code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = XGLMTokenizer snake_case = XGLMTokenizerFast snake_case = True snake_case = True def _lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): snake_case_ = "<pad>" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(UpperCAmelCase_ ) , 10_08 ) def _lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def _lowercase ( self ): snake_case_ = XGLMTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) snake_case_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowercase ( self ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase_ , f.name ) snake_case_ = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase_ ) snake_case_ = pickle.dumps(UpperCAmelCase_ ) pickle.loads(UpperCAmelCase_ ) def _lowercase ( self ): if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = "I was born in 92000, and this is falsé." snake_case_ = tokenizer.tokenize(UpperCAmelCase_ ) snake_case_ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(UpperCAmelCase_ ) snake_case_ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def _lowercase ( self ): snake_case_ = "Hello World!" snake_case_ = [2, 3_12_27, 44_47, 35] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def _lowercase ( self ): snake_case_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off snake_case_ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def _lowercase ( self ): # fmt: off snake_case_ = { "input_ids": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="facebook/xglm-564M" , padding=UpperCAmelCase_ , )
508
'''simple docstring''' def __snake_case ( lowercase : int = 1_000_000 ): snake_case_ = set(range(3 , lowercase , 2 ) ) primes.add(2 ) for p in range(3 , lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase , lowercase ) ) ) snake_case_ = [float(lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase , limit + 1 , lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
508
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """""" a_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a_ = None # compression type in fsspec. ex: "gzip" a_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : int ,_a : str = "" ,_a : Optional[str] = None ,_a : Optional[dict] = None ,**_a : Optional[Any] ): '''simple docstring''' super().__init__(self ,**_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A_ : Dict = fsspec.open( _a ,mode="""rb""" ,protocol=_a ,compression=self.compression ,client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) A_ : Dict = os.path.basename(self.file.path.split("""::""" )[0] ) A_ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) A_ : int = None @classmethod def _a ( cls : List[str] ,_a : str ): '''simple docstring''' return super()._strip_protocol(_a ).lstrip("""/""" ) def _a ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: A_ : Optional[Any] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} A_ : Optional[Any] = {f["""name"""]: f} def _a ( self : Optional[int] ,_a : str ): '''simple docstring''' return self.file.open().read() def _a ( self : Optional[int] ,_a : str ,_a : str = "rb" ,_a : Any=None ,_a : str=True ,_a : int=None ,**_a : List[Any] ,): '''simple docstring''' A_ : Dict = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """bz2""" a_ = """bz2""" a_ = """.bz2""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """gzip""" a_ = """gzip""" a_ = """.gz""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """lz4""" a_ = """lz4""" a_ = """.lz4""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """xz""" a_ = """xz""" a_ = """.xz""" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """zstd""" a_ = """zstd""" a_ = """.zst""" def __init__( self : Union[str, Any] ,_a : str ,_a : str = "rb" ,_a : Optional[str] = None ,_a : Optional[dict] = None ,_a : int = DEFAULT_BLOCK_SIZE ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__( fo=_a ,mode=_a ,target_protocol=_a ,target_options=_a ,block_size=_a ,**_a ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A_ : Optional[Any] = self.file.__enter__ class __lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ,_a : List[Any] ): '''simple docstring''' A_ : Tuple = file_ def __enter__( self : Tuple ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Union[str, Any] ,*_a : Tuple ,**_a : List[str] ): '''simple docstring''' self._file.__exit__(*_a ,**_a ) def __iter__( self : Any ): '''simple docstring''' return iter(self._file ) def _a ( self : Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self : str ,_a : Tuple ): '''simple docstring''' return getattr(self._file ,_a ) def fixed_enter(*_a : Dict ,**_a : Dict ): return WrappedFile(_enter(*_a ,**_a ) ) A_ : List[str] = fixed_enter
27
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_text_model""" def __init__( self : Union[str, Any] ,_a : Any=49408 ,_a : Any=512 ,_a : Tuple=2048 ,_a : Dict=12 ,_a : Optional[int]=8 ,_a : Tuple=16 ,_a : Tuple="quick_gelu" ,_a : Optional[Any]=1e-5 ,_a : List[Any]=0.0 ,_a : Optional[int]=0.02 ,_a : Dict=1.0 ,_a : Dict=0 ,_a : Any=49406 ,_a : Tuple=49407 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) A_ : Tuple = vocab_size A_ : int = hidden_size A_ : Optional[int] = intermediate_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : int = max_position_embeddings A_ : str = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : Tuple = attention_dropout A_ : Union[str, Any] = initializer_range A_ : List[Any] = initializer_factor @classmethod def _a ( cls : List[str] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : int = cls.get_config_dict(_a ,**_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit_vision_model""" def __init__( self : List[Any] ,_a : Optional[Any]=768 ,_a : Tuple=3072 ,_a : Dict=12 ,_a : int=12 ,_a : Dict=3 ,_a : Tuple=768 ,_a : int=32 ,_a : int="quick_gelu" ,_a : List[Any]=1e-5 ,_a : Tuple=0.0 ,_a : List[Any]=0.02 ,_a : str=1.0 ,**_a : int ,): '''simple docstring''' super().__init__(**_a ) A_ : List[str] = hidden_size A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : int = num_channels A_ : str = image_size A_ : List[Any] = patch_size A_ : int = hidden_act A_ : List[Any] = layer_norm_eps A_ : List[str] = attention_dropout A_ : str = initializer_range A_ : str = initializer_factor @classmethod def _a ( cls : List[Any] ,_a : Union[str, os.PathLike] ,**_a : str ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : Optional[int] = cls.get_config_dict(_a ,**_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": A_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """owlvit""" a_ = True def __init__( self : Union[str, Any] ,_a : List[str]=None ,_a : List[str]=None ,_a : Dict=512 ,_a : List[Any]=2.6592 ,_a : Optional[Any]=True ,**_a : Optional[int] ,): '''simple docstring''' super().__init__(**_a ) if text_config is None: A_ : List[Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: A_ : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) A_ : Dict = OwlViTTextConfig(**_a ) A_ : Dict = OwlViTVisionConfig(**_a ) A_ : Any = projection_dim A_ : Optional[int] = logit_scale_init_value A_ : Optional[int] = return_dict A_ : Dict = 1.0 @classmethod def _a ( cls : Union[str, Any] ,_a : Union[str, os.PathLike] ,**_a : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_a ) A_ , A_ : List[Any] = cls.get_config_dict(_a ,**_a ) if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a ,**_a ) @classmethod def _a ( cls : int ,_a : Dict ,_a : Dict ,**_a : List[str] ): '''simple docstring''' A_ : str = {} A_ : int = text_config A_ : Union[str, Any] = vision_config return cls.from_dict(_a ,**_a ) def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : str = self.text_config.to_dict() A_ : Optional[int] = self.vision_config.to_dict() A_ : List[Any] = self.__class__.model_type return output class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : int ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _a ( self : str ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _a ( self : Optional[Any] ): '''simple docstring''' return 1e-4 def _a ( self : int ,_a : "ProcessorMixin" ,_a : int = -1 ,_a : int = -1 ,_a : Optional["TensorType"] = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_a ,seq_length=_a ,framework=_a ) A_ : Any = super().generate_dummy_inputs( processor.image_processor ,batch_size=_a ,framework=_a ) return {**text_input_dict, **image_input_dict} @property def _a ( self : Optional[Any] ): '''simple docstring''' return 14
27
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __A ={ '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): # Initialise PyTorch model lowerCamelCase_ = XLNetConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase_ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) lowerCamelCase_ = finetuning_task lowerCamelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCamelCase_ = XLNetForSequenceClassification(lowerCamelCase__ ) elif "squad" in finetuning_task: lowerCamelCase_ = finetuning_task lowerCamelCase_ = XLNetForQuestionAnswering(lowerCamelCase__ ) else: lowerCamelCase_ = XLNetLMHeadModel(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase_ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) print(F'Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(F'Save configuration file to {os.path.abspath(lowerCamelCase__ )}' ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) __A =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
463
import re def lowerCamelCase_ ( lowerCamelCase__ ): return [char.split() for char in re.split(r"[^ a-z A-Z 0-9 \s]" , str_ )] def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): try: lowerCamelCase_ = split_input(lowerCamelCase__ ) if upper: lowerCamelCase_ = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCamelCase_ = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCamelCase_ ( lowerCamelCase__ ): return to_simple_case(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): try: lowerCamelCase_ = to_simple_case(lowerCamelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , "_" ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return to_complex_case(lowerCamelCase__ , lowerCamelCase__ , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
463
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Dict , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : int , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
651
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __a ( _UpperCamelCase: str ) -> Optional[Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __a ( _UpperCamelCase: Optional[Any] ) -> List[Any]: """simple docstring""" _snake_case = create_tensor(_UpperCamelCase ) _snake_case = gather(_UpperCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __a ( _UpperCamelCase: Dict ) -> str: """simple docstring""" _snake_case = [state.process_index] _snake_case = gather_object(_UpperCamelCase ) assert len(_UpperCamelCase ) == state.num_processes, F"""{gathered_obj}, {len(_UpperCamelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __a ( _UpperCamelCase: List[str] ) -> List[Any]: """simple docstring""" _snake_case = create_tensor(_UpperCamelCase ) _snake_case = broadcast(_UpperCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __a ( _UpperCamelCase: Tuple ) -> Optional[int]: """simple docstring""" if state.is_main_process: _snake_case = torch.arange(state.num_processes + 1 ).to(state.device ) else: _snake_case = torch.arange(state.num_processes ).to(state.device ) _snake_case = pad_across_processes(_UpperCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __a ( _UpperCamelCase: Optional[int] ) -> str: """simple docstring""" if state.num_processes != 2: return _snake_case = create_tensor(_UpperCamelCase ) _snake_case = reduce(_UpperCamelCase , "sum" ) _snake_case = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __a ( _UpperCamelCase: str ) -> Optional[Any]: """simple docstring""" if state.num_processes != 2: return _snake_case = create_tensor(_UpperCamelCase ) _snake_case = reduce(_UpperCamelCase , "mean" ) _snake_case = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __a ( _UpperCamelCase: str ) -> List[str]: """simple docstring""" main() def __a ( ) -> Optional[int]: """simple docstring""" _snake_case = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(_UpperCamelCase ) state.print("testing gather_object" ) test_gather_object(_UpperCamelCase ) state.print("testing broadcast" ) test_broadcast(_UpperCamelCase ) state.print("testing pad_across_processes" ) test_pad_across_processes(_UpperCamelCase ) state.print("testing reduce_sum" ) test_reduce_sum(_UpperCamelCase ) state.print("testing reduce_mean" ) test_reduce_mean(_UpperCamelCase ) if __name__ == "__main__": main()
185
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : int = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = 'lxmert' __snake_case :Union[str, Any] = {} def __init__( self : List[str] , _lowerCAmelCase : Dict=3_0522 , _lowerCAmelCase : List[str]=768 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : Union[str, Any]=9500 , _lowerCAmelCase : Union[str, Any]=1600 , _lowerCAmelCase : Optional[Any]=400 , _lowerCAmelCase : Tuple=3072 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : Any=9 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : Dict=2048 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[Any]=6.67 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : int=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : int=True , _lowerCAmelCase : int=True , **_lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = num_qa_labels __lowercase = num_object_labels __lowercase = num_attr_labels __lowercase = l_layers __lowercase = x_layers __lowercase = r_layers __lowercase = visual_feat_dim __lowercase = visual_pos_dim __lowercase = visual_loss_normalizer __lowercase = task_matched __lowercase = task_mask_lm __lowercase = task_obj_predict __lowercase = task_qa __lowercase = visual_obj_loss __lowercase = visual_attr_loss __lowercase = visual_feat_loss __lowercase = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**_lowerCAmelCase )
80
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCAmelCase( a__ : Tuple ): '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase( a__ : Any , a__ : List[str] ): '''simple docstring''' lowerCamelCase__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCamelCase__ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCamelCase__ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCamelCase__ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCamelCase__ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCamelCase__ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCamelCase__ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCamelCase__ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCamelCase__ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCamelCase__ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCamelCase__ = key.replace("image_encoder.module" , "flava.image_model" ) lowerCamelCase__ = key.replace("text_encoder.module" , "flava.text_model" ) lowerCamelCase__ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCamelCase__ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCamelCase__ = key.replace("text_projection" , "flava.text_projection" ) lowerCamelCase__ = key.replace("image_projection" , "flava.image_projection" ) lowerCamelCase__ = value.float() for key, value in codebook_state_dict.items(): lowerCamelCase__ = value return upgrade @torch.no_grad() def lowerCAmelCase( a__ : Any , a__ : List[str] , a__ : str , a__ : Tuple=None ): '''simple docstring''' if config_path is not None: lowerCamelCase__ = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ = FlavaConfig() lowerCamelCase__ = FlavaForPreTraining(SCREAMING_SNAKE_CASE__ ).eval() lowerCamelCase__ = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , save_checkpoint=SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" ) else: lowerCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="cpu" ) lowerCamelCase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hf_model.state_dict() lowerCamelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = count_parameters(SCREAMING_SNAKE_CASE__ ) + count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCAmelCase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
704
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCAmelCase( a__ : List[str] , a__ : str , a__ : List[Any]=None , **a__ : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = [x.strip() for x in open(a__ ).readlines()] lowerCamelCase__ = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] lowerCamelCase__ = calculate_rouge(a__ , a__ , **a__ ) if save_path is not None: save_json(a__ , a__ , indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
426
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowerCamelCase : Any = logging.get_logger(__name__) class __snake_case (_a ): lowerCAmelCase__ = "AutoTokenizer" lowerCAmelCase__ = ["tokenizer"] lowerCAmelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int=None ) -> str: '''simple docstring''' super().__init__(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]="speaker_embeddings_path.json" , **_UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' if speaker_embeddings_dict_path is not None: _lowerCAmelCase : Union[str, Any] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , subfolder=kwargs.pop("""subfolder""" , _UpperCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , _UpperCAmelCase ) , force_download=kwargs.pop("""force_download""" , _UpperCAmelCase ) , proxies=kwargs.pop("""proxies""" , _UpperCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , _UpperCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , _UpperCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , _UpperCAmelCase ) , revision=kwargs.pop("""revision""" , _UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(_UpperCAmelCase , _UpperCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) _lowerCAmelCase : Union[str, Any] = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: _lowerCAmelCase : List[Any] = json.load(_UpperCAmelCase ) else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase , speaker_embeddings=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : int="speaker_embeddings_path.json" , _UpperCAmelCase : List[str]="speaker_embeddings" , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Union[str, Any] , ) -> int: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase , _UpperCAmelCase , """v2""" ) , exist_ok=_UpperCAmelCase ) _lowerCAmelCase : Any = {} _lowerCAmelCase : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCAmelCase : List[str] = self._load_voice_preset(_UpperCAmelCase ) _lowerCAmelCase : Tuple = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _UpperCAmelCase , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=_UpperCAmelCase , ) _lowerCAmelCase : str = os.path.join(_UpperCAmelCase , f"{prompt_key}_{key}.npy" ) _lowerCAmelCase : int = tmp_dict with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str = None , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Tuple = self.speaker_embeddings[voice_preset] _lowerCAmelCase : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) _lowerCAmelCase : Tuple = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _UpperCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , _UpperCAmelCase ) , force_download=kwargs.pop("""force_download""" , _UpperCAmelCase ) , proxies=kwargs.pop("""proxies""" , _UpperCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , _UpperCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , _UpperCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , _UpperCAmelCase ) , revision=kwargs.pop("""revision""" , _UpperCAmelCase ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) _lowerCAmelCase : int = np.load(_UpperCAmelCase ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : Optional[dict] = None ) -> Optional[Any]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : List[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any="pt" , _UpperCAmelCase : List[str]=256 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=True , _UpperCAmelCase : int=False , **_UpperCAmelCase : List[str] , ) -> str: '''simple docstring''' if voice_preset is not None and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCAmelCase : List[Any] = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not voice_preset.endswith(""".npz""" ): _lowerCAmelCase : Union[str, Any] = voice_preset + """.npz""" _lowerCAmelCase : int = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : Tuple = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) _lowerCAmelCase : Any = self.tokenizer( _UpperCAmelCase , return_tensors=_UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) if voice_preset is not None: _lowerCAmelCase : Optional[int] = voice_preset return encoded_text
429
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __snake_case : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=_a , repr=_a ) def __call__( self : Tuple ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __snake_case : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=_a , repr=_a ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : int = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
429
1
snake_case_ : int =[ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
718
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class a__ ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=4 , ) -> Dict: __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def _lowerCamelCase ( self ) -> str: __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ) -> int: __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCamelCase ( self ) -> Union[str, Any]: __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = True __A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a__ ( lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Any = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ) -> List[Any]: __A = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained("roberta-base" , from_pt=lowercase__ ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase__ )
205
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( UpperCAmelCase_ ): """simple docstring""" def lowerCAmelCase_ ( self : int , __lowerCamelCase : Union[str, Any] ): """simple docstring""" if isinstance(a_ , a_ ): _SCREAMING_SNAKE_CASE = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): """simple docstring""" if len(a_ ) == 0 or len(a_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(a_ ) ) if isinstance(a_ , a_ ): _SCREAMING_SNAKE_CASE = [sequences] _SCREAMING_SNAKE_CASE = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(a_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase_ ) class lowercase_ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Tuple=ZeroShotClassificationArgumentHandler() , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = args_parser super().__init__(*a_ , **a_ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase_ ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : str=TruncationStrategy.ONLY_FIRST , **__lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _SCREAMING_SNAKE_CASE = self.tokenizer.eos_token try: _SCREAMING_SNAKE_CASE = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=a_ , ) except Exception as e: if "too short" in str(a_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _SCREAMING_SNAKE_CASE = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase_ ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" if kwargs.get("multi_class" , a_ ) is not None: _SCREAMING_SNAKE_CASE = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: _SCREAMING_SNAKE_CASE = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["hypothesis_template"] _SCREAMING_SNAKE_CASE = {} if "multi_label" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : Any , __lowerCamelCase : Union[str, List[str]] , *__lowerCamelCase : str , **__lowerCamelCase : Dict , ): """simple docstring""" if len(a_ ) == 0: pass elif len(a_ ) == 1 and "candidate_labels" not in kwargs: _SCREAMING_SNAKE_CASE = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(a_ , **a_ ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Tuple="This example is {}." ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._args_parser(a_ , a_ , a_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(a_ , a_ ) ): _SCREAMING_SNAKE_CASE = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(a_ ) - 1, **model_input, } def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = inputs["candidate_label"] _SCREAMING_SNAKE_CASE = inputs["sequence"] _SCREAMING_SNAKE_CASE = {k: inputs[k] for k in self.tokenizer.model_input_names} _SCREAMING_SNAKE_CASE = self.model(**a_ ) _SCREAMING_SNAKE_CASE = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=False ): """simple docstring""" _SCREAMING_SNAKE_CASE = [outputs["candidate_label"] for outputs in model_outputs] _SCREAMING_SNAKE_CASE = [outputs["sequence"] for outputs in model_outputs] _SCREAMING_SNAKE_CASE = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _SCREAMING_SNAKE_CASE = logits.shape[0] _SCREAMING_SNAKE_CASE = len(a_ ) _SCREAMING_SNAKE_CASE = N // n _SCREAMING_SNAKE_CASE = logits.reshape((num_sequences, n, -1) ) if multi_label or len(a_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _SCREAMING_SNAKE_CASE = self.entailment_id _SCREAMING_SNAKE_CASE = -1 if entailment_id == 0 else 0 _SCREAMING_SNAKE_CASE = reshaped_outputs[..., [contradiction_id, entailment_id]] _SCREAMING_SNAKE_CASE = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) _SCREAMING_SNAKE_CASE = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _SCREAMING_SNAKE_CASE = reshaped_outputs[..., self.entailment_id] _SCREAMING_SNAKE_CASE = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) _SCREAMING_SNAKE_CASE = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
418
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) lowerCamelCase__ = load_dataset("""ashraq/esc50""" ) lowerCamelCase__ = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCamelCase__ = audio_classifier(a_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a_ ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass @slow @require_torch def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" lowerCamelCase__ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog lowerCamelCase__ = load_dataset("""ashraq/esc50""" ) lowerCamelCase__ = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCamelCase__ = audio_classifier(a_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a_ ) , [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ] , ) lowerCamelCase__ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(a_ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) lowerCamelCase__ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(a_ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass
165
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """falcon""" UpperCamelCase_ = ["""past_key_values"""] def __init__( self : Optional[int] , UpperCamelCase__ : List[Any]=6_5024 , UpperCamelCase__ : Tuple=4544 , UpperCamelCase__ : Any=32 , UpperCamelCase__ : Optional[int]=71 , UpperCamelCase__ : int=1E-5 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Dict=11 , UpperCamelCase__ : Optional[int]=11 , **UpperCamelCase__ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''n_embed''' , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = use_cache SCREAMING_SNAKE_CASE : List[str] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : int = bos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE : Any = num_attention_heads if num_kv_heads is None else num_kv_heads SCREAMING_SNAKE_CASE : int = alibi SCREAMING_SNAKE_CASE : Optional[Any] = new_decoder_architecture SCREAMING_SNAKE_CASE : Any = multi_query # Ignored when new_decoder_architecture is True SCREAMING_SNAKE_CASE : Tuple = parallel_attn SCREAMING_SNAKE_CASE : List[Any] = bias super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @property def __A ( self : int ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def __A ( self : List[str] ): '''simple docstring''' return not self.alibi
34
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ]) class lowercase__ ( unittest.TestCase): def __A ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=UpperCamelCase__ , ) assert hasattr(self , '''env''' ) def __A ( self : str , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings SCREAMING_SNAKE_CASE : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCamelCase__ , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='''py36''' , ) def __A ( self : Optional[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase__ )
34
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCAmelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCAmelCase = 'UperNetConfig' class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = False , UpperCAmelCase = 1 , ) -> None: super().__init__() _snake_case = nn.Convad( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , bias=UpperCAmelCase , dilation=UpperCAmelCase , ) _snake_case = nn.BatchNormad(UpperCAmelCase ) _snake_case = nn.ReLU() def lowercase (self , UpperCAmelCase ) -> torch.Tensor: _snake_case = self.conv(UpperCAmelCase ) _snake_case = self.batch_norm(UpperCAmelCase ) _snake_case = self.activation(UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: super().__init__() _snake_case = [ nn.AdaptiveAvgPoolad(UpperCAmelCase ), UperNetConvModule(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> torch.Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(UpperCAmelCase ) return hidden_state class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: super().__init__() _snake_case = pool_scales _snake_case = align_corners _snake_case = in_channels _snake_case = channels _snake_case = [] for i, pool_scale in enumerate(UpperCAmelCase ): _snake_case = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase , in_channels=UpperCAmelCase , channels=UpperCAmelCase ) self.blocks.append(UpperCAmelCase ) self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> List[torch.Tensor]: _snake_case = [] for ppm in self.blocks: _snake_case = ppm(UpperCAmelCase ) _snake_case = nn.functional.interpolate( UpperCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(UpperCAmelCase ) return ppm_outs class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: super().__init__() _snake_case = config _snake_case = config.pool_scales # e.g. (1, 2, 3, 6) _snake_case = in_channels _snake_case = config.hidden_size _snake_case = False _snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _snake_case = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _snake_case = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _snake_case = nn.ModuleList() _snake_case = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _snake_case = UperNetConvModule(UpperCAmelCase , self.channels , kernel_size=1 ) _snake_case = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCAmelCase ) self.fpn_convs.append(UpperCAmelCase ) _snake_case = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase (self ) -> List[Any]: self.apply(self._init_weights ) def lowercase (self , UpperCAmelCase ) -> str: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase (self , UpperCAmelCase ) -> Any: _snake_case = inputs[-1] _snake_case = [x] psp_outs.extend(self.psp_modules(UpperCAmelCase ) ) _snake_case = torch.cat(UpperCAmelCase , dim=1 ) _snake_case = self.bottleneck(UpperCAmelCase ) return output def lowercase (self , UpperCAmelCase ) -> torch.Tensor: # build laterals _snake_case = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCAmelCase ) ) # build top-down path _snake_case = len(UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _snake_case = laterals[i - 1].shape[2:] _snake_case = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs _snake_case = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _snake_case = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) _snake_case = torch.cat(UpperCAmelCase , dim=1 ) _snake_case = self.fpn_bottleneck(UpperCAmelCase ) _snake_case = self.classifier(UpperCAmelCase ) return output class _lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 3 , UpperCAmelCase = 1 ) -> None: super().__init__() _snake_case = config _snake_case = config.auxiliary_in_channels _snake_case = config.auxiliary_channels _snake_case = config.auxiliary_num_convs _snake_case = config.auxiliary_concat_input _snake_case = in_index _snake_case = (kernel_size // 2) * dilation _snake_case = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) if self.num_convs == 0: _snake_case = nn.Identity() else: _snake_case = nn.Sequential(*UpperCAmelCase ) if self.concat_input: _snake_case = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase , padding=kernel_size // 2 ) _snake_case = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase (self ) -> List[str]: self.apply(self._init_weights ) def lowercase (self , UpperCAmelCase ) -> int: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase (self , UpperCAmelCase ) -> torch.Tensor: # just take the relevant feature maps _snake_case = encoder_hidden_states[self.in_index] _snake_case = self.convs(UpperCAmelCase ) if self.concat_input: _snake_case = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _snake_case = self.classifier(UpperCAmelCase ) return output class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = UperNetConfig lowerCAmelCase_ = "pixel_values" lowerCAmelCase_ = True def lowercase (self , UpperCAmelCase ) -> List[Any]: if isinstance(UpperCAmelCase , UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase (self ) -> List[str]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase (self , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = value __lowerCAmelCase = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , __snake_case , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[Any]: super().__init__(UpperCAmelCase ) _snake_case = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _snake_case = UperNetHead(UpperCAmelCase , in_channels=self.backbone.channels ) _snake_case = UperNetFCNHead(UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowercase (self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Union[tuple, SemanticSegmenterOutput]: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = output_attentions if output_attentions is not None else self.config.output_attentions _snake_case = self.backbone.forward_with_filtered_kwargs( UpperCAmelCase , output_hidden_states=UpperCAmelCase , output_attentions=UpperCAmelCase ) _snake_case = outputs.feature_maps _snake_case = self.decode_head(UpperCAmelCase ) _snake_case = nn.functional.interpolate(UpperCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=UpperCAmelCase ) _snake_case = None if self.auxiliary_head is not None: _snake_case = self.auxiliary_head(UpperCAmelCase ) _snake_case = nn.functional.interpolate( UpperCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=UpperCAmelCase ) _snake_case = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss _snake_case = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) _snake_case = loss_fct(UpperCAmelCase , UpperCAmelCase ) _snake_case = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _snake_case = (logits,) + outputs[1:] else: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
585
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = name _snake_case = val def __str__(self ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__(self , UpperCAmelCase ) -> Any: return self.val < other.val class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = self.build_heap(UpperCAmelCase ) def __getitem__(self , UpperCAmelCase ) -> Union[str, Any]: return self.get_value(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Dict: return (idx - 1) // 2 def lowercase (self , UpperCAmelCase ) -> Optional[Any]: return idx * 2 + 1 def lowercase (self , UpperCAmelCase ) -> Optional[int]: return idx * 2 + 2 def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: return self.heap_dict[key] def lowercase (self , UpperCAmelCase ) -> str: _snake_case = len(UpperCAmelCase ) - 1 _snake_case = self.get_parent_idx(UpperCAmelCase ) for idx, i in enumerate(UpperCAmelCase ): _snake_case = idx _snake_case = i.val for i in range(UpperCAmelCase , -1 , -1 ): self.sift_down(UpperCAmelCase , UpperCAmelCase ) return array def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: while True: _snake_case = self.get_left_child_idx(UpperCAmelCase ) # noqa: E741 _snake_case = self.get_right_child_idx(UpperCAmelCase ) _snake_case = idx if l < len(UpperCAmelCase ) and array[l] < array[idx]: _snake_case = l if r < len(UpperCAmelCase ) and array[r] < array[smallest]: _snake_case = r if smallest != idx: _snake_case, _snake_case = array[smallest], array[idx] ( ( _snake_case ), ( _snake_case ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _snake_case = smallest else: break def lowercase (self , UpperCAmelCase ) -> str: _snake_case = self.get_parent_idx(UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _snake_case, _snake_case = self.heap[idx], self.heap[p] _snake_case, _snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _snake_case = p _snake_case = self.get_parent_idx(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: return self.heap[0] def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.heap[-1], self.heap[0] _snake_case, _snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase (self , UpperCAmelCase ) -> List[str]: self.heap.append(UpperCAmelCase ) _snake_case = len(self.heap ) - 1 _snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase (self ) -> int: return len(self.heap ) == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _snake_case = new_value _snake_case = new_value self.sift_up(self.idx_of_element[node] ) __lowerCAmelCase = Node('R', -1) __lowerCAmelCase = Node('B', 6) __lowerCAmelCase = Node('A', 3) __lowerCAmelCase = Node('X', 1) __lowerCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __lowerCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
585
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "" UpperCAmelCase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCAmelCase__ : str = None # compression type in fsspec. ex: "gzip" UpperCAmelCase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , A_ = "" , A_ = None , A_ = None , **A_ ) -> Optional[Any]: super().__init__(self , **A_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCamelCase =fsspec.open( A_ , mode='rb' , protocol=A_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCamelCase =os.path.basename(self.file.path.split('::' )[0] ) __UpperCamelCase =( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) __UpperCamelCase =None @classmethod def _a ( cls , A_ ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(A_ ).lstrip('/' ) def _a ( self ) -> List[str]: if self.dir_cache is None: __UpperCamelCase ={**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} __UpperCamelCase ={f['name']: f} def _a ( self , A_ ) -> Dict: return self.file.open().read() def _a ( self , A_ , A_ = "rb" , A_=None , A_=True , A_=None , **A_ , ) -> Union[str, Any]: __UpperCamelCase =self._strip_protocol(A_ ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "bz2" UpperCAmelCase__ : Union[str, Any] = "bz2" UpperCAmelCase__ : Dict = ".bz2" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "gzip" UpperCAmelCase__ : Optional[int] = "gzip" UpperCAmelCase__ : List[Any] = ".gz" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "lz4" UpperCAmelCase__ : List[Any] = "lz4" UpperCAmelCase__ : Optional[int] = ".lz4" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "xz" UpperCAmelCase__ : Optional[Any] = "xz" UpperCAmelCase__ : Dict = ".xz" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Union[str, Any] = ".zst" def __init__( self , A_ , A_ = "rb" , A_ = None , A_ = None , A_ = DEFAULT_BLOCK_SIZE , **A_ , ) -> str: super().__init__( fo=A_ , mode=A_ , target_protocol=A_ , target_options=A_ , block_size=A_ , **A_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCamelCase =self.file.__enter__ class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =file_ def __enter__( self ) -> Any: self._file.__enter__() return self def __exit__( self , *A_ , **A_ ) -> List[str]: self._file.__exit__(*A_ , **A_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _a ( self ) -> List[str]: return next(self._file ) def __getattr__( self , A_ ) -> List[Any]: return getattr(self._file , A_ ) def fixed_enter(*A_ , **A_ ): return WrappedFile(_enter(*A_ , **A_ ) ) __UpperCamelCase =fixed_enter
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE ={ """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE ={ """Salesforce/codegen-350M-mono""": 2_048, } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : str = CodeGenTokenizer def __init__( self: List[str] , _lowerCamelCase: List[str]=None , _lowerCamelCase: List[Any]=None , _lowerCamelCase: int=None , _lowerCamelCase: Optional[int]="<|endoftext|>" , _lowerCamelCase: List[str]="<|endoftext|>" , _lowerCamelCase: str="<|endoftext|>" , _lowerCamelCase: Optional[Any]=False , **_lowerCamelCase: Tuple , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) if kwargs.pop('''add_bos_token''' , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = add_prefix_space def _A ( self: Union[str, Any] , *_lowerCamelCase: Dict , **_lowerCamelCase: List[str] ): SCREAMING_SNAKE_CASE_ = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def _A ( self: str , *_lowerCamelCase: List[str] , **_lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def _A ( self: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _A ( self: Tuple , _lowerCamelCase: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCamelCase: bool = False , _lowerCamelCase: bool = None , _lowerCamelCase: Optional[List[str]] = None , **_lowerCamelCase: str , ): SCREAMING_SNAKE_CASE_ = super().decode( token_ids=_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , **_lowerCamelCase , ) if truncate_before_pattern is not None and len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = self.truncate(_lowerCamelCase , _lowerCamelCase ) return decoded_text def _A ( self: Optional[int] , _lowerCamelCase: Optional[int] , _lowerCamelCase: str ): def find_re(_lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = pattern.search(_lowerCamelCase , _lowerCamelCase ) return m.start() if m else -1 SCREAMING_SNAKE_CASE_ = [re.compile(_lowerCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] SCREAMING_SNAKE_CASE_ = list(re.finditer('''^print''' , _lowerCamelCase , re.MULTILINE ) ) if len(_lowerCamelCase ) > 1: SCREAMING_SNAKE_CASE_ = completion[: prints[1].start()] SCREAMING_SNAKE_CASE_ = list(re.finditer('''^def''' , _lowerCamelCase , re.MULTILINE ) ) if len(_lowerCamelCase ) > 1: SCREAMING_SNAKE_CASE_ = completion[: defs[1].start()] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [ pos for pos in [find_re(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCamelCase ) > 0: return completion[: min(_lowerCamelCase )] else: return completion
234
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = "Speech2TextFeatureExtractor" SCREAMING_SNAKE_CASE__ : List[str] = "Speech2TextTokenizer" def __init__( self: List[str] , _lowerCamelCase: str , _lowerCamelCase: Optional[Any] ): super().__init__(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False def __call__( self: List[str] , *_lowerCamelCase: Dict , **_lowerCamelCase: List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _A ( self: List[str] , *_lowerCamelCase: List[Any] , **_lowerCamelCase: Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _A ( self: Union[str, Any] , *_lowerCamelCase: str , **_lowerCamelCase: Optional[Any] ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _A ( self: List[Any] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
234
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( snake_case_ : int , snake_case_ : int ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) SCREAMING_SNAKE_CASE : Optional[Any] = str(bin(snake_case_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE : Optional[int] = str(bin(snake_case_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE : Dict = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
220
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE : List[Any] = np.zeros_like(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE : Optional[int] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCAmelCase = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __UpperCAmelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCAmelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCAmelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCAmelCase = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
220
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCamelCase__ : Tuple = 25_00_04 UpperCamelCase__ : List[Any] = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : int = MBartTokenizer _A : Dict = MBartTokenizerFast _A : List[Any] = True _A : Any = True def UpperCamelCase__ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : Optional[Any] = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : str = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = '''facebook/mbart-large-en-ro''' _A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _A : Union[str, Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _A : List[str] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def UpperCamelCase__ ( cls : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __SCREAMING_SNAKE_CASE : Tuple = 1 return cls def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self : Any ): """simple docstring""" self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE : Optional[Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : str = 1_0 __SCREAMING_SNAKE_CASE : str = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE : str = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : Any = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_0 , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : List[str] = targets["""input_ids"""] __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
578
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = "naver-clova-ix/donut-base-finetuned-docvqa" _A = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _A = "document_qa" _A = AutoProcessor _A = VisionEncoderDecoderModel _A = ["image", "text"] _A = ["text"] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : "Image" , SCREAMING_SNAKE_CASE_ : str ): _a = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _a = task_prompt.replace('{user_input}' , SCREAMING_SNAKE_CASE_ ) _a = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_ids _a = self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , ).sequences def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): _a = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ )[0] _a = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _a = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _a = re.sub(R'<.*?>' , '' , SCREAMING_SNAKE_CASE_ , count=1 ).strip() # remove first task start token _a = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE_ ) return sequence["answer"]
562
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
706
'''simple docstring''' import doctest from collections import deque import numpy as np class UpperCAmelCase_ : def __init__( self): snake_case_ : List[Any] = [2, 1, 2, -1] snake_case_ : int = [1, 2, 3, 4] def snake_case__ ( self): snake_case_ : str = len(self.first_signal) snake_case_ : Any = len(self.second_signal) snake_case_ : List[Any] = max(lowercase_ , lowercase_) # create a zero matrix of max_length x max_length snake_case_ : Dict = [[0] * max_length for i in range(lowercase_)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase_): snake_case_ : List[str] = deque(self.second_signal) rotated_signal.rotate(lowercase_) for j, item in enumerate(lowercase_): matrix[i][j] += item # multiply the matrix with the first signal snake_case_ : Any = np.matmul(np.transpose(lowercase_) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowercase_ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
92
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = 42 if negative_prompt is None: lowerCamelCase_ = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' f''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase_ = negative_prompt lowerCamelCase_ = text_input_ids.shape[-1] lowerCamelCase_ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ = uncond_embeddings.shape[1] lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCamelCase_ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents_reference.to(self.device ) lowerCamelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase_ = 0 if dx < 0 else dx lowerCamelCase_ = 0 if dy < 0 else dy lowerCamelCase_ = max(-dx , 0 ) lowerCamelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase_ = None if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
42
"""simple docstring""" from collections.abc import Callable import numpy as np def a ( __snake_case : Callable, __snake_case : float, __snake_case : float, __snake_case : float, __snake_case : float ): '''simple docstring''' UpperCAmelCase_ :str = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ :int = np.zeros((n + 1,) ) UpperCAmelCase_ :str = ya UpperCAmelCase_ :List[str] = xa for k in range(__snake_case ): UpperCAmelCase_ :Tuple = y[k] + step_size * ode_func(__snake_case, y[k] ) UpperCAmelCase_ :Optional[int] = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
608
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _A = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
403
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[int]=None ) -> Optional[Any]: """simple docstring""" a_ = argparse.ArgumentParser(add_help=UpperCamelCase , allow_abbrev=UpperCamelCase ) # The main config parser a_ = config_command_parser(UpperCamelCase ) # The subparser to add commands to a_ = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase , parents=[parent_parser] ) update_command_parser(UpperCamelCase , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" a_ = get_config_parser() a_ = config_parser.parse_args() if not hasattr(UpperCamelCase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase ) if __name__ == "__main__": main()
403
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( a_ ): def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[Any]=99 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : List[Any]=37 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[Any]="None" , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = relative_attention __a = position_biased_input __a = pos_att_type __a = scope def _UpperCAmelCase ( self : str ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : List[str] ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCAmelCase ( self : List[str] ): __a = self.get_config() __a = 3_00 return config def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): __a = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __a = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __a = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCAmelCase ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): __a = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): __a = self.num_labels __a = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): __a = self.num_labels __a = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): __a = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __a = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : str ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( a_ , a_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _UpperCAmelCase ( self : int ): __a = DebertaModelTester(self ) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _UpperCAmelCase ( self : str ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[Any] ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[int] ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[str] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _UpperCAmelCase ( self : Tuple ): pass @slow def _UpperCAmelCase ( self : List[str] ): __a = DebertaModel.from_pretrained("microsoft/deberta-base" ) __a = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __a = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
197
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __A ( _A , _A ): """simple docstring""" __a = torch.load(_A , map_location="cpu" ) __a = chkpt["model"] # We have the base model one level deeper than the original XLM repository __a = {} for k, v in state_dict.items(): if "pred_layer" in k: __a = v else: __a = v __a = chkpt["params"] __a = {n: v for n, v in config.items() if not isinstance(_A , (torch.FloatTensor, numpy.ndarray) )} __a = chkpt["dico_word2id"] __a = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __a = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __a = pytorch_dump_folder_path + "/" + CONFIG_NAME __a = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_A , _A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , indent=2 ) + "\n" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , indent=2 ) + "\n" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
197
1
"""simple docstring""" import numpy as np import qiskit def __lowerCAmelCase( __UpperCAmelCase = 8 ,__UpperCAmelCase = None ): """simple docstring""" _lowercase : Any = np.random.default_rng(seed=snake_case__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowercase : List[Any] = 6 * key_len # Measurement basis for Alice's qubits. _lowercase : str = rng.integers(2 ,size=snake_case__ ) # The set of states Alice will prepare. _lowercase : Optional[Any] = rng.integers(2 ,size=snake_case__ ) # Measurement basis for Bob's qubits. _lowercase : Optional[Any] = rng.integers(2 ,size=snake_case__ ) # Quantum Circuit to simulate BB84 _lowercase : Any = qiskit.QuantumCircuit(snake_case__ ,name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case__ ): if alice_state[index] == 1: bbaa_circ.x(snake_case__ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case__ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowercase : str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowercase : Optional[int] = qiskit.execute(snake_case__ ,snake_case__ ,shots=1 ,seed_simulator=snake_case__ ) # Returns the result of measurement. _lowercase : Tuple = job.result().get_counts(snake_case__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowercase : Optional[int] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case__ ,snake_case__ ,snake_case__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowercase : Tuple = gen_key[:key_len] if len(snake_case__ ) >= key_len else gen_key.ljust(snake_case__ ,'0' ) return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
717
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["pixel_values"] def __init__( self : Optional[int] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , **lowerCamelCase_ : int , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) _lowercase : Optional[Any] = size if size is not None else {'shortest_edge': 2_5_6} _lowercase : Optional[int] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : List[str] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} _lowercase : Any = get_size_dict(lowerCamelCase_ ) _lowercase : Optional[int] = do_resize _lowercase : Optional[int] = size _lowercase : Union[str, Any] = resample _lowercase : Optional[Any] = do_center_crop _lowercase : Union[str, Any] = crop_size _lowercase : Any = do_rescale _lowercase : Tuple = rescale_factor _lowercase : Optional[int] = do_normalize _lowercase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Tuple , ): """simple docstring""" _lowercase : Optional[Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : Dict = get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : str , ): """simple docstring""" _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : float , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : int , ): """simple docstring""" _lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : List[Any] = size if size is not None else self.size _lowercase : Union[str, Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : Any = resample if resample is not None else self.resample _lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) _lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : int = do_normalize if do_normalize is not None else self.do_normalize _lowercase : str = image_mean if image_mean is not None else self.image_mean _lowercase : List[Any] = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase : Optional[Any] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: _lowercase : List[Any] = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: _lowercase : Any = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] _lowercase : int = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] _lowercase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
283
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a : Dict = logging.get_logger(__name__) a : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a : Tuple = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } a : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } a : Dict = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } a : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } a : int = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } a : Any = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } a : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } a : List[str] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } a : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class a ( lowercase__ ): """simple docstring""" a : Dict = VOCAB_FILES_NAMES a : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a : str = DPRContextEncoderTokenizer class a ( lowercase__ ): """simple docstring""" a : Union[str, Any] = VOCAB_FILES_NAMES a : List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : List[str] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a : List[Any] = DPRQuestionEncoderTokenizer a : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) a : Dict = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) a : Tuple = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(lowercase__ ) class a : """simple docstring""" def __call__( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Union[bool, str] = False , __lowercase : Union[bool, str] = False , __lowercase : Optional[int] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Optional[bool] = None , **__lowercase : List[Any] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( __lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , return_tensors=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) elif titles is None or texts is None: __UpperCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( __lowercase , __lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , return_tensors=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) __UpperCAmelCase : Optional[int] = titles if not isinstance(__lowercase , __lowercase ) else [titles] __UpperCAmelCase : Dict = texts if not isinstance(__lowercase , __lowercase ) else [texts] __UpperCAmelCase : Union[str, Any] = len(__lowercase ) __UpperCAmelCase : Dict = questions if not isinstance(__lowercase , __lowercase ) else [questions] * n_passages assert len(__lowercase ) == len( __lowercase ), f"""There should be as many titles than texts but got {len(__lowercase )} titles and {len(__lowercase )} texts.""" __UpperCAmelCase : Union[str, Any] = super().__call__(__lowercase , __lowercase , padding=__lowercase , truncation=__lowercase )["""input_ids"""] __UpperCAmelCase : Any = super().__call__(__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase )["""input_ids"""] __UpperCAmelCase : Union[str, Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowercase , __lowercase ) ] } if return_attention_mask is not False: __UpperCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : int = attention_mask return self.pad(__lowercase , padding=__lowercase , max_length=__lowercase , return_tensors=__lowercase ) def UpperCAmelCase ( self : Union[str, Any] , __lowercase : BatchEncoding , __lowercase : DPRReaderOutput , __lowercase : int = 16 , __lowercase : int = 64 , __lowercase : int = 4 , ) -> List[DPRSpanPrediction]: __UpperCAmelCase : List[Any] = reader_input["""input_ids"""] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = reader_output[:3] __UpperCAmelCase : Any = len(__lowercase ) __UpperCAmelCase : Union[str, Any] = sorted(range(__lowercase ) , reverse=__lowercase , key=relevance_logits.__getitem__ ) __UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __UpperCAmelCase : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : Dict = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : Any = len(__lowercase ) __UpperCAmelCase : str = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowercase , top_spans=__lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowercase , start_index=__lowercase , end_index=__lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : List[int] , __lowercase : int , __lowercase : int , ) -> List[DPRSpanPrediction]: __UpperCAmelCase : Union[str, Any] = [] for start_index, start_score in enumerate(__lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : Tuple = sorted(__lowercase , key=lambda __lowercase : x[1] , reverse=__lowercase ) __UpperCAmelCase : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" __UpperCAmelCase : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowercase__ ) class a ( lowercase__ , lowercase__ ): """simple docstring""" a : Optional[int] = VOCAB_FILES_NAMES a : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP a : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = READER_PRETRAINED_INIT_CONFIGURATION a : List[Any] = ['input_ids', 'attention_mask'] a : Optional[Any] = DPRReaderTokenizer
63
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def snake_case_ (*__A : Optional[Any] ) -> str: with open(__A , """r""" ) as fh: fcntl.flock(__A , fcntl.LOCK_EX ) try: print(*__A ) finally: fcntl.flock(__A , fcntl.LOCK_UN ) __UpperCAmelCase = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) __UpperCAmelCase = torch.device("""cuda""", local_rank) __UpperCAmelCase = socket.gethostname() __UpperCAmelCase = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCAmelCase = dist.get_rank() __UpperCAmelCase = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : List[str] = """dpr""" def __init__( self, snake_case__=3_05_22, snake_case__=7_68, snake_case__=12, snake_case__=12, snake_case__=30_72, snake_case__="gelu", snake_case__=0.1, snake_case__=0.1, snake_case__=5_12, snake_case__=2, snake_case__=0.02, snake_case__=1E-12, snake_case__=0, snake_case__="absolute", snake_case__ = 0, **snake_case__, ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=snake_case__, **snake_case__ ) lowercase_ : Tuple = vocab_size lowercase_ : Dict = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Any = hidden_act lowercase_ : str = intermediate_size lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : Dict = projection_dim lowercase_ : List[str] = position_embedding_type
707
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCAmelCase_ = Lock() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase_ : List[str] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase_ : Dict = min(lowercase , lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase_ : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase_ : int = max(lowercase , lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase ) def __magic_name__ ( lowercase ) -> List[Any]: """simple docstring""" lowercase_ : Union[str, Any] = [] lowercase_ : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase_ : str = Pipe() lowercase_ : int = Pipe() process_array_.append( Process( target=lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase_ : Union[str, Any] = temp_rs lowercase_ : str = temp_rr for i in range(1 , len(lowercase ) - 1 ): lowercase_ : str = Pipe() lowercase_ : str = Pipe() process_array_.append( Process( target=lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase_ : int = temp_rs lowercase_ : int = temp_rr process_array_.append( Process( target=lowercase , args=( len(lowercase ) - 1, arr[len(lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase ) ): lowercase_ : Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: """simple docstring""" lowercase_ : List[str] = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowercase ) lowercase_ : Dict = odd_even_transposition(lowercase ) print("""Sorted List\n""" ) print(*lowercase ) if __name__ == "__main__": main()
436
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : List[str] = XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowerCamelCase : int = finetuning_task lowerCamelCase : int = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCamelCase : Union[str, Any] = XLNetForSequenceClassification(SCREAMING_SNAKE_CASE_ ) elif "squad" in finetuning_task: lowerCamelCase : List[Any] = finetuning_task lowerCamelCase : str = XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : int = XLNetLMHeadModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model lowerCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(f"""Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(f"""Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
231
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase : int = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase : Optional[int] = get_activation("gelu" ) lowerCamelCase : List[str] = get_activation("gelu_10" ) lowerCamelCase : str = torch_builtin(__A ) lowerCamelCase : Any = geluaa(__A ) lowerCamelCase : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self ): """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = get_activation("gelu" ) lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : str = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): lowerCamelCase : Union[str, Any] = acta.a
231
1
import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_UpperCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = 'Enter the base and the power separated by a comma: ' lowercase_ , lowercase_ = map(int, input(prompt).split(',')) lowercase_ , lowercase_ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
562
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: _a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _a = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _UpperCAmelCase , ) is not None ): _a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _a = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _a = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _a = True if not attribute_used: _a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _a = True elif attribute in ["tie_word_embeddings"] and default_value is False: _a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _a = True elif attribute.endswith('_token_id' ): _a = True # configuration class specific cases if not case_allowed: _a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: _a = dict(inspect.signature(config_class.__init__ ).parameters ) _a = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _a = {} if len(config_class.attribute_map ) > 0: _a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _a = inspect.getsourcefile(_UpperCAmelCase ) _a = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _a = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _a = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _a = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> str: _a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _a = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _a = unused_attributes if len(_UpperCAmelCase ) > 0: _a = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
562
1
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): """simple docstring""" if len(lowerCamelCase_ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) _lowerCamelCase : str = list(lowerCamelCase_ ) _lowerCamelCase : Optional[Any] = degree def __add__( self : int , __lowerCAmelCase : List[str] ): """simple docstring""" if self.degree > polynomial_a.degree: _lowerCamelCase : Optional[int] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase_ ) else: _lowerCamelCase : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase_ ) def __sub__( self : List[str] , __lowerCAmelCase : Any ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : str ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Optional[int] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Dict ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase_ ) return polynomial def __repr__( self : Optional[Any] ): """simple docstring""" return self.__str__() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Tuple = [0] * self.degree for i in range(self.degree ): _lowerCamelCase : int = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] = 0 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [0] * (self.degree + 2) _lowerCamelCase : Any = constant for i in range(self.degree + 1 ): _lowerCamelCase : int = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase_ ) def __eq__( self : Dict , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : int , __lowerCAmelCase : str ): """simple docstring""" return not self.__eq__(lowerCamelCase_ )
710
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase__ = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = cn.convert_to_negative(A_ ) # assert negative_img array for at least one True assert negative_img.any() def snake_case_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(A_, 1_10 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = imread('''digital_image_processing/image_data/lena_small.jpg''', 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase : Tuple = canny.canny(A_ ) # assert canny array for at least one True assert canny_array.any() def snake_case_ ( ): '''simple docstring''' assert gg.gaussian_filter(A_, 5, sigma=0.9 ).all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCamelCase : Optional[int] = conv.img_convolve(A_, A_ ).astype(A_ ) assert res.any() def snake_case_ ( ): '''simple docstring''' assert med.median_filter(A_, 3 ).any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : int = sob.sobel_filter(A_ ) assert grad.any() and theta.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = sp.make_sepia(A_, 20 ) assert sepia.all() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCamelCase : Tuple = bs.Burkes(imread(A_, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg", ): '''simple docstring''' _lowerCamelCase : str = rs.NearestNeighbour(imread(A_, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. _lowerCamelCase : Optional[int] = imread(A_, 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = image[x_coordinate][y_coordinate] _lowerCamelCase : List[Any] = lbp.get_neighbors_pixel( A_, A_, A_, A_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): _lowerCamelCase : Union[str, Any] = lbp.local_binary_value(A_, A_, A_ ) assert lbp_image.any()
598
0
import os import pytest from attr import dataclass lowercase_ = 'us-east-1' # defaults region @dataclass class __lowerCAmelCase : _a = 42 _a = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _a = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } _a = {**hyperparameters, """max_steps""": 1_000} @property def A__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def A__ ( self ) -> str: '''simple docstring''' return F'''{self.framework}-transfromers-test''' @property def A__ ( self ) -> str: '''simple docstring''' return F'''./tests/sagemaker/scripts/{self.framework}''' @property def A__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def a ( A__ : List[str] ) -> List[Any]: """simple docstring""" _lowercase =SageMakerTestEnvironment(framework=request.cls.framework )
291
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """gptj""" _a = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase=50_400 , lowerCAmelCase=2_048 , lowerCAmelCase=4_096 , lowerCAmelCase=28 , lowerCAmelCase=16 , lowerCAmelCase=64 , lowerCAmelCase=None , lowerCAmelCase="gelu_new" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=1e-5 , lowerCAmelCase=0.02 , lowerCAmelCase=True , lowerCAmelCase=50_256 , lowerCAmelCase=50_256 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' _lowercase =vocab_size _lowercase =n_positions _lowercase =n_embd _lowercase =n_layer _lowercase =n_head _lowercase =n_inner _lowercase =rotary_dim _lowercase =activation_function _lowercase =resid_pdrop _lowercase =embd_pdrop _lowercase =attn_pdrop _lowercase =layer_norm_epsilon _lowercase =initializer_range _lowercase =use_cache _lowercase =bos_token_id _lowercase =eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase = "default" , lowerCAmelCase = None , lowerCAmelCase = False , ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase ): # TODO: how to do that better? _lowercase =0 @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) _lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: _lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def A__ ( self ) -> int: '''simple docstring''' return self._config.n_head def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowercase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase =seqlen + 2 _lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowercase =common_inputs['attention_mask'] if self.use_past: _lowercase =ordered_inputs['attention_mask'].dtype _lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def A__ ( self ) -> int: '''simple docstring''' return 13
291
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( _UpperCAmelCase ): '''simple docstring''' def __UpperCAmelCase( self , __UpperCAmelCase ): return 0.0 def lowerCamelCase_ ( _lowercase , _lowercase ) -> tuple[int | float, int | float]: __A : List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __A : int = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase_ ( _lowercase , _lowercase ) -> None: __A : List[Any] = 512 __A : Optional[int] = [1] + [0] * (size - 1) __A : int = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs] __A : Any = [0] * (samplerate - size) # zero-padding outputs += filler __A : Optional[Any] = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE_ ) ) __A : Dict = 20 * np.logaa(SCREAMING_SNAKE_CASE_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds __A : Dict = get_bounds(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(SCREAMING_SNAKE_CASE_ ) plt.show() def lowerCamelCase_ ( _lowercase , _lowercase ) -> None: __A : str = 512 __A : Any = [1] + [0] * (size - 1) __A : Dict = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs] __A : str = [0] * (samplerate - size) # zero-padding outputs += filler __A : Any = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE_ , -2 * pi ) ) plt.show()
702
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=False , ): __A : Tuple = size if size is not None else {"height": 20, "width": 20} __A : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} __A : int = parent __A : List[Any] = batch_size __A : Tuple = num_channels __A : Any = image_size __A : Optional[int] = min_resolution __A : Any = max_resolution __A : str = do_resize __A : Tuple = size __A : Tuple = do_center_crop __A : Union[str, Any] = crop_size __A : Tuple = do_normalize __A : Union[str, Any] = image_mean __A : Dict = image_std __A : Optional[Any] = do_reduce_labels def __UpperCAmelCase( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase_ ( ) -> str: __A : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A : Optional[Any] = Image.open(dataset[0]["file"] ) __A : Union[str, Any] = Image.open(dataset[1]["file"] ) return image, map def lowerCamelCase_ ( ) -> Dict: __A : str = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A : List[Any] = Image.open(ds[0]["file"] ) __A : Union[str, Any] = Image.open(ds[1]["file"] ) __A : Optional[Any] = Image.open(ds[2]["file"] ) __A : str = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _a ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = BeitImageProcessor if is_vision_available() else None def __UpperCAmelCase( self ): __A : Tuple = BeitImageProcessingTester(self ) @property def __UpperCAmelCase( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase( self ): __A : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "center_crop" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "image_std" ) ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) __A : str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__UpperCAmelCase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : List[Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : List[Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase( self ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : Union[str, Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase( self ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) __A : Tuple = [] for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A : str = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched __A : Any = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) __A , __A : Optional[Any] = prepare_semantic_single_inputs() __A : Dict = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) __A , __A : List[Any] = prepare_semantic_batch_inputs() __A : Tuple = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def __UpperCAmelCase( self ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A : List[Any] = prepare_semantic_single_inputs() __A : Optional[int] = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) __A : Optional[Any] = True __A : int = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
387
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=2 , __lowerCamelCase=3_2 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=3_2 , __lowerCamelCase=4 , __lowerCamelCase=[0, 1, 2, 3] , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=[1, 3_8_4, 2_4, 2_4] , __lowerCamelCase=True , __lowerCamelCase=None , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = parent _SCREAMING_SNAKE_CASE : List[str] = batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = image_size _SCREAMING_SNAKE_CASE : int = patch_size _SCREAMING_SNAKE_CASE : Tuple = num_channels _SCREAMING_SNAKE_CASE : int = is_training _SCREAMING_SNAKE_CASE : Tuple = use_labels _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = backbone_out_indices _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Any = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Dict = initializer_range _SCREAMING_SNAKE_CASE : Optional[int] = num_labels _SCREAMING_SNAKE_CASE : int = backbone_featmap_shape _SCREAMING_SNAKE_CASE : Optional[int] = scope _SCREAMING_SNAKE_CASE : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE : Dict = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE : str = num_patches + 1 def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [9_6, 1_9_2, 3_8_4, 7_6_8], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = DPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.num_labels _SCREAMING_SNAKE_CASE : List[str] = DPTForDepthEstimation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = DPTForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = config_and_inputs _SCREAMING_SNAKE_CASE : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __snake_case = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Union[str, Any] = DPTModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def UpperCamelCase_ ( self ) -> List[Any]: pass def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : int = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[int] = True if model_class in get_values(__lowerCamelCase ): continue _SCREAMING_SNAKE_CASE : Dict = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() _SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(**__lowerCamelCase ).loss loss.backward() def UpperCamelCase_ ( self ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : str = True if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() _SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__lowerCamelCase ).loss loss.backward() def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Dict = model_class(config=__lowerCamelCase ) # Skip the check for the backbone _SCREAMING_SNAKE_CASE : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _SCREAMING_SNAKE_CASE : str = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self ) -> Dict: pass @slow def UpperCamelCase_ ( self ) -> Tuple: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _SCREAMING_SNAKE_CASE : Optional[int] = DPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = "add" with self.assertRaises(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = DPTForDepthEstimation(__lowerCamelCase ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) _SCREAMING_SNAKE_CASE : List[str] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() _SCREAMING_SNAKE_CASE : List[str] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.predicted_depth # verify the predicted depth _SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __lowerCamelCase , atol=1E-4 ) )
249
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ ={ 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): # Initialise PyTorch model _SCREAMING_SNAKE_CASE : Dict = XLNetConfig.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _SCREAMING_SNAKE_CASE : Tuple = finetuning_task _SCREAMING_SNAKE_CASE : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _SCREAMING_SNAKE_CASE : Optional[int] = XLNetForSequenceClassification(__lowerCamelCase ) elif "squad" in finetuning_task: _SCREAMING_SNAKE_CASE : Union[str, Any] = finetuning_task _SCREAMING_SNAKE_CASE : Tuple = XLNetForQuestionAnswering(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = XLNetLMHeadModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Save pytorch-model _SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(__lowerCamelCase, __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict(), __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
249
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
244
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase__ ( snake_case__ ): _UpperCAmelCase :Dict = "naver-clova-ix/donut-base-finetuned-docvqa" _UpperCAmelCase :str = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _UpperCAmelCase :Union[str, Any] = "document_qa" _UpperCAmelCase :Union[str, Any] = AutoProcessor _UpperCAmelCase :List[Any] = VisionEncoderDecoderModel _UpperCAmelCase :Union[str, Any] = ["image", "text"] _UpperCAmelCase :Dict = ["text"] def __init__( self : Optional[int] , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : "Image" , snake_case__ : str ): lowerCamelCase_ : Union[str, Any] ="<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowerCamelCase_ : List[Any] =task_prompt.replace("{user_input}" , snake_case__ ) lowerCamelCase_ : int =self.pre_processor.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors="pt" ).input_ids lowerCamelCase_ : Optional[int] =self.pre_processor(snake_case__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase__ ( self : int , snake_case__ : Union[str, Any] ): return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case__ , ).sequences def UpperCAmelCase__ ( self : Any , snake_case__ : Dict ): lowerCamelCase_ : Optional[Any] =self.pre_processor.batch_decode(snake_case__ )[0] lowerCamelCase_ : int =sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) lowerCamelCase_ : Union[str, Any] =sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) lowerCamelCase_ : Dict =re.sub(r"<.*?>" , "" , snake_case__ , count=1 ).strip() # remove first task start token lowerCamelCase_ : List[str] =self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
244
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase_ ( _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OmegaConf.load(lowercase_ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase_ ) ) ) return config def UpperCAmelCase_ ( _A , _A=None , _A=None ): '''simple docstring''' if conf_path is None: SCREAMING_SNAKE_CASE__ = '''./model_checkpoints/vqgan_only.yaml''' SCREAMING_SNAKE_CASE__ = load_config(lowercase_ , display=lowercase_ ) SCREAMING_SNAKE_CASE__ = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE__ = '''./model_checkpoints/vqgan_only.pt''' SCREAMING_SNAKE_CASE__ = torch.load(lowercase_ , map_location=lowercase_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE__ = sd['''state_dict'''] model.load_state_dict(lowercase_ , strict=lowercase_ ) model.to(lowercase_ ) del sd return model def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = model.encode(lowercase_ ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) SCREAMING_SNAKE_CASE__ = model.decode(lowercase_ ) return xrec def UpperCAmelCase_ ( _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = string.rsplit('''.''' , 1 ) if reload: SCREAMING_SNAKE_CASE__ = importlib.import_module(lowercase_ ) importlib.reload(lowercase_ ) return getattr(importlib.import_module(lowercase_ , package=lowercase_ ) , cls ) def UpperCAmelCase_ ( _A ): '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def UpperCAmelCase_ ( _A , _A , _A=True , _A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = instantiate_from_config(lowercase_ ) if sd is not None: model.load_state_dict(lowercase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' if ckpt: SCREAMING_SNAKE_CASE__ = torch.load(lowercase_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: SCREAMING_SNAKE_CASE__ = {'''state_dict''': None} SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=lowercase_ , eval_mode=lowercase_ )['''model'''] return model, global_step
493
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Optional[int] = MBartTokenizer _lowerCAmelCase : List[int] = [] _lowerCAmelCase : List[int] = [] def __init__( self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : int = False if not self.vocab_file else True __UpperCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens}) __UpperCAmelCase : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowercase__) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Any = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A( self): return self._src_lang @src_lang.setter def A( self , lowercase__): __UpperCAmelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : Union[str, Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__) __UpperCAmelCase : int = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Tuple = tgt_lang_id return inputs def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): __UpperCAmelCase : Any = src_lang __UpperCAmelCase : Tuple = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__) def A( self): return self.set_src_lang_special_tokens(self.src_lang) def A( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : int = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__): __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__ , lowercase__ = None): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__): copyfile(self.vocab_file , lowercase__) return (out_vocab_file,)
462
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=snake_case_ ): '''simple docstring''' _snake_case = ['''keras_nlp'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' requires_backends(self , ['''keras_nlp'''] )
715
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False , **lowerCamelCase__ ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = vocab_size UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [vocab_size] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters UpperCamelCase = keep_order UpperCamelCase = [] UpperCamelCase = [] def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if self.n_clusters > 0: UpperCamelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase__ , name='''cluster_weight''' ) UpperCamelCase = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_projs_._{i}' , ) self.out_projs.append(lowerCamelCase__ ) else: self.out_projs.append(lowerCamelCase__ ) UpperCamelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._weight' , ) UpperCamelCase = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.d_embed // (self.div_val**i) UpperCamelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_projs_._{i}' ) self.out_projs.append(lowerCamelCase__ ) UpperCamelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._weight' , ) UpperCamelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase__ ) @staticmethod def UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = x if proj is not None: UpperCamelCase = tf.einsum('''ibd,ed->ibe''' , lowerCamelCase__ , lowerCamelCase__ ) return tf.einsum('''ibd,nd->ibn''' , lowerCamelCase__ , lowerCamelCase__ ) + b @staticmethod def UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = shape_list(lowerCamelCase__ ) UpperCamelCase = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=False ): '''simple docstring''' UpperCamelCase = 0 if self.n_clusters == 0: UpperCamelCase = self._logit(lowerCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ , axis=-1 ) else: UpperCamelCase = shape_list(lowerCamelCase__ ) UpperCamelCase = [] UpperCamelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase = (target >= l_idx) & (target < r_idx) UpperCamelCase = tf.where(lowerCamelCase__ ) UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) - l_idx if self.div_val == 1: UpperCamelCase = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase = self.out_layers[i][0] UpperCamelCase = self.out_layers[i][1] if i == 0: UpperCamelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[0] ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) else: UpperCamelCase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[i] ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase__ ) if target is not None: UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase__ , -cur_logprob , shape_list(lowerCamelCase__ ) ) UpperCamelCase = tf.concat(lowerCamelCase__ , axis=-1 ) if target is not None: if return_mean: UpperCamelCase = tf.reduce_mean(lowerCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase__ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
350
0
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): return 1 if input_a == input_a else 0 def lowercase_ ( ): assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
223
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ : List[str] = logging.get_logger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
223
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print("""\n""".join(upper_files) + """\n""") __UpperCAmelCase = [file for file in filepaths if """ """ in file] if space_files: print(F'{len(space_files)} files contain space characters:') print("""\n""".join(space_files) + """\n""") __UpperCAmelCase = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print("""\n""".join(hyphen_files) + """\n""") __UpperCAmelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print("""\n""".join(nodir_files) + """\n""") __UpperCAmelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
708
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MobileViTFeatureExtractor"""] __UpperCAmelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : List[Any] , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"height": 384, "width": 384} __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def A ( self : List[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : str , ): """simple docstring""" __snake_case = get_size_dict(a_ , default_to_square=a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __snake_case = (size["height"], size["width"]) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def A ( self : List[str] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : int , ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Any , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def A ( self : Any , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[Dict[str, int]] = None , a_ : PILImageResampling = None , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : bool = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : List[str] , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = BatchFeature(data={"pixel_values": images} , tensor_type=a_ ) return encoded_outputs
69
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase = 0 ): __snake_case : Dict = length or len(__lowerCamelCase ) __snake_case : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __snake_case , __snake_case : Optional[int] = list_data[i + 1], list_data[i] __snake_case : Dict = True return list_data if not swapped else bubble_sort(__lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
203
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Tuple=13 , lowerCamelCase : Tuple=32 , lowerCamelCase : Any=2 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Tuple=16 , lowerCamelCase : Any=[32, 64, 128] , lowerCamelCase : str=[1, 2, 1] , lowerCamelCase : Union[str, Any]=[2, 2, 4] , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Optional[int]=2.0 , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Any=False , lowerCamelCase : Any=True , lowerCamelCase : str=0.02 , lowerCamelCase : Tuple=1E-5 , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=True , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=["stage1", "stage2"] , lowerCamelCase : Optional[int]=[1, 2] , ) -> Optional[int]: __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Optional[int] = image_size __snake_case : int = patch_size __snake_case : Any = num_channels __snake_case : List[Any] = embed_dim __snake_case : str = hidden_sizes __snake_case : int = depths __snake_case : Any = num_heads __snake_case : Any = window_size __snake_case : Optional[Any] = mlp_ratio __snake_case : Any = qkv_bias __snake_case : List[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Tuple = drop_path_rate __snake_case : Tuple = hidden_act __snake_case : Optional[int] = use_absolute_embeddings __snake_case : Optional[int] = patch_norm __snake_case : int = layer_norm_eps __snake_case : Any = initializer_range __snake_case : Any = is_training __snake_case : Tuple = scope __snake_case : Tuple = use_labels __snake_case : Any = type_sequence_label_size __snake_case : Dict = encoder_stride __snake_case : Union[str, Any] = out_features __snake_case : Union[str, Any] = out_indices def __snake_case ( self : Optional[Any] ) -> str: __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[Any] = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self : Union[str, Any] ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : str ) -> str: __snake_case : Tuple = FocalNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) __snake_case : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] ) -> Optional[int]: __snake_case : Union[str, Any] = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : int = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __snake_case : Dict = None __snake_case : Any = FocalNetBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Any ) -> Optional[int]: __snake_case : List[Any] = FocalNetForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : List[str] = 1 __snake_case : Any = FocalNetForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : int = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self : str , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : str ) -> Optional[Any]: __snake_case : Tuple = self.type_sequence_label_size __snake_case : List[Any] = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Optional[int] = 1 __snake_case : str = FocalNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Optional[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : str = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[str] = False def __snake_case ( self : List[str] ) -> Tuple: __snake_case : Optional[Any] = FocalNetModelTester(self ) __snake_case : int = ConfigTester(self , config_class=lowerCamelCase , embed_dim=37 , has_text_modality=lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : str ) -> Tuple: return def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : str ) -> int: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def __snake_case ( self : str ) -> List[str]: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def __snake_case ( self : Dict ) -> List[str]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def __snake_case ( self : str ) -> int: pass def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Dict = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : List[str] = model_class(lowerCamelCase ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ) -> str: __snake_case : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # FocalNet has a different seq_length __snake_case : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case : List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) __snake_case , __snake_case , __snake_case , __snake_case : Tuple = reshaped_hidden_states[0].shape __snake_case : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase , lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self : Tuple ) -> int: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __snake_case : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Any: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __snake_case : List[str] = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) @slow def __snake_case ( self : List[Any] ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = FocalNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[Any]: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __snake_case : Tuple = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Union[str, Any] ) -> List[Any]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def __snake_case ( self : int ) -> Optional[int]: __snake_case : List[str] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(lowerCamelCase ) __snake_case : str = self.default_image_processor __snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : Optional[Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**lowerCamelCase ) # verify the logits __snake_case : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (FocalNetBackbone,) if is_torch_available() else () __UpperCAmelCase : Dict = FocalNetConfig __UpperCAmelCase : Any = False def __snake_case ( self : str ) -> List[str]: __snake_case : Tuple = FocalNetModelTester(self )
203
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a : Tuple = 0 _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a : Any = tuple[int, int] class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Node | None , ) -> None: __snake_case = pos_x __snake_case = pos_y __snake_case = (pos_y, pos_x) __snake_case = goal_x __snake_case = goal_y __snake_case = g_cost __snake_case = parent __snake_case = self.calculate_heuristic() __snake_case = self.g_cost + self.h_cost def a ( self : Optional[int] ) -> float: __snake_case = self.pos_x - self.goal_x __snake_case = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Node ) -> bool: return self.f_cost < other.f_cost class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : TPosition , SCREAMING_SNAKE_CASE_ : TPosition ) -> List[str]: __snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) __snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , SCREAMING_SNAKE_CASE_ ) __snake_case = [self.start] __snake_case = [] __snake_case = False def a ( self : int ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.start.pos] def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Node ) -> list[Node]: __snake_case = [] for action in delta: __snake_case = parent.pos_x + action[1] __snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Node | None ) -> list[TPosition]: __snake_case = node __snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case = current_node.parent path.reverse() return path class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : TPosition , SCREAMING_SNAKE_CASE_ : TPosition ) -> None: __snake_case = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = False def a ( self : Optional[int] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __snake_case = self.fwd_astar.open_nodes.pop(0 ) __snake_case = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = current_bwd_node __snake_case = current_fwd_node __snake_case = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.fwd_astar.start.pos] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> list[TPosition]: __snake_case = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) __snake_case = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() __snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a : Any = (0, 0) _a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a : Union[str, Any] = time.time() _a : Dict = AStar(init, goal) _a : Optional[int] = a_star.search() _a : int = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _a : Tuple = time.time() _a : Union[str, Any] = BidirectionalAStar(init, goal) _a : Optional[int] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class _A ( _lowerCamelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : Optional[Any] = GPTaTokenizer def __init__( self : Optional[Any] , _A : Optional[Any]=None , _A : Any=None , _A : Tuple=None , _A : Optional[int]="<|endoftext|>" , _A : List[Any]="<|endoftext|>" , _A : Union[str, Any]="<|endoftext|>" , _A : Any=False , **_A : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) lowercase : List[str] = kwargs.pop('''add_bos_token''' , _A ) lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: lowercase : Optional[int] = getattr(_A , pre_tok_state.pop('''type''' ) ) lowercase : List[str] = add_prefix_space lowercase : List[Any] = pre_tok_class(**_A ) lowercase : Dict = add_prefix_space def __a ( self : List[Any] , *_A : Optional[Any] , **_A : Any ) -> BatchEncoding: """simple docstring""" lowercase : List[str] = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def __a ( self : Dict , *_A : List[str] , **_A : Dict ) -> BatchEncoding: """simple docstring""" lowercase : Any = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def __a ( self : Dict , _A : "Conversation" ) -> List[int]: """simple docstring""" lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: lowercase : int = input_ids[-self.model_max_length :] return input_ids
217
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : int , _a : int , _a : Any=3 , _a : List[Any]=32 , _a : Tuple=3 , _a : Any=10 , _a : str=[10, 20, 30, 40] , _a : Dict=[1, 1, 2, 1] , _a : List[Any]=True , _a : Union[str, Any]=True , _a : Any="relu" , _a : Union[str, Any]=3 , _a : Optional[int]=None , ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embeddings_size _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =len(_snake_case ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCamelCase ( self : Any , _a : List[str] , _a : List[str] , _a : List[str] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =TFResNetModel(config=_snake_case ) _SCREAMING_SNAKE_CASE =model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Any , _a : Optional[int] , _a : Tuple , _a : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFResNetForImageClassification(_snake_case ) _SCREAMING_SNAKE_CASE =model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =TFResNetModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_snake_case ) _SCREAMING_SNAKE_CASE =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_a : Tuple , _a : int , _a : Optional[Any] ): _SCREAMING_SNAKE_CASE =model_class(_snake_case ) _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_snake_case , _snake_case ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE =layer_type _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : int ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_snake_case , return_tensors='''tf''' ) # forward pass _SCREAMING_SNAKE_CASE =model(**_snake_case ) # verify the logits _SCREAMING_SNAKE_CASE =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _SCREAMING_SNAKE_CASE =tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
708
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Optional[Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class A__ ( UpperCamelCase__ ): UpperCAmelCase = "lilt" def __init__( self : int , _a : Dict=3_0522 , _a : str=768 , _a : Optional[int]=12 , _a : str=12 , _a : List[str]=3072 , _a : Any="gelu" , _a : int=0.1 , _a : Any=0.1 , _a : Union[str, Any]=512 , _a : str=2 , _a : List[Any]=0.02 , _a : str=1E-12 , _a : str=0 , _a : str="absolute" , _a : Any=None , _a : Dict=4 , _a : int=1024 , **_a : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_a , **_a ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =position_embedding_type _SCREAMING_SNAKE_CASE =classifier_dropout _SCREAMING_SNAKE_CASE =channel_shrink_ratio _SCREAMING_SNAKE_CASE =max_ad_position_embeddings
191
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a : str = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" def __init__( self : Optional[Any] , *__lowercase : Tuple , **__lowercase : str ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
63
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[str] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = 'openai-gpt' a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __lowercase : Tuple=40478 , __lowercase : Tuple=512 , __lowercase : int=768 , __lowercase : Dict=12 , __lowercase : Union[str, Any]=12 , __lowercase : Optional[Any]="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=1e-5 , __lowercase : Any=0.02 , __lowercase : List[str]="cls_index" , __lowercase : str=True , __lowercase : Dict=None , __lowercase : str=True , __lowercase : List[str]=0.1 , **__lowercase : List[Any] , ) -> List[Any]: __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Optional[Any] = n_positions __UpperCAmelCase : Optional[int] = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : Any = n_head __UpperCAmelCase : Tuple = afn __UpperCAmelCase : Any = resid_pdrop __UpperCAmelCase : Union[str, Any] = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : str = layer_norm_epsilon __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = summary_type __UpperCAmelCase : Optional[Any] = summary_use_proj __UpperCAmelCase : List[Any] = summary_activation __UpperCAmelCase : Union[str, Any] = summary_first_dropout __UpperCAmelCase : Dict = summary_proj_to_labels super().__init__(**__lowercase )
63
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.5, 0.5, 0.5] , lowercase__=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" _snake_case : int = size if size is not None else {'''shortest_edge''': 18} _snake_case : Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case : Union[str, Any] = parent _snake_case : List[str] = batch_size _snake_case : Optional[Any] = num_channels _snake_case : Any = image_size _snake_case : Union[str, Any] = min_resolution _snake_case : Optional[Any] = max_resolution _snake_case : Any = do_resize _snake_case : Union[str, Any] = size _snake_case : Optional[int] = do_center_crop _snake_case : Tuple = crop_size _snake_case : List[Any] = do_normalize _snake_case : Dict = image_mean _snake_case : str = image_std def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : Tuple = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : int = LevitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowercase__ , '''size''' ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : Any = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input _snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : List[str] = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : Dict = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
47
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
1
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase : @staticmethod def __SCREAMING_SNAKE_CASE ( *snake_case__ , **snake_case__ ): """simple docstring""" pass def _lowerCAmelCase ( lowerCamelCase__ : Image ) -> str: _SCREAMING_SNAKE_CASE : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase ( unittest.TestCase ): A__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = DepthEstimationPipeline(model=snake_case__ , image_processor=snake_case__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , snake_case__ ) import datasets _SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _SCREAMING_SNAKE_CASE : str = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , snake_case__ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass @slow @require_torch def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = "Intel/dpt-large" _SCREAMING_SNAKE_CASE : Dict = pipeline("depth-estimation" , model=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) _SCREAMING_SNAKE_CASE : str = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
572
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[Any] = {'''vocab_file''': '''spiece.model'''} lowercase_ : Optional[int] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowercase_ : Union[str, Any] = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["""input_ids""", """attention_mask"""] A__ = [] def __init__( self , snake_case__ , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , snake_case__ = None , **snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token _SCREAMING_SNAKE_CASE : Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token _SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token _SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sep_token=snake_case__ , mask_token=snake_case__ , cls_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) _SCREAMING_SNAKE_CASE : Any = vocab_file _SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.sp_model.get_piece_size() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Any = {} _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.piece_to_id(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.sp_model.IdToPiece(snake_case__ ) return token def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Tuple = "" _SCREAMING_SNAKE_CASE : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = [] else: current_sub_tokens.append(snake_case__ ) _SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = False , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("use_source_tokenizer" , snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(snake_case__ , skip_special_tokens=snake_case__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Any = [] sub_texts.append(snake_case__ ) else: current_sub_text.append(snake_case__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _SCREAMING_SNAKE_CASE : Optional[int] = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(snake_case__ ) ) else: _SCREAMING_SNAKE_CASE : Dict = "".join(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _SCREAMING_SNAKE_CASE : Optional[int] = self.clean_up_tokenization(snake_case__ ) return clean_text else: return text def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
572
1
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowercase , __lowercase = array[indexa], array[indexa] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) for i in range(lowerCamelCase , low + middle ): comp_and_swap(lowerCamelCase , lowerCamelCase , i + middle , lowerCamelCase ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) bitonic_merge(lowerCamelCase , low + middle , lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) bitonic_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase , 1 ) bitonic_sort(lowerCamelCase , low + middle , lowerCamelCase , 0 ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Any = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Dict = [] snake_case_ : int = set({'''(''', '''[''', '''{'''} ) snake_case_ : Dict = set({''')''', ''']''', '''}'''} ) snake_case_ : Dict = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(_UpperCamelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_UpperCamelCase ) == 0 or (len(_UpperCamelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_UpperCamelCase ) == 0 def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Tuple = input('''Enter sequence of brackets: ''' ) if is_balanced(_UpperCamelCase ): print(_UpperCamelCase , '''is balanced''' ) else: print(_UpperCamelCase , '''is not balanced''' ) if __name__ == "__main__": main()
60
'''simple docstring''' class lowerCAmelCase : def __init__( self : List[Any] , __lowercase : str , __lowercase : Any , __lowercase : str ): """simple docstring""" __lowercase =name __lowercase =value __lowercase =weight def __repr__( self : List[str] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def snake_case ( self : List[Any] ): """simple docstring""" return self.value def snake_case ( self : str ): """simple docstring""" return self.name def snake_case ( self : Optional[Any] ): """simple docstring""" return self.weight def snake_case ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : List[str], lowercase__ : str ): '''simple docstring''' __lowercase =[] for i in range(len(lowercase__ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : List[Any], lowercase__ : str ): '''simple docstring''' __lowercase =sorted(lowercase__, key=lowercase__, reverse=lowercase__ ) __lowercase =[] __lowercase , __lowercase =0.0, 0.0 for i in range(len(lowercase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
119
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : str ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) lowerCamelCase_ = sorted(string.lower() ) return len(UpperCAmelCase_ ) == len(set(UpperCAmelCase_ ) ) if __name__ == "__main__": a_ : str = input("""Enter a string """).strip() a_ : List[str] = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
708
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __snake_case ( UpperCAmelCase_ : dict ): return (data["data"], data["target"]) def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray ): lowerCamelCase_ = XGBClassifier() classifier.fit(UpperCAmelCase_ , UpperCAmelCase_ ) return classifier def __snake_case ( ): lowerCamelCase_ = load_iris() lowerCamelCase_ ,lowerCamelCase_ = data_handling(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_test_split( UpperCAmelCase_ , UpperCAmelCase_ , test_size=0.25 ) lowerCamelCase_ = iris["target_names"] # Create an XGBoost Classifier from the training data lowerCamelCase_ = xgboost(UpperCAmelCase_ , UpperCAmelCase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , display_labels=UpperCAmelCase_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
445
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowercase ( __snake_case ): _A = "time_series_transformer" _A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__(self : Any , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : str = "student_t" , snake_case : str = "nll" , snake_case : int = 1 , snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , snake_case : Optional[Union[str, bool]] = "mean" , snake_case : int = 0 , snake_case : int = 0 , snake_case : int = 0 , snake_case : int = 0 , snake_case : Optional[List[int]] = None , snake_case : Optional[List[int]] = None , snake_case : int = 32 , snake_case : int = 32 , snake_case : int = 2 , snake_case : int = 2 , snake_case : int = 2 , snake_case : int = 2 , snake_case : bool = True , snake_case : str = "gelu" , snake_case : int = 64 , snake_case : float = 0.1 , snake_case : float = 0.1 , snake_case : float = 0.1 , snake_case : float = 0.1 , snake_case : float = 0.1 , snake_case : int = 100 , snake_case : float = 0.02 , snake_case : str=True , **snake_case : Union[str, Any] , ) -> Dict: # time series specific configuration _lowercase : Union[str, Any] = prediction_length _lowercase : Any = context_length or prediction_length _lowercase : Union[str, Any] = distribution_output _lowercase : Optional[Any] = loss _lowercase : Tuple = input_size _lowercase : Optional[Any] = num_time_features _lowercase : str = lags_sequence _lowercase : str = scaling _lowercase : str = num_dynamic_real_features _lowercase : Dict = num_static_real_features _lowercase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _lowercase : Any = cardinality else: _lowercase : Dict = [0] if embedding_dimension and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _lowercase : Union[str, Any] = embedding_dimension else: _lowercase : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _lowercase : str = num_parallel_samples # Transformer architecture configuration _lowercase : Tuple = input_size * len(snake_case ) + self._number_of_features _lowercase : int = d_model _lowercase : List[Any] = encoder_attention_heads _lowercase : Optional[Any] = decoder_attention_heads _lowercase : Dict = encoder_ffn_dim _lowercase : Any = decoder_ffn_dim _lowercase : Optional[int] = encoder_layers _lowercase : Dict = decoder_layers _lowercase : str = dropout _lowercase : Union[str, Any] = attention_dropout _lowercase : Union[str, Any] = activation_dropout _lowercase : List[Any] = encoder_layerdrop _lowercase : Tuple = decoder_layerdrop _lowercase : Optional[int] = activation_function _lowercase : Optional[Any] = init_std _lowercase : int = use_cache super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _a(self : Dict ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
461
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowercase : def __init__(self : Dict , snake_case : Dict , snake_case : List[Any]=13 , snake_case : int=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Any=2 , snake_case : Optional[Any]=4 , snake_case : int=37 , snake_case : Dict="gelu" , snake_case : Dict=0.1 , snake_case : Dict=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : Union[str, Any]=2 , snake_case : Dict=0.02 , snake_case : str=3 , snake_case : str=4 , snake_case : Optional[Any]=None , snake_case : str=0 , ) -> Optional[Any]: _lowercase : int = parent _lowercase : Tuple = batch_size _lowercase : str = seq_length _lowercase : Optional[Any] = is_training _lowercase : List[Any] = use_input_mask _lowercase : Tuple = use_token_type_ids _lowercase : List[Any] = use_labels _lowercase : List[str] = vocab_size _lowercase : Dict = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Tuple = num_labels _lowercase : List[Any] = num_choices _lowercase : Dict = scope _lowercase : Optional[Any] = projection_dim def _a(self : Tuple ) -> List[str]: _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : Optional[Any] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) _lowercase : Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Union[str, Any] , snake_case : Any , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : str ) -> List[str]: _lowercase : List[Any] = TFDPRContextEncoder(config=snake_case ) _lowercase : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : Optional[int] = model(snake_case , token_type_ids=snake_case ) _lowercase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : List[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : int , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] ) -> int: _lowercase : Optional[Any] = TFDPRQuestionEncoder(config=snake_case ) _lowercase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : Union[str, Any] , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Any: _lowercase : Any = TFDPRReader(config=snake_case ) _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a(self : int ) -> Optional[Any]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : int = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _A = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _A = False _A = False _A = False _A = False _A = False def _a(self : str ) -> List[str]: _lowercase : List[Any] = TFDPRModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _a(self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a(self : Any ) -> Tuple: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case ) def _a(self : Dict ) -> Optional[Any]: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case ) def _a(self : List[Any] ) -> Any: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case ) @slow def _a(self : int ) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : int = TFDPRQuestionEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = TFDPRReader.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class __lowercase ( unittest.TestCase ): @slow def _a(self : Dict ) -> Any: _lowercase : Any = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _lowercase : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowercase : List[Any] = model(snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowercase : Optional[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
461
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase ( a ): lowercase__ : Tuple = """biogpt""" def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=42_384 , _UpperCamelCase : List[str]=1_024 , _UpperCamelCase : int=24 , _UpperCamelCase : Dict=16 , _UpperCamelCase : Optional[int]=4_096 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]=1_024 , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Optional[int]=1e-12 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Optional[Any]=2 , **_UpperCamelCase : Tuple , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = scale_embedding SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
647
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __A , __A , __A = False, False, False @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = None lowercase_ = True lowercase_ = True lowercase_ = None # Automatically constructed lowercase_ = "dict" lowercase_ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase_ = field(default="Audio" , init=a__ , repr=a__ ) def __call__(self : Optional[int]) ->Union[str, Any]: '''simple docstring''' return self.pa_type def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int) ->Any: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'.") from err if isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase__: List[str] =BytesIO() sf.write(_lowerCamelCase , value["array"] , value["sampling_rate"] , format="wav") return {"bytes": buffer.getvalue(), "path": None} elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm"): # "PCM" only has raw audio bytes if value.get("sampling_rate") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object") if value.get("bytes"): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase__: List[Any] =np.frombuffer(value["bytes"] , dtype=np.intaa).astype(np.floataa) / 32_767 else: lowerCamelCase__: Tuple =np.memmap(value["path"] , dtype="h" , mode="r").astype(np.floataa) / 32_767 lowerCamelCase__: Optional[Any] =BytesIO(bytes()) sf.write(_lowerCamelCase , _lowerCamelCase , value["sampling_rate"] , format="wav") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""") def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] = None) ->Tuple: '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.") lowerCamelCase__: int =(value["""path"""], BytesIO(value["bytes"])) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""") try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err lowerCamelCase__: Any =xsplitext(_lowerCamelCase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ") elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ") if file is None: lowerCamelCase__: Any =token_per_repo_id or {} lowerCamelCase__: Union[str, Any] =path.split("::")[-1] try: lowerCamelCase__: Optional[int] =string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL)["""repo_id"""] lowerCamelCase__: Any =token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase__: Tuple =None with xopen(_lowerCamelCase , "rb" , use_auth_token=_lowerCamelCase) as f: lowerCamelCase__: Union[str, Any] =sf.read(_lowerCamelCase) else: lowerCamelCase__: List[str] =sf.read(_lowerCamelCase) lowerCamelCase__: Union[str, Any] =array.T if self.mono: lowerCamelCase__: Tuple =librosa.to_mono(_lowerCamelCase) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase__: int =librosa.resample(_lowerCamelCase , orig_sr=_lowerCamelCase , target_sr=self.sampling_rate) lowerCamelCase__: str =self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature.") return { "bytes": Value("binary"), "path": Value("string"), } def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' if pa.types.is_string(storage.type): lowerCamelCase__: List[Any] =pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) lowerCamelCase__: Union[str, Any] =pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowerCamelCase__: Dict =pa.array([None] * len(_lowerCamelCase) , type=pa.string()) lowerCamelCase__: str =pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"): lowerCamelCase__: Tuple =pa.array([Audio().encode_example(_lowerCamelCase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: lowerCamelCase__: str =storage.field("bytes") else: lowerCamelCase__: Optional[int] =pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) if storage.type.get_field_index("path") >= 0: lowerCamelCase__: int =storage.field("path") else: lowerCamelCase__: Union[str, Any] =pa.array([None] * len(_lowerCamelCase) , type=pa.string()) lowerCamelCase__: List[Any] =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null()) return array_cast(_lowerCamelCase , self.pa_type) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : List[str]): with xopen(_lowerCamelCase , "rb") as f: lowerCamelCase__: str =f.read() return bytes_ lowerCamelCase__: List[Any] =pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__: Union[str, Any] =pa.array( [os.path.basename(_lowerCamelCase) if path is not None else None for path in storage.field("path").to_pylist()] , type=pa.string() , ) lowerCamelCase__: int =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(_lowerCamelCase , self.pa_type)
59
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __A ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.1_5}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names __A ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __A ='allenai' def _UpperCamelCase ( UpperCamelCase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() ) UpperCAmelCase__ : Optional[int] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCAmelCase__ : str = d[k] # restore return da def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # prep assert os.path.exists(UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : str = basename(UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = dirname(UpperCamelCase__ ) UpperCAmelCase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ : Optional[int] = cls.hub_models() UpperCAmelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} UpperCAmelCase__ : Union[str, Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase__ : int = hub_utils.from_pretrained( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , archive_map=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = vars(chkpt["""args"""]["""model"""] ) UpperCAmelCase__ : Dict = args["""source_lang"""] UpperCAmelCase__ : int = args["""target_lang"""] UpperCAmelCase__ : Dict = dirname(UpperCamelCase__ ) UpperCAmelCase__ : Any = basename(UpperCamelCase__ ) # dicts UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , f'''dict.{src_lang}.txt''' ) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , f'''dict.{tgt_lang}.txt''' ) UpperCAmelCase__ : str = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[Any] = len(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ : List[str] = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ : Optional[int] = False break UpperCAmelCase__ : Tuple = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Any = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ : Tuple = len(UpperCamelCase__ ) UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): break with open(UpperCamelCase__ , encoding="""utf-8""" ) as fin: UpperCAmelCase__ : int = fin.read() UpperCAmelCase__ : Union[str, Any] = re.sub(R""" \d+$""" , """""" , UpperCamelCase__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase__ ) # model config UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase__ : int = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with UpperCAmelCase__ : List[Any] = 5 UpperCAmelCase__ : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: UpperCAmelCase__ : Dict = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model UpperCAmelCase__ : Dict = chkpt["""models"""][0] UpperCAmelCase__ : int = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ : List[Any] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ : Dict = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTForConditionalGeneration(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) # save UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
407
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase ): A : Union[str, Any] = [] A : List[Any] = 11 A : int = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 A : Tuple = 10 return solutions def UpperCAmelCase ( _lowerCamelCase = 2 ): A : Optional[Any] = 1.0 for fraction in fraction_list(_lowerCamelCase ): A : Dict = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
17
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __SCREAMING_SNAKE_CASE = """.""" if __name__ == "__main__": __SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] with open(doctest_file_path) as fp: for line in fp: __SCREAMING_SNAKE_CASE = line.strip() __SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __SCREAMING_SNAKE_CASE = """\n""".join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
17
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart _lowercase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } _lowercase = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __A ( __SCREAMING_SNAKE_CASE ): UpperCamelCase :Dict = VOCAB_FILES_NAMES UpperCamelCase :str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase :Any = ['''input_ids''', '''attention_mask'''] UpperCamelCase :Optional[int] = BartTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: lowerCamelCase__ : Union[str, Any] = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : List[Any] = pre_tok_class(**__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase__ : Optional[Any] = """post_processor""" lowerCamelCase__ : str = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: lowerCamelCase__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Optional[int] = tuple(state["""sep"""] ) if "cls" in state: lowerCamelCase__ : List[Any] = tuple(state["""cls"""] ) lowerCamelCase__ : Dict = False if state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: lowerCamelCase__ : Tuple = add_prefix_space lowerCamelCase__ : Tuple = True if state.get("""trim_offsets""" , __lowerCamelCase ) != trim_offsets: lowerCamelCase__ : Tuple = trim_offsets lowerCamelCase__ : int = True if changes_to_apply: lowerCamelCase__ : List[Any] = getattr(__lowerCamelCase , state.pop("""type""" ) ) lowerCamelCase__ : Optional[Any] = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property def _snake_case (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _snake_case (self , __magic_name__ ): lowerCamelCase__ : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value lowerCamelCase__ : Any = value def _snake_case (self , *__magic_name__ , **__magic_name__ ): lowerCamelCase__ : Union[str, Any] = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case (self , *__magic_name__ , **__magic_name__ ): lowerCamelCase__ : Union[str, Any] = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case (self , __magic_name__ , __magic_name__ = None ): lowerCamelCase__ : Any = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _snake_case (self , __magic_name__ , __magic_name__=None ): lowerCamelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case (self , __magic_name__ , __magic_name__ = None ): lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
157
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : str = '''openai/whisper-base''' A__ : List[Any] = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) A__ : str = '''transcriber''' A__ : List[Any] = WhisperProcessor A__ : Optional[int] = WhisperForConditionalGeneration A__ : List[str] = ['''audio'''] A__ : Optional[int] = ['''text'''] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): """simple docstring""" return self.pre_processor(__lowerCamelCase , return_tensors='''pt''' ).input_features def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" return self.model.generate(inputs=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
103
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def a__ ( _UpperCamelCase : Union[str, Any] ): if not is_accelerate_available(): return method __lowerCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(_UpperCamelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self : Dict ,*_UpperCamelCase : List[str] ,**_UpperCamelCase : Any ): if hasattr(self ,'''_hf_hook''' ) and hasattr(self._hf_hook ,'''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self ,*_UpperCamelCase ,**_UpperCamelCase ) return wrapper
622
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ = """true""" def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[str]=82 ,_UpperCamelCase : Optional[Any]=16 ): set_seed(42 ) __lowerCamelCase = RegressionModel() __lowerCamelCase = deepcopy(_UpperCamelCase ) __lowerCamelCase = RegressionDataset(length=_UpperCamelCase ) __lowerCamelCase = DataLoader(_UpperCamelCase ,batch_size=_UpperCamelCase ) model.to(accelerator.device ) __lowerCamelCase ,__lowerCamelCase = accelerator.prepare(_UpperCamelCase ,_UpperCamelCase ) return model, ddp_model, dataloader def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : str=False ): __lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ,split='''validation''' ) def tokenize_function(_UpperCamelCase : int ): __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): __lowerCamelCase = dataset.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): if use_longest: return tokenizer.pad(_UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase ,padding='''max_length''' ,max_length=1_28 ,return_tensors='''pt''' ) return DataLoader(_UpperCamelCase ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=16 ) def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : List[str] ): __lowerCamelCase = Accelerator(dispatch_batches=_UpperCamelCase ,split_batches=_UpperCamelCase ) __lowerCamelCase = get_dataloader(_UpperCamelCase ,not dispatch_batches ) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' ,return_dict=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = accelerator.prepare(_UpperCamelCase ,_UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = [] for batch in dataloader: __lowerCamelCase ,__lowerCamelCase = batch.values() with torch.no_grad(): __lowerCamelCase = model(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase ,__lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : List[Any]=82 ,_UpperCamelCase : str=False ,_UpperCamelCase : List[str]=False ,_UpperCamelCase : Optional[int]=16 ): __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = get_basic_setup(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = generate_predictions(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def a__ ( _UpperCamelCase : bool = False ,_UpperCamelCase : bool = False ): __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) __lowerCamelCase ,__lowerCamelCase = get_mrpc_setup(_UpperCamelCase ,_UpperCamelCase ) # First do baseline __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = setup['''no'''] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase ,references=batch['''labels'''] ) __lowerCamelCase = metric.compute() # Then do distributed __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase = batch['''labels'''] __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase ,references=_UpperCamelCase ) __lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def a__ ( ): __lowerCamelCase = Accelerator(split_batches=_UpperCamelCase ,dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase ,_UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase = Accelerator(split_batches=_UpperCamelCase ,dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __lowerCamelCase = Accelerator() test_torch_metrics(_UpperCamelCase ,5_12 ) accelerator.state._reset_state() def a__ ( _UpperCamelCase : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
622
1
import unittest from transformers import DonutProcessor lowercase : Optional[int] = "naver-clova-ix/donut-base" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = DonutProcessor.from_pretrained(__UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Tuple = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } __UpperCamelCase : int = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) __UpperCamelCase : List[str] = self.processor.tokenajson(__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase , __UpperCamelCase )
327
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_ (): __UpperCamelCase : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowerCAmelCase ) __UpperCamelCase : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowerCAmelCase ) env_command_parser(subparsers=_lowerCAmelCase ) launch_command_parser(subparsers=_lowerCAmelCase ) tpu_command_parser(subparsers=_lowerCAmelCase ) test_command_parser(subparsers=_lowerCAmelCase ) # Let's go __UpperCamelCase : int = parser.parse_args() if not hasattr(_lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowerCAmelCase ) if __name__ == "__main__": main()
327
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: __snake_case: List[Any] = set(SCREAMING_SNAKE_CASE__), [start] while stack: __snake_case: int = stack.pop() explored.add(SCREAMING_SNAKE_CASE__) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE__) return explored __UpperCAmelCase : Dict = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
714
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Tuple: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case: List[str] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj) assert isinstance(_test_patching.os.path , _PatchedModuleObj) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Tuple: assert _test_patching.open is open __snake_case: Tuple = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> Dict: # pandas.read_csv is not present in _test_patching __snake_case: Tuple = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__): pass def A__ ( ) -> int: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case: Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> List[Any]: __snake_case: Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" __snake_case: Union[str, Any] = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> List[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case: int = """__test_patch_submodule_successive_join__""" __snake_case: Union[str, Any] = """__test_patch_submodule_successive_dirname__""" __snake_case: Tuple = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> Optional[Any]: __snake_case: Tuple = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass
155
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __UpperCAmelCase = get_logger(__name__) __UpperCAmelCase = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class __lowercase : @add_start_docstrings(A ) def __call__( self : int ,A : jnp.ndarray ,A : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __lowercase : @add_start_docstrings(A ) def __call__( self : Tuple ,A : jnp.ndarray ,A : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __lowercase ( __lowerCamelCase ): @add_start_docstrings(A ) def __call__( self : List[str] ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ,**A : Any ): '''simple docstring''' for processor in self: UpperCAmelCase__ : int = inspect.signature(processor.__call__ ).parameters if len(A ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) UpperCAmelCase__ : str = processor(A ,A ,A ,**A ) else: UpperCAmelCase__ : Optional[int] = processor(A ,A ,A ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : Dict ,A : float ): '''simple docstring''' if not isinstance(A ,A ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) UpperCAmelCase__ : int = temperature def __call__( self : Union[str, Any] ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = scores / self.temperature return scores class __lowercase ( __lowerCamelCase ): def __init__( self : int ,A : float ,A : float = -float("""Inf""" ) ,A : int = 1 ): '''simple docstring''' if not isinstance(A ,A ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(A ,A ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) UpperCAmelCase__ : Dict = top_p UpperCAmelCase__ : Union[str, Any] = filter_value UpperCAmelCase__ : List[Any] = min_tokens_to_keep def __call__( self : List[str] ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = lax.top_k(A ,scores.shape[-1] ) UpperCAmelCase__ : Any = jnp.full_like(A ,self.filter_value ) UpperCAmelCase__ : Tuple = jax.nn.softmax(A ,axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ : Tuple = jnp.roll(A ,1 ) score_mask |= score_mask.at[:, 0].set(A ) # min tokens to keep UpperCAmelCase__ : Optional[int] = score_mask.at[:, : self.min_tokens_to_keep].set(A ) UpperCAmelCase__ : Dict = jnp.where(A ,A ,A ) UpperCAmelCase__ : Any = jax.lax.sort_key_val(A ,A )[-1] return next_scores class __lowercase ( __lowerCamelCase ): def __init__( self : Any ,A : int ,A : float = -float("""Inf""" ) ,A : int = 1 ): '''simple docstring''' if not isinstance(A ,A ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) UpperCAmelCase__ : Dict = max(A ,A ) UpperCAmelCase__ : str = filter_value def __call__( self : int ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = scores.shape UpperCAmelCase__ : Optional[int] = jnp.full(batch_size * vocab_size ,self.filter_value ) UpperCAmelCase__ : Any = min(self.top_k ,scores.shape[-1] ) # Safety check UpperCAmelCase__ , UpperCAmelCase__ : Any = lax.top_k(A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.broadcast_to((jnp.arange(A ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() UpperCAmelCase__ : Union[str, Any] = topk_scores.flatten() UpperCAmelCase__ : Dict = topk_indices.flatten() + shift UpperCAmelCase__ : Any = next_scores_flat.at[topk_indices_flat].set(A ) UpperCAmelCase__ : List[str] = next_scores_flat.reshape(A ,A ) return next_scores class __lowercase ( __lowerCamelCase ): def __init__( self : List[Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = bos_token_id def __call__( self : int ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = jnp.full(scores.shape ,-float("""inf""" ) ) UpperCAmelCase__ : List[Any] = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ : Any = jnp.where(A ,new_scores.at[:, self.bos_token_id].set(0 ) ,A ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : Optional[int] ,A : int ,A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = max_length UpperCAmelCase__ : Dict = eos_token_id def __call__( self : Union[str, Any] ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ : str = jnp.full(scores.shape ,-float("""inf""" ) ) UpperCAmelCase__ : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ : Any = jnp.where(A ,new_scores.at[:, self.eos_token_id].set(0 ) ,A ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : int ,A : int ,A : int ): '''simple docstring''' if not isinstance(A ,A ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(A ,A ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) UpperCAmelCase__ : str = min_length UpperCAmelCase__ : Dict = eos_token_id def __call__( self : str ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied UpperCAmelCase__ : List[Any] = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) UpperCAmelCase__ : str = jnp.where(A ,scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) ,A ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : int ,A : List[str] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(A ) UpperCAmelCase__ : Optional[int] = begin_index def __call__( self : Dict ,A : int ,A : List[Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ : Tuple = jnp.where(A ,scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) ,A ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : List[str] ,A : list ): '''simple docstring''' UpperCAmelCase__ : int = list(A ) def __call__( self : int ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' UpperCAmelCase__ : Any = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : Union[str, Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = dict(A ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ : str = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ : str = force_token_array.at[index].set(A ) UpperCAmelCase__ : Union[str, Any] = jnp.intaa(A ) def __call__( self : List[str] ,A : jnp.ndarray ,A : jnp.ndarray ,A : int ): '''simple docstring''' def _force_token(A : Any ): UpperCAmelCase__ : int = scores.shape[0] UpperCAmelCase__ : Union[str, Any] = self.force_token_array[generation_idx] UpperCAmelCase__ : str = jnp.ones_like(A ,dtype=scores.dtype ) * -float("""inf""" ) UpperCAmelCase__ : Any = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) UpperCAmelCase__ : Tuple = lax.dynamic_update_slice(A ,A ,(0, current_token) ) return new_scores UpperCAmelCase__ : Optional[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(A ) ,lambda: scores ,) ,) return scores class __lowercase ( __lowerCamelCase ): def __init__( self : Optional[int] ,A : Optional[Any] ,A : List[str] ,A : int ): '''simple docstring''' UpperCAmelCase__ : str = generate_config.eos_token_id UpperCAmelCase__ : Dict = generate_config.no_timestamps_token_id UpperCAmelCase__ : int = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ : Any = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A ,"""max_initial_timestamp_index""" ): UpperCAmelCase__ : int = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ : Optional[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ : int = model_config.vocab_size def __call__( self : int ,A : str ,A : Dict ,A : List[str] ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps UpperCAmelCase__ : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(A : str ,A : Optional[Any] ): UpperCAmelCase__ : str = jnp.where((cur_len - self.begin_index) >= 1 ,A ,A ) UpperCAmelCase__ : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,A ,) UpperCAmelCase__ : Tuple = jnp.where((cur_len - self.begin_index) < 2 ,A ,A ) UpperCAmelCase__ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,A ,A ,) return jnp.where( A ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) ,scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) ,) ,A ,) UpperCAmelCase__ : Any = jax.vmap(A )(A ,A ) UpperCAmelCase__ : Optional[Any] = jnp.where(cur_len == self.begin_index ,A ,A ) UpperCAmelCase__ : Tuple = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,A ,) UpperCAmelCase__ : Dict = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ : Optional[int] = jnp.where( A ,scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) ,A ,) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ : Optional[Any] = jax.nn.log_softmax(A ,axis=-1 ) def handle_cumulative_probs(A : Optional[int] ,A : Optional[int] ): UpperCAmelCase__ : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) UpperCAmelCase__ : List[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) ,A ,) UpperCAmelCase__ : Dict = jax.vmap(A )(A ,A ) return scores
65
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowercase : List[str] = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] )-> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
210
0
"""simple docstring""" def A_ ( __UpperCamelCase : int = 10 , __UpperCamelCase : int = 22 ): lowercase = range(1 , __UpperCamelCase ) lowercase = range(1 , __UpperCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
396
"""simple docstring""" def A_ ( __UpperCamelCase : str , __UpperCamelCase : str ): lowercase = len(__UpperCamelCase ) lowercase = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): lowercase = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: lowercase = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
396
1
__snake_case :Dict =8.31_4462 # Unit - J mol-1 K-1 def lowerCamelCase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
106
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase : int = """bart""" lowerCAmelCase : List[Any] = True @st.cache(allow_output_mutation=snake_case__ ) def a__ ( ) -> List[Any]: if LOAD_DENSE_INDEX: lowerCamelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowerCamelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowerCamelCase = qar_model.eval() else: lowerCamelCase , lowerCamelCase = (None, None) if MODEL_TYPE == "bart": lowerCamelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowerCamelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowerCamelCase = sas_model.eval() else: lowerCamelCase , lowerCamelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case__ ) def a__ ( ) -> List[str]: if LOAD_DENSE_INDEX: lowerCamelCase = faiss.StandardGpuResources() lowerCamelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowerCamelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 1_28) , ) lowerCamelCase = faiss.IndexFlatIP(1_28 ) lowerCamelCase = faiss.index_cpu_to_gpu(snake_case__ , 1 , snake_case__ ) wikiaab_gpu_index_flat.add(snake_case__ ) # TODO fix for larger GPU else: lowerCamelCase , lowerCamelCase = (None, None) lowerCamelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case__ ) def a__ ( ) -> Any: lowerCamelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowerCamelCase = elia["""train_eli5"""] lowerCamelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 1_28) ) lowerCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(snake_case__ ) return (elia_train, eli5_train_q_index) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = load_indexes() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = load_models() lowerCAmelCase , lowerCAmelCase : int = load_train_data() def a__ ( snake_case__ , snake_case__=10 ) -> Tuple: lowerCamelCase = embed_questions_for_retrieval([question] , snake_case__ , snake_case__ ) lowerCamelCase , lowerCamelCase = eli5_train_q_index.search(snake_case__ , snake_case__ ) lowerCamelCase = [elia_train[int(snake_case__ )] for i in I[0]] return nn_examples def a__ ( snake_case__ , snake_case__="wiki40b" , snake_case__="dense" , snake_case__=10 ) -> Dict: if source == "none": lowerCamelCase , lowerCamelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCamelCase , lowerCamelCase = query_qa_dense_index( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: lowerCamelCase , lowerCamelCase = query_es_index( snake_case__ , snake_case__ , index_name="""english_wiki40b_snippets_100w""" , n_results=snake_case__ , ) lowerCamelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCamelCase = """question: {} context: {}""".format(snake_case__ , snake_case__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case__ : None), } ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=64 , snake_case__=2_56 , snake_case__=False , snake_case__=2 , snake_case__=0.95 , snake_case__=0.8 ) -> str: with torch.no_grad(): lowerCamelCase = qa_sas_generate( snake_case__ , snake_case__ , snake_case__ , num_answers=1 , num_beams=snake_case__ , min_len=snake_case__ , max_len=snake_case__ , do_sample=snake_case__ , temp=snake_case__ , top_p=snake_case__ , top_k=snake_case__ , max_input_length=10_24 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCAmelCase : Tuple = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCAmelCase : Optional[int] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase : Union[str, Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase : Union[str, Any] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCAmelCase : Tuple = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCAmelCase : Optional[int] = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCAmelCase : Tuple = action_list.index(action_st) lowerCAmelCase : Union[str, Any] = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCAmelCase : Any = show_type == """Show full text of passages""" else: lowerCAmelCase : int = 3 lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCAmelCase : List[str] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCAmelCase : str = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCAmelCase : Optional[int] = """wiki40b""" lowerCAmelCase : List[str] = """dense""" lowerCAmelCase : Tuple = """beam""" lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : Dict = 64 lowerCAmelCase : Optional[int] = 256 lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Tuple = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCAmelCase : Optional[Any] = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCAmelCase : str = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCAmelCase : int = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowerCAmelCase : Tuple = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase : int = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase : str = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) lowerCAmelCase : int = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) lowerCAmelCase : List[Any] = None # start main text lowerCAmelCase : Optional[int] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCAmelCase : List[str] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase : Any = st.text_input("""Enter your question here:""", """""") else: lowerCAmelCase : List[str] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase , lowerCAmelCase : Any = make_support(question, source=wiki_source, method="""dense""", n_results=10) lowerCAmelCase , lowerCAmelCase : Tuple = make_support(question, source=wiki_source, method="""sparse""", n_results=10) lowerCAmelCase : Union[str, Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase : int = support_list[:10] lowerCAmelCase : str = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCAmelCase , lowerCAmelCase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase , lowerCAmelCase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCAmelCase : Any = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCAmelCase : Dict = res[1].strip() if sec_titles == "": lowerCAmelCase : Optional[Any] = """[{}]({})""".format(res[0], wiki_url) else: lowerCAmelCase : Tuple = sec_titles.split(""" & """) lowerCAmelCase : List[str] = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase : Tuple = find_nearest_training(question) lowerCAmelCase : List[str] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCAmelCase : int = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCAmelCase : Tuple = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
543
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _UpperCamelCase = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _UpperCamelCase = { "num_train_timesteps": 40, "sigma_min": 0.0_02, "sigma_max": 80.0, } _UpperCamelCase = { "num_train_timesteps": 201, "sigma_min": 0.0_02, "sigma_max": 80.0, } _UpperCamelCase = { "num_train_timesteps": 151, "sigma_min": 0.0_02, "sigma_max": 80.0, } def _lowercase ( lowercase__ ): if isinstance(lowercase__ , lowercase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): __lowerCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] __lowerCAmelCase : List[str] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] __lowerCAmelCase : Tuple = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] __lowerCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] __lowerCAmelCase : List[str] = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] __lowerCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] __lowerCAmelCase : List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] __lowerCAmelCase : str = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.skip_connection.weight"""] __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) __lowerCAmelCase : List[Any] = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) __lowerCAmelCase : Tuple = checkpoint[f"""{old_prefix}.norm.weight"""] __lowerCAmelCase : str = checkpoint[f"""{old_prefix}.norm.bias"""] __lowerCAmelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Any = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Tuple = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : List[str] = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : str = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase : List[str] = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) __lowerCAmelCase : Dict = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = torch.load(lowercase__ , map_location='''cpu''' ) __lowerCAmelCase : List[str] = {} __lowerCAmelCase : Union[str, Any] = checkpoint['''time_embed.0.weight'''] __lowerCAmelCase : Optional[int] = checkpoint['''time_embed.0.bias'''] __lowerCAmelCase : Any = checkpoint['''time_embed.2.weight'''] __lowerCAmelCase : Tuple = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: __lowerCAmelCase : int = checkpoint['''label_emb.weight'''] __lowerCAmelCase : List[str] = checkpoint['''input_blocks.0.0.weight'''] __lowerCAmelCase : Union[str, Any] = checkpoint['''input_blocks.0.0.bias'''] __lowerCAmelCase : Tuple = unet_config['''down_block_types'''] __lowerCAmelCase : Optional[int] = unet_config['''layers_per_block'''] __lowerCAmelCase : int = unet_config['''attention_head_dim'''] __lowerCAmelCase : Tuple = unet_config['''block_out_channels'''] __lowerCAmelCase : str = 1 __lowerCAmelCase : str = channels_list[0] for i, layer_type in enumerate(lowercase__ ): __lowerCAmelCase : Union[str, Any] = channels_list[i] __lowerCAmelCase : List[str] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase__ ): __lowerCAmelCase : Optional[int] = f"""down_blocks.{i}.resnets.{j}""" __lowerCAmelCase : Any = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : str = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase : str = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase__ ): __lowerCAmelCase : List[Any] = f"""down_blocks.{i}.resnets.{j}""" __lowerCAmelCase : List[Any] = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : List[Any] = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase : List[Any] = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) __lowerCAmelCase : int = f"""down_blocks.{i}.attentions.{j}""" __lowerCAmelCase : Tuple = f"""input_blocks.{current_layer}.1""" __lowerCAmelCase : List[str] = convert_attention( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCAmelCase : List[str] = f"""down_blocks.{i}.downsamplers.0""" __lowerCAmelCase : Optional[int] = f"""input_blocks.{current_layer}.0""" __lowerCAmelCase : Union[str, Any] = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 __lowerCAmelCase : int = current_channels # hardcoded the mid-block for now __lowerCAmelCase : Optional[Any] = '''mid_block.resnets.0''' __lowerCAmelCase : str = '''middle_block.0''' __lowerCAmelCase : Optional[int] = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : Optional[Any] = '''mid_block.attentions.0''' __lowerCAmelCase : Union[str, Any] = '''middle_block.1''' __lowerCAmelCase : Optional[int] = convert_attention(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : str = '''mid_block.resnets.1''' __lowerCAmelCase : Optional[int] = '''middle_block.2''' __lowerCAmelCase : Dict = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Union[str, Any] = unet_config['''up_block_types'''] for i, layer_type in enumerate(lowercase__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase : List[str] = f"""up_blocks.{i}.resnets.{j}""" __lowerCAmelCase : Optional[Any] = f"""output_blocks.{current_layer}.0""" __lowerCAmelCase : Any = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCAmelCase : Optional[int] = f"""up_blocks.{i}.upsamplers.0""" __lowerCAmelCase : List[Any] = f"""output_blocks.{current_layer-1}.1""" __lowerCAmelCase : str = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase : Optional[int] = f"""up_blocks.{i}.resnets.{j}""" __lowerCAmelCase : Dict = f"""output_blocks.{current_layer}.0""" __lowerCAmelCase : Tuple = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_skip=lowercase__ ) __lowerCAmelCase : Any = f"""up_blocks.{i}.attentions.{j}""" __lowerCAmelCase : Optional[Any] = f"""output_blocks.{current_layer}.1""" __lowerCAmelCase : Any = convert_attention( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) current_layer += 1 if i != len(lowercase__ ) - 1: __lowerCAmelCase : List[Any] = f"""up_blocks.{i}.upsamplers.0""" __lowerCAmelCase : Dict = f"""output_blocks.{current_layer-1}.2""" __lowerCAmelCase : Optional[Any] = convert_resnet(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : Dict = checkpoint['''out.0.weight'''] __lowerCAmelCase : int = checkpoint['''out.0.bias'''] __lowerCAmelCase : Optional[Any] = checkpoint['''out.2.weight'''] __lowerCAmelCase : Dict = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _UpperCamelCase = parser.parse_args() _UpperCamelCase = strabool(args.class_cond) _UpperCamelCase = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: _UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: _UpperCamelCase = None _UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) _UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") _UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) _UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
706
from __future__ import annotations import typing from collections import Counter def _lowercase ( lowercase__ ): __lowerCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowercase__ , max_perimeter + 1 ): __lowerCAmelCase : Optional[int] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowercase__ ): __lowerCAmelCase : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowercase ( lowercase__ = 1_0_0_0 ): __lowerCAmelCase : Optional[int] = pythagorean_triple(lowercase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
583
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : Tuple = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __magic_name__ : Dict = {'''allegro/herbert-base-cased''': 514} __magic_name__ : List[Any] = {} class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = HerbertTokenizer def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : str="<s>" , _SCREAMING_SNAKE_CASE : str="<unk>" , _SCREAMING_SNAKE_CASE : Tuple="<pad>" , _SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , _SCREAMING_SNAKE_CASE : Dict="</s>" , **_SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] = None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] = None , _SCREAMING_SNAKE_CASE : Dict = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
280
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowercase_ = True from torch.cuda.amp import autocast lowercase_ = logging.getLogger(__name__) def UpperCAmelCase ( _lowercase : Optional[Any]=None , _lowercase : str=None ) -> List[str]: """simple docstring""" return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class __a : lowerCamelCase : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] =field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : Optional[bool] =field( default=__snake_case , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCamelCase : Optional[float] =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCamelCase : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __a : lowerCamelCase : Optional[str] =field( default=__snake_case , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase : Optional[str] =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase : bool =field( default=__snake_case , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCamelCase : List[str] =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __a : lowerCamelCase : WavaVecaProcessor lowerCamelCase : Union[bool, str] =True lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None def __call__( self , UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = [{'''input_values''': feature['''input_values''']} for feature in features] lowerCAmelCase_ = [{'''input_ids''': feature['''labels''']} for feature in features] lowerCAmelCase_ = self.processor.pad( UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowerCAmelCase_ = self.processor.pad( labels=UpperCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly lowerCAmelCase_ = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) lowerCAmelCase_ = labels return batch class __a ( __snake_case ): def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' model.train() lowerCAmelCase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowerCAmelCase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowerCAmelCase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() return loss.detach() def UpperCAmelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCAmelCase_ = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) lowerCAmelCase_ = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer lowerCAmelCase_ = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(_lowercase : List[str] ): lowerCAmelCase_ = re.sub(_lowercase , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch lowerCAmelCase_ = train_dataset.map(_lowercase , remove_columns=['''sentence'''] ) lowerCAmelCase_ = eval_dataset.map(_lowercase , remove_columns=['''sentence'''] ) def extract_all_chars(_lowercase : str ): lowerCAmelCase_ = ''' '''.join(batch['''text'''] ) lowerCAmelCase_ = list(set(_lowercase ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCAmelCase_ = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=train_dataset.column_names , ) lowerCAmelCase_ = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=eval_dataset.column_names , ) lowerCAmelCase_ = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) lowerCAmelCase_ = {v: k for k, v in enumerate(_lowercase )} lowerCAmelCase_ = vocab_dict[''' '''] del vocab_dict[" "] lowerCAmelCase_ = len(_lowercase ) lowerCAmelCase_ = len(_lowercase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(_lowercase , _lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) lowerCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=_lowercase , return_attention_mask=_lowercase ) lowerCAmelCase_ = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) lowerCAmelCase_ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowerCAmelCase_ = min(len(_lowercase ) , data_args.max_train_samples ) lowerCAmelCase_ = train_dataset.select(range(_lowercase ) ) if data_args.max_val_samples is not None: lowerCAmelCase_ = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCAmelCase_ = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowercase : Union[str, Any] ): lowerCAmelCase_ , lowerCAmelCase_ = torchaudio.load(batch['''path'''] ) lowerCAmelCase_ = resampler(_lowercase ).squeeze().numpy() lowerCAmelCase_ = 1_6_0_0_0 lowerCAmelCase_ = batch['''text'''] return batch lowerCAmelCase_ = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase_ = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowercase : str ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" lowerCAmelCase_ = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(_lowercase ) return batch lowerCAmelCase_ = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase_ = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) # Metric lowerCAmelCase_ = datasets.load_metric('''wer''' ) def compute_metrics(_lowercase : Optional[int] ): lowerCAmelCase_ = pred.predictions lowerCAmelCase_ = np.argmax(_lowercase , axis=-1 ) lowerCAmelCase_ = processor.tokenizer.pad_token_id lowerCAmelCase_ = processor.batch_decode(_lowercase ) # we do not want to group tokens when computing the metrics lowerCAmelCase_ = processor.batch_decode(pred.label_ids , group_tokens=_lowercase ) lowerCAmelCase_ = wer_metric.compute(predictions=_lowercase , references=_lowercase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCAmelCase_ = DataCollatorCTCWithPadding(processor=_lowercase , padding=_lowercase ) # Initialize our Trainer lowerCAmelCase_ = CTCTrainer( model=_lowercase , data_collator=_lowercase , args=_lowercase , compute_metrics=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase_ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase_ = model_args.model_name_or_path else: lowerCAmelCase_ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCAmelCase_ = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() lowerCAmelCase_ = train_result.metrics lowerCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCAmelCase_ = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation lowerCAmelCase_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase_ = trainer.evaluate() lowerCAmelCase_ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowercase ) lowerCAmelCase_ = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) return results if __name__ == "__main__": main()
552
0
'''simple docstring''' import math class A : def __init__( self , snake_case_=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 _a = n _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # adjacency matrix for weight _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: _a = w def __lowerCAmelCase ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: return self.dp[u][v] if __name__ == "__main__": __snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
691
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _a ,_a ,_a ) -> str: # Initialise PyTorch model UpperCAmelCase_: Any = RemBertConfig.from_json_file(_a ) print("Building PyTorch model from configuration: {}".format(str(_a ) ) ) UpperCAmelCase_: Dict = RemBertModel(_a ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_a ,_a ,_a ) # Save pytorch-model print("Save PyTorch model to {}".format(_a ) ) torch.save(model.state_dict() ,_a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
137
def lowercase ( _a ) -> int: if not isinstance(_a ,_a ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCAmelCase_: List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
137
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class a__( snake_case__ ): a_ : Tuple = '''encodec''' def __init__( self , _UpperCAmelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase=2_4000 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=128 , _UpperCAmelCase=32 , _UpperCAmelCase=1 , _UpperCAmelCase=[8, 5, 4, 2] , _UpperCAmelCase="weight_norm" , _UpperCAmelCase=7 , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase="reflect" , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=1.0 , _UpperCAmelCase=1024 , _UpperCAmelCase=None , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> str: snake_case__ =target_bandwidths snake_case__ =sampling_rate snake_case__ =audio_channels snake_case__ =normalize snake_case__ =chunk_length_s snake_case__ =overlap snake_case__ =hidden_size snake_case__ =num_filters snake_case__ =num_residual_layers snake_case__ =upsampling_ratios snake_case__ =norm_type snake_case__ =kernel_size snake_case__ =last_kernel_size snake_case__ =residual_kernel_size snake_case__ =dilation_growth_rate snake_case__ =use_causal_conv snake_case__ =pad_mode snake_case__ =compress snake_case__ =num_lstm_layers snake_case__ =trim_right_ratio snake_case__ =codebook_size snake_case__ =codebook_dim if codebook_dim is not None else hidden_size snake_case__ =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_UpperCAmelCase ) @property def _lowercase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowercase ( self ) -> int: snake_case__ =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowercase ( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
581
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
581
1
__a = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
97
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def snake_case_ ( lowercase__ ): return x + 2 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = "x = 3" UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) UpperCAmelCase__ : Any = "x = y" UpperCAmelCase__ : List[str] = {"y": 5} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 5, "y": 5} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = "y = add_two(x)" UpperCAmelCase__ : Tuple = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : Any = evaluate(snake_case__ , {} , state=snake_case__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = "x = 3" UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = "test_dict = {'x': x, 'y': add_two(x)}" UpperCAmelCase__ : List[Any] = {"x": 3} UpperCAmelCase__ : int = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = "x = 3\ny = 5" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Union[str, Any] = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = "text = f'This is x: {x}.'" UpperCAmelCase__ : Dict = {"x": 3} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case__ , {"x": 3, "text": "This is x: 3."} ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCAmelCase__ : Dict = {"x": 3} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case__ , {"x": 3, "y": 2} ) UpperCAmelCase__ : Optional[Any] = {"x": 8} UpperCAmelCase__ : str = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 8, "y": 5} ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]" UpperCAmelCase__ : Any = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertListEqual(snake_case__ , [3, 5] ) self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = "y = x" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3, "y": 3} ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCAmelCase__ : List[Any] = {"x": 3} UpperCAmelCase__ : List[Any] = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) UpperCAmelCase__ : Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "x = 0\nfor i in range(3):\n x = i" UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"range": range} , state=snake_case__ ) assert result == 2 self.assertDictEqual(snake_case__ , {"x": 2, "i": 2} )
199
0
from __future__ import annotations from typing import TypedDict class lowerCAmelCase ( __snake_case ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(lowercase__ ) )] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) lowerCamelCase__ : Optional[Any] = all_rotations(lowercase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCamelCase__ : str = { 'bwt_string': ''.join([word[-1] for word in rotations] ), 'idx_original_string': rotations.index(lowercase__ ), } return response def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: lowerCamelCase__ : str = int(lowercase__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(lowercase__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) lowerCamelCase__ : Optional[Any] = [''] * len(lowercase__ ) for _ in range(len(lowercase__ ) ): for i in range(len(lowercase__ ) ): lowerCamelCase__ : Any = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _UpperCAmelCase : Dict = """Provide a string that I will generate its BWT transform: """ _UpperCAmelCase : int = input(entry_msg).strip() _UpperCAmelCase : Dict = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result["bwt_string"]}'""" ) _UpperCAmelCase : str = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ F"""we get original string '{original_string}'""" )
702
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 @flax_register_to_config class lowerCAmelCase ( nn.Module, __UpperCamelCase, __UpperCamelCase ): UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 4 UpperCAmelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase__ = False UpperCAmelCase__ = (3_20, 6_40, 12_80, 12_80) UpperCAmelCase__ = 2 UpperCAmelCase__ = 8 UpperCAmelCase__ = None UpperCAmelCase__ = 12_80 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa UpperCAmelCase__ = True UpperCAmelCase__ = 0 UpperCAmelCase__ = False def A_ ( self : Tuple , UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict: # init input tensors lowerCamelCase__ : int = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : List[str] = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = jax.random.split(UpperCAmelCase ) lowerCamelCase__ : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["params"] def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Any = self.block_out_channels lowerCamelCase__ : int = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : Tuple = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ : Optional[int] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ : int = FlaxTimestepEmbedding(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Optional[int] = self.only_cross_attention if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : Dict = output_channel lowerCamelCase__ : Optional[int] = block_out_channels[i] lowerCamelCase__ : List[Any] = i == len(UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : str = FlaxDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = down_blocks # mid lowerCamelCase__ : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase__ : Any = [] lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Any = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : int = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase__ : str = output_channel lowerCamelCase__ : int = reversed_block_out_channels[i] lowerCamelCase__ : int = reversed_block_out_channels[min(i + 1 , len(UpperCAmelCase ) - 1 )] lowerCamelCase__ : Optional[Any] = i == len(UpperCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : Optional[Any] = FlaxUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Tuple = up_blocks # out lowerCamelCase__ : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(UpperCAmelCase , jnp.ndarray ): lowerCamelCase__ : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[Any] = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : Any = jnp.expand_dims(UpperCAmelCase , 0 ) lowerCamelCase__ : List[str] = self.time_proj(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_embedding(UpperCAmelCase ) # 2. pre-process lowerCamelCase__ : Dict = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ : Optional[Any] = self.conv_in(UpperCAmelCase ) # 3. down lowerCamelCase__ : Any = (sample,) for down_block in self.down_blocks: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = down_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : Any = down_block(UpperCAmelCase , UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase__ : Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( UpperCAmelCase , UpperCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : str = new_down_block_res_samples # 4. mid lowerCamelCase__ : List[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase__ : str = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase__ : List[str] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = up_block( UpperCAmelCase , temb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train , ) else: lowerCamelCase__ : int = up_block(UpperCAmelCase , temb=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train ) # 6. post-process lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.silu(UpperCAmelCase ) lowerCamelCase__ : Any = self.conv_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = jnp.transpose(UpperCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCAmelCase )
188
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LongformerTokenizer __lowerCAmelCase = True __lowerCAmelCase = LongformerTokenizerFast __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a : List[str] = {'''unk_token''': '''<unk>'''} __a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = '''lower newer''' __a : List[Any] = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Tuple = '''lower newer''' __a : Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __a : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = tokens + [tokenizer.unk_token] __a : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __a : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase ) __a : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase ) __a : str = tokenizer.encode( '''sequence builders''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : Tuple = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __a : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self ): __a : Tuple = self.get_tokenizer() __a : Union[str, Any] = '''Encode this sequence.''' __a : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __a : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __a : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens __a : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space __a : Any = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __a : Optional[Any] = '''Encode <mask> sequence''' __a : Union[str, Any] = '''Encode <mask>sequence''' __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : int = encoded.index(_UpperCAmelCase ) __a : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = tokenizer.encode(_UpperCAmelCase ) __a : Any = encoded.index(_UpperCAmelCase ) __a : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : List[Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[Any] = '''A, <mask> AllenNLP sentence.''' __a : Tuple = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __a : int = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __a : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _lowerCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Any = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __a : Union[str, Any] = f"""{text_of_1_token} {text_of_1_token}""" __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : str = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Optional[Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a : int = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[str] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
52
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : str = KandinskyInpaintPipeline _lowerCAmelCase : List[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _lowerCAmelCase : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _lowerCAmelCase : List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowerCAmelCase : Union[str, Any] = False @property def __lowercase ( self : str ): """simple docstring""" return 32 @property def __lowercase ( self : str ): """simple docstring""" return 32 @property def __lowercase ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def __lowercase ( self : int ): """simple docstring""" return self.time_input_dim * 4 @property def __lowercase ( self : int ): """simple docstring""" return 1_00 @property def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) SCREAMING_SNAKE_CASE : Any = MultilingualCLIP(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_encoder.eval() return text_encoder @property def __lowercase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def __lowercase ( self : Optional[Any] ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Tuple = self.dummy_tokenizer SCREAMING_SNAKE_CASE : int = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : str = 0 if str(lowerCAmelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''cpu''' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[str] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self : str ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def __lowercase ( self : List[str] ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = '''a hat''' SCREAMING_SNAKE_CASE : str = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Tuple = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
527
0
from __future__ import annotations snake_case : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : def __init__( self : Optional[Any] , _A : dict[str, list[str]] , _A : str): A__ : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree A__ : dict[str, str | None] = {} A__ : List[str] = source_vertex def _lowercase ( self : List[Any]): A__ : str = {self.source_vertex} A__ : List[str] = None A__ : List[str] = [self.source_vertex] # first in first out queue while queue: A__ : int = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_A) A__ : Any = vertex queue.append(_A) def _lowercase ( self : int , _A : str): if target_vertex == self.source_vertex: return self.source_vertex A__ : List[Any] = self.parent.get(_A) if target_vertex_parent is None: A__ : Union[str, Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_A) return self.shortest_path(_A) + F'->{target_vertex}' if __name__ == "__main__": snake_case : Any = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
182
from __future__ import annotations snake_case : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : def __init__( self : Optional[Any] , _A : dict[str, list[str]] , _A : str): A__ : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree A__ : dict[str, str | None] = {} A__ : List[str] = source_vertex def _lowercase ( self : List[Any]): A__ : str = {self.source_vertex} A__ : List[str] = None A__ : List[str] = [self.source_vertex] # first in first out queue while queue: A__ : int = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_A) A__ : Any = vertex queue.append(_A) def _lowercase ( self : int , _A : str): if target_vertex == self.source_vertex: return self.source_vertex A__ : List[Any] = self.parent.get(_A) if target_vertex_parent is None: A__ : Union[str, Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_A) return self.shortest_path(_A) + F'->{target_vertex}' if __name__ == "__main__": snake_case : Any = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
182
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' if gpta_config_file == "": SCREAMING_SNAKE_CASE = GPTaConfig() else: SCREAMING_SNAKE_CASE = GPTaConfig.from_json_file(_UpperCamelCase ) SCREAMING_SNAKE_CASE = GPTaModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) a_ : Union[str, Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
439
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase : __UpperCamelCase =BlenderbotSmallConfig __UpperCamelCase ={} __UpperCamelCase ="gelu" def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int]=1_3 , snake_case__ : Optional[int]=7 , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=False , snake_case__ : int=9_9 , snake_case__ : Any=3_2 , snake_case__ : Tuple=2 , snake_case__ : Optional[int]=4 , snake_case__ : int=3_7 , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Any=2_0 , snake_case__ : List[Any]=2 , snake_case__ : int=1 , snake_case__ : int=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : Dict , snake_case__ : Tuple , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , ) -> str: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCamelCase =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase =( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =[ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __UpperCamelCase ="facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
439
1
__lowerCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( snake_case , snake_case , snake_case ) -> list[str]: lowercase__: List[Any] = set() # keep track of all the paths to be checked lowercase__: Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__: Tuple = queue.pop(0 ) # get the last node from the path lowercase__: Dict = path[-1] if node not in explored: lowercase__: int = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__: Optional[int] = list(lowercase_ ) new_path.append(lowercase_ ) queue.append(lowercase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase_ ) # in case there's no path between the 2 nodes return [] def snake_case_ ( snake_case , snake_case , snake_case ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__: int = [start] lowercase__: Tuple = set(lowercase_ ) # Keep tab on distances from `start` node. lowercase__: str = {start: 0, target: -1} while queue: lowercase__: Union[str, Any] = queue.pop(0 ) if node == target: lowercase__: Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase_ ) queue.append(lowercase_ ) lowercase__: Tuple = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
707
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: int = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) lowercase__: Any = { 'input_ids': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__: Tuple = model(lowerCAmelCase__ )['last_hidden_state'] lowercase__: Optional[int] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice. lowercase__: Tuple = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
335
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A = logging.get_logger(__name__) A = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a__ ( __magic_name__ ): lowercase_ = "gpt_neo" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , UpperCamelCase_ : str=50257 , UpperCamelCase_ : Optional[int]=2048 , UpperCamelCase_ : Dict=2048 , UpperCamelCase_ : int=24 , UpperCamelCase_ : int=[[["global", "local"], 12]] , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : str=None , UpperCamelCase_ : int=256 , UpperCamelCase_ : str="gelu_new" , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Dict=1e-5 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[Any]=50256 , UpperCamelCase_ : Optional[Any]=50256 , **UpperCamelCase_ : str , ): """simple docstring""" __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Any = num_layers __UpperCAmelCase : int = num_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Union[str, Any] = window_size __UpperCAmelCase : Tuple = activation_function __UpperCAmelCase : List[str] = resid_dropout __UpperCAmelCase : Optional[int] = embed_dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Optional[Any] = classifier_dropout __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Union[str, Any] = use_cache __UpperCAmelCase : Union[str, Any] = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : Union[str, Any] = attention_types __UpperCAmelCase : Dict = self.expand_attention_types_params(UpperCamelCase_) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument.") super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_) @staticmethod def a_ ( UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" import torch __UpperCAmelCase : Any = input.size() __UpperCAmelCase : Dict = len(UpperCamelCase ) __UpperCAmelCase : Any = shape[dimension] __UpperCAmelCase : List[Any] = torch.arange(0 , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = torch.div(sizedim - size , UpperCamelCase , rounding_mode="floor" ) + 1 __UpperCAmelCase : str = torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] __UpperCAmelCase : List[str] = [slice(UpperCamelCase )] * rank __UpperCAmelCase : List[Any] = indices __UpperCAmelCase : Dict = input[s] __UpperCAmelCase : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" import torch __UpperCAmelCase : str = torch.arange(1 , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = torch.remainder(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[int] = remainders == 0 __UpperCAmelCase : Optional[Any] = candidates[divisor_indices] __UpperCAmelCase : List[str] = torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="floor" ) class a__ ( __magic_name__ ): @property def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="inputs") __UpperCAmelCase : Dict = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCAmelCase : List[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def a_ ( self : int): """simple docstring""" return self._config.num_heads def a_ ( self : Dict , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): """simple docstring""" __UpperCAmelCase : int = super(UpperCamelCase_ , self).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : str = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch __UpperCAmelCase , __UpperCAmelCase : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCAmelCase : str = seqlen + 2 __UpperCAmelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : Dict = [ (torch.zeros(UpperCamelCase_), torch.zeros(UpperCamelCase_)) for _ in range(self.num_layers) ] __UpperCAmelCase : Dict = common_inputs["attention_mask"] if self.use_past: __UpperCAmelCase : str = ordered_inputs["attention_mask"].dtype __UpperCAmelCase : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_)] , dim=1) return ordered_inputs @property def a_ ( self : Any): """simple docstring""" return 13
77
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=[10, 20, 30, 40] , UpperCamelCase_ : Tuple=[1, 1, 2, 1] , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict="relu" , UpperCamelCase_ : str=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Union[str, Any] = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : Dict = depths __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : str = num_labels __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Dict = len(UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values def a_ ( self : Dict): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[str] = FlaxRegNetModel(config=UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Tuple = FlaxRegNetForImageClassification(config=UpperCamelCase_) __UpperCAmelCase : str = model(UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = FlaxRegNetModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Tuple): """simple docstring""" return def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) @unittest.skip(reason="RegNet does not use inputs_embeds") def a_ ( self : Union[str, Any]): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings") def a_ ( self : Optional[int]): """simple docstring""" pass def a_ ( self : str): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : int): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]): __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_) , expected_num_stages + 1) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __UpperCAmelCase : List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_) @jax.jit def model_jitted(UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int]): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_) with self.subTest("JIT Enabled"): __UpperCAmelCase : Optional[Any] = model_jitted(**UpperCamelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): __UpperCAmelCase : Dict = model_jitted(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_) , len(UpperCamelCase_)) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCamelCase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Dict = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : Dict = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : Any = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4))
77
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
from math import pow def UpperCAmelCase__ ( _A , _A , _A , _A , _A , ): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count a_ = int(pow(_A , _A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n a_ , a_ = backtrack( _A , _A , current_number + 1 , _A , _A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. a_ , a_ = backtrack( _A , _A , current_number + 1 , _A , _A ) return current_sum, solutions_count def UpperCAmelCase__ ( _A , _A ): """simple docstring""" if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
143
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Tuple: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->str: if "metadata" in layer: UpperCAmelCase = layer.split("""metadata""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCAmelCase = layer.split("""kvstore""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCAmelCase = layer.split("""/""" ) UpperCAmelCase = """/""".join(split_layer[:-1] ) UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCAmelCase = """file""" else: UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: UpperCAmelCase = rename_keys(lowerCAmelCase_ ) UpperCAmelCase = {} for k, v in current_block.items(): UpperCAmelCase = v UpperCAmelCase = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME ) ->Optional[int]: UpperCAmelCase = convert_file_size_to_int(lowerCAmelCase_ ) UpperCAmelCase = [] UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCAmelCase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCAmelCase = flatten_dict(lowerCAmelCase_ , sep="""/""" ) UpperCAmelCase = {} for layer in checkpoint_info.keys(): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: UpperCAmelCase = content else: UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase = torch.tensor(lowerCAmelCase_ ) UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase , UpperCAmelCase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) UpperCAmelCase = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase = {} UpperCAmelCase = {} for idx, shard in enumerate(lowerCAmelCase_ ): UpperCAmelCase = weights_name.replace( """.bin""" , F"""-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCAmelCase = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase = shard for key in shard: UpperCAmelCase = shard_file # Add the metadata UpperCAmelCase = {"""total_size""": total_size} UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) __a = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _UpperCamelCase ( ) ->Optional[int]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCAmelCase = TaTokenizer.from_pretrained("""t5-small""" ) UpperCAmelCase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids UpperCAmelCase = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
377
__a = 256 # Modulus to hash a string __a = 100_0003 def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->bool: UpperCAmelCase = len(lowerCAmelCase_ ) UpperCAmelCase = len(lowerCAmelCase_ ) if p_len > t_len: return False UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase_ ): UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _UpperCamelCase ( ) ->None: UpperCAmelCase = """abc1abc12""" UpperCAmelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase = """alskfjaldsk23adsfabcabc""" assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) and not rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 2) UpperCAmelCase = """ABABX""" UpperCAmelCase = """ABABZABABYABABX""" assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 3) UpperCAmelCase = """AAAB""" UpperCAmelCase = """ABAAAAAB""" assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 4) UpperCAmelCase = """abcdabcy""" UpperCAmelCase = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 5) UpperCAmelCase = """Lü""" UpperCAmelCase = """Lüsai""" assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = """Lue""" assert not rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
377
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: List[Any] , __A: Any ) -> Dict: _A = parent def __A ( self: Union[str, Any] ) -> List[Any]: return {} def __A ( ): '''simple docstring''' _A = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' _A = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = MarkupLMFeatureExtractor if is_bsa_available() else None def __A ( self: Optional[int] ) -> int: _A = MarkupLMFeatureExtractionTester(self ) @property def __A ( self: Optional[Any] ) -> int: return self.feature_extract_tester.prepare_feat_extract_dict() def __A ( self: List[Any] ) -> Optional[int]: # Initialize feature_extractor _A = self.feature_extraction_class() # Test not batched input _A = get_html_strings()[0] _A = feature_extractor(__A ) # fmt: off _A = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] _A = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A ) # Test batched _A = get_html_strings() _A = feature_extractor(__A ) # fmt: off _A = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] _A = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A )
62
def __A ( _lowercase = 1_00_00_00 ): '''simple docstring''' _A = 1 _A = 1 _A = {1: 1} for inputa in range(2 , _lowercase ): _A = 0 _A = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _A = (3 * number) + 1 counter += 1 if inputa not in counters: _A = counter if counter > pre_counter: _A = inputa _A = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
62
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = (CMStochasticIterativeScheduler,) __lowerCAmelCase : int = 10 def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = 10 lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[str] = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowercase__ : int = scheduler.timesteps[0] lowercase__ : str = scheduler.timesteps[1] lowercase__ : List[Any] = self.dummy_sample lowercase__ : str = 0.1 * sample lowercase__ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def lowercase__ ( self): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = scheduler.timesteps lowercase__ : int = torch.manual_seed(0) lowercase__ : List[str] = self.dummy_model() lowercase__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_): # 1. scale model input lowercase__ : Dict = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict noise residual lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 3. predict previous sample x_t-1 lowercase__ : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : int = pred_prev_sample lowercase__ : int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 1_9_2.7_6_1_4) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : Any = scheduler.timesteps lowercase__ : List[Any] = torch.manual_seed(0) lowercase__ : Optional[int] = self.dummy_model() lowercase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase__ : Any = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict noise residual lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 3. predict previous sample x_t-1 lowercase__ : Any = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample lowercase__ : Any = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 3_4_7.6_3_5_7) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [39, 30, 12, 1, 0] lowercase__ : str = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
1
'''simple docstring''' from math import sqrt def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( __A = 10001 ) -> str: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 1 while count != nth and number < 3: number += 1 if is_prime(A__ ): count += 1 while count != nth: number += 2 if is_prime(A__ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
714
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _UpperCamelCase ( __A , __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = AutoConfig.from_pretrained(__A ) UpperCamelCase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=__A ) UpperCamelCase__ = checkpoints.load_tax_checkpoint(__A ) UpperCamelCase__ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": UpperCamelCase__ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase__ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase__ = F'''layers_{str(__A )}''' # Self-Attention UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase__ = flax_model.params["encoder"]["block"][str(__A )]["layer"] UpperCamelCase__ = tax_attention_key UpperCamelCase__ = tax_attention_out UpperCamelCase__ = tax_attention_query UpperCamelCase__ = tax_attention_value UpperCamelCase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_global_layer_norm if split_mlp_wi: UpperCamelCase__ = tax_mlp_wi_a UpperCamelCase__ = tax_mlp_wi_a else: UpperCamelCase__ = tax_mlp_wi UpperCamelCase__ = tax_mlp_wo UpperCamelCase__ = tax_mlp_layer_norm UpperCamelCase__ = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase__ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_encoder_global_rel_embedding # Assigning UpperCamelCase__ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] UpperCamelCase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase__ = F'''layers_{str(__A )}''' # Self-Attention UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] UpperCamelCase__ = tax_enc_dec_attention_module["key"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["out"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["query"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase__ = flax_model.params["decoder"]["block"][str(__A )]["layer"] UpperCamelCase__ = tax_attention_key UpperCamelCase__ = tax_attention_out UpperCamelCase__ = tax_attention_query UpperCamelCase__ = tax_attention_value UpperCamelCase__ = tax_pre_attention_layer_norm UpperCamelCase__ = tax_enc_dec_attention_key UpperCamelCase__ = tax_enc_dec_attention_out UpperCamelCase__ = tax_enc_dec_attention_query UpperCamelCase__ = tax_enc_dec_attention_value UpperCamelCase__ = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase__ = tax_mlp_wi_a UpperCamelCase__ = tax_mlp_wi_a else: UpperCamelCase__ = tax_mlp_wi UpperCamelCase__ = tax_mlp_wo UpperCamelCase__ = txa_mlp_layer_norm UpperCamelCase__ = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase__ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] UpperCamelCase__ = txa_decoder_norm # Only for layer 0: UpperCamelCase__ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase__ = tax_model["target"]["token_embedder"]["embedding"] UpperCamelCase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase__ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__A ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) a__ : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
223
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase :Dict = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :List[str] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE : Any = 'LayoutLMv3ImageProcessor' __SCREAMING_SNAKE_CASE : Any = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__(self , lowercase=None , lowercase=None , **lowercase ): A_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) def __call__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor A_ : Optional[int] = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) A_ : Dict = features["""words"""] A_ : Optional[int] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values A_ : List[Any] = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: A_ : List[str] = self.get_overflowing_images(lowercase , encoded_inputs["""overflow_to_sample_mapping"""] ) A_ : Optional[int] = images return encoded_inputs def _a (self , lowercase , lowercase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A_ : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F' {len(lowercase )} and {len(lowercase )}' ) return images_with_overflow def _a (self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _a (self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def _a (self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _a (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _a (self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
667
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A = ["gpt2"] __A = "gpt2" if is_tf_available(): class __lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TFGPTaLMHeadModel.from_config(lowerCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = self.tokenizer(lowerCamelCase__ ) __lowerCamelCase = tokenized['input_ids'].to_tensor() __lowerCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase = self.model(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )['logits'] return outputs @require_tf @require_keras_nlp class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: '''simple docstring''' super().setUp() __lowerCamelCase = [GPTaTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase = [TFGPTaTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ ( self ) -> Any: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase = tokenizer([test_inputs] , return_tensors='tf' ) __lowerCamelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase = python_outputs[key].numpy() __lowerCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(lowerCamelCase__ ) for test_inputs in self.test_sentences: __lowerCamelCase = tf.constant(lowerCamelCase__ ) __lowerCamelCase = compiled_tokenizer(lowerCamelCase__ ) __lowerCamelCase = tf_tokenizer(lowerCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=lowerCamelCase__ ) __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = model.serving(lowerCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(lowerCamelCase__ ) / 'saved.model' tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={'serving_default': model.serving} ) __lowerCamelCase = tf.saved_model.load(lowerCamelCase__ ) __lowerCamelCase = loaded_model.signatures['serving_default'](lowerCamelCase__ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase_ ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(lowerCamelCase__ ) # Build model with some sample inputs __lowerCamelCase = tf_tokenizer.get_config() __lowerCamelCase = TFGPTaTokenizer.from_config(lowerCamelCase__ ) __lowerCamelCase = model_from_config(lowerCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase = 123_123 for max_length in [3, 5, 1_024]: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(lowerCamelCase__ , max_length=lowerCamelCase__ ) __lowerCamelCase = out['input_ids'].numpy().shape[1] assert out_length == max_length
709
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ConsistencyModelPipeline snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt snake_case_ = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def lowercase_ ( self , lowerCamelCase__=False ) -> Dict: '''simple docstring''' if class_cond: __lowerCamelCase = self.dummy_cond_unet else: __lowerCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = 0 __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , lowerCamelCase__=0 , lowerCamelCase__=False , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 64, 64) ) -> int: '''simple docstring''' __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowerCamelCase = self.get_fixed_latents(seed=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ , shape=lowerCamelCase__ ) __lowerCamelCase = latents return inputs def lowercase_ ( self , lowerCamelCase__=0 , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 64, 64) ) -> Optional[int]: '''simple docstring''' if type(lowerCamelCase__ ) == str: __lowerCamelCase = torch.device(lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) return latents def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
167
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase , __lowerCamelCase = analyze_text(UpperCamelCase__ ) __lowerCamelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __lowerCamelCase = sum(single_char_strings.values() ) # one length string __lowerCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCamelCase = single_char_strings[ch] __lowerCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowerCamelCase = sum(two_char_strings.values() ) __lowerCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCamelCase = cha + cha if sequence in two_char_strings: __lowerCamelCase = two_char_strings[sequence] __lowerCamelCase = int(UpperCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> tuple[dict, dict]: """simple docstring""" __lowerCamelCase = Counter() # type: ignore __lowerCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase_ ( ) -> Dict: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
469
from sklearn.metrics import mean_squared_error import datasets __A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __A = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __A = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__="uniform_average" , lowerCamelCase__=True ) -> List[Any]: '''simple docstring''' __lowerCamelCase = mean_squared_error( lowerCamelCase__ , lowerCamelCase__ , sample_weight=lowerCamelCase__ , multioutput=lowerCamelCase__ , squared=lowerCamelCase__ ) return {"mse": mse}
469
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
from __future__ import annotations class A_ : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): __a = order # a_{0} ... a_{k} __a = [1.0] + [0.0] * order # b_{0} ... b_{k} __a = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __a = [0.0] * self.order # y[n-1] ... y[n-k] __a = [0.0] * self.order def _UpperCAmelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : list[float] , __SCREAMING_SNAKE_CASE : list[float] ): if len(__SCREAMING_SNAKE_CASE ) < self.order: __a = [1.0, *a_coeffs] if len(__SCREAMING_SNAKE_CASE ) != self.order + 1: __a = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) != self.order + 1: __a = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) __a = a_coeffs __a = b_coeffs def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : float ): __a = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __a = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __a = self.input_history[:-1] __a = self.output_history[:-1] __a = sample __a = result return result
525
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ ,lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) benchmark()
29
'''simple docstring''' from collections import Counter from timeit import timeit def _lowerCAmelCase ( lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def _lowerCAmelCase ( lowercase = "" ) -> bool: if len(lowercase ) == 0: return True __lowerCAmelCase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCAmelCase = {} for character in lower_case_input_str: __lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1 __lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCAmelCase ( lowercase = "" ) -> None: print("""\nFor string = """ , lowercase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _a : int = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
689
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__( snake_case_ ): def __magic_name__ ( self ): """simple docstring""" __lowercase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """num_heads""" ) ) class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=6_4 , __UpperCAmelCase=3 , __UpperCAmelCase=[1_6, 4_8, 9_6] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 1_0] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): """simple docstring""" __lowercase =parent __lowercase =batch_size __lowercase =image_size __lowercase =patch_sizes __lowercase =patch_stride __lowercase =patch_padding __lowercase =is_training __lowercase =use_labels __lowercase =num_labels __lowercase =num_channels __lowercase =embed_dim __lowercase =num_heads __lowercase =stride_kv __lowercase =depth __lowercase =cls_token __lowercase =attention_drop_rate __lowercase =initializer_range __lowercase =layer_norm_eps def __magic_name__ ( self ): """simple docstring""" __lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase =None if self.use_labels: # create a random int32 tensor of given shape __lowercase =ids_tensor([self.batch_size] , self.num_labels ) __lowercase =self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase =TFCvtModel(config=__UpperCAmelCase ) __lowercase =model(__UpperCAmelCase , training=__UpperCAmelCase ) __lowercase =(self.image_size, self.image_size) __lowercase , __lowercase =image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase =self.num_labels __lowercase =TFCvtForImageClassification(__UpperCAmelCase ) __lowercase =model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): """simple docstring""" __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase : Tuple = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase : List[str] = False UpperCamelCase : List[Any] = False UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : int = False def __magic_name__ ( self ): """simple docstring""" __lowercase =TFCvtModelTester(self ) __lowercase =TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def __magic_name__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __magic_name__ ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __magic_name__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __magic_name__ ( self ): """simple docstring""" __lowercase =tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =model_class(__UpperCAmelCase ) __lowercase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase =[*signature.parameters.keys()] __lowercase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowercase =model_class(__UpperCAmelCase ) __lowercase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowercase =outputs.hidden_states __lowercase =len(self.model_tester.depth ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase =True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __magic_name__ ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =TFCvtModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase__ ( ): '''simple docstring''' __lowercase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase__( unittest.TestCase ): @cached_property def __magic_name__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase =TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase =self.default_image_processor __lowercase =prepare_img() __lowercase =image_processor(images=__UpperCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase =model(**__UpperCAmelCase ) # verify the logits __lowercase =tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowercase =tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4 ) )
709
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowercase__ ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__UpperCamelCase ), magnitude * sin(__UpperCamelCase )] return [magnitude * cos(radians(__UpperCamelCase ) ), magnitude * sin(radians(__UpperCamelCase ) )] def lowercase__ ( __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : float = 10**-1 ): '''simple docstring''' __lowercase = cross(__UpperCamelCase , __UpperCamelCase ) __lowercase = sum(__UpperCamelCase ) return abs(__UpperCamelCase ) < eps if __name__ == "__main__": # Test to check if it works snake_case : List[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) snake_case : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg snake_case : List[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) snake_case : List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg snake_case : List[Any] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) snake_case : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
339
0
__A = tuple[float, float, float] __A = tuple[float, float, float] def lowerCAmelCase_ ( __a , __a ) -> Vectorad: """simple docstring""" lowerCamelCase__: Optional[int] =end_pointa[0] - end_pointa[0] lowerCamelCase__: Any =end_pointa[1] - end_pointa[1] lowerCamelCase__: str =end_pointa[2] - end_pointa[2] return (x, y, z) def lowerCAmelCase_ ( __a , __a ) -> Vectorad: """simple docstring""" lowerCamelCase__: List[str] =ab[1] * ac[2] - ab[2] * ac[1] # *i lowerCamelCase__: Tuple =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowerCamelCase__: Tuple =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" return tuple(round(__a , __a ) for x in vector ) == (0, 0, 0) def lowerCAmelCase_ ( __a , __a , __a , __a = 10 ) -> bool: """simple docstring""" lowerCamelCase__: List[Any] =create_vector(__a , __a ) lowerCamelCase__: Dict =create_vector(__a , __a ) return is_zero_vector(get_ad_vectors_cross(__a , __a ) , __a )
59
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } a__ = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } a__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = VOCAB_FILES_NAMES snake_case_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : Any = PRETRAINED_INIT_CONFIGURATION snake_case_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Dict = RealmTokenizer def __init__( self : int , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : List[str]="[SEP]" , lowerCAmelCase : Optional[int]="[PAD]" , lowerCAmelCase : List[Any]="[CLS]" , lowerCAmelCase : Any="[MASK]" , lowerCAmelCase : Dict=True , lowerCAmelCase : int=None , **lowerCAmelCase : Tuple , ) -> List[str]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase) != tokenize_chinese_chars ): _snake_case : Tuple = getattr(lowerCAmelCase , normalizer_state.pop("""type""")) _snake_case : Any = do_lower_case _snake_case : Optional[int] = strip_accents _snake_case : str = tokenize_chinese_chars _snake_case : List[str] = normalizer_class(**lowerCAmelCase) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[Any] = kwargs.pop("""text_pair""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""return_tensors""" , lowerCAmelCase) _snake_case : Optional[Any] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCAmelCase): if batch_text_pair is not None: _snake_case : Dict = batch_text_pair[idx] else: _snake_case : List[str] = None _snake_case : Optional[int] = super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) _snake_case : str = encoded_candidates.get("""input_ids""") _snake_case : Union[str, Any] = encoded_candidates.get("""attention_mask""") _snake_case : Any = encoded_candidates.get("""token_type_ids""") if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase) _snake_case : str = {key: item for key, item in output_data.items() if len(lowerCAmelCase) != 0} return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=None) -> List[str]: """simple docstring""" _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : List[Any] = [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : Dict = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase)
477
0
"""simple docstring""" import os def _lowerCAmelCase ( ) ->List[str]: with open(os.path.dirname(UpperCAmelCase__ ) + """/grid.txt""" ) as f: A__ : str = [] # noqa: E741 for _ in range(2_0 ): l.append([int(UpperCAmelCase__ ) for x in f.readline().split()] ) A__ : List[str] = 0 # right for i in range(2_0 ): for j in range(1_7 ): A__ : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A__ : Dict = temp # down for i in range(1_7 ): for j in range(2_0 ): A__ : Dict = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A__ : List[Any] = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): A__ : Tuple = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A__ : Tuple = temp # diagonal 2 for i in range(1_7 ): for j in range(3, 2_0 ): A__ : Union[str, Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A__ : List[str] = temp return maximum if __name__ == "__main__": print(solution())
498
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : List[Any] = self.dummy_uncond_unet A__ : Dict = ScoreSdeVeScheduler() A__ : str = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) A__ : Optional[int] = torch.manual_seed(0 ) A__ : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case ).images A__ : List[str] = torch.manual_seed(0 ) A__ : int = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case , return_dict=snake_case )[ 0 ] A__ : int = image[0, -3:, -3:, -1] A__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = """google/ncsnpp-church-256""" A__ : Tuple = UNetaDModel.from_pretrained(snake_case ) A__ : int = ScoreSdeVeScheduler.from_pretrained(snake_case ) A__ : List[Any] = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) A__ : Dict = torch.manual_seed(0 ) A__ : Optional[int] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=snake_case ).images A__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
498
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase_ : a_ = BlenderbotSmallConfig a_ = {} a_ = """gelu""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=1_3 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=9_9 , UpperCamelCase__=3_2 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=3_7 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=2_0 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_blenderbot_small_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = TFBlenderbotSmallModel(config=UpperCamelCase__ ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = inputs_dict["head_mask"] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] UpperCAmelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def lowerCamelCase__ ( A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ): if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(A_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( _A , _A , unittest.TestCase ): a_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a_ = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a_ = True a_ = False a_ = False def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = TFBlenderbotSmallModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): a_ = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] a_ = """facebook/blenderbot_small-90M""" @cached_property def lowerCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase__ , ) UpperCAmelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
660
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''spiece.model'''} __snake_case : Dict = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __snake_case : Tuple = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class lowercase_ ( _A ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) UpperCAmelCase_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase_ = "<|endoftext|>" if eos_token is None else eos_token UpperCAmelCase_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase_ = unk_token if pad_token is None else pad_token UpperCAmelCase_ = eos_token if bos_token is None else bos_token else: UpperCAmelCase_ = "<pad>" if pad_token is None else pad_token UpperCAmelCase_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase_ = re.compile( F"""[{"".join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self ) -> int: """simple docstring""" return len(self.sp_model ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = self.non_printing_characters_re.sub("" , UpperCamelCase__ ) # Normalize whitespaces UpperCAmelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization UpperCAmelCase_ = unicodedata.normalize("NFC" , UpperCamelCase__ ) return text def lowerCamelCase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int: """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__ ) -> str: """simple docstring""" return out_string def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = "" UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(UpperCamelCase__ ) UpperCAmelCase_ = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def lowerCamelCase_ ( self ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) else: UpperCAmelCase_ = [self.preprocess_text(UpperCamelCase__ ) for t in text] UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase_ = torch.tensor(UpperCamelCase__ ) return token_ids def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.decode(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]: """simple docstring""" UpperCAmelCase_ = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] UpperCAmelCase_ = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCamelCase__ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=UpperCamelCase__ )
660
1
"""simple docstring""" __A : List[Any] = [0, 2, 4, 6, 8] __A : List[Any] = [1, 3, 5, 7, 9] def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase = 0 for digit in range(10 ): _UpperCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _A , _A ) return result _UpperCAmelCase = 0 for digita in range(10 ): _UpperCAmelCase = digita if (remainder + digita) % 2 == 0: _UpperCAmelCase = ODD_DIGITS else: _UpperCAmelCase = EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _A , _A , ) return result def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] = 9 ): '''simple docstring''' _UpperCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_A , 0 , [0] * length , _A ) return result if __name__ == "__main__": print(f'''{solution() = }''')
719
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __A : str = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : bool , __UpperCamelCase : str = None , __UpperCamelCase : list = None )->int: _UpperCAmelCase = None _UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__UpperCamelCase ): if item not in EXCLUDE_EXAMPLES: _UpperCAmelCase = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCamelCase , feature_script=__UpperCamelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): _UpperCAmelCase = compare_against_test( os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = '''\n'''.join(__UpperCamelCase ) if special_strings is not None: for string in special_strings: _UpperCAmelCase = diff.replace(__UpperCamelCase , '''''' ) self.assertEqual(__UpperCamelCase , '''''' ) def lowercase__ ( self : Tuple )->Any: self.one_complete_example('''complete_nlp_example.py''' , __UpperCamelCase ) self.one_complete_example('''complete_nlp_example.py''' , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.one_complete_example('''complete_cv_example.py''' , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""}) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = False @classmethod def lowercase__ ( cls : Optional[int] )->Optional[Any]: super().setUpClass() _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowercase__ ( cls : Dict )->Any: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : Optional[int] )->Any: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def lowercase__ ( self : Optional[Any] )->List[Any]: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) self.assertNotIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) if torch.cuda.is_available(): _UpperCAmelCase = torch.cuda.device_count() else: _UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) else: self.assertIn('''epoch 0:''' , __UpperCamelCase ) self.assertIn('''epoch 1:''' , __UpperCamelCase ) @slow def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) _UpperCAmelCase = re.findall('''({.+})''' , __UpperCamelCase ) _UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] _UpperCAmelCase = ast.literal_eval(__UpperCamelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def lowercase__ ( self : Any )->List[Any]: _UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: _UpperCAmelCase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , '''tracking''' ) ) ) def lowercase__ ( self : Dict )->Dict: _UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
95
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = GPTaTokenizer def __init__( self : Optional[int] , __snake_case : Optional[int]=None , __snake_case : Dict=None , __snake_case : Optional[int]=None , __snake_case : int="<|endoftext|>" , __snake_case : Dict="<|endoftext|>" , __snake_case : List[Any]="<|endoftext|>" , __snake_case : Optional[Any]=False , **__snake_case : Any , )-> List[str]: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) snake_case = kwargs.pop("""add_bos_token""" , __lowerCamelCase ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: snake_case = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**__lowerCamelCase ) snake_case = add_prefix_space def lowerCAmelCase ( self : Optional[int] , *__snake_case : Tuple , **__snake_case : Optional[int] )-> BatchEncoding: snake_case = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Any , *__snake_case : Tuple , **__snake_case : Tuple )-> BatchEncoding: snake_case = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Any = None )-> Tuple[str]: snake_case = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : int )-> List[int]: snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: snake_case = input_ids[-self.model_max_length :] return input_ids
369
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ : Any = tokenizer('''Hello there''' ,return_tensors='''np''' ).input_ids lowerCAmelCase__ : Optional[Any] = tokenizer('''Hi I am''' ,return_tensors='''np''' ).input_ids lowerCAmelCase__ : Any = shift_tokens_right(__lowerCamelCase ,model.config.pad_token_id ,model.config.decoder_start_token_id ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,decoder_input_ids=__lowerCamelCase ).logits lowerCAmelCase__ : List[str] = optax.softmax_cross_entropy(__lowerCamelCase ,onehot(__lowerCamelCase ,logits.shape[-1] ) ).mean() lowerCAmelCase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowerCAmelCase__ : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
647
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = tempfile.mkdtemp() # fmt: off lowercase_ : Dict = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowercase_ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase_ : Optional[int] = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowercase_ : List[Any] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : str = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : int = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : int = self.get_image_processor() lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Dict = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : int = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = self.get_image_processor() lowercase_ : int = self.get_tokenizer() lowercase_ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Union[str, Any] = self.prepare_image_inputs() lowercase_ : Optional[Any] = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Tuple = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Any = 'lower newer' lowercase_ : str = processor(text=__UpperCamelCase ) lowercase_ : Dict = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : str = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Union[str, Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : int = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : Dict = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : Tuple = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : int = 'lower newer' lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : int = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
477
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase_ : Optional[int] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ,cache_dir=__UpperCamelCase ) lowercase_ : Dict = [t[-1] for t in os.walk(os.path.join(__UpperCamelCase ,os.listdir(__UpperCamelCase )[0] ,'snapshots' ) )] lowercase_ : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ) lowercase_ : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 4 lowercase_ : int = jax.device_count() lowercase_ : Optional[int] = num_samples * [prompt] lowercase_ : List[Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : Dict = replicate(__UpperCamelCase ) lowercase_ : Optional[Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = shard(__UpperCamelCase ) lowercase_ : List[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 lowercase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__UpperCamelCase ) == num_samples def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='flax' ,safety_checker=__UpperCamelCase ) lowercase_ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : List[str] = jax.random.PRNGKey(0 ) lowercase_ : Tuple = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : List[Any] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[str] = replicate(__UpperCamelCase ) lowercase_ : Optional[int] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[Any] = shard(__UpperCamelCase ) lowercase_ : Optional[int] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ) lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Dict = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 50 lowercase_ : Tuple = jax.device_count() lowercase_ : Dict = num_samples * [prompt] lowercase_ : Any = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : int = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = shard(__UpperCamelCase ) lowercase_ : List[str] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ) lowercase_ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Union[str, Any] = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : Tuple = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Optional[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = FlaxDDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,set_alpha_to_one=__UpperCamelCase ,steps_offset=1 ,) lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,scheduler=__UpperCamelCase ,safety_checker=__UpperCamelCase ,) lowercase_ : Optional[int] = scheduler.create_state() lowercase_ : List[Any] = scheduler_state lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : str = jax.random.PRNGKey(0 ) lowercase_ : str = 50 lowercase_ : List[Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = shard(__UpperCamelCase ) lowercase_ : str = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Union[str, Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : int = jax.random.split(jax.random.PRNGKey(0 ) ,__UpperCamelCase ) lowercase_ , lowercase_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,) lowercase_ : str = replicate(__UpperCamelCase ) lowercase_ : int = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Tuple = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Union[str, Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,use_memory_efficient_attention=__UpperCamelCase ,) lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : List[Any] = shard(__UpperCamelCase ) lowercase_ : Any = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
477
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["DPTFeatureExtractor"] lowerCamelCase_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
498
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __lowerCamelCase ( a_ : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(args.tf_model_dir , '''parameters.json''' ) __SCREAMING_SNAKE_CASE :Dict = json.loads(open(a_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): __SCREAMING_SNAKE_CASE :Tuple = args.output + '''.pt''' __SCREAMING_SNAKE_CASE :Union[str, Any] = OrderedDict() with tf.device('''/CPU:0''' ): __SCREAMING_SNAKE_CASE :Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) __SCREAMING_SNAKE_CASE :Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __SCREAMING_SNAKE_CASE :str = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): __SCREAMING_SNAKE_CASE :List[str] = 8 __SCREAMING_SNAKE_CASE :List[str] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __SCREAMING_SNAKE_CASE :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Any = torch.tensor(a_ ) elif key_name.startswith('''model/moe''' ): __SCREAMING_SNAKE_CASE :List[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player __SCREAMING_SNAKE_CASE :str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(a_ ) elif key_name.endswith('''/softmlp/kernel''' ): __SCREAMING_SNAKE_CASE :Tuple = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player __SCREAMING_SNAKE_CASE :Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :List[Any] = torch.tensor(a_ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = key_name[-9:-7] for i in range(16 ): __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) __SCREAMING_SNAKE_CASE :List[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(a_ ) elif key_name.startswith('''model/mlp''' ): __SCREAMING_SNAKE_CASE :Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player __SCREAMING_SNAKE_CASE :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name.endswith('''/p1/bias''' ): __SCREAMING_SNAKE_CASE :List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player __SCREAMING_SNAKE_CASE :List[str] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :int = torch.tensor(a_ ) elif key_name.endswith('''/p2/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player __SCREAMING_SNAKE_CASE :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Dict = torch.tensor(a_ ) elif key_name.endswith('''/p2/bias''' ): __SCREAMING_SNAKE_CASE :Dict = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player __SCREAMING_SNAKE_CASE :Optional[int] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :int = torch.tensor(a_ ) elif key_name.startswith('''model/ln''' ): __SCREAMING_SNAKE_CASE :Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player __SCREAMING_SNAKE_CASE :Dict = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): __SCREAMING_SNAKE_CASE :Any = '''model.blocks.%d.feed_forward.norm.weight''' % player __SCREAMING_SNAKE_CASE :List[Any] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Tuple = torch.tensor(a_ ) elif key_name.startswith('''model/att''' ): __SCREAMING_SNAKE_CASE :Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): __SCREAMING_SNAKE_CASE :Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __SCREAMING_SNAKE_CASE :Union[str, Any] = state[:, 0, :, :] __SCREAMING_SNAKE_CASE :Dict = state[:, 1, :, :] __SCREAMING_SNAKE_CASE :Union[str, Any] = state[:, 2, :, :] __SCREAMING_SNAKE_CASE :Optional[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Union[str, Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Any = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player __SCREAMING_SNAKE_CASE :List[Any] = torch.tensor(a_ ) __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name.endswith('''/o/kernel''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player __SCREAMING_SNAKE_CASE :Any = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.tensor(a_ ) elif key_name.startswith('''model/an''' ): __SCREAMING_SNAKE_CASE :Optional[int] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __SCREAMING_SNAKE_CASE :List[Any] = '''model.blocks.%d.self_attn.norm.bias''' % player __SCREAMING_SNAKE_CASE :Tuple = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): __SCREAMING_SNAKE_CASE :Optional[int] = '''model.blocks.%d.self_attn.norm.weight''' % player __SCREAMING_SNAKE_CASE :List[str] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Tuple = torch.tensor(a_ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): __SCREAMING_SNAKE_CASE :str = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] __SCREAMING_SNAKE_CASE :Optional[int] = '''model.%s.weight''' % nlayer __SCREAMING_SNAKE_CASE :int = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) if key_name.startswith('''model/wte''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''lm_head.weight''' __SCREAMING_SNAKE_CASE :Optional[Any] = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(a_ ) elif key_name.startswith('''model/wob''' ): __SCREAMING_SNAKE_CASE :Any = '''final_logits_bias''' __SCREAMING_SNAKE_CASE :int = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :List[Any] = state.reshape((1, -1) ) __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name == "model/dense/kernel": __SCREAMING_SNAKE_CASE :int = '''model.last_project.weight''' __SCREAMING_SNAKE_CASE :Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Dict = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": __SCREAMING_SNAKE_CASE :List[str] = '''model.last_project.bias''' __SCREAMING_SNAKE_CASE :Any = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Optional[Any] = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCamelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
498
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class _lowerCAmelCase ( __a ): _lowercase ='''data2vec-vision''' def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=224 , _UpperCamelCase=16 , _UpperCamelCase=3 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=True , _UpperCamelCase=[3, 5, 7, 11] , _UpperCamelCase=[1, 2, 3, 6] , _UpperCamelCase=True , _UpperCamelCase=0.4 , _UpperCamelCase=256 , _UpperCamelCase=1 , _UpperCamelCase=False , _UpperCamelCase=255 , **_UpperCamelCase , ) -> List[str]: super().__init__(**_UpperCamelCase ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = use_mask_token lowerCAmelCase_ = use_absolute_position_embeddings lowerCAmelCase_ = use_relative_position_bias lowerCAmelCase_ = use_shared_relative_position_bias lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ = out_indices lowerCAmelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ = use_auxiliary_head lowerCAmelCase_ = auxiliary_loss_weight lowerCAmelCase_ = auxiliary_channels lowerCAmelCase_ = auxiliary_num_convs lowerCAmelCase_ = auxiliary_concat_input lowerCAmelCase_ = semantic_loss_ignore_index class _lowerCAmelCase ( __a ): _lowercase =version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self ) -> float: return 1e-4
279
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): _lowercase =StableUnCLIPPipeline _lowercase =TEXT_TO_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_BATCH_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowercase =False def __a ( self ) -> Dict: lowerCAmelCase_ = 32 lowerCAmelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=_UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=_UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=_UpperCamelCase ) lowerCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCamelCase , layers_per_block=1 , upcast_attention=_UpperCamelCase , use_linear_projection=_UpperCamelCase , ) torch.manual_seed(0 ) lowerCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL() lowerCAmelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Tuple: if str(_UpperCamelCase ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> List[Any]: lowerCAmelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_UpperCamelCase ) def __a ( self ) -> str: lowerCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_UpperCamelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCAmelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ = pipe("anime turle" , generator=_UpperCamelCase , output_type="np" ) lowerCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
279
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase_ = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase_ = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase_ = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase_ = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase_ = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase_ = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase_ = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase_ = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase_ = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase_ = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase_ = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase_ = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase_ = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase_ = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase_ = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase_ = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase_ = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase_ = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase_ = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase_ = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase_ = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase_ = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase_ = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(__lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ = key.split(""".""" ) lowercase_ , lowercase_ = int(key_split[2] ), int(key_split[4] ) lowercase_ = config.vision_config.hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ = key.split(""".""" ) lowercase_ = int(key_split[3] ) lowercase_ = config.text_config.hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = rename_key(__lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase_ = val.squeeze_() else: lowercase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="groupvit-gcc-yfcc" , __lowerCAmelCase=False ) -> int: '''simple docstring''' lowercase_ = GroupViTConfig() lowercase_ = GroupViTModel(__lowerCAmelCase ).eval() lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowercase_ = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__lowerCAmelCase ) == 0) # verify result lowercase_ = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase_ = prepare_img() lowercase_ = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""" ) with torch.no_grad(): lowercase_ = model(**__lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": lowercase_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , __lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print("""Successfully saved processor and model to""" , __lowerCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__lowerCAmelCase , organization="""nielsr""" ) model.push_to_hub(__lowerCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
567
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : List[str] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "facebook/nllb-200-distilled-600M" lowercase__ = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowercase__ = "translator" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = LANGUAGE_CODES lowercase__ = ["text", "text", "text"] lowercase__ = ["text"] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''') lowercase_ = self.lang_to_code[src_lang] lowercase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase_ , return_tensors="""pt""" , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int): """simple docstring""" return self.model.generate(**lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase_)
567
1
'''simple docstring''' a : int = [0, 2, 4, 6, 8] a : Any = [1, 3, 5, 7, 9] def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __snake_case = 0 for digit in range(10 ): __snake_case = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __UpperCAmelCase , __UpperCAmelCase ) return result __snake_case = 0 for digita in range(10 ): __snake_case = digita if (remainder + digita) % 2 == 0: __snake_case = ODD_DIGITS else: __snake_case = EVEN_DIGITS for digita in other_parity_digits: __snake_case = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __UpperCAmelCase , __UpperCAmelCase , ) return result def __UpperCAmelCase ( _UpperCAmelCase : Dict = 9 ) -> int: __snake_case = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCAmelCase , 0 , [0] * length , __UpperCAmelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=2 , lowerCAmelCase__=2_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=None , lowerCAmelCase__=2 , lowerCAmelCase__=2 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = num_mel_bins __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = frequency_stride __SCREAMING_SNAKE_CASE = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __SCREAMING_SNAKE_CASE = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __SCREAMING_SNAKE_CASE = (self.max_length - self.patch_size) // self.time_stride + 1 __SCREAMING_SNAKE_CASE = frequency_out_dimension * time_out_dimension __SCREAMING_SNAKE_CASE = num_patches + 2 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_values, labels def snake_case_ ( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = ASTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_values""": input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Dict = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __lowercase : List[Any] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) __lowercase : List[str] = False __lowercase : List[str] = False __lowercase : Dict = False __lowercase : Optional[int] = False def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ASTModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""input_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = ASTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = torchaudio.load(UpperCamelCase_ ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""") if is_torchaudio_available() else None ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.default_feature_extractor __SCREAMING_SNAKE_CASE = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""").to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.default_feature_extractor __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prepare_audio() __SCREAMING_SNAKE_CASE = audio.squeeze().numpy() __SCREAMING_SNAKE_CASE = feature_extractor(lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , return_tensors="""pt""").to(lowerCAmelCase__) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 5_2_7)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4))
155
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] create_all_state(1 , UpperCamelCase_ , UpperCamelCase_ , [] , UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase_ , total_number - level + 2 ): current_list.append(UpperCamelCase_ ) create_all_state(i + 1 , UpperCamelCase_ , level - 1 , UpperCamelCase_ , UpperCamelCase_ ) current_list.pop() def _lowerCAmelCase ( UpperCamelCase_ ): for i in total_list: print(*UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
155
1
import torch from transformers import AutoModel class _UpperCAmelCase ( torch.nn.Module ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : str="sayef/fsner-bert-base-uncased" ) -> Optional[Any]: super(lowerCAmelCase_ , self ).__init__() __lowerCAmelCase = AutoModel.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) __lowerCAmelCase = torch.nn.CosineSimilarity(3 , 1e-08 ) __lowerCAmelCase = torch.nn.Softmax(dim=1 ) def lowercase ( self : List[Any] , **lowerCAmelCase_ : List[Any] ) -> Dict: return self.bert(**lowerCAmelCase_ ).last_hidden_state def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> List[str]: return token_embeddings.sum(2 , keepdim=lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=1 ) -> Any: return self.softmax(T * self.cos(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> Dict: __lowerCAmelCase = W_supports['sizes'].tolist() __lowerCAmelCase = W_supports['start_token_id'].item() __lowerCAmelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __lowerCAmelCase = self.BERT(**lowerCAmelCase_ ) __lowerCAmelCase = self.BERT(**lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = W_supports['input_ids'] == start_token_id __lowerCAmelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCAmelCase_ ): if i == 0: __lowerCAmelCase = 0 else: __lowerCAmelCase = support_sizes[i - 1] __lowerCAmelCase = S[s : s + size][start_token_masks[s : s + size]] __lowerCAmelCase = S[s : s + size][end_token_masks[s : s + size]] __lowerCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __lowerCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __lowerCAmelCase = torch.vstack((p_starts, p_start) ) __lowerCAmelCase = torch.vstack((p_ends, p_end) ) else: __lowerCAmelCase = p_start __lowerCAmelCase = p_end return p_starts, p_ends
421
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(lowerCAmelCase_, lowerCAmelCase_, bias=lowerCAmelCase_ ) __lowerCAmelCase = emb.weight.data return lin_layer def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = Namespace(**checkpoint['cfg']['model'] ) __lowerCAmelCase = checkpoint['model'] remove_ignore_keys_(lowerCAmelCase_ ) __lowerCAmelCase = state_dict['decoder.embed_tokens.weight'].shape[0] __lowerCAmelCase = {key.replace('decoder', 'model' ): val for key, val in state_dict.items()} __lowerCAmelCase = XGLMConfig( vocab_size=lowerCAmelCase_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='gelu', scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __lowerCAmelCase = XGLMForCausalLM(lowerCAmelCase_ ) __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) print(lowerCAmelCase_ ) __lowerCAmelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case : List[str] = parser.parse_args() _snake_case : Dict = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
421
1
from __future__ import annotations import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCamelCase = [] for num in range(len(__snake_case ) ): _UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: _UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def _snake_case ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
10
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "timesformer" def __init__(self , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=8 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1e-6 , _lowercase=True , _lowercase="divided_space_time" , _lowercase=0 , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) __a : Union[str, Any] = image_size __a : Optional[Any] = patch_size __a : Union[str, Any] = num_channels __a : Optional[int] = num_frames __a : Optional[int] = hidden_size __a : Any = num_hidden_layers __a : str = num_attention_heads __a : Optional[Any] = intermediate_size __a : Dict = hidden_act __a : List[Any] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Any = initializer_range __a : Tuple = layer_norm_eps __a : Optional[Any] = qkv_bias __a : Union[str, Any] = attention_type __a : Optional[Any] = drop_path_rate
63
"""simple docstring""" import os def __magic_name__ ( _lowerCamelCase : Dict ): __a : List[str] = len(grid[0] ) __a : int = len(_lowerCamelCase ) __a : Tuple = 0 __a : List[Any] = 0 __a : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCamelCase ): for j in range(n_rows - 3 ): __a : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __a : Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __a : List[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __a : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __a : str = max( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if max_product > largest: __a : Optional[Any] = max_product return largest def __magic_name__ ( ): __a : Tuple = [] with open(os.path.dirname(_lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) __a : Tuple = [[int(_lowerCamelCase ) for i in grid[j]] for j in range(len(_lowerCamelCase ) )] return largest_product(_lowerCamelCase ) if __name__ == "__main__": print(solution())
63
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =XLMTokenizer a : int =False def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase_: str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Union[str, Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = 'lower newer' UpperCamelCase_: str = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: str = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_: List[Any] = 'lower' UpperCamelCase_: Any = ['low', 'er</w>'] UpperCamelCase_: Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: int = tokens + ['<unk>'] UpperCamelCase_: Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: Union[str, Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCamelCase_: Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
57
"""simple docstring""" import os def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' with open(os.path.dirname(snake_case ) + "/p022_names.txt" ) as file: UpperCAmelCase__ : Tuple = str(file.readlines()[0] ) UpperCAmelCase__ : str = names.replace("\"" , "" ).split("," ) names.sort() UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = 0 for i, name in enumerate(snake_case ): for letter in name: name_score += ord(snake_case ) - 64 total_score += (i + 1) * name_score UpperCAmelCase__ : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
438
0
'''simple docstring''' def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _snake_case : str = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" _snake_case : Union[str, Any] = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] _snake_case : Dict = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
import argparse import os import re a__ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a__ = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings a__ = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() _snake_case : str = content.split("""\n""" ) _snake_case : List[str] = [] _snake_case : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _snake_case : Union[str, Any] = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 _snake_case : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _snake_case : Optional[Any] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _snake_case : int = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : _re_identifier.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) elif "\n".join(SCREAMING_SNAKE_CASE__ ) != content: return True def lowercase ( SCREAMING_SNAKE_CASE__ : bool = False ) -> int: _snake_case : List[Any] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for f in os.listdir(SCREAMING_SNAKE_CASE__ ) if f.endswith(""".py""" )] _snake_case : str = [sort_auto_mapping(SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = [f for f, d in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(SCREAMING_SNAKE_CASE__ )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a__ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
198
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Whether tp freeze the encoder.'} ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_4_2 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_4_2 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=lowerCamelCase__ , metadata={'help': 'Source language id for translation.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=lowerCamelCase__ , metadata={'help': 'Target language id for translation.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=lowerCamelCase__ , metadata={'help': '# num_beams to use for evaluation.'} ) SCREAMING_SNAKE_CASE : bool = field( default=lowerCamelCase__ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _A ( A__ , A__ , A__ ): """simple docstring""" logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(A__ , os.path.join(A__ , F"{split}_results.json" ) ) def _A ( ): """simple docstring""" __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(A__ , A__ , getattr(A__ , A__ ) ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): __lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowercase = SeqaSeqDataset # Get datasets __lowercase = ( dataset_class( A__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowercase = ( dataset_class( A__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowercase = ( dataset_class( A__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowercase = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) __lowercase = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) __lowercase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowercase = train_result.metrics __lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate(metric_key_prefix='''val''' ) __lowercase = data_args.n_val __lowercase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowercase = trainer.predict(test_dataset=A__ , metric_key_prefix='''test''' ) __lowercase = test_output.metrics __lowercase = data_args.n_test if trainer.is_world_process_zero(): __lowercase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: __lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) __lowercase = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _A ( A__ ): """simple docstring""" main() if __name__ == "__main__": main()
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
"""simple docstring""" from __future__ import annotations def lowercase ( UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" if b == 0: return (1, 0) ((A__) , (A__)) : Union[str, Any] =extended_euclid(UpperCamelCase , a % b ) A__ : Dict =a // b return (y, x - k * y) def lowercase ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" ((A__) , (A__)) : Dict =extended_euclid(UpperCamelCase , UpperCamelCase ) A__ : Dict =na * na A__ : Any =ra * x * na + ra * y * na return (n % m + m) % m def lowercase ( UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" ((A__) , (A__)) : Any =extended_euclid(UpperCamelCase , UpperCamelCase ) if b < 0: A__ : Tuple =(b % n + n) % n return b def lowercase ( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" A__ , A__ : int =invert_modulo(UpperCamelCase , UpperCamelCase ), invert_modulo(UpperCamelCase , UpperCamelCase ) A__ : Any =na * na A__ : Any =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
595
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 16 , UpperCamelCase__ : int = 88 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 1 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , ): super().__init__() A__ : Dict =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , in_channels=UpperCamelCase__ , num_layers=UpperCamelCase__ , dropout=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , cross_attention_dim=UpperCamelCase__ , attention_bias=UpperCamelCase__ , sample_size=UpperCamelCase__ , num_vector_embeds=UpperCamelCase__ , activation_fn=UpperCamelCase__ , num_embeds_ada_norm=UpperCamelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ : Dict =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ : List[str] =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ : Union[str, Any] =[1, 0] def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : bool = True , ): A__ : Optional[Any] =hidden_states A__ : Union[str, Any] =[] A__ : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ : Dict =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ : str =self.transformer_index_for_condition[i] A__ : Optional[int] =self.transformers[transformer_index]( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , timestep=UpperCamelCase__ , cross_attention_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ : Union[str, Any] =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ : Dict =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase__ )
595
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = list(range(len(A__ ) ) ) __lowercase = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) __lowercase = 0 __lowercase = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __lowercase = 1 max_value += value[i] capacity -= weight[i] else: __lowercase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __lowerCamelCase : Tuple = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE__ = int(re.match(r""".*layer_(\d*).*""" , __UpperCamelCase )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE__ = re.search(r"""[^\d](\d+)$""" , str(__UpperCamelCase ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) SCREAMING_SNAKE_CASE__ = int(bit_search.groups()[0] ) return bit_size // 8 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" if bloom_config_file == "": SCREAMING_SNAKE_CASE__ = BloomConfig() else: SCREAMING_SNAKE_CASE__ = BloomConfig.from_json_file(__UpperCamelCase ) if shard_model: SCREAMING_SNAKE_CASE__ = os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = sorted(filter(lambda __UpperCamelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = {"""weight_map""": {}, """metadata""": {}} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = BloomConfig() for j, file in enumerate(__UpperCamelCase ): print("""Processing file: {}""".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE__ = file.replace("""model_00""" , f"""model_0{i}""" ) SCREAMING_SNAKE_CASE__ = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE__ = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE__ = temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE__ = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE__ = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE__ = tensors[key] / pretraining_tp torch.save( __UpperCamelCase , os.path.join( __UpperCamelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): SCREAMING_SNAKE_CASE__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE__ = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__UpperCamelCase ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE__ = BloomConfig() SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME SCREAMING_SNAKE_CASE__ = total_size with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCamelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + """\n""" f.write(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ = BloomModel(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = sorted(filter(lambda __UpperCamelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = None for i, file in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE__ = file.replace("""model_00""" , f"""model_0{i}""" ) SCREAMING_SNAKE_CASE__ = torch.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE__ = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE__ = temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE__ = torch.cat([tensors[key], temp[key]] , dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE__ = tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE__ = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: SCREAMING_SNAKE_CASE__ = set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __lowerCamelCase : Dict = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
708
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "nllb-moe" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , _lowercase : Tuple=12_81_12 , _lowercase : List[Any]=10_24 , _lowercase : Any=12 , _lowercase : List[Any]=40_96 , _lowercase : str=16 , _lowercase : str=12 , _lowercase : Optional[int]=40_96 , _lowercase : List[Any]=16 , _lowercase : str=0.05 , _lowercase : Tuple=0.05 , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : Optional[Any]="relu" , _lowercase : str=10_24 , _lowercase : Tuple=0.1 , _lowercase : int=0.1 , _lowercase : Dict=0.0 , _lowercase : List[str]=0.02 , _lowercase : int=2 , _lowercase : Optional[Any]=True , _lowercase : List[Any]=False , _lowercase : List[str]="float32" , _lowercase : Optional[Any]=False , _lowercase : str=1_28 , _lowercase : int=64 , _lowercase : Optional[int]=4 , _lowercase : List[str]=4 , _lowercase : Union[str, Any]=0.0_01 , _lowercase : List[Any]=0.0_01 , _lowercase : List[str]="all" , _lowercase : Optional[Any]=False , _lowercase : int=False , _lowercase : Tuple=1.0 , _lowercase : Optional[int]=0.2 , _lowercase : Optional[int]=1 , _lowercase : List[Any]=0 , _lowercase : List[Any]=2 , _lowercase : int=False , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = router_z_loss_coef SCREAMING_SNAKE_CASE__ = router_aux_loss_coef SCREAMING_SNAKE_CASE__ = decoder_sparse_step SCREAMING_SNAKE_CASE__ = encoder_sparse_step SCREAMING_SNAKE_CASE__ = num_experts SCREAMING_SNAKE_CASE__ = expert_capacity SCREAMING_SNAKE_CASE__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) SCREAMING_SNAKE_CASE__ = router_dtype SCREAMING_SNAKE_CASE__ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE__ = batch_prioritized_routing SCREAMING_SNAKE_CASE__ = second_expert_policy SCREAMING_SNAKE_CASE__ = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE__ = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE__ = moe_token_dropout SCREAMING_SNAKE_CASE__ = output_router_logits super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
379
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> Tuple: _lowercase = EfficientNetConfig() _lowercase = CONFIG_MAP[model_name]['hidden_dim'] _lowercase = CONFIG_MAP[model_name]['width_coef'] _lowercase = CONFIG_MAP[model_name]['depth_coef'] _lowercase = CONFIG_MAP[model_name]['image_size'] _lowercase = CONFIG_MAP[model_name]['dropout_rate'] _lowercase = CONFIG_MAP[model_name]['dw_padding'] _lowercase = 'huggingface/label-files' _lowercase = 'imagenet-1k-id2label.json' _lowercase = 1000 _lowercase = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) _lowercase = {int(snake_case__ ): v for k, v in idalabel.items()} _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: _lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Tuple: _lowercase = CONFIG_MAP[model_name]['image_size'] _lowercase = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=snake_case__ , ) return preprocessor def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, Any] ) -> str: _lowercase = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _lowercase = sorted(set(snake_case__ ) ) _lowercase = len(snake_case__ ) _lowercase = {b: str(snake_case__ ) for b, i in zip(snake_case__ , range(snake_case__ ) )} _lowercase = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _lowercase = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _lowercase = {} for item in rename_keys: if item[0] in original_param_names: _lowercase = 'efficientnet.' + item[1] _lowercase = 'classifier.weight' _lowercase = 'classifier.bias' return key_mapping def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Dict , snake_case__ :List[Any] ) -> List[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _lowercase = key_mapping[key] if "_conv" in key and "kernel" in key: _lowercase = torch.from_numpy(snake_case__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowercase = torch.from_numpy(snake_case__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowercase = torch.from_numpy(np.transpose(snake_case__ ) ) else: _lowercase = torch.from_numpy(snake_case__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(snake_case__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any , snake_case__ :str , snake_case__ :Optional[Any] , snake_case__ :Tuple ) -> List[Any]: _lowercase = model_classes[model_name]( include_top=snake_case__ , weights='imagenet' , input_tensor=snake_case__ , input_shape=snake_case__ , pooling=snake_case__ , classes=1000 , classifier_activation='softmax' , ) _lowercase = original_model.trainable_variables _lowercase = original_model.non_trainable_variables _lowercase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowercase = param.numpy() _lowercase = list(tf_params.keys() ) # Load HuggingFace model _lowercase = get_efficientnet_config(snake_case__ ) _lowercase = EfficientNetForImageClassification(snake_case__ ).eval() _lowercase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _lowercase = rename_keys(snake_case__ ) replace_params(snake_case__ , snake_case__ , snake_case__ ) # Initialize preprocessor and preprocess input image _lowercase = convert_image_processor(snake_case__ ) _lowercase = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowercase = hf_model(**snake_case__ ) _lowercase = outputs.logits.detach().numpy() # Original model inference _lowercase = False _lowercase = CONFIG_MAP[model_name]['image_size'] _lowercase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowercase = image.img_to_array(snake_case__ ) _lowercase = np.expand_dims(snake_case__ , axis=0 ) _lowercase = original_model.predict(snake_case__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(snake_case__ , snake_case__ , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(snake_case__ ): os.mkdir(snake_case__ ) # Save converted model and image processor hf_model.save_pretrained(snake_case__ ) preprocessor.save_pretrained(snake_case__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) _lowercase = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(snake_case__ ) hf_model.push_to_hub(snake_case__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
67
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = {'vocab_file': 'spiece.model'} lowerCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowerCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class SCREAMING_SNAKE_CASE ( snake_case_ ): __magic_name__ : List[Any] = VOCAB_FILES_NAMES __magic_name__ : Dict = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=False , lowercase__ : Any=False , lowercase__ : Optional[Any]=False , lowercase__ : Dict=None , lowercase__ : Any=None , lowercase__ : List[str]=None , lowercase__ : int=None , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : List[str] , ): '''simple docstring''' a_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs a_ : Optional[Any] = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) a_ : List[Any] = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing a_ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token a_ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: a_ : Tuple = unk_token if pad_token is None else pad_token a_ : Any = eos_token if bos_token is None else bos_token else: a_ : Optional[int] = """<pad>""" if pad_token is None else pad_token a_ : str = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) a_ : Optional[int] = do_lower_case a_ : Any = remove_space a_ : List[str] = keep_accents a_ : int = vocab_file a_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # Used for whitespace normalization in input texts # fmt : off a_ : Dict = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing a_ : Tuple = re.compile( F"[{''.join(map(lowercase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]" ) def __getstate__( self : str ): '''simple docstring''' a_ : Optional[int] = self.__dict__.copy() a_ : Tuple = None return state def __setstate__( self : Tuple , lowercase__ : Optional[int] ): '''simple docstring''' a_ : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a_ : Union[str, Any] = {} a_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) def lowercase_ ( self : Union[str, Any] , lowercase__ : str ): '''simple docstring''' a_ : Optional[int] = self.non_printing_characters_re.sub("""""" , lowercase__ ) # Normalize whitespaces a_ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization a_ : str = unicodedata.normalize("""NFC""" , lowercase__ ) return text def lowercase_ ( self : Tuple , lowercase__ : str , **lowercase__ : Dict ): '''simple docstring''' a_ : Dict = self.preprocess_text(lowercase__ ) return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def lowercase_ ( self : Optional[int] , lowercase__ : str ): '''simple docstring''' return self.sp_model.PieceToId(lowercase__ ) def lowercase_ ( self : Dict , lowercase__ : int ): '''simple docstring''' return self.sp_model.IdToPiece(lowercase__ ) @staticmethod def lowercase_ ( lowercase__ : str ): '''simple docstring''' return out_string def lowercase_ ( self : Union[str, Any] , lowercase__ : List[str] ): '''simple docstring''' a_ : Dict = [] a_ : int = """""" a_ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token a_ : int = True a_ : Optional[int] = [] else: current_sub_tokens.append(lowercase__ ) a_ : List[str] = False out_string += self.sp_model.decode(lowercase__ ) return out_string def lowercase_ ( self : Dict ): '''simple docstring''' a_ : List[Any] = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : Optional[Any] , lowercase__ : str , lowercase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a_ : Any = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , """wb""" ) as fi: a_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def lowercase_ ( self : Union[str, Any] , lowercase__ : Union[str, List[str]] , lowercase__ : Union[str, bool] = False ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): a_ : List[str] = self.preprocess_text(lowercase__ ) a_ : str = self.sp_model.encode(lowercase__ ) else: a_ : Optional[Any] = [self.preprocess_text(lowercase__ ) for t in text] a_ : Any = self.sp_model.encode(lowercase__ ) if return_tensors is True or return_tensors == "pt": a_ : Tuple = torch.tensor(lowercase__ ) return token_ids def lowercase_ ( self : List[Any] , lowercase__ : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(lowercase__ ) def lowercase_ ( self : Dict , lowercase__ : "Conversation" ): '''simple docstring''' a_ : Dict = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] a_ : Any = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(lowercase__ ) + F"{self.bos_token}Bot:" ) return self.encode(text=lowercase__ )
442
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = 'naver-clova-ix/donut-base-finetuned-docvqa' UpperCAmelCase__ : List[Any] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) UpperCAmelCase__ : List[str] = 'document_qa' UpperCAmelCase__ : Dict = AutoProcessor UpperCAmelCase__ : List[Any] = VisionEncoderDecoderModel UpperCAmelCase__ : str = ['image', 'text'] UpperCAmelCase__ : List[Any] = ['text'] def __init__( self: List[Any] , *UpperCamelCase_: Any , **UpperCamelCase_: List[Any] ): if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: "Image" , UpperCamelCase_: str ): __lowerCamelCase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowerCamelCase = task_prompt.replace("""{user_input}""" , UpperCamelCase_ ) __lowerCamelCase = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors="""pt""" ).input_ids __lowerCamelCase = self.pre_processor(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] ): return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): __lowerCamelCase = self.pre_processor.batch_decode(UpperCamelCase_ )[0] __lowerCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowerCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowerCamelCase = re.sub(r"""<.*?>""" , """""" , UpperCamelCase_ , count=1 ).strip() # remove first task start token __lowerCamelCase = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
80
import os from collections.abc import Iterator def lowerCamelCase__ ( A__ : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(A__ ): __lowerCamelCase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip("""./""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return f'{i * " "}*' if i else "\n##" def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def lowerCamelCase__ ( A__ : str = "." ): '''simple docstring''' __lowerCamelCase = """""" for filepath in sorted(good_file_paths(A__ ) ): __lowerCamelCase, __lowerCamelCase = os.path.split(A__ ) if filepath != old_path: __lowerCamelCase = print_path(A__ , A__ ) __lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 __lowerCamelCase = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) __lowerCamelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(A__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('.')
80
1