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : List[Any]=1e-5 , __lowercase : Optional[Any]=0.02 , __lowercase : Union[str, Any]=True , __lowercase : Optional[int]=True , __lowercase : Optional[int]=False , __lowercase : Union[str, Any]=False , __lowercase : Any=False , **__lowercase : Optional[Any] , ) -> List[Any]: __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Union[str, Any] = n_positions __UpperCAmelCase : int = n_embd __UpperCAmelCase : int = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : Tuple = n_inner __UpperCAmelCase : Optional[Any] = activation_function __UpperCAmelCase : Tuple = resid_pdrop __UpperCAmelCase : Optional[int] = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : List[str] = scale_attn_weights __UpperCAmelCase : int = use_cache __UpperCAmelCase : Optional[int] = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Optional[int] = reorder_and_upcast_attn __UpperCAmelCase : Optional[int] = tie_word_embeddings super().__init__(tie_word_embeddings=__lowercase , **__lowercase ) class a ( lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def UpperCAmelCase ( self : Union[str, Any] , __lowercase : "FeatureExtractionMixin" , __lowercase : int = 1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional["TensorType"] = None , __lowercase : int = 3 , __lowercase : int = 32 , __lowercase : int = 32 , ) -> Mapping[str, Any]: __UpperCAmelCase : str = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Any = dict(preprocessor(images=__lowercase , return_tensors=__lowercase ) ) return inputs
63
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = 'T5Config' def a__ ( lowercase : jnp.array, lowercase : int, lowercase : int ) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.zeros_like(lowercase ) _UpperCamelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCamelCase = shifted_input_ids.at[:, 0].set(lowercase ) _UpperCamelCase = jnp.where(shifted_input_ids == -100, lowercase, lowercase ) return shifted_input_ids class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'mt5' _snake_case : Union[str, Any] = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'mt5' _snake_case : int = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'mt5' _snake_case : Optional[Any] = MTaConfig
98
0
import torch from diffusers import StableDiffusionPipeline lowercase_ = 'path-to-your-trained-model' lowercase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') lowercase_ = 'A photo of sks dog in a bucket' lowercase_ = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
380
from math import pow, sqrt def a ( *A__ : float ) -> bool: """simple docstring""" _lowercase =len(A__ ) > 0 and all(value > 0.0 for value in values ) return result def a ( A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
380
1
from math import factorial def a__ ( _UpperCamelCase : int = 1_00 ): return sum(int(snake_case__ ) for x in str(factorial(snake_case__ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
175
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = SMALL_MODEL_IDENTIFIER lowerCAmelCase = '''pt''' lowerCAmelCase = '''tf''' def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__SCREAMING_SNAKE_CASE ) model_tf.save_pretrained(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_tf ) # Both in environment -> use PyTorch lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ), patch( '''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # Both not in environment -> raise error lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ), patch( '''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
312
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,) -> List[str]: snake_case__ :Optional[Any] = size if size is not None else {"height": 18, "width": 18} snake_case__ :Dict = parent snake_case__ :str = batch_size snake_case__ :int = num_channels snake_case__ :Optional[Any] = image_size snake_case__ :str = min_resolution snake_case__ :Optional[Any] = max_resolution snake_case__ :List[str] = do_resize snake_case__ :Dict = size snake_case__ :List[str] = apply_ocr def lowerCAmelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( _A , unittest.TestCase ): _A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Dict = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"apply_ocr" ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 18} ) snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) def lowerCAmelCase_ ( self ) -> int: pass def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) self.assertIsInstance(encoding.words ,UpperCamelCase ) self.assertIsInstance(encoding.boxes ,UpperCamelCase ) # Test batched snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :Dict = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :int = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # with apply_OCR = True snake_case__ :str = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ :Tuple = load_dataset("hf-internal-testing/fixtures_docvqa" ,split="test" ) snake_case__ :str = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ :str = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case__ :Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,UpperCamelCase ) self.assertListEqual(encoding.boxes ,UpperCamelCase ) # with apply_OCR = False snake_case__ :Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase ) snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
'''simple docstring''' from __future__ import annotations class a_ : def __init__( self : Optional[Any] , lowercase : str , lowercase : str ): """simple docstring""" lowercase_ , lowercase_ :int = text, pattern lowercase_ , lowercase_ :Any = len(lowercase ), len(lowercase ) def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : int , lowercase : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): lowercase_ :Union[str, Any] = self.mismatch_in_text(lowercase ) if mismatch_index == -1: positions.append(lowercase ) else: lowercase_ :Tuple = self.match_in_pattern(self.text[mismatch_index] ) lowercase_ :List[str] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase : List[Any] ='''ABAABA''' lowerCAmelCase : Any ='''AB''' lowerCAmelCase : Optional[Any] =BoyerMooreSearch(text, pattern) lowerCAmelCase : Any =bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
172
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowercase_ :Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase_ :Optional[int] = 1 if upper_limit > 0: lowercase_ :str = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 ,upper_limit + 1 ): for j in range(__lowerCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: lowerCAmelCase : Optional[int] =int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
172
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase =Features({'''image''': Image()} ) lowerCamelCase =Features({'''labels''': ClassLabel} ) lowerCamelCase ='''image''' lowerCamelCase ='''labels''' def lowercase_( self : int , lowerCamelCase : int ): """simple docstring""" if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowerCamelCase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __A : Optional[Any] = copy.deepcopy(self ) __A : int = self.label_schema.copy() __A : List[str] = features[self.label_column] __A : Dict = label_schema return task_template @property def lowercase_( self : Optional[Any] ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
704
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __A : Tuple = generate_pascal_triangle(__SCREAMING_SNAKE_CASE ) for row_idx in range(__SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A_ ( __SCREAMING_SNAKE_CASE : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __A : list[list[int]] = [] for current_row_idx in range(__SCREAMING_SNAKE_CASE ): __A : Tuple = populate_current_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) triangle.append(__SCREAMING_SNAKE_CASE ) return triangle def A_ ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __A : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __A , __A : Tuple = 1, 1 for current_col_idx in range(1 , __SCREAMING_SNAKE_CASE ): calculate_current_element( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return current_row def A_ ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , ) -> None: """simple docstring""" __A : str = triangle[current_row_idx - 1][current_col_idx - 1] __A : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] __A : Any = above_to_left_elt + above_to_right_elt def A_ ( __SCREAMING_SNAKE_CASE : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __A : list[list[int]] = [[1]] for row_index in range(1 , __SCREAMING_SNAKE_CASE ): __A : Optional[Any] = [0] + result[-1] + [0] __A : Optional[Any] = row_index + 1 # Calculate the number of distinct elements in a row __A : int = sum(divmod(__SCREAMING_SNAKE_CASE , 2 ) ) __A : str = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __A : Tuple = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __A : Any = row_first_half + row_second_half result.append(__SCREAMING_SNAKE_CASE ) return result def A_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None: __A : List[Any] = F"{func.__name__}({value})" __A : Dict = timeit(F"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
499
0
"""simple docstring""" _snake_case = {str(digit): digit**5 for digit in range(1_0)} def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(SCREAMING_SNAKE_CASE ) ) def __snake_case ( ): """simple docstring""" return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
580
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=0 , ) -> int: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = projection_dim def __lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) _lowerCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRContextEncoder(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = TFDPRReader(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_: List[str] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: List[str] = False SCREAMING_SNAKE_CASE_: List[str] = False def __lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCAmelCase = TFDPRModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def __lowerCamelCase ( self : str ) -> str: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _lowerCAmelCase = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowerCAmelCase = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowerCAmelCase = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
580
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE ( snake_case): return 1.0 / (1.0 + np.exp(-_outputs)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = np.max(_outputs, axis=-1, keepdims=snake_case) __snake_case = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=snake_case) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''sigmoid''' UpperCamelCase_ : Any = '''softmax''' UpperCamelCase_ : List[str] = '''none''' @add_end_docstrings( _UpperCAmelCase , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Tuple = ClassificationFunction.NONE def __init__( self : Union[str, Any] , **A_ : int ) -> Tuple: super().__init__(**A_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase ( self : str , A_ : int=None , A_ : str=None , A_ : Any="" , **A_ : Union[str, Any] ) -> str: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __snake_case = tokenizer_kwargs __snake_case = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: __snake_case = self.model.config.return_all_scores if isinstance(A_ , A_ ) or top_k is None: __snake_case = top_k __snake_case = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , A_ , ) if return_all_scores: __snake_case = None else: __snake_case = 1 if isinstance(A_ , A_ ): __snake_case = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __snake_case = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Any , *A_ : Optional[int] , **A_ : Tuple ) -> Optional[int]: __snake_case = super().__call__(*A_ , **A_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __snake_case = '''top_k''' not in kwargs if isinstance(args[0] , A_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase ( self : Optional[Any] , A_ : Tuple , **A_ : Optional[Any] ) -> Dict[str, GenericTensor]: __snake_case = self.framework if isinstance(A_ , A_ ): return self.tokenizer(**A_ , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ) and len(A_ ) == 1 and isinstance(inputs[0] , A_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=A_ , **A_ ) elif isinstance(A_ , A_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(A_ , return_tensors=A_ , **A_ ) def lowercase ( self : Optional[int] , A_ : Optional[Any] ) -> Optional[int]: return self.model(**A_ ) def lowercase ( self : Any , A_ : str , A_ : Dict=None , A_ : Tuple=1 , A_ : Optional[Any]=True ) -> Union[str, Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __snake_case = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __snake_case = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: __snake_case = self.model.config.function_to_apply else: __snake_case = ClassificationFunction.NONE __snake_case = model_outputs['''logits'''][0] __snake_case = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __snake_case = sigmoid(A_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __snake_case = softmax(A_ ) elif function_to_apply == ClassificationFunction.NONE: __snake_case = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __snake_case = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(A_ ) ] if not _legacy: dict_scores.sort(key=lambda A_ : x["score"] , reverse=A_ ) if top_k is not None: __snake_case = dict_scores[:top_k] return dict_scores
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase : Dict = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
0
from decimal import Decimal, getcontext from math import ceil, factorial def a__ ( lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) UpperCAmelCase_ =precision UpperCAmelCase_ =ceil(precision / 1_4 ) UpperCAmelCase_ =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() UpperCAmelCase_ =1 UpperCAmelCase_ =1_3_5_9_1_4_0_9 UpperCAmelCase_ =Decimal(lowercase__ ) for k in range(1 , lowercase__ ): UpperCAmelCase_ =factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowercase : List[str] =50 print(f"""The first {n} digits of pi is: {pi(n)}""")
54
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowercase ( A , A , unittest.TestCase ): __magic_name__ : List[str] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __magic_name__ : Optional[Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ : Optional[int] = False __magic_name__ : List[Any] = False def lowerCAmelCase_ ( self , a__ , a__ , a__=False ) -> Union[str, Any]: '''simple docstring''' A_ = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class in get_values(a__ ): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowercase ( A ): def __init__( self , a__ , a__=1_3 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=9_9 , a__=3_2 , a__=3_2 , a__=2 , a__=4 , a__=3_7 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=1_6 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ) -> List[str]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = embedding_size def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Dict: '''simple docstring''' A_ = TFMobileBertModel(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) A_ = [input_ids, input_mask] A_ = model(a__ ) A_ = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' A_ = TFMobileBertForMaskedLM(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> int: '''simple docstring''' A_ = TFMobileBertForNextSentencePrediction(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' A_ = TFMobileBertForPreTraining(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForSequenceClassification(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Any: '''simple docstring''' A_ = self.num_choices A_ = TFMobileBertForMultipleChoice(config=a__ ) A_ = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForTokenClassification(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Any: '''simple docstring''' A_ = TFMobileBertForQuestionAnswering(config=a__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) A_ = ConfigTester(self , config_class=a__ , hidden_size=3_7 ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a__ ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a__ ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a__ ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a__ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a__ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a__ ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a__ ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a__ ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A_ = TFMobileBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf class __lowercase ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(a__ )[0] A_ = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , a__ ) A_ = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1E-4 )
141
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __SCREAMING_SNAKE_CASE : Optional[Any] = '\\n Text data.\n Second line of data.' __SCREAMING_SNAKE_CASE : List[str] = 'file' @pytest.fixture(scope="""session""" ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / """cache""" snake_case_ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = """custom_cache""" snake_case_ = """custom_extracted_dir""" snake_case_ = tmp_path / """custom_extracted_path""" if default_extracted: snake_case_ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) snake_case_ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def _a ( _SCREAMING_SNAKE_CASE ) -> Any: # absolute path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path snake_case_ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: # absolute path snake_case_ = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path snake_case_ = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( ) -> Tuple: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
2
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCamelCase__ ( _a ): a : Optional[int] = """beit""" def __init__( self : int , A_ : List[str]=8_1_9_2 , A_ : Tuple=7_6_8 , A_ : str=1_2 , A_ : Optional[Any]=1_2 , A_ : List[str]=3_0_7_2 , A_ : Any="gelu" , A_ : List[Any]=0.0 , A_ : Optional[int]=0.0 , A_ : List[str]=0.02 , A_ : Tuple=1e-1_2 , A_ : str=2_2_4 , A_ : str=1_6 , A_ : Any=3 , A_ : str=False , A_ : List[str]=False , A_ : Any=False , A_ : Dict=False , A_ : Optional[Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Optional[Any]=True , A_ : Any=[3, 5, 7, 1_1] , A_ : Dict=[1, 2, 3, 6] , A_ : List[str]=True , A_ : Optional[int]=0.4 , A_ : Optional[int]=2_5_6 , A_ : int=1 , A_ : Tuple=False , A_ : List[Any]=2_5_5 , **A_ : Optional[Any] , ): '''simple docstring''' super().__init__(**A_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = use_mask_token __lowercase = use_absolute_position_embeddings __lowercase = use_relative_position_bias __lowercase = use_shared_relative_position_bias __lowercase = layer_scale_init_value __lowercase = drop_path_rate __lowercase = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase = out_indices __lowercase = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase = use_auxiliary_head __lowercase = auxiliary_loss_weight __lowercase = auxiliary_channels __lowercase = auxiliary_num_convs __lowercase = auxiliary_concat_input __lowercase = semantic_loss_ignore_index class lowerCamelCase__ ( _a ): a : int = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return 1e-4
616
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCamelCase__ ): http_head("""https://huggingface.co""" )
616
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_UpperCAmelCase ): _A : Tuple = ['''flax''', '''transformers'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : int ): requires_backends(self ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : List[str] ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : int ): requires_backends(cls ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : str ): requires_backends(cls ,["flax", "transformers"] ) class _snake_case ( metaclass=_UpperCAmelCase ): _A : List[str] = ['''flax''', '''transformers'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Any ): requires_backends(self ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Tuple ): requires_backends(cls ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : Any ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : str ): requires_backends(cls ,["flax", "transformers"] ) class _snake_case ( metaclass=_UpperCAmelCase ): _A : Any = ['''flax''', '''transformers'''] def __init__( self : str ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): requires_backends(self ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : int ,*SCREAMING_SNAKE_CASE__ : Optional[int] ,**SCREAMING_SNAKE_CASE__ : Any ): requires_backends(cls ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : str ): requires_backends(cls ,["flax", "transformers"] ) class _snake_case ( metaclass=_UpperCAmelCase ): _A : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self : str ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(self ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : List[Any] ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : List[Any] ): requires_backends(cls ,["flax", "transformers"] ) @classmethod def __UpperCamelCase ( cls : List[str] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["flax", "transformers"] )
708
'''simple docstring''' import warnings from functools import wraps from typing import Callable def A_ ( snake_case ): @wraps(snake_case ) def _inner_fn(*snake_case , **snake_case ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
465
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,_UpperCAmelCase : Dict[str, int] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : int = None ,_UpperCAmelCase : int = None ): super().__init__() _a : int = pad_token_id _a : Tuple = max_length _a : Any = vocab _a : Optional[int] = merges _a : Dict = BytePairTokenizer(_UpperCAmelCase ,_UpperCAmelCase ,sequence_length=_UpperCAmelCase ) @classmethod def __lowercase ( cls : Tuple ,_UpperCAmelCase : GPTaTokenizer ,*_UpperCAmelCase : List[str] ,**_UpperCAmelCase : int ): _a : Union[str, Any] = [' '.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] _a : Any = tokenizer.get_vocab() return cls(_UpperCAmelCase ,_UpperCAmelCase ,*_UpperCAmelCase ,**_UpperCAmelCase ) @classmethod def __lowercase ( cls : int ,_UpperCAmelCase : Union[str, os.PathLike] ,*_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Optional[Any] ): _a : Dict = GPTaTokenizer.from_pretrained(_UpperCAmelCase ,*_UpperCAmelCase ,**_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase ,*_UpperCAmelCase ,**_UpperCAmelCase ) @classmethod def __lowercase ( cls : Dict ,_UpperCAmelCase : Any ): return cls(**_UpperCAmelCase ) def __lowercase ( self : int ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int = None ): _a : List[str] = self.tf_tokenizer(_UpperCAmelCase ) _a : Any = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length _a : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _a , _a : int = pad_model_inputs( _UpperCAmelCase ,max_seq_length=_UpperCAmelCase ,pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
358
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase ): @property def __lowercase ( self : int ): torch.manual_seed(0 ) _a : int = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model @property def __lowercase ( self : Any ): torch.manual_seed(0 ) _a : int = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=3 ,) return model @property def __lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : Union[str, Any] = self.dummy_uncond_unet _a : Union[str, Any] = DDIMScheduler() _a : Union[str, Any] = self.dummy_vq_model _a : List[Any] = LDMPipeline(unet=_UpperCAmelCase ,vqvae=_UpperCAmelCase ,scheduler=_UpperCAmelCase ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _a : Dict = torch.manual_seed(0 ) _a : int = ldm(generator=_UpperCAmelCase ,num_inference_steps=2 ,output_type='numpy' ).images _a : Tuple = torch.manual_seed(0 ) _a : List[Any] = ldm(generator=_UpperCAmelCase ,num_inference_steps=2 ,output_type='numpy' ,return_dict=_UpperCAmelCase )[0] _a : Any = image[0, -3:, -3:, -1] _a : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Union[str, Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _a : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : Optional[int] ): _a : Dict = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_UpperCAmelCase ) ldm.set_progress_bar_config(disable=_UpperCAmelCase ) _a : str = torch.manual_seed(0 ) _a : Optional[Any] = ldm(generator=_UpperCAmelCase ,num_inference_steps=5 ,output_type='numpy' ).images _a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Union[str, Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _a : List[str] = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
358
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BioGptTokenizer lowercase__ = False def UpperCAmelCase ( self) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _UpperCamelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_)))) _UpperCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(lowerCAmelCase_)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(lowerCAmelCase_)) def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = '''lower newer''' _UpperCamelCase = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BioGptTokenizer(self.vocab_file , self.merges_file) _UpperCamelCase = '''lower''' _UpperCamelCase = ['''low''', '''er</w>'''] _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) _UpperCamelCase = tokens + ['''<unk>'''] _UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_) , lowerCAmelCase_) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
711
"""simple docstring""" import json import sys def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, encoding='''utf-8''' ) as f: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__snake_case ): _UpperCamelCase = results[benchmark_name] _UpperCamelCase = benchmark_name.split('''/''' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) _UpperCamelCase = '''| metric |''' _UpperCamelCase = '''|--------|''' _UpperCamelCase = '''| new / old (diff) |''' for metric_name in sorted(__snake_case ): _UpperCamelCase = benchmark_res[metric_name] _UpperCamelCase = metric_vals['''new'''] _UpperCamelCase = metric_vals.get('''old''', __snake_case ) _UpperCamelCase = metric_vals.get('''diff''', __snake_case ) _UpperCamelCase = F''' {new_val:f}''' if isinstance(__snake_case, (int, float) ) else '''None''' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__snake_case, (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__snake_case, (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__snake_case ) ) if __name__ == "__main__": _a = sys.argv[1] _a = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
78
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = "▁" UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Tuple = BigBirdTokenizer __A : List[str] = BigBirdTokenizerFast __A : List[Any] = True __A : List[Any] = True def UpperCamelCase( self ): super().setUp() _UpperCAmelCase = self.tokenizer_class(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ): _UpperCAmelCase = '''<s>''' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCamelCase ) , 1004 ) def UpperCamelCase( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase( self ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = BigBirdTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def UpperCamelCase( self ): _UpperCAmelCase = '''Hello World!''' _UpperCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off _UpperCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def UpperCamelCase( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase = ''' '''.join(_UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCamelCase ) _UpperCAmelCase = BigBirdConfig(attention_type='''original_full''' ) _UpperCAmelCase = BigBirdModel(_UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def UpperCamelCase( self ): _UpperCAmelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) _UpperCAmelCase = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def UpperCamelCase( self ): # fmt: off _UpperCAmelCase = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
32
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A__ : Union[str, Any] = random.Random() def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any]=1.0 ,__UpperCamelCase : Dict=None ,__UpperCamelCase : List[Any]=None ): if rng is None: lowerCAmelCase_ : List[Any] = global_rng lowerCAmelCase_ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __snake_case ( unittest.TestCase ): def __init__( self : Union[str, Any] , A_ : Dict , A_ : Optional[Any]=7 , A_ : Union[str, Any]=4_0_0 , A_ : Dict=2_0_0_0 , A_ : Dict=1 , A_ : Optional[Any]=0.0 , A_ : Tuple=1_6_0_0_0 , A_ : Any=True , A_ : Any=8_0 , A_ : str=1_6 , A_ : Union[str, Any]=6_4 , A_ : List[Any]="hann_window" , A_ : Union[str, Any]=8_0 , A_ : Dict=7_6_0_0 , A_ : List[str]=1e-10 , A_ : Union[str, Any]=True , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : str = min_seq_length lowerCAmelCase_ : Optional[int] = max_seq_length lowerCAmelCase_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : List[Any] = feature_size lowerCAmelCase_ : Any = padding_value lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : str = do_normalize lowerCAmelCase_ : str = num_mel_bins lowerCAmelCase_ : List[str] = hop_length lowerCAmelCase_ : Tuple = win_length lowerCAmelCase_ : Tuple = win_function lowerCAmelCase_ : Optional[int] = fmin lowerCAmelCase_ : List[str] = fmax lowerCAmelCase_ : Optional[Any] = mel_floor lowerCAmelCase_ : Optional[Any] = return_attention_mask def UpperCAmelCase__ ( self : List[str]): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCAmelCase__ ( self : Optional[int] , A_ : Any=False , A_ : List[str]=False): def _flatten(A_ : Tuple): return list(itertools.chain(*A_)) if equal_length: lowerCAmelCase_ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCAmelCase_ : Dict = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCAmelCase_ : Optional[Any] = [np.asarray(A_) for x in speech_inputs] return speech_inputs def UpperCAmelCase__ ( self : Tuple , A_ : Optional[Any]=False , A_ : Dict=False): if equal_length: lowerCAmelCase_ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size lowerCAmelCase_ : Tuple = [ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCAmelCase_ : Optional[int] = [np.asarray(A_) for x in speech_inputs] return speech_inputs @require_torch class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = SpeechTaFeatureExtractor def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = SpeechTaFeatureExtractionTester(self) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int): self.assertTrue(np.all(np.mean(A_ , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(A_ , axis=0) - 1) < 1e-3)) def UpperCAmelCase__ ( self : List[Any]): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Optional[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Any = [np.asarray(A_) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : Tuple = feat_extract(speech_inputs[0] , return_tensors='''np''').input_values lowerCAmelCase_ : Dict = feat_extract(np_speech_inputs[0] , return_tensors='''np''').input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test batched lowerCAmelCase_ : Any = feat_extract(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : Optional[int] = feat_extract(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : Optional[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase_ : str = [None, 1_6_0_0, None] for max_length, padding in zip(A_ , A_): lowerCAmelCase_ : str = feat_extract(A_ , padding=A_ , max_length=A_ , return_tensors='''np''') lowerCAmelCase_ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : Dict = range(8_0_0 , 1_4_0_0 , 2_0_0) lowerCAmelCase_ : Union[str, Any] = [floats_list((1, x))[0] for x in lengths] lowerCAmelCase_ : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase_ : Optional[Any] = [None, 1_6_0_0, None] for max_length, padding in zip(A_ , A_): lowerCAmelCase_ : Optional[int] = feat_extract(A_ , max_length=A_ , padding=A_) lowerCAmelCase_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : List[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : int = feat_extract( A_ , truncation=A_ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''') lowerCAmelCase_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : str = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Any = feat_extract( A_ , truncation=A_ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''') lowerCAmelCase_ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0)) lowerCAmelCase_ : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : List[Any] = feat_extract( A_ , truncation=A_ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''') lowerCAmelCase_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0)) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : List[str] = np.random.rand(1_0_0).astype(np.floataa) lowerCAmelCase_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''') self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCAmelCase_ : List[str] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def UpperCAmelCase__ ( self : Optional[int]): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : str = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Optional[int] = [np.asarray(A_) for speech_input in speech_inputs] # Test feature size lowerCAmelCase_ : Optional[Any] = feature_extractor(audio_target=A_ , padding=A_ , return_tensors='''np''').input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input lowerCAmelCase_ : int = feature_extractor(speech_inputs[0] , return_tensors='''np''').input_values lowerCAmelCase_ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''').input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test batched lowerCAmelCase_ : Optional[int] = feature_extractor(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : int = feature_extractor(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Tuple = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase_ : Any = np.asarray(A_) lowerCAmelCase_ : Any = feature_extractor(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : int = feature_extractor(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Any = feat_extract.model_input_names[0] lowerCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(A_) == len(A_) for x, y in zip(A_ , processed_features[input_name]))) lowerCAmelCase_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A_) lowerCAmelCase_ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') lowerCAmelCase_ : Dict = processed_features[input_name] if len(batch_features_input.shape) < 3: lowerCAmelCase_ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A_) lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Optional[int] = feat_extract.model_input_names[0] lowerCAmelCase_ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') lowerCAmelCase_ : Any = processed_features[input_name] if len(batch_features_input.shape) < 3: lowerCAmelCase_ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : str = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : List[Any] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''')[input_name] lowerCAmelCase_ : Tuple = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = self.feat_extract_dict lowerCAmelCase_ : str = True lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**A_) lowerCAmelCase_ : Tuple = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : str = [len(A_) for x in speech_inputs] lowerCAmelCase_ : List[str] = feat_extract.model_input_names[0] lowerCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : str = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : Tuple = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , A_) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Tuple = self.feat_extract_dict lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Any = self.feature_extraction_class(**A_) lowerCAmelCase_ : Any = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : Tuple = [len(A_) for x in speech_inputs] lowerCAmelCase_ : Tuple = feat_extract.model_input_names[0] lowerCAmelCase_ : str = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : int = min(A_) lowerCAmelCase_ : Dict = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : str = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , truncation=A_ , return_tensors='''np''') self.assertIn('''attention_mask''' , A_) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs]) def UpperCAmelCase__ ( self : int , A_ : Optional[int]): from datasets import load_dataset lowerCAmelCase_ : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech lowerCAmelCase_ : Optional[Any] = ds.sort('''id''').select(range(A_))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Any): # fmt: off lowerCAmelCase_ : Optional[int] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03]) # fmt: on lowerCAmelCase_ : Tuple = self._load_datasamples(1) lowerCAmelCase_ : List[str] = SpeechTaFeatureExtractor() lowerCAmelCase_ : List[Any] = feature_extractor(A_ , return_tensors='''pt''').input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0)) self.assertTrue(torch.allclose(input_values[0, :3_0] , A_ , atol=1e-6)) def UpperCAmelCase__ ( self : Optional[int]): # fmt: off lowerCAmelCase_ : Tuple = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998]) # fmt: on lowerCAmelCase_ : Union[str, Any] = self._load_datasamples(1) lowerCAmelCase_ : Any = SpeechTaFeatureExtractor() lowerCAmelCase_ : Dict = feature_extractor(audio_target=A_ , return_tensors='''pt''').input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , A_ , atol=1e-4))
171
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCAmelCase_ = 'facebook/wmt19-en-de' lowerCAmelCase_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCAmelCase_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCAmelCase_ = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test lowerCAmelCase_ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCAmelCase_ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save lowerCAmelCase_ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : def __UpperCAmelCase ( self , _lowerCAmelCase ): raise NotImplementedError() def __UpperCAmelCase ( self ): raise NotImplementedError() class UpperCAmelCase_ ( __lowerCamelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = False , **_lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = tokenizer UpperCAmelCase__ : Dict = skip_prompt UpperCAmelCase__ : Union[str, Any] = decode_kwargs # variables used in the streaming process UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Tuple = True def __UpperCAmelCase ( self , _lowerCAmelCase ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: UpperCAmelCase__ : Optional[int] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase__ : int = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase__ : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): UpperCAmelCase__ : Optional[Any] = text[self.print_len :] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Union[str, Any] = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase__ : str = text[self.print_len :] self.print_len += len(_lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase__ : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(_lowerCAmelCase ) self.on_finalized_text(_lowerCAmelCase ) def __UpperCAmelCase ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase__ : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase__ : Tuple = text[self.print_len :] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Union[str, Any] = 0 else: UpperCAmelCase__ : Dict = """""" UpperCAmelCase__ : str = True self.on_finalized_text(_lowerCAmelCase , stream_end=_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False ): print(_lowerCAmelCase , flush=_lowerCAmelCase , end="""""" if not stream_end else None ) def __UpperCAmelCase ( self , _lowerCAmelCase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class UpperCAmelCase_ ( __lowerCamelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Tuple = Queue() UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Tuple = timeout def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False ): self.text_queue.put(_lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
79
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
652
0
import math def UpperCamelCase ( snake_case__): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( snake_case__ = 1_00_01): try: lowerCAmelCase_ : List[Any] = int(snake_case__) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int.") from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one.") lowerCAmelCase_ : list[int] = [] lowerCAmelCase_ : List[str] = 2 while len(snake_case__) < nth: if is_prime(snake_case__): primes.append(snake_case__) num += 1 else: num += 1 return primes[len(snake_case__) - 1] if __name__ == "__main__": print(f"{solution() = }")
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a__ : int ='''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' a__ : str ='''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' a__ : Any =''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def _lowerCamelCase ( self : List[Any] , __A : Union[str, Any] , __A : str , __A : List[str]=None , __A : List[str]=True , __A : Optional[Any]=False ): if rouge_types is None: __UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] __UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=__A , use_stemmer=__A ) if use_aggregator: __UpperCamelCase = scoring.BootstrapAggregator() else: __UpperCamelCase = [] for ref, pred in zip(__A , __A ): __UpperCamelCase = scorer.score(__A , __A ) if use_aggregator: aggregator.add_scores(__A ) else: scores.append(__A ) if use_aggregator: __UpperCamelCase = aggregator.aggregate() else: __UpperCamelCase = {} for key in scores[0]: __UpperCamelCase = [score[key] for score in scores] return result
399
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": a__ : str =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) a__ : Any =parser.parse_args() a__ : Union[str, Any] =download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
399
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
622
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
622
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a__ ( a_ ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
361
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Optional[int] = logging.get_logger(__name__) def __magic_name__ ( __snake_case : str ) -> YolosConfig: lowercase : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase : Union[str, Any] = 192 lowercase : Tuple = 768 lowercase : Optional[Any] = 12 lowercase : List[str] = 3 lowercase : int = [800, 1333] lowercase : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": lowercase : int = 330 lowercase : List[str] = 14 lowercase : Dict = 6 lowercase : Any = 1320 elif "yolos_s" in yolos_name: lowercase : str = 384 lowercase : int = 1536 lowercase : Any = 12 lowercase : int = 6 elif "yolos_b" in yolos_name: lowercase : str = [800, 1344] lowercase : Tuple = 91 lowercase : Tuple = "huggingface/label-files" lowercase : Any = "coco-detection-id2label.json" lowercase : str = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) lowercase : List[str] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase : Union[str, Any] = idalabel lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __snake_case : dict , __snake_case : YolosConfig , __snake_case : bool = False ) -> int: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowercase : int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowercase : int = in_proj_bias[: config.hidden_size] lowercase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Dict = in_proj_weight[-config.hidden_size :, :] lowercase : List[Any] = in_proj_bias[-config.hidden_size :] def __magic_name__ ( __snake_case : str ) -> str: if "backbone" in name: lowercase : Union[str, Any] = name.replace("backbone" , "vit" ) if "cls_token" in name: lowercase : Union[str, Any] = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowercase : Dict = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowercase : Optional[Any] = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowercase : Any = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowercase : Optional[int] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowercase : Union[str, Any] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowercase : Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowercase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: lowercase : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowercase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase : List[str] = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowercase : List[Any] = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowercase : Optional[Any] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowercase : Optional[int] = name.replace("vit.norm" , "vit.layernorm" ) return name def __magic_name__ ( __snake_case : dict , __snake_case : YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(__snake_case ) if "qkv" in key: lowercase : Union[str, Any] = key.split("." ) lowercase : List[Any] = int(key_split[2] ) lowercase : Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase : int = val[:dim, :] lowercase : List[Any] = val[ dim : dim * 2, : ] lowercase : Any = val[-dim:, :] else: lowercase : Dict = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : str = val[-dim:] else: lowercase : List[str] = val return orig_state_dict def __magic_name__ ( ) -> torch.Tensor: lowercase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase : Tuple = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __magic_name__ ( __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : bool = False ) -> Dict: lowercase : Optional[int] = get_yolos_config(__snake_case ) # load original state_dict lowercase : str = torch.load(__snake_case , map_location="cpu" )["model"] # load 🤗 model lowercase : str = YolosForObjectDetection(__snake_case ) model.eval() lowercase : Dict = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by YolosImageProcessor lowercase : Any = 800 if yolos_name != "yolos_ti" else 512 lowercase : List[Any] = YolosImageProcessor(format="coco_detection" , size=__snake_case ) lowercase : Any = image_processor(images=prepare_img() , return_tensors="pt" ) lowercase : Any = model(**__snake_case ) lowercase , lowercase : Tuple = outputs.logits, outputs.pred_boxes lowercase , lowercase : int = None, None if yolos_name == "yolos_ti": lowercase : int = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowercase : List[Any] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowercase : List[Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowercase : List[Any] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowercase : Optional[int] = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowercase : Tuple = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowercase : Tuple = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowercase : List[str] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowercase : Optional[Any] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowercase : List[str] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: lowercase : Optional[int] = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowercase : Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(__snake_case , organization="hustvl" ) model.push_to_hub(__snake_case , organization="hustvl" ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _A : Any = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
361
1
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int = 1000000 ) -> int: lowercase : Dict =set(range(3 , __magic_name__ , 2 ) ) primes.add(2 ) for p in range(3 , __magic_name__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __magic_name__ , __magic_name__ ) ) ) lowercase : List[Any] =[float(__magic_name__ ) for n in range(limit + 1 )] for p in primes: for n in range(__magic_name__ , limit + 1 , __magic_name__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
88
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCamelCase_ = { """facebook/xglm-564M""": 2048, } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]="<s>" , UpperCAmelCase__ : int="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Any="<pad>" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' lowercase : int ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase : Optional[Any] =7 lowercase : Optional[int] =[F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase : List[Any] =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) lowercase : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase__ ) ) lowercase : List[Any] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Union[str, Any] =1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase : List[str] ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase : str =len(self.sp_model ) lowercase : List[Any] ={F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase__ ) lowercase : int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): '''simple docstring''' lowercase : Optional[int] =self.__dict__.copy() lowercase : List[Any] =None lowercase : Tuple =self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , UpperCAmelCase__ : Any ): '''simple docstring''' lowercase : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Optional[int] ={} lowercase : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase : List[Any] =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase : int =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : int ={self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : str ): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : List[str] =self.sp_model.PieceToId(UpperCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Any ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : Dict =''''''.join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase : Dict =os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , '''wb''' ) as fi: lowercase : Optional[int] =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
88
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=[1, 1, 2] , _lowerCamelCase=1 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=8 , _lowerCamelCase=37 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=512 , _lowerCamelCase=3 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=False , ): UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_input_mask UpperCAmelCase__ : Optional[int] = use_token_type_ids UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Dict = block_sizes UpperCAmelCase__ : Tuple = num_decoder_layers UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : List[str] = n_head UpperCAmelCase__ : Optional[Any] = d_head UpperCAmelCase__ : Tuple = d_inner UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout UpperCAmelCase__ : str = attention_dropout UpperCAmelCase__ : Tuple = activation_dropout UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Optional[Any] = type_vocab_size UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : str = num_choices UpperCAmelCase__ : Tuple = scope UpperCAmelCase__ : List[Any] = initializer_std # Used in the tests to check the size of the first attention layer UpperCAmelCase__ : Optional[Any] = n_head # Used in the tests to check the size of the first hidden state UpperCAmelCase__ : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCAmelCase__ : Union[str, Any] = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCAmelCase__ : Optional[int] = self.num_hidden_layers + 2 def snake_case__ ( self): UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : List[str] = None if self.use_input_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Optional[int] = TFFunnelModel(config=A_) UpperCAmelCase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : Any = model(A_) UpperCAmelCase__ : Tuple = [input_ids, input_mask] UpperCAmelCase__ : Dict = model(A_) UpperCAmelCase__ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Union[str, Any] = TFFunnelModel(config=A_) UpperCAmelCase__ : Optional[int] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Any = TFFunnelModel(config=A_) UpperCAmelCase__ : str = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = TFFunnelBaseModel(config=A_) UpperCAmelCase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : Union[str, Any] = model(A_) UpperCAmelCase__ : Dict = [input_ids, input_mask] UpperCAmelCase__ : Any = model(A_) UpperCAmelCase__ : Optional[int] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = TFFunnelBaseModel(config=A_) UpperCAmelCase__ : Any = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = TFFunnelBaseModel(config=A_) UpperCAmelCase__ : Optional[int] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Optional[int] = TFFunnelForPreTraining(config=A_) UpperCAmelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : List[Any] = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Tuple = TFFunnelForMaskedLM(config=A_) UpperCAmelCase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : str = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : Any = TFFunnelForSequenceClassification(config=A_) UpperCAmelCase__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : Optional[int] = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : int = self.num_choices UpperCAmelCase__ : Any = TFFunnelForMultipleChoice(config=A_) UpperCAmelCase__ : List[Any] = tf.tile(tf.expand_dims(A_ , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Union[str, Any] = tf.tile(tf.expand_dims(A_ , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : Union[str, Any] = tf.tile(tf.expand_dims(A_ , 1) , (1, self.num_choices, 1)) UpperCAmelCase__ : int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase__ : int = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Dict = self.num_labels UpperCAmelCase__ : Optional[Any] = TFFunnelForTokenClassification(config=A_) UpperCAmelCase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : Union[str, Any] = model(A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCAmelCase__ : Optional[Any] = TFFunnelForQuestionAnswering(config=A_) UpperCAmelCase__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase__ : List[Any] = model(A_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : str = config_and_inputs UpperCAmelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCAmelCase :Any = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase :str = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase :Optional[int] = False lowerCAmelCase :Tuple = False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = TFFunnelModelTester(self) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=A_) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) def snake_case__ ( self): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_) @require_tf class _snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCAmelCase :Optional[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase :Optional[Any] = False lowerCAmelCase :Dict = False def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = TFFunnelModelTester(self , base=A_) UpperCAmelCase__ : str = ConfigTester(self , config_class=A_) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*A_) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_)
407
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" stooge(_UpperCamelCase , 0 , len(_UpperCamelCase ) - 1 ) return arr def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowercase , _lowercase: Optional[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowercase: Tuple = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCamelCase , i + t , (_UpperCamelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) if __name__ == "__main__": A__ : Dict = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
353
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ : Dict = None A_ : Tuple = logging.get_logger(__name__) A_ : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A_ : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } A_ : int = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } A_ : List[str] = """▁""" class _a (UpperCamelCase_ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__: Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: Any = BigBirdTokenizer UpperCAmelCase__: str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[str] = [] def __init__( self , A__=None , A__=None , A__="<unk>" , A__="<s>" , A__="</s>" , A__="<pad>" , A__="[SEP]" , A__="[MASK]" , A__="[CLS]" , **A__ , ): A__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token A__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token A__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token A__ : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token A__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token A__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) A__ : List[Any] = vocab_file A__ : Tuple = False if not self.vocab_file else True def __A ( self , A__ , A__ = None ): A__ : str = [self.sep_token_id] A__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def __A ( self , A__ , A__ = None ): A__ : Union[str, Any] = [self.sep_token_id] A__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : Any = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
0
import requests from bsa import BeautifulSoup def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: dict ) -> str: _UpperCAmelCase : List[str] = BeautifulSoup(requests.get(__lowerCamelCase , params=__lowerCamelCase ).content , "html.parser" ) _UpperCAmelCase : Any = soup.find("div" , attrs={"class": "gs_ri"} ) _UpperCAmelCase : List[Any] = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
300
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE : Dict = get_tests_dir("""fixtures""") class UpperCamelCase__ ( unittest.TestCase ): def __lowercase( self : Any ) -> Tuple: # A mock response for an HTTP head request to emulate server down UpperCamelCase__ : Optional[int] = mock.Mock() UpperCamelCase__ : Optional[Any] = 5_00 UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Optional[int] = HTTPError UpperCamelCase__ : Union[str, Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=__lowerCamelCase ) as mock_head: UpperCamelCase__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): @classmethod def __lowercase( cls : Tuple ) -> Dict: UpperCamelCase__ : str = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def __lowercase( cls : List[str] ) -> Any: try: delete_repo(token=cls._token, repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowercase( self : List[str] ) -> List[str]: UpperCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''', use_auth_token=self._token ) UpperCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase, getattr(__lowerCamelCase, __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase, repo_id='''test-feature-extractor''', push_to_hub=__lowerCamelCase, use_auth_token=self._token ) UpperCamelCase__ : Tuple = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase, getattr(__lowerCamelCase, __lowerCamelCase ) ) def __lowercase( self : List[Any] ) -> List[Any]: UpperCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''', use_auth_token=self._token ) UpperCamelCase__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase, getattr(__lowerCamelCase, __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase, repo_id='''valid_org/test-feature-extractor-org''', push_to_hub=__lowerCamelCase, use_auth_token=self._token ) UpperCamelCase__ : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase, getattr(__lowerCamelCase, __lowerCamelCase ) ) def __lowercase( self : int ) -> Union[str, Any]: CustomFeatureExtractor.register_for_auto_class() UpperCamelCase__ : Tuple = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''}, ) UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor', trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, '''CustomFeatureExtractor''' )
344
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) # TODO Update this __lowerCamelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( _snake_case ): lowercase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = emb_layer_norm_before A_ = token_dropout A_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) A_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = EsmFoldConfig(**UpperCamelCase__ ) A_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) A_ = get_default_vocab_list() else: A_ = vocab_list else: A_ = None A_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A_ = self.esmfold_config.to_dict() return output @dataclass class A__ : lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 128 lowercase = None def snake_case_ ( self ) -> List[str]: '''simple docstring''' if self.trunk is None: A_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A_ = TrunkConfig(**self.trunk ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = asdict(self ) A_ = self.trunk.to_dict() return output @dataclass class A__ : lowercase = 48 lowercase = 1_024 lowercase = 128 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 128 lowercase = None def snake_case_ ( self ) -> Any: '''simple docstring''' if self.structure_module is None: A_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) A_ = self.sequence_state_dim // self.sequence_head_width A_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = asdict(self ) A_ = self.structure_module.to_dict() return output @dataclass class A__ : lowercase = 384 lowercase = 128 lowercase = 16 lowercase = 128 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1e-8 lowercase = 1e5 def snake_case_ ( self ) -> Any: '''simple docstring''' return asdict(self ) def UpperCAmelCase__ ( ) -> List[str]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Dict , _a : int , _a : int , _a : float , **_a : Optional[int] ) -> List[Any]: __lowerCamelCase : List[Any] = feature_size __lowerCamelCase : Union[str, Any] = sampling_rate __lowerCamelCase : Dict = padding_value __lowerCamelCase : Optional[int] = kwargs.pop('padding_side' , 'right' ) __lowerCamelCase : Dict = kwargs.pop('return_attention_mask' , _a ) super().__init__(**_a ) def _lowercase ( self : Union[str, Any] , _a : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , _a : Union[bool, str, PaddingStrategy] = True , _a : Optional[int] = None , _a : bool = False , _a : Optional[int] = None , _a : Optional[bool] = None , _a : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(_a , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowerCamelCase : Union[str, Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) __lowerCamelCase : int = processed_features[self.model_input_names[0]] __lowerCamelCase : Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_a ) == 0: if return_attention_mask: __lowerCamelCase : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowerCamelCase : List[str] = required_input[0] if isinstance(_a , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowerCamelCase : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_a ): __lowerCamelCase : int = required_input[index][0] if return_tensors is None: if is_tf_tensor(_a ): __lowerCamelCase : Any = 'tf' elif is_torch_tensor(_a ): __lowerCamelCase : int = 'pt' elif isinstance(_a , (int, float, list, tuple, np.ndarray) ): __lowerCamelCase : Optional[Any] = 'np' else: raise ValueError( f'type of {first_element} unknown: {type(_a )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowerCamelCase : Tuple = to_numpy(_a ) else: __lowerCamelCase : List[Any] = [to_numpy(_a ) for v in value] # Convert padding_strategy in PaddingStrategy __lowerCamelCase : List[Any] = self._get_padding_strategies(padding=_a , max_length=_a ) __lowerCamelCase : Any = processed_features[self.model_input_names[0]] __lowerCamelCase : Any = len(_a ) if not all(len(_a ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) __lowerCamelCase : List[str] = [] for i in range(_a ): __lowerCamelCase : Optional[int] = {k: v[i] for k, v in processed_features.items()} # truncation __lowerCamelCase : List[str] = self._truncate( _a , max_length=_a , pad_to_multiple_of=_a , truncation=_a , ) truncated_inputs.append(_a ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowerCamelCase : Any = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowerCamelCase : Dict = PaddingStrategy.MAX_LENGTH __lowerCamelCase : Any = {} for i in range(_a ): # padding __lowerCamelCase : Any = self._pad( truncated_inputs[i] , max_length=_a , padding_strategy=_a , pad_to_multiple_of=_a , return_attention_mask=_a , ) for key, value in outputs.items(): if key not in batch_outputs: __lowerCamelCase : Any = [] if value.dtype is np.dtype(np.floataa ): __lowerCamelCase : Dict = value.astype(np.floataa ) batch_outputs[key].append(_a ) return BatchFeature(_a , tensor_type=_a ) def _lowercase ( self : Dict , _a : Union[Dict[str, np.ndarray], BatchFeature] , _a : Optional[int] = None , _a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _a : Optional[int] = None , _a : Optional[bool] = None , ) -> dict: __lowerCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowerCamelCase : Any = len(_a ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_a ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowerCamelCase : Optional[Any] = np.ones(len(_a ) , dtype=np.intaa ) if needs_to_be_padded: __lowerCamelCase : List[Any] = max_length - len(_a ) if self.padding_side == "right": if return_attention_mask: __lowerCamelCase : List[str] = np.pad( processed_features['attention_mask'] , (0, difference) ) __lowerCamelCase : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowerCamelCase : str = np.pad( _a , _a , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowerCamelCase : str = np.pad( processed_features['attention_mask'] , (difference, 0) ) __lowerCamelCase : Tuple = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowerCamelCase : Optional[int] = np.pad( _a , _a , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def _lowercase ( self : Tuple , _a : Union[Dict[str, np.ndarray], BatchFeature] , _a : Optional[int] = None , _a : Optional[int] = None , _a : Optional[bool] = None , ) -> List[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) __lowerCamelCase : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : Optional[int] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Optional[Any] = len(_a ) > max_length if needs_to_be_truncated: __lowerCamelCase : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowerCamelCase : Tuple = processed_features['attention_mask'][:max_length] return processed_features def _lowercase ( self : str , _a : Union[str, Any]=False , _a : Optional[int]=None ) -> List[str]: # Get padding strategy if padding is not False: if padding is True: __lowerCamelCase : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_a , _a ): __lowerCamelCase : Union[str, Any] = PaddingStrategy(_a ) elif isinstance(_a , _a ): __lowerCamelCase : Dict = padding else: __lowerCamelCase : Optional[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
459
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _UpperCamelCase = True except ImportError: _UpperCamelCase = False try: from torch.hub import _get_torch_home _UpperCamelCase = _get_torch_home() except ImportError: _UpperCamelCase = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _UpperCamelCase = os.path.join(torch_cache_home, 'transformers') _UpperCamelCase = 'https://cdn.huggingface.co' _UpperCamelCase = 'https://s3.amazonaws.com/models.huggingface.co/bert' _UpperCamelCase = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _UpperCamelCase = os.path.join(PATH, 'config.yaml') _UpperCamelCase = os.path.join(PATH, 'attributes.txt') _UpperCamelCase = os.path.join(PATH, 'objects.txt') _UpperCamelCase = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _UpperCamelCase = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _UpperCamelCase = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _UpperCamelCase = 'pytorch_model.bin' _UpperCamelCase = 'config.yaml' def a_ ( _lowerCAmelCase=OBJECTS ,_lowerCAmelCase=ATTRIBUTES ) -> Union[str, Any]: __lowerCamelCase : Dict = [] with open(_lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __lowerCamelCase : List[Any] = [] with open(_lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : Any = OrderedDict() with open(_lowerCAmelCase ,'rb' ) as f: __lowerCamelCase : str = pkl.load(_lowerCAmelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __lowerCamelCase : Any = ckp.pop(_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,np.ndarray ): __lowerCamelCase : Dict = torch.tensor(_lowerCAmelCase ) else: assert isinstance(_lowerCAmelCase ,torch.tensor ), type(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = v return r class lowerCamelCase_ : """simple docstring""" a_ ={} def __init__( self : int , _a : dict , _a : str = "root" , _a : int=0 ) -> Union[str, Any]: __lowerCamelCase : Dict = name __lowerCamelCase : Union[str, Any] = level __lowerCamelCase : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowerCamelCase : int = copy.deepcopy(_a ) __lowerCamelCase : List[str] = copy.deepcopy(_a ) if isinstance(_a , _a ): __lowerCamelCase : str = Config(_a , name=_a , level=level + 1 ) __lowerCamelCase : Union[str, Any] = v setattr(self , _a , _a ) __lowerCamelCase : Optional[int] = d def __repr__( self : int ) -> Any: return str(list((self._pointer.keys()) ) ) def __setattr__( self : int , _a : Tuple , _a : Optional[int] ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Optional[Any] = val __lowerCamelCase : List[str] = key.split('.' ) __lowerCamelCase : str = len(_a ) - 1 __lowerCamelCase : str = self._pointer if len(_a ) > 1: for i, l in enumerate(_a ): if hasattr(self , _a ) and isinstance(getattr(self , _a ) , _a ): setattr(getattr(self , _a ) , '.'.join(levels[i:] ) , _a ) if l == last_level: __lowerCamelCase : Union[str, Any] = val else: __lowerCamelCase : List[Any] = pointer[l] def _lowercase ( self : Dict ) -> Optional[Any]: return self._pointer def _lowercase ( self : Any , _a : List[str] , _a : List[str] ) -> Dict: with open(f'{file_name}' , 'w' ) as stream: dump(_a , _a ) def _lowercase ( self : Any , _a : Union[str, Any] , _a : List[Any] ) -> List[Any]: with open(f'{file_name}' , 'w' ) as stream: json.dump(_a , _a ) @staticmethod def _lowercase ( _a : Any ) -> List[str]: with open(_a ) as stream: __lowerCamelCase : Dict = load(_a , Loader=_a ) return data def __str__( self : Any ) -> List[str]: __lowerCamelCase : Dict = ' ' if self._name != "root": __lowerCamelCase : Dict = f'{t * (self._level-1)}{self._name}:\n' else: __lowerCamelCase : str = '' __lowerCamelCase : List[str] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_a , _a ): r += f'{t * (self._level)}{v}\n' self._level += 1 else: r += f'{t * (self._level)}{k}: {v} ({type(_a ).__name__})\n' __lowerCamelCase : Any = level return r[:-1] @classmethod def _lowercase ( cls : int , _a : str , **_a : List[str] ) -> Union[str, Any]: __lowerCamelCase ,__lowerCamelCase : str = cls.get_config_dict(_a , **_a ) return cls(_a ) @classmethod def _lowercase ( cls : Dict , _a : str , **_a : List[str] ) -> List[Any]: __lowerCamelCase : str = kwargs.pop('cache_dir' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('force_download' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('resume_download' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('proxies' , _a ) __lowerCamelCase : Optional[Any] = kwargs.pop('local_files_only' , _a ) if os.path.isdir(_a ): __lowerCamelCase : Tuple = os.path.join(_a , _a ) elif os.path.isfile(_a ) or is_remote_url(_a ): __lowerCamelCase : List[str] = pretrained_model_name_or_path else: __lowerCamelCase : List[Any] = hf_bucket_url(_a , filename=_a , use_cdn=_a ) try: # Load from URL or cache if already cached __lowerCamelCase : str = cached_path( _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowerCamelCase : Optional[Any] = Config.load_yaml(_a ) except EnvironmentError: __lowerCamelCase : Optional[int] = 'Can\'t load config for' raise EnvironmentError(_a ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_a ), kwargs def a_ ( _lowerCAmelCase ) -> Dict: __lowerCamelCase : Dict = torch.load('dump.pt' ,map_location=in_tensor.device ) __lowerCamelCase : Optional[int] = in_tensor.numpy() __lowerCamelCase : int = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,rtol=0.01 ,atol=0.1 ), ( F'{sum([1 for x in np.isclose(_lowerCAmelCase ,_lowerCAmelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : List[str] = urlparse(_lowerCAmelCase ) return parsed.scheme in ("http", "https") def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=True ) -> str: __lowerCamelCase : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowerCamelCase : List[str] = '/' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=0 ,_lowerCAmelCase=None ,) -> Any: __lowerCamelCase : Tuple = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): ua += "; " + "; ".join('{}/{}'.format(_lowerCAmelCase ,_lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): ua += "; " + user_agent __lowerCamelCase : List[Any] = {'user-agent': ua} if resume_size > 0: __lowerCamelCase : List[str] = 'bytes=%d-' % (resume_size,) __lowerCamelCase : Optional[Any] = requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ,proxies=_lowerCAmelCase ,headers=_lowerCAmelCase ) if response.status_code == 416: # Range not satisfiable return __lowerCamelCase : List[Any] = response.headers.get('Content-Length' ) __lowerCamelCase : Tuple = resume_size + int(_lowerCAmelCase ) if content_length is not None else None __lowerCamelCase : int = tqdm( unit='B' ,unit_scale=_lowerCAmelCase ,total=_lowerCAmelCase ,initial=_lowerCAmelCase ,desc='Downloading' ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCAmelCase ) ) temp_file.write(_lowerCAmelCase ) progress.close() def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=10 ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,) -> List[str]: if cache_dir is None: __lowerCamelCase : Any = TRANSFORMERS_CACHE if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Tuple = str(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase ,exist_ok=_lowerCAmelCase ) __lowerCamelCase : int = None if not local_files_only: try: __lowerCamelCase : Optional[int] = requests.head(_lowerCAmelCase ,allow_redirects=_lowerCAmelCase ,proxies=_lowerCAmelCase ,timeout=_lowerCAmelCase ) if response.status_code == 200: __lowerCamelCase : List[Any] = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowerCamelCase : Tuple = url_to_filename(_lowerCAmelCase ,_lowerCAmelCase ) # get cache path to put the file __lowerCamelCase : Tuple = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCAmelCase ): return cache_path else: __lowerCamelCase : int = [ file for file in fnmatch.filter(os.listdir(_lowerCAmelCase ) ,filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_lowerCAmelCase ) > 0: return os.path.join(_lowerCAmelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowerCamelCase : Union[str, Any] = cache_path + '.lock' with FileLock(_lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowerCamelCase : Optional[int] = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_lowerCAmelCase ,'a+b' ) as f: yield f __lowerCamelCase : Optional[int] = _resumable_file_manager if os.path.exists(_lowerCAmelCase ): __lowerCamelCase : int = os.stat(_lowerCAmelCase ).st_size else: __lowerCamelCase : Dict = 0 else: __lowerCamelCase : str = partial(tempfile.NamedTemporaryFile ,dir=_lowerCAmelCase ,delete=_lowerCAmelCase ) __lowerCamelCase : List[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' ,_lowerCAmelCase ,temp_file.name ,) http_get( _lowerCAmelCase ,_lowerCAmelCase ,proxies=_lowerCAmelCase ,resume_size=_lowerCAmelCase ,user_agent=_lowerCAmelCase ,) os.replace(temp_file.name ,_lowerCAmelCase ) __lowerCamelCase : List[Any] = {'url': url, 'etag': etag} __lowerCamelCase : str = cache_path + '.json' with open(_lowerCAmelCase ,'w' ) as meta_file: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) return cache_path def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ) -> Dict: __lowerCamelCase : Any = url.encode('utf-8' ) __lowerCamelCase : Tuple = shaaaa(_lowerCAmelCase ) __lowerCamelCase : Dict = url_hash.hexdigest() if etag: __lowerCamelCase : List[str] = etag.encode('utf-8' ) __lowerCamelCase : Any = shaaaa(_lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,) -> str: if cache_dir is None: __lowerCamelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : List[str] = str(_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : List[str] = str(_lowerCAmelCase ) if is_remote_url(_lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) __lowerCamelCase : Optional[Any] = get_from_cache( _lowerCAmelCase ,cache_dir=_lowerCAmelCase ,force_download=_lowerCAmelCase ,proxies=_lowerCAmelCase ,resume_download=_lowerCAmelCase ,user_agent=_lowerCAmelCase ,local_files_only=_lowerCAmelCase ,) elif os.path.exists(_lowerCAmelCase ): # File, and it exists. __lowerCamelCase : List[Any] = url_or_filename elif urlparse(_lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_lowerCAmelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCAmelCase ) and not tarfile.is_tarfile(_lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowerCamelCase ,__lowerCamelCase : Tuple = os.path.split(_lowerCAmelCase ) __lowerCamelCase : str = output_file.replace('.' ,'-' ) + '-extracted' __lowerCamelCase : Optional[int] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowerCamelCase : List[Any] = output_path + '.lock' with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase ,ignore_errors=_lowerCAmelCase ) os.makedirs(_lowerCAmelCase ) if is_zipfile(_lowerCAmelCase ): with ZipFile(_lowerCAmelCase ,'r' ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCAmelCase ): __lowerCamelCase : Tuple = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_lowerCAmelCase ) ) return output_path_extracted return output_path def a_ ( _lowerCAmelCase ,_lowerCAmelCase="," ) -> List[str]: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ): with open(_lowerCAmelCase ) as f: __lowerCamelCase : Optional[Any] = eval(f.read() ) else: __lowerCamelCase : Union[str, Any] = requests.get(_lowerCAmelCase ) try: __lowerCamelCase : Optional[Any] = requests.json() except Exception: __lowerCamelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __lowerCamelCase : Dict = eval(_lowerCAmelCase ) except Exception: __lowerCamelCase : Dict = data.split('\n' ) req.close() return data def a_ ( _lowerCAmelCase ) -> List[Any]: __lowerCamelCase : str = requests.get(_lowerCAmelCase ) __lowerCamelCase : Dict = np.array(Image.open(BytesIO(response.content ) ) ) return img def a_ ( _lowerCAmelCase ) -> Optional[int]: __lowerCamelCase : str = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCAmelCase ) with open(_lowerCAmelCase ,'rb' ) as stream: __lowerCamelCase : str = pkl.load(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = weights.pop('model' ) __lowerCamelCase : Dict = {} for k, v in model.items(): __lowerCamelCase : str = torch.from_numpy(_lowerCAmelCase ) if "running_var" in k: __lowerCamelCase : Tuple = torch.tensor([0] ) __lowerCamelCase : Any = k.replace('running_var' ,'num_batches_tracked' ) __lowerCamelCase : List[Any] = zero return new def a_ ( ) -> Dict: print(F'{os.path.abspath(os.path.join(_lowerCAmelCase ,os.pardir ) )}/demo.ipynb' ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase="RGB" ) -> List[Any]: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ): __lowerCamelCase : Any = cva.imread(_lowerCAmelCase ) else: __lowerCamelCase : int = get_image_from_url(_lowerCAmelCase ) assert img is not None, F'could not connect to: {im}' __lowerCamelCase : Dict = cva.cvtColor(_lowerCAmelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowerCamelCase : Any = img[:, :, ::-1] return img def a_ ( _lowerCAmelCase ,_lowerCAmelCase=1 ) -> Union[str, Any]: return (images[i : i + batch] for i in range(0 ,len(_lowerCAmelCase ) ,_lowerCAmelCase ))
459
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : str ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=UpperCAmelCase_ , ) assert hasattr(self , "env" ) def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : Dict=1 ): """simple docstring""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=UpperCAmelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase_ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" TrainingJobAnalytics(UpperCAmelCase_ ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" # create estimator __UpperCAmelCase : Dict = self.create_estimator() # run training estimator.fit() # result dataframe __UpperCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __UpperCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase_ )
329
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ : List[str] = TypeVar("KEY") lowerCAmelCase__ : str = TypeVar("VAL") @dataclass(frozen=snake_case__ ,slots=snake_case__ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( _Item ): """simple docstring""" def __init__( self : Tuple ): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __bool__( self : Dict ): """simple docstring""" return False lowerCAmelCase__ : str = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.75 ): """simple docstring""" __UpperCAmelCase : List[Any] = initial_block_size __UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCAmelCase : int = capacity_factor __UpperCAmelCase : int = 0 def lowerCamelCase_ ( self : str , UpperCAmelCase_ : KEY ): """simple docstring""" return hash(UpperCAmelCase_ ) % len(self._buckets ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" __UpperCAmelCase : Tuple = self._buckets[ind] if not stored: __UpperCAmelCase : str = _Item(UpperCAmelCase_ , UpperCAmelCase_ ) self._len += 1 return True elif stored.key == key: __UpperCAmelCase : List[Any] = _Item(UpperCAmelCase_ , UpperCAmelCase_ ) return True else: return False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False __UpperCAmelCase : Dict = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase_ ( self : int , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : List[Any] = self._buckets __UpperCAmelCase : str = [None] * new_size __UpperCAmelCase : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def lowerCamelCase_ ( self : int ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : KEY ): """simple docstring""" __UpperCAmelCase : str = self._get_bucket_index(UpperCAmelCase_ ) for _ in range(len(self._buckets ) ): yield ind __UpperCAmelCase : Optional[Any] = self._get_next_ind(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): if self._try_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): break def __setitem__( self : Tuple , UpperCAmelCase_ : KEY , UpperCAmelCase_ : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(UpperCAmelCase_ , UpperCAmelCase_ ) def __delitem__( self : Optional[int] , UpperCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = self._buckets[ind] if item is None: raise KeyError(UpperCAmelCase_ ) if item is _deleted: continue if item.key == key: __UpperCAmelCase : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Any , UpperCAmelCase_ : KEY ): """simple docstring""" for ind in self._iterate_buckets(UpperCAmelCase_ ): __UpperCAmelCase : str = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCAmelCase_ ) def __len__( self : List[Any] ): """simple docstring""" return self._len def __iter__( self : Optional[int] ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ): """simple docstring""" __UpperCAmelCase : Any = " ,".join( f"{item.key}: {item.val}" for item in self._buckets if item ) return f"HashMap({val_string})"
329
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[Any] = '''facebook/bart-large-mnli''' A__ : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) A__ : List[Any] = '''text_classifier''' A__ : Any = AutoTokenizer A__ : Union[str, Any] = AutoModelForSequenceClassification A__ : str = ['''text''', ['''text''']] A__ : Tuple = ['''text'''] def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" super().setup() _snake_case = self.model.config _snake_case = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _snake_case = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = outputs.logits _snake_case = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
103
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''vocab.txt'''} snake_case = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } snake_case = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = collections.OrderedDict() with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as reader: _snake_case = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): _snake_case = token.rstrip('''\n''' ) _snake_case = index return vocab class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Tuple=2_0_0 ): """simple docstring""" _snake_case = vocab _snake_case = unk_token _snake_case = max_input_chars_per_word def __UpperCAmelCase ( self : Any , __lowerCamelCase : str ): """simple docstring""" _snake_case = list(__lowerCamelCase ) if len(__lowerCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] _snake_case = 0 _snake_case = [] while start < len(__lowerCamelCase ): _snake_case = len(__lowerCamelCase ) _snake_case = None while start < end: _snake_case = ''''''.join(chars[start:end] ) if substr in self.vocab: _snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__lowerCamelCase ) _snake_case = end return sub_tokens class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] A__ : Optional[int] = False def __init__( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str="<d>" , __lowerCamelCase : Tuple="</d>" , __lowerCamelCase : Tuple="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : int="</n>" , __lowerCamelCase : Tuple="</_>" , __lowerCamelCase : Optional[Any]="left" , **__lowerCamelCase : str , ): """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__lowerCamelCase , eod_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , unk_token=__lowerCamelCase , line_token=__lowerCamelCase , space_token=__lowerCamelCase , padding_side=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = bod_token _snake_case = eod_token _snake_case = load_vocab(__lowerCamelCase ) _snake_case = self.encoder[space_token] _snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCamelCase : x[1] ) ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return self.encoder[self.bod_token] @property def __UpperCAmelCase ( self : Any ): """simple docstring""" return self.encoder[self.eod_token] @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self.encoder["\n"] @property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return len(self.encoder ) def __UpperCAmelCase ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = [] for x in jieba.cut(__lowerCamelCase , cut_all=__lowerCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCamelCase ) ) return output_tokens def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = [i for i in token_ids if i >= 0] _snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" return token in self.encoder def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ): """simple docstring""" return "".join(__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int ): """simple docstring""" return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" return self.decoder.get(__lowerCamelCase , self.unk_token ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if os.path.isdir(__lowerCamelCase ): _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _snake_case = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory _snake_case = 0 if " " in self.encoder: _snake_case = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: _snake_case = self.encoder['''\n'''] del self.encoder["\n"] _snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCamelCase : x[1] ) ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _snake_case = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) return [1] + ([0] * len(__lowerCamelCase ))
103
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple=13 , snake_case : Tuple=2 , snake_case : str=24 , snake_case : int=16 , snake_case : List[Any]=True , snake_case : Tuple=True , snake_case : str=32 , snake_case : List[Any]=5 , snake_case : Optional[int]=4 , snake_case : Optional[Any]=37 , snake_case : Any="gelu" , snake_case : Any=0.1 , snake_case : Optional[Any]=0.1 , snake_case : List[Any]=10 , snake_case : Optional[int]=0.02 , snake_case : List[str]=None , snake_case : Union[str, Any]=2 , snake_case : Any=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : List[Any] = num_mel_bins SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : int = frequency_stride SCREAMING_SNAKE_CASE : List[str] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE : Dict = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE : Tuple = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE : List[str] = num_patches + 2 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_values, labels def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCamelCase_ ( self : List[str] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ASTModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'input_values': input_values} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCAmelCase : Optional[int] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : str = False UpperCAmelCase : Tuple = False UpperCAmelCase : Any = False def lowerCamelCase_ ( self : Tuple , snake_case : Tuple , snake_case : int , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : List[str] ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ASTModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(snake_case ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[str] = ['input_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = ASTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __a ( ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.default_feature_extractor SCREAMING_SNAKE_CASE : Dict = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = self.default_feature_extractor SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prepare_audio() SCREAMING_SNAKE_CASE : Optional[Any] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(snake_case , sampling_rate=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**snake_case ) # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , snake_case ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 'transfo-xl' UpperCAmelCase : List[str] = ['mems'] UpperCAmelCase : Optional[Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[int] , snake_case : Tuple=267735 , snake_case : Optional[Any]=[20000, 40000, 200000] , snake_case : List[Any]=1024 , snake_case : List[Any]=1024 , snake_case : List[Any]=16 , snake_case : int=64 , snake_case : Optional[int]=4096 , snake_case : Union[str, Any]=4 , snake_case : List[str]=False , snake_case : int=18 , snake_case : List[Any]=1600 , snake_case : Union[str, Any]=1000 , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Optional[Any]=0 , snake_case : Dict=-1 , snake_case : List[Any]=True , snake_case : Any=0.1 , snake_case : List[Any]=0.0 , snake_case : List[str]=True , snake_case : Optional[Any]="normal" , snake_case : Optional[Any]=0.01 , snake_case : Union[str, Any]=0.01 , snake_case : List[str]=0.02 , snake_case : List[str]=1E-5 , snake_case : Optional[int]=0 , **snake_case : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Any = [] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE : Tuple = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE : List[Any] = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE : Tuple = d_model SCREAMING_SNAKE_CASE : Any = d_embed SCREAMING_SNAKE_CASE : Tuple = d_head SCREAMING_SNAKE_CASE : Union[str, Any] = d_inner SCREAMING_SNAKE_CASE : Tuple = div_val SCREAMING_SNAKE_CASE : int = pre_lnorm SCREAMING_SNAKE_CASE : Tuple = n_layer SCREAMING_SNAKE_CASE : List[str] = n_head SCREAMING_SNAKE_CASE : Dict = mem_len SCREAMING_SNAKE_CASE : Dict = same_length SCREAMING_SNAKE_CASE : Union[str, Any] = attn_type SCREAMING_SNAKE_CASE : str = clamp_len SCREAMING_SNAKE_CASE : Any = sample_softmax SCREAMING_SNAKE_CASE : Optional[int] = adaptive SCREAMING_SNAKE_CASE : Optional[int] = dropout SCREAMING_SNAKE_CASE : Union[str, Any] = dropatt SCREAMING_SNAKE_CASE : List[str] = untie_r SCREAMING_SNAKE_CASE : Union[str, Any] = init SCREAMING_SNAKE_CASE : Optional[int] = init_range SCREAMING_SNAKE_CASE : Tuple = proj_init_std SCREAMING_SNAKE_CASE : str = init_std SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon super().__init__(eos_token_id=snake_case , **snake_case ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCamelCase_ ( self : Tuple , snake_case : Optional[Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
308
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : "DiagonalGaussianDistribution" class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : List[Any] = True @register_to_config def __init__( self , _A = 3 , _A = 3 , _A = ("DownEncoderBlock2D",) , _A = ("UpDecoderBlock2D",) , _A = (6_4,) , _A = 1 , _A = "silu" , _A = 4 , _A = 3_2 , _A = 3_2 , _A = 0.1_82_15 , ): '''simple docstring''' super().__init__() # pass init params to Encoder UpperCamelCase : str = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) # pass init params to Decoder UpperCamelCase : Any = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , ) UpperCamelCase : Union[str, Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCamelCase : Any = nn.Convad(_A , _A , 1 ) UpperCamelCase : Optional[Any] = False UpperCamelCase : Optional[int] = False # only relevant if vae tiling is enabled UpperCamelCase : Union[str, Any] = self.config.sample_size UpperCamelCase : Dict = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCamelCase : Optional[Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCamelCase : Optional[int] = 0.25 def _a ( self , _A , _A=False ): '''simple docstring''' if isinstance(_A , (Encoder, Decoder) ): UpperCamelCase : List[Any] = value def _a ( self , _A = True ): '''simple docstring''' UpperCamelCase : Tuple = use_tiling def _a ( self ): '''simple docstring''' self.enable_tiling(_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = True def _a ( self ): '''simple docstring''' UpperCamelCase : int = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = {} def fn_recursive_add_processors(_A , _A , _A ): if hasattr(_A , """set_processor""" ): UpperCamelCase : List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A , _A , _A ): if hasattr(_A , """set_processor""" ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def _a ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _a ( self , _A , _A = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_A , return_dict=_A ) if self.use_slicing and x.shape[0] > 1: UpperCamelCase : str = [self.encoder(_A ) for x_slice in x.split(1 )] UpperCamelCase : List[str] = torch.cat(_A ) else: UpperCamelCase : str = self.encoder(_A ) UpperCamelCase : str = self.quant_conv(_A ) UpperCamelCase : Optional[int] = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def _a ( self , _A , _A = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_A , return_dict=_A ) UpperCamelCase : Dict = self.post_quant_conv(_A ) UpperCamelCase : List[Any] = self.decoder(_A ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) @apply_forward_hook def _a ( self , _A , _A = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCamelCase : Optional[int] = [self._decode(_A ).sample for z_slice in z.split(1 )] UpperCamelCase : Union[str, Any] = torch.cat(_A ) else: UpperCamelCase : str = self._decode(_A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_A ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = min(a.shape[2] , b.shape[2] , _A ) for y in range(_A ): UpperCamelCase : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = min(a.shape[3] , b.shape[3] , _A ) for x in range(_A ): UpperCamelCase : Optional[int] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _a ( self , _A , _A = True ): '''simple docstring''' UpperCamelCase : Optional[int] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCamelCase : int = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase : Any = [] for i in range(0 , x.shape[2] , _A ): UpperCamelCase : Optional[Any] = [] for j in range(0 , x.shape[3] , _A ): UpperCamelCase : Optional[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase : Optional[int] = self.encoder(_A ) UpperCamelCase : List[Any] = self.quant_conv(_A ) row.append(_A ) rows.append(_A ) UpperCamelCase : Union[str, Any] = [] for i, row in enumerate(_A ): UpperCamelCase : Any = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase : Optional[int] = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: UpperCamelCase : Any = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) UpperCamelCase : Union[str, Any] = torch.cat(_A , dim=2 ) UpperCamelCase : str = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def _a ( self , _A , _A = True ): '''simple docstring''' UpperCamelCase : int = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase : Optional[Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCamelCase : Any = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase : Tuple = [] for i in range(0 , z.shape[2] , _A ): UpperCamelCase : Optional[int] = [] for j in range(0 , z.shape[3] , _A ): UpperCamelCase : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase : Optional[Any] = self.post_quant_conv(_A ) UpperCamelCase : List[str] = self.decoder(_A ) row.append(_A ) rows.append(_A ) UpperCamelCase : List[str] = [] for i, row in enumerate(_A ): UpperCamelCase : Tuple = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase : List[Any] = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: UpperCamelCase : Any = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) UpperCamelCase : Tuple = torch.cat(_A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def _a ( self , _A , _A = False , _A = True , _A = None , ): '''simple docstring''' UpperCamelCase : Tuple = sample UpperCamelCase : Union[str, Any] = self.encode(_A ).latent_dist if sample_posterior: UpperCamelCase : Optional[Any] = posterior.sample(generator=_A ) else: UpperCamelCase : Dict = posterior.mode() UpperCamelCase : Any = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
102
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: __UpperCAmelCase =multiprocessing.Manager() __UpperCAmelCase =manager.list() __UpperCAmelCase =multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __UpperCAmelCase =shutil.rmtree __UpperCAmelCase =os.rmdir __UpperCAmelCase =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __UpperCAmelCase ={} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. __UpperCAmelCase =rmtree __UpperCAmelCase =rmdir __UpperCAmelCase =chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Tuple: def signal_handler(snake_case__ , snake_case__ ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[Any]: __UpperCAmelCase =WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> Dict: with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): pass class _SCREAMING_SNAKE_CASE ( io.StringIO ): def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return False class _SCREAMING_SNAKE_CASE ( contextlib._RedirectStream ): # type: ignore a_ : Dict = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> List[str]: if root == ".": yield return __UpperCAmelCase =os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__=None ) -> Tuple: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __UpperCAmelCase =None __UpperCAmelCase =None import os __UpperCAmelCase ='''1''' __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import shutil __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import subprocess __UpperCAmelCase =None # type: ignore __UpperCAmelCase =None import sys __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None
132
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Dict = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = "blip_text_model" def __init__( self : int , lowerCAmelCase : Dict=3_05_24 , lowerCAmelCase : Dict=7_68 , lowerCAmelCase : Dict=7_68 , lowerCAmelCase : Union[str, Any]=30_72 , lowerCAmelCase : Any=7_68 , lowerCAmelCase : Dict=12 , lowerCAmelCase : int=8 , lowerCAmelCase : List[Any]=5_12 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Union[str, Any]=1E-1_2 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : int=0.02 , lowerCAmelCase : str=3_05_22 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : str=0 , lowerCAmelCase : Optional[Any]=1_02 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Dict=True , **lowerCAmelCase : List[str] , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , sep_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = encoder_hidden_size lowercase__ = intermediate_size lowercase__ = projection_dim lowercase__ = hidden_dropout_prob lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = attention_probs_dropout_prob lowercase__ = is_decoder lowercase__ = use_cache @classmethod def UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : List[Any]) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase) lowercase__, lowercase__ = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": lowercase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase , **lowerCAmelCase) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Dict = "blip_vision_model" def __init__( self : Any , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : int=30_72 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Optional[Any]=3_84 , lowerCAmelCase : Any=16 , lowerCAmelCase : str="gelu" , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : List[str]=1E-1_0 , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def UpperCAmelCase ( cls : str , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Dict) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase) lowercase__, lowercase__ = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": lowercase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowerCAmelCase , **lowerCAmelCase) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "blip" A : str = True def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Tuple=2.65_92 , lowerCAmelCase : List[Any]=2_56 , **lowerCAmelCase : str , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase) if text_config is None: lowercase__ = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: lowercase__ = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') lowercase__ = BlipTextConfig(**lowerCAmelCase) lowercase__ = BlipVisionConfig(**lowerCAmelCase) lowercase__ = self.vision_config.hidden_size lowercase__ = projection_dim lowercase__ = logit_scale_init_value lowercase__ = 1.0 lowercase__ = 0.02 lowercase__ = image_text_hidden_size @classmethod def UpperCAmelCase ( cls : Dict , lowerCAmelCase : BlipTextConfig , lowerCAmelCase : BlipVisionConfig , **lowerCAmelCase : Dict) -> str: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
'''simple docstring''' from __future__ import annotations a : Optional[Any] = '''Muhammad Umer Farooq''' a : int = '''MIT''' a : Dict = '''1.0.0''' a : Optional[int] = '''Muhammad Umer Farooq''' a : Optional[Any] = '''[email protected]''' a : Union[str, Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def A ( self : str , a_ : str , a_ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a_ ) self.urls.append(a_ ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCAmelCase ).split("." )[-2:] ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return parse.urlparse(_UpperCAmelCase ).netloc def __UpperCAmelCase ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(_UpperCAmelCase ) # Initialize the parser __snake_case = Parser(_UpperCAmelCase ) try: # Open URL __snake_case = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(_UpperCAmelCase ) # Get the valid email. __snake_case = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": a : Any = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
69
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''OwlViTFeatureExtractor'''] a = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a = 2 class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : List[str]=None , ): _A , _A , _A , _A = bos, unk, pad, eos _A = [] _A = [] _A = {} _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_UpperCAmelCase ) _A = len(self.symbols ) def __eq__( self : int , _UpperCAmelCase : Optional[Any] ): return self.indices == other.indices def __getitem__( self : List[str] , _UpperCAmelCase : str ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): return len(self.symbols ) def __contains__( self : Union[str, Any] , _UpperCAmelCase : str ): return sym in self.indices @classmethod def lowerCAmelCase_ ( cls : str , _UpperCAmelCase : Tuple ): _A = cls() d.add_from_file(_UpperCAmelCase ) return d def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Tuple=False ): if word in self.indices and not overwrite: _A = self.indices[word] _A = self.count[idx] + n return idx else: _A = len(self.symbols ) _A = idx self.symbols.append(_UpperCAmelCase ) self.count.append(_UpperCAmelCase ) return idx def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple ): return 0 def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_UpperCAmelCase ) ) return _A = f.readlines() _A = self._load_meta(_UpperCAmelCase ) for line in lines[indices_start_line:]: try: _A , _A = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _A = True _A , _A = line.rsplit(' ' , 1 ) else: _A = False _A = int(_UpperCAmelCase ) _A = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_UpperCAmelCase ) ) self.add_symbol(_UpperCAmelCase , n=_UpperCAmelCase , overwrite=_UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def _snake_case ( _snake_case : int ) -> Optional[Any]: '''simple docstring''' _A = dict((re.sub(R'@@$' , '' , _snake_case ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _snake_case ), v) for k, v in d.items() ) _A = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _A = d[k] # restore return da def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple ) -> List[Any]: '''simple docstring''' if not os.path.exists(_snake_case ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _A = os.path.join(_snake_case , 'checkpoint.pt' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) _A = torch.load(_snake_case , map_location='cpu' ) _A = chkpt['cfg']['model'] # dicts _A = os.path.join(_snake_case , 'dict.txt' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) _A = Dictionary.load(_snake_case ) _A = rewrite_dict_keys(src_dict.indices ) _A = len(_snake_case ) _A = os.path.join(_snake_case , VOCAB_FILES_NAMES['vocab_file'] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # merges_file (bpecodes) _A = os.path.join(_snake_case , 'bpecodes' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) _A = os.path.join(_snake_case , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(_snake_case , _snake_case ) # model config _A = os.path.join(_snake_case , 'config.json' ) _A = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # tokenizer config _A = os.path.join(_snake_case , _snake_case ) _A = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # model _A = chkpt['model'] # remove unneeded keys _A = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(_snake_case , _snake_case ) _A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _A = model_state_dict.pop(_snake_case ) else: _A = model_state_dict.pop(_snake_case ) _A = BioGptConfig.from_pretrained(_snake_case ) _A = BioGptForCausalLM(_snake_case ) # check that it loads ok model_new.load_state_dict(_snake_case ) # save _A = os.path.join(_snake_case , _snake_case ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_snake_case , _snake_case ) print('Conversion is done!' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
505
0
'''simple docstring''' def __UpperCamelCase ( a : list , a : int = 0 ) ->Optional[Any]: snake_case = length or len(lowerCAmelCase_ ) snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case , snake_case = list_data[i + 1], list_data[i] snake_case = True return list_data if not swapped else bubble_sort(lowerCAmelCase_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Union[str, Any], snake_case :Optional[int]): """simple docstring""" _lowercase =arr.split(',') def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =[int(self.array[0])] * len(self.array) _lowercase =[int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): _lowercase =max( int(self.array[i]) + sum_value[i - 1], int(self.array[i])) _lowercase =max(sum_value[i], rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("please input some numbers:") _SCREAMING_SNAKE_CASE = SubArray(whole_array) _SCREAMING_SNAKE_CASE = array.solve_sub_array() print(("the results is:", re))
713
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" def __init__( self :str, *snake_case :Any, **snake_case :Tuple): """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.', snake_case, ) super().__init__(*snake_case, **snake_case)
557
0
'''simple docstring''' import logging from transformers import PretrainedConfig SCREAMING_SNAKE_CASE_: Any =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={ 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class __A ( UpperCamelCase__ ): a__ : List[Any] = """bertabs""" def __init__(self : Any , __a : int=30522 , __a : Tuple=512 , __a : Tuple=6 , __a : Dict=512 , __a : int=8 , __a : List[Any]=512 , __a : List[str]=0.2 , __a : List[Any]=6 , __a : int=768 , __a : Any=8 , __a : Dict=2048 , __a : Tuple=0.2 , **__a : Optional[int] , ): super().__init__(**__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_pos UpperCAmelCase_ = enc_layers UpperCAmelCase_ = enc_hidden_size UpperCAmelCase_ = enc_heads UpperCAmelCase_ = enc_ff_size UpperCAmelCase_ = enc_dropout UpperCAmelCase_ = dec_layers UpperCAmelCase_ = dec_hidden_size UpperCAmelCase_ = dec_heads UpperCAmelCase_ = dec_ff_size UpperCAmelCase_ = dec_dropout
78
"""simple docstring""" def _snake_case ( lowercase__ = 1 , lowercase__ = 1000 ): _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : List[Any] = 0 for divide_by_number in range(lowercase__ , digit + 1 ): _lowerCamelCase : list[int] = [] _lowerCamelCase : Dict = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): _lowerCamelCase : Any = len(lowercase__ ) _lowerCamelCase : Any = divide_by_number else: has_been_divided.append(lowercase__ ) _lowerCamelCase : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
630
0
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( __UpperCAmelCase ) -> list[tuple[int, int]]: """simple docstring""" snake_case: Optional[int] =0 snake_case: Dict =len(__UpperCAmelCase ) # No of vertices in graph snake_case: Optional[int] =[0] * n snake_case: str =[False] * n def dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): snake_case: str =True snake_case: Optional[int] =id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , id_ ) snake_case: Tuple =min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case: List[Any] =min(low[at] , low[to] ) snake_case: list[tuple[int, int]] =[] for i in range(__UpperCAmelCase ): if not visited[i]: dfs(__UpperCAmelCase , -1 , __UpperCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
347
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a = logging.getLogger(__name__) class a_ ( snake_case ): UpperCAmelCase : Any = """sequence-classification""" def __init__( self : int , a_ : str ) -> str: if type(a_ ) == dict: snake_case: List[Any] =Namespace(**a_ ) snake_case: Tuple =glue_output_modes[hparams.task] snake_case: Any =glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def UpperCamelCase ( self : Tuple , **a_ : Tuple ) -> Union[str, Any]: return self.model(**a_ ) def UpperCamelCase ( self : int , a_ : Union[str, Any] , a_ : Optional[int] ) -> Optional[int]: snake_case: Any ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Optional[int] =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: Optional[int] =self(**a_ ) snake_case: Any =outputs[0] snake_case: Union[str, Any] =self.trainer.lr_schedulers[0]['scheduler'] snake_case: str ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self : str ) -> Tuple: snake_case: int =self.hparams snake_case: Union[str, Any] =processors[args.task]() snake_case: Union[str, Any] =processor.get_labels() for mode in ["train", "dev"]: snake_case: Optional[Any] =self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a_ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) snake_case: int =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) snake_case: Tuple =convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , a_ ) torch.save(a_ , a_ ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : int , a_ : bool = False ) -> DataLoader: snake_case: List[Any] ='dev' if mode == 'test' else mode snake_case: Union[str, Any] =self._feature_file(a_ ) logger.info('Loading features from cached file %s' , a_ ) snake_case: Dict =torch.load(a_ ) snake_case: Union[str, Any] =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case: List[Any] =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case: str =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case: Optional[Any] =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case: Union[str, Any] =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def UpperCamelCase ( self : List[str] , a_ : Optional[int] , a_ : Any ) -> Dict: snake_case: int ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Tuple =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: List[str] =self(**a_ ) snake_case , snake_case: str =outputs[:2] snake_case: Any =logits.detach().cpu().numpy() snake_case: Union[str, Any] =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self : int , a_ : Union[str, Any] ) -> tuple: snake_case: Optional[Any] =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() snake_case: str =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case: Union[str, Any] =np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case: Optional[Any] =np.squeeze(a_ ) snake_case: Tuple =np.concatenate([x['target'] for x in outputs] , axis=0 ) snake_case: Any =[[] for _ in range(out_label_ids.shape[0] )] snake_case: str =[[] for _ in range(out_label_ids.shape[0] )] snake_case: int ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} snake_case: Union[str, Any] =dict(results.items() ) snake_case: Dict =results return ret, preds_list, out_label_list def UpperCamelCase ( self : str , a_ : list ) -> dict: snake_case , snake_case , snake_case: Union[str, Any] =self._eval_end(a_ ) snake_case: Optional[Any] =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self : Tuple , a_ : Tuple ) -> dict: snake_case , snake_case , snake_case: int =self._eval_end(a_ ) snake_case: List[Any] =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( a_ : Optional[int] , a_ : Dict ) -> Tuple: BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=a_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=a_ , required=a_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=a_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Any: """simple docstring""" snake_case: Tuple =argparse.ArgumentParser() add_generic_args(__UpperCAmelCase , os.getcwd() ) snake_case: List[Any] =GLUETransformer.add_model_specific_args(__UpperCAmelCase , os.getcwd() ) snake_case: Optional[int] =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case: Optional[int] =os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case: str =GLUETransformer(__UpperCAmelCase ) snake_case: Tuple =generic_train(__UpperCAmelCase , __UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case: str =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCAmelCase ) ) snake_case: int =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCAmelCase ) if __name__ == "__main__": main()
347
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __A , __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableDiffusionSAGPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = False def snake_case_ ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a = CLIPTextModel(__A ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case_ ( self , __A , __A=0 ): if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): __a = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __a = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) __a = """.""" __a = torch.manual_seed(0 ) __a = sag_pipe( [prompt] , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __a = output.images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def snake_case_ ( self ): __a = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __a = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) __a = """.""" __a = torch.manual_seed(0 ) __a = sag_pipe( [prompt] , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __a = output.images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def snake_case_ ( self ): __a = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __a = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) __a = """.""" __a = torch.manual_seed(0 ) __a = sag_pipe( [prompt] , width=768 , height=512 , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) __a = output.images assert image.shape == (1, 512, 768, 3)
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
1
'''simple docstring''' import math def lowerCAmelCase ( snake_case__ : int )-> str: A_ = 0 A_ = 0 while num > 0: A_ = num % 8 A_ = octal + (remainder * math.floor(math.pow(10 , _lowercase ) )) counter += 1 A_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'0o{int(_lowercase )}' def lowerCAmelCase ( )-> None: print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
709
from __future__ import annotations __magic_name__ : List[Any] = 8.9_8_8e9 # units = N * m^s * C^-2 def lowerCAmelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float )-> dict[str, float]: A_ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: A_ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: A_ = (COULOMBS_CONSTANT * charge_product / abs(snake_case__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
608
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=False , __a=False , __a=False , __a=2 , __a=99 , __a=0 , __a=32 , __a=5 , __a=4 , __a=0.1 , __a=0.1 , __a=5_12 , __a=12 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a="last" , __a=None , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_lengths _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = gelu_activation _UpperCamelCase = sinusoidal_embeddings _UpperCamelCase = causal _UpperCamelCase = asm _UpperCamelCase = n_langs _UpperCamelCase = vocab_size _UpperCamelCase = n_special _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = summary_type _UpperCamelCase = use_proj _UpperCamelCase = scope def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_input_lengths: _UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , 2).float() _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Any: '''simple docstring''' _UpperCamelCase = FlaubertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , lengths=__a , langs=__a) _UpperCamelCase = model(__a , langs=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaubertWithLMHeadModel(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaubertForQuestionAnsweringSimple(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) _UpperCamelCase = model(__a , start_positions=__a , end_positions=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = FlaubertForQuestionAnswering(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) _UpperCamelCase = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , ) _UpperCamelCase = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , ) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() _UpperCamelCase = model(__a , start_positions=__a , end_positions=__a) ((_UpperCamelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaubertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = FlaubertForTokenClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = FlaubertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self , __a , __a , __a=False) -> Dict: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = FlaubertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , emb_dim=37) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FlaubertModel.from_pretrained(__a) self.assertIsNotNone(__a) @slow @require_torch_gpu def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=__a) _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = torch.jit.trace( __a , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , '''traced_model.pt''')) _UpperCamelCase = torch.jit.load(os.path.join(__a , '''traced_model.pt''') , map_location=__a) loaded(inputs_dict['''input_ids'''].to(__a) , inputs_dict['''attention_mask'''].to(__a)) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''') _UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): _UpperCamelCase = model(__a)[0] _UpperCamelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4))
19
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) a__ = None a__ = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } a__ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def A__ (snake_case : str , snake_case : Optional[Any]=1 , snake_case : Optional[int]=2_56 ) -> Dict: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A__ (snake_case : Dict ) -> Optional[Any]: with open(snake_case , """r""" ) as f: return json.load(snake_case ) def A__ (snake_case : List[Any] , snake_case : Any ) -> Dict: with open(snake_case , """w""" ) as f: json.dump(snake_case , snake_case ) def A__ (snake_case : Tuple , snake_case : List[Any] , snake_case : List[str] , snake_case : str=True ) -> int: os.makedirs(snake_case , exist_ok=snake_case ) __UpperCamelCase : Optional[int] = os.path.join(snake_case , """tmp""" ) os.makedirs(snake_case , exist_ok=snake_case ) __UpperCamelCase : Any = read_json(os.path.join(snake_case , """params.json""" ) ) __UpperCamelCase : Dict = NUM_SHARDS[model_size] __UpperCamelCase : List[Any] = params["""n_layers"""] __UpperCamelCase : Any = params["""n_heads"""] __UpperCamelCase : Optional[int] = n_heads // num_shards __UpperCamelCase : Tuple = params["""dim"""] __UpperCamelCase : Optional[int] = dim // n_heads __UpperCamelCase : Dict = 10000.0 __UpperCamelCase : str = 1.0 / (base ** (torch.arange(0 , snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __UpperCamelCase : Any = params["""n_kv_heads"""] # for GQA / MQA __UpperCamelCase : Optional[int] = n_heads_per_shard // num_key_value_heads __UpperCamelCase : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints __UpperCamelCase : Optional[Any] = n_heads __UpperCamelCase : Any = n_heads_per_shard __UpperCamelCase : str = dim # permute for sliced rotary def permute(snake_case : Tuple , snake_case : Dict=n_heads , snake_case : str=dim , snake_case : Optional[Any]=dim ): return w.view(snake_case , dima // n_heads // 2 , 2 , snake_case ).transpose(1 , 2 ).reshape(snake_case , snake_case ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __UpperCamelCase : Any = torch.load(os.path.join(snake_case , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded __UpperCamelCase : Optional[int] = [ torch.load(os.path.join(snake_case , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(snake_case ) ] __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : List[str] = {"""weight_map""": {}} for layer_i in range(snake_case ): __UpperCamelCase : Tuple = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded __UpperCamelCase : Optional[Any] = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __UpperCamelCase : int = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } __UpperCamelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(snake_case , snake_case , snake_case ) for i in range(snake_case ) ] , dim=0 , ).reshape(snake_case , snake_case ) ) __UpperCamelCase : int = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( snake_case , snake_case , snake_case ) for i in range(snake_case ) ] , dim=0 , ).reshape(snake_case , snake_case ) , snake_case , snake_case , snake_case , ) __UpperCamelCase : Dict = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( snake_case , snake_case , snake_case ) for i in range(snake_case ) ] , dim=0 , ).reshape(snake_case , snake_case ) __UpperCamelCase : str = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(snake_case )] , dim=1 ) __UpperCamelCase : Dict = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(snake_case )] , dim=0 ) __UpperCamelCase : Dict = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(snake_case )] , dim=1 ) __UpperCamelCase : List[str] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(snake_case )] , dim=0 ) __UpperCamelCase : Dict = inv_freq for k, v in state_dict.items(): __UpperCamelCase : str = filename param_count += v.numel() torch.save(snake_case , os.path.join(snake_case , snake_case ) ) __UpperCamelCase : Dict = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded __UpperCamelCase : Dict = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: __UpperCamelCase : Dict = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(snake_case )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(snake_case )] , dim=0 ), } for k, v in state_dict.items(): __UpperCamelCase : str = filename param_count += v.numel() torch.save(snake_case , os.path.join(snake_case , snake_case ) ) # Write configs __UpperCamelCase : Union[str, Any] = {"""total_size""": param_count * 2} write_json(snake_case , os.path.join(snake_case , """pytorch_model.bin.index.json""" ) ) __UpperCamelCase : str = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 __UpperCamelCase : str = params["""multiple_of"""] if """multiple_of""" in params else 2_56 __UpperCamelCase : str = LlamaConfig( hidden_size=snake_case , intermediate_size=compute_intermediate_size(snake_case , snake_case , snake_case ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=snake_case , ) config.save_pretrained(snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) __UpperCamelCase : Optional[int] = LlamaForCausalLM.from_pretrained(snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(snake_case , safe_serialization=snake_case ) shutil.rmtree(snake_case ) def A__ (snake_case : Any , snake_case : str ) -> Union[str, Any]: # Initialize the tokenizer based on the `spm` model __UpperCamelCase : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) __UpperCamelCase : Tuple = tokenizer_class(snake_case ) tokenizer.save_pretrained(snake_case ) def A__ () -> int: __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=snake_case , help="""Whether or not to save using `safetensors`.""" ) __UpperCamelCase : str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __UpperCamelCase : int = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , snake_case ) if __name__ == "__main__": main()
279
0
class __magic_name__ : def __init__( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = n UpperCAmelCase = [None] * self.n UpperCAmelCase = 0 # index of the first element UpperCAmelCase = 0 UpperCAmelCase = 0 def __len__( self : Dict ): return self.size def _UpperCAmelCase ( self : Dict ): return self.size == 0 def _UpperCAmelCase ( self : List[Any] ): return False if self.is_empty() else self.array[self.front] def _UpperCAmelCase ( self : str ,__SCREAMING_SNAKE_CASE : Optional[int] ): if self.size >= self.n: raise Exception("QUEUE IS FULL" ) UpperCAmelCase = data UpperCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def _UpperCAmelCase ( self : Optional[Any] ): if self.size == 0: raise Exception("UNDERFLOW" ) UpperCAmelCase = self.array[self.front] UpperCAmelCase = None UpperCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
707
def __UpperCamelCase ( _lowerCAmelCase = 10 ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or n < 0: raise ValueError("Invalid input" ) UpperCAmelCase = 10**n UpperCAmelCase = 2_84_33 * (pow(2 , 7_83_04_57 , _lowerCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(10) = }")
405
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _a : Optional[Any] = logging.get_logger(__name__) class _lowercase ( __lowercase ): def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int ) -> int: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A_ : Dict = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A_ : Optional[Any] = sorted(_lowerCAmelCase ) # declaring useful variables A_ : List[Any] = len(_lowerCAmelCase ) A_ : List[Any] = 0 A_ : Any = 0 A_ : List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A_ : List[Any] = sorted_profit_by_weight[length - i - 1] A_ : List[Any] = profit_by_weight.index(_lowerCAmelCase ) A_ : List[Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _lowerCAmelCase : int = [int(x) for x in input('''Input profits separated by spaces: ''').split()] _lowerCAmelCase : Dict = [int(x) for x in input('''Input weights separated by spaces: ''').split()] _lowerCAmelCase : Union[str, Any] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
454
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] | None = None ): __lowercase : Tuple = word_bank or [] # create a table __lowercase : int = len(lowerCAmelCase_ ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(lowerCAmelCase_ ): table.append([] ) # seed value __lowercase : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase_ )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase_ )]: combination.reverse() return table[len(lowerCAmelCase_ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
649
0