code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''''' for i in table: res += inp[i - 1] return res def lowercase_ ( _snake_case ): return data[1:] + data[0] def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Any = '''''' for i in range(len(_snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = int("""0b""" + data[0] + data[-1] ,2 ) SCREAMING_SNAKE_CASE__ : int = int("""0b""" + data[1:3] ,2 ) return bin(s[row][col] )[2:] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = message[:4] SCREAMING_SNAKE_CASE__ : Tuple = message[4:] SCREAMING_SNAKE_CASE__ : Tuple = apply_table(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = xor(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = apply_sbox(_snake_case ,temp[:4] ) # noqa: E741 SCREAMING_SNAKE_CASE__ : int = apply_sbox(_snake_case ,temp[4:] ) SCREAMING_SNAKE_CASE__ : Dict = '''0''' * (2 - len(_snake_case )) + l # noqa: E741 SCREAMING_SNAKE_CASE__ : Tuple = '''0''' * (2 - len(_snake_case )) + r SCREAMING_SNAKE_CASE__ : Union[str, Any] = apply_table(l + r ,_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = xor(_snake_case ,_snake_case ) return temp + right if __name__ == "__main__": UpperCAmelCase__ : Dict = input('Enter 10 bit key: ') UpperCAmelCase__ : List[str] = input('Enter 8 bit message: ') UpperCAmelCase__ : Dict = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCAmelCase__ : str = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCAmelCase__ : Any = [2, 4, 3, 1] UpperCAmelCase__ : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase__ : List[str] = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase__ : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase__ : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase__ : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase__ : int = apply_table(key, paa_table) UpperCAmelCase__ : str = temp[:5] UpperCAmelCase__ : Tuple = temp[5:] UpperCAmelCase__ : List[str] = left_shift(left) UpperCAmelCase__ : Optional[Any] = left_shift(right) UpperCAmelCase__ : Dict = apply_table(left + right, pa_table) UpperCAmelCase__ : Tuple = left_shift(left) UpperCAmelCase__ : Union[str, Any] = left_shift(right) UpperCAmelCase__ : Any = left_shift(left) UpperCAmelCase__ : int = left_shift(right) UpperCAmelCase__ : Dict = apply_table(left + right, pa_table) # encryption UpperCAmelCase__ : Tuple = apply_table(message, IP) UpperCAmelCase__ : List[Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : List[Any] = temp[4:] + temp[:4] UpperCAmelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : Any = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase__ : Optional[Any] = apply_table(CT, IP) UpperCAmelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : List[str] = temp[4:] + temp[:4] UpperCAmelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase__ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
223
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _UpperCamelCase : str = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case__ ( datasets.BuilderConfig): a_ = None a_ = "utf-8" a_ = None a_ = None a_ = True # deprecated a_ = None # deprecated a_ = 10 << 20 # 10MB a_ = None class snake_case__ ( datasets.ArrowBasedBuilder): a_ = JsonConfig def A ( self : Union[str, Any] ) -> Optional[int]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) UpperCAmelCase_ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def A ( self : Optional[int] , _A : List[str] ) -> int: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): UpperCAmelCase_ : List[Any] = data_files if isinstance(_A , _A ): UpperCAmelCase_ : List[str] = [files] UpperCAmelCase_ : List[str] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): UpperCAmelCase_ : Optional[Any] = [files] UpperCAmelCase_ : List[Any] = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def A ( self : List[Any] , _A : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ : Union[str, Any] = self.config.features.arrow_schema.field(_A ).type UpperCAmelCase_ : int = pa_table.append_column(_A , pa.array([None] * len(_A ) , type=_A ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : Dict = table_cast(_A , self.config.features.arrow_schema ) return pa_table def A ( self : Optional[Any] , _A : List[Any] ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Optional[int] = json.load(_A ) # We keep only the field we are interested in UpperCAmelCase_ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple) ): UpperCAmelCase_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : str = {col: [row.get(_A ) for row in dataset] for col in keys} else: UpperCAmelCase_ : Tuple = dataset UpperCAmelCase_ : List[str] = pa.Table.from_pydict(_A ) yield file_idx, self._cast_table(_A ) # If the file has one json object per line else: with open(_A , '''rb''' ) as f: UpperCAmelCase_ : Tuple = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ : Optional[Any] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ : Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: UpperCAmelCase_ : Optional[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ : List[Any] = batch.decode(self.config.encoding , errors=_A ).encode('''utf-8''' ) try: while True: try: UpperCAmelCase_ : int = paj.read_json( io.BytesIO(_A ) , read_options=paj.ReadOptions(block_size=_A ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid ) and "straddling" not in str(_A ) or block_size > len(_A ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(_A )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : List[Any] = json.load(_A ) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : Any = {col: [row.get(_A ) for row in dataset] for col in keys} UpperCAmelCase_ : Optional[int] = pa.Table.from_pydict(_A ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise ValueError(F"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(_A ) break else: logger.error(F"Failed to read file '{file}' with error {type(_A )}: {e}" ) raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A ) batch_idx += 1
541
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=224 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.5, 0.5, 0.5] , lowercase__=[0.5, 0.5, 0.5] , ) -> Any: SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : int = min_resolution SCREAMING_SNAKE_CASE : Optional[Any] = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : List[str] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : int = image_mean SCREAMING_SNAKE_CASE : str = image_std def _UpperCamelCase ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' snake_case__ : Dict = ViTImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : List[str] = EfficientFormerImageProcessorTester(self ) @property def _UpperCamelCase ( self ) -> int: return self.image_proc_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: pass def _UpperCamelCase ( self ) -> List[str]: # Initialize image_processor SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def _UpperCamelCase ( self ) -> int: # Initialize image_processor SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE : int = image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processor SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Tuple = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
714
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : int = CLIPTokenizer snake_case__ : Union[str, Any] = CLIPTokenizerFast snake_case__ : str = True snake_case__ : Optional[int] = {} snake_case__ : int = False def _UpperCamelCase ( self ) -> Tuple: super().setUp() # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE : List[str] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase__ ) ) def _UpperCamelCase ( self , **lowercase__ ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def _UpperCamelCase ( self , **lowercase__ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : Dict = 'lower newer' return input_text, output_text def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def _UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE : List[str] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE : Tuple = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE : Union[str, Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE : Tuple = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE : int = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE : List[Any] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : int = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> int: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{text_of_1_token} {text_of_1_token}""" SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) SCREAMING_SNAKE_CASE : Optional[int] = F""" {text}""" SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def _UpperCamelCase ( self ) -> int: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _UpperCamelCase ( self ) -> Union[str, Any]: super().test_tokenization_python_rust_equals() def _UpperCamelCase ( self ) -> int: # CLIP always lower cases letters pass
179
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Union[str, Any] = logging.get_logger(__name__) A__: List[str] = {'''vocab_file''': '''sentencepiece.bpe.model'''} A__: str = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } A__: int = { '''camembert-base''': 512, } A__: Any = '''▁''' class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = ["input_ids", "attention_mask"] def __init__( self :Tuple , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :str="</s>" , SCREAMING_SNAKE_CASE :List[str]="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE :List[str]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Tuple=["<s>NOTUSED", "</s>NOTUSED"] , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :Any , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : Dict =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : str ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) _a : str =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _a : Union[str, Any] ={"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} _a : Union[str, Any] =len(self.fairseq_tokens_to_ids ) _a : Dict =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Tuple =[self.cls_token_id] _a : Optional[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : str =[self.sep_token_id] _a : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : int ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :str ) -> Optional[Any]: '''simple docstring''' _a : List[Any] =[] _a : Tuple ="""""" _a : str =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token _a : List[Any] =True _a : List[str] =[] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) _a : List[Any] =False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __getstate__( self :Optional[int] ) -> List[Any]: '''simple docstring''' _a : Union[str, Any] =self.__dict__.copy() _a : int =None return state def __setstate__( self :Tuple , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[Any]: '''simple docstring''' _a : Optional[Any] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Optional[int] ={} _a : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : List[str] =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Any =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ): if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): lowerCAmelCase_ ,lowerCAmelCase_ = image.size else: lowerCAmelCase_ ,lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ ,lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] lowerCAmelCase_ = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase ( __a , unittest.TestCase ): __A : Tuple = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): lowerCAmelCase_ = DetaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) lowerCAmelCase_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values lowerCAmelCase_ ,lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self ): # prepare image and target lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DetaImageProcessor() lowerCAmelCase_ = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
713
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging A_ : List[str] =logging.get_logger(__name__) def snake_case_ ( __snake_case : int) -> int: lowerCAmelCase_ = R'''\w+[.]\d+''' lowerCAmelCase_ = re.findall(__snake_case , __snake_case) for pat in pats: lowerCAmelCase_ = key.replace(__snake_case , '''_'''.join(pat.split('''.'''))) return key def snake_case_ ( __snake_case : str , __snake_case : List[str] , __snake_case : List[Any]) -> List[str]: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( __snake_case : List[str] , __snake_case : Any , __snake_case : int=42) -> Optional[int]: # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__snake_case)) lowerCAmelCase_ = flatten_dict(__snake_case) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__snake_case) lowerCAmelCase_ = tuple(renamed_pt_key.split('''.''')) # Correctly rename weight parameters lowerCAmelCase_ ,lowerCAmelCase_ = rename_key_and_reshape_tensor(__snake_case , __snake_case , __snake_case) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''') # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__snake_case) return unflatten_dict(__snake_case)
606
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} SCREAMING_SNAKE_CASE_ = 'zero2' SCREAMING_SNAKE_CASE_ = 'zero3' SCREAMING_SNAKE_CASE_ = [ZEROa, ZEROa] def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = parameterized.to_safe_name('''_'''.join(str(_lowercase ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Dict: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Union[str, Any]: UpperCamelCase = models[model] UpperCamelCase = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = 1 , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Dict: UpperCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=lowerCamelCase_) UpperCamelCase = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_)}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCamelCase = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() UpperCamelCase = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] UpperCamelCase = self.get_launcher(lowerCamelCase_) UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_=False) -> List[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) UpperCamelCase = min(2 , get_gpu_count()) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : torch.FloatTensor lowerCamelCase : torch.FloatTensor lowerCamelCase : Optional[torch.FloatTensor] =None class __UpperCamelCase ( a__ , a__ ): lowerCamelCase : Tuple =2 @register_to_config def __init__( self , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 1.007 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 0.05 , lowerCAmelCase__ = 50 , ) -> Union[str, Any]: # standard deviation of the initial noise distribution a : Tuple = sigma_max # setable values a : int = None a : np.IntTensor = None a : torch.FloatTensor = None # sigma(t_i) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[str]: a : List[Any] = num_inference_steps a : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() a : int = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) a : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] a : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa , device=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: a : str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: a : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) a : Union[str, Any] = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase__ ).to(sample.device ) a : Any = sigma + gamma * sigma a : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> Union[KarrasVeOutput, Tuple]: a : Union[str, Any] = sample_hat + sigma_hat * model_output a : Tuple = (sample_hat - pred_original_sample) / sigma_hat a : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> Union[KarrasVeOutput, Tuple]: a : Optional[int] = sample_prev + sigma_prev * model_output a : str = (sample_prev - pred_original_sample) / sigma_prev a : Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: raise NotImplementedError()
709
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class __UpperCamelCase ( nn.Module ): lowerCamelCase : int lowerCamelCase : jnp.dtype =jnp.floataa def __a ( self ) -> Tuple: a : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ ) -> Optional[Any]: a, a, a, a : List[str] = hidden_states.shape a : List[Any] = jax.image.resize( lowerCAmelCase__ , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) a : List[str] = self.conv(lowerCAmelCase__ ) return hidden_states class __UpperCamelCase ( nn.Module ): lowerCamelCase : int lowerCamelCase : jnp.dtype =jnp.floataa def __a ( self ) -> Dict: a : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ ) -> Tuple: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) a : Tuple = self.conv(lowerCAmelCase__ ) return hidden_states class __UpperCamelCase ( nn.Module ): lowerCamelCase : int lowerCamelCase : int =None lowerCamelCase : float =0.0 lowerCamelCase : bool =None lowerCamelCase : jnp.dtype =jnp.floataa def __a ( self ) -> int: a : Dict = self.in_channels if self.out_channels is None else self.out_channels a : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a : List[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a : List[Any] = nn.Dense(lowerCAmelCase__ , dtype=self.dtype ) a : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a : Optional[int] = nn.Dropout(self.dropout_prob ) a : Dict = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a : Union[str, Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a : List[str] = None if use_nin_shortcut: a : Optional[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ) -> str: a : int = hidden_states a : Tuple = self.norma(lowerCAmelCase__ ) a : Any = nn.swish(lowerCAmelCase__ ) a : int = self.conva(lowerCAmelCase__ ) a : int = self.time_emb_proj(nn.swish(lowerCAmelCase__ ) ) a : Tuple = jnp.expand_dims(jnp.expand_dims(lowerCAmelCase__ , 1 ) , 1 ) a : Dict = hidden_states + temb a : str = self.norma(lowerCAmelCase__ ) a : List[Any] = nn.swish(lowerCAmelCase__ ) a : List[str] = self.dropout(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = self.conva(lowerCAmelCase__ ) if self.conv_shortcut is not None: a : Tuple = self.conv_shortcut(lowerCAmelCase__ ) return hidden_states + residual
31
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Dict = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Dict = 8 # DPR tok lowerCamelCase_ : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Optional[int] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : List[str] = os.path.join(__magic_name__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCamelCase_ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase_ : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCamelCase_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase_ : Any = {"unk_token": "<unk>"} lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : Tuple = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : int = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: lowerCamelCase_ : Optional[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: lowerCamelCase_ : str = self.get_dummy_dataset() lowerCamelCase_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Tuple = dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : bool ) -> List[Any]: lowerCamelCase_ : Optional[int] = self.get_dummy_dataset() lowerCamelCase_ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowerCamelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , "dataset" ) lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCamelCase_ : List[Any] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __magic_name__ ) , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : str = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowerCamelCase_ : Optional[int] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__magic_name__ , open(__magic_name__ , "wb" ) ) lowerCamelCase_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowerCamelCase_ : Any = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : int = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: lowerCamelCase_ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Dict = self.get_dummy_dataset() retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : Optional[int] = 1 lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: lowerCamelCase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : str = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Dict = self.get_dummy_legacy_index_retriever() lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: lowerCamelCase_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : Optional[int] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Optional[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: import torch lowerCamelCase_ : Dict = 1 lowerCamelCase_ : List[str] = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : str = [[5, 7], [10, 11]] lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Dict = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , np.ndarray ) lowerCamelCase_ : Dict = retriever( __magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ , return_tensors="pt" , ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase_ : Any = 1 lowerCamelCase_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) retriever.set_ctx_encoder_tokenizer(__magic_name__ ) lowerCamelCase_ : List[Any] = [[5, 7], [10, 11]] lowerCamelCase_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) self.assertEqual( len(__magic_name__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , __magic_name__ ) # check for doc token related keys in dictionary.
488
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : int = False, False, False @dataclass class lowerCAmelCase : UpperCAmelCase__ = None UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = None # Automatically constructed UpperCAmelCase__ = "dict" UpperCAmelCase__ = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase__ = field(default="""Audio""", init=__UpperCamelCase, repr=__UpperCamelCase ) def __call__( self : Optional[Any] ) -> Dict: return self.pa_type def A_ ( self : List[str] , UpperCAmelCase : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase__ : List[str] = BytesIO() sf.write(UpperCAmelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase__ : Optional[int] = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCamelCase__ : Union[str, Any] = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767 lowerCamelCase__ : str = BytesIO(bytes() ) sf.write(UpperCAmelCase , UpperCAmelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def A_ ( self : int , UpperCAmelCase : dict , UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) lowerCamelCase__ , lowerCamelCase__ : Any = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err lowerCamelCase__ : Tuple = xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: lowerCamelCase__ : Optional[Any] = token_per_repo_id or {} lowerCamelCase__ : Dict = path.split('::' )[-1] try: lowerCamelCase__ : int = string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] lowerCamelCase__ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase__ : Tuple = None with xopen(UpperCAmelCase , 'rb' , use_auth_token=UpperCAmelCase ) as f: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = sf.read(UpperCAmelCase ) else: lowerCamelCase__ , lowerCamelCase__ : List[str] = sf.read(UpperCAmelCase ) lowerCamelCase__ : Any = array.T if self.mono: lowerCamelCase__ : Tuple = librosa.to_mono(UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase__ : int = librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate ) lowerCamelCase__ : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A_ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def A_ ( self : Union[str, Any] , UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowerCamelCase__ : Tuple = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) lowerCamelCase__ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase__ : Union[str, Any] = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowerCamelCase__ : Tuple = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): lowerCamelCase__ : Any = pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCamelCase__ : int = storage.field('bytes' ) else: lowerCamelCase__ : Dict = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCamelCase__ : Union[str, Any] = storage.field('path' ) else: lowerCamelCase__ : Optional[int] = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowerCamelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def A_ ( self : Dict , UpperCAmelCase : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase : int ): with xopen(UpperCAmelCase , 'rb' ) as f: lowerCamelCase__ : Any = f.read() return bytes_ lowerCamelCase__ : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__ : List[str] = pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCamelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type )
188
_UpperCAmelCase : str = """Tobias Carryer""" from time import time class lowerCAmelCase : def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str=int(time() ) ) -> Optional[int]: # noqa: B008 lowerCamelCase__ : List[Any] = multiplier lowerCamelCase__ : Tuple = increment lowerCamelCase__ : int = modulo lowerCamelCase__ : Any = seed def A_ ( self : Optional[int] ) -> List[Any]: lowerCamelCase__ : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _UpperCAmelCase : List[Any] = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
188
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase_ ( __a="" ) -> str: a__ : Dict = tempfile.mkdtemp() return os.path.join(__a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : List[str] ): a__ : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 a__ : Tuple = AgentAudio(lowerCamelCase__ ) a__ : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor a__, a__ : int = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1E-4 ) ) def _UpperCamelCase( self : int ): a__ : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 a__ : Any = get_new_path(suffix=".wav" ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 16_000 ) a__ : int = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Union[str, Any] = torch.randint(0 , 256 , (64, 64, 3) ) a__ : Optional[int] = AgentImage(lowerCamelCase__ ) a__ : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def _UpperCamelCase( self : Optional[Any] ): a__ : Union[str, Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" a__ : Any = Image.open(lowerCamelCase__ ) a__ : Tuple = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def _UpperCamelCase( self : str ): a__ : Any = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" a__ : Any = Image.open(lowerCamelCase__ ) a__ : Tuple = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Tuple = "Hey!" a__ : Tuple = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
37
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
1
'''simple docstring''' from __future__ import annotations lowercase_ = tuple[int, int, int] lowercase_ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase_ = "EGZWVONAHDCLFQMSIPJBYUKXTR" lowercase_ = "FOBHMDKEXQNRAULPGSJVTYICZW" lowercase_ = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- lowercase_ = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- lowercase_ = "RMDJXFUWGISLHVTCQNKYPBEZOA" lowercase_ = "SGLCPQWZHKXAREONTFBVIYJUDM" lowercase_ = "HVSICLTYKQUBXDWAJZOMFGPREN" lowercase_ = "RZWQHFMVDBKICJLNTUXAGYPSOE" lowercase_ = "LFKIJODBEGAMQPXVUHYSTCZRWN" lowercase_ = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def lowerCAmelCase (__A , __A , __A): """simple docstring""" if (unique_rotsel := len(set(__A))) < 3: _a = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(__A) # Checks if rotor positions are valid _a , _a , _a = rotpos if not 0 < rotorposa <= len(__A): _a = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(__A) if not 0 < rotorposa <= len(__A): _a = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__A) if not 0 < rotorposa <= len(__A): _a = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__A) # Validates string and returns dict _a = _plugboard(__A) return rotpos, rotsel, pbdict def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): _a = F'''Plugboard setting isn\'t type string ({type(__A)})''' raise TypeError(__A) elif len(__A) % 2 != 0: _a = F'''Odd number of symbols ({len(__A)})''' raise Exception(__A) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''') # Checks if all characters are unique _a = set() for i in pbstring: if i not in abc: _a = F'''\'{i}\' not in list of symbols''' raise Exception(__A) elif i in tmppbl: _a = F'''Duplicate symbol ({i})''' raise Exception(__A) else: tmppbl.add(__A) del tmppbl # Created the dictionary _a = {} for j in range(0 , len(__A) - 1 , 2): _a = pbstring[j + 1] _a = pbstring[j] return pb def lowerCAmelCase (__A , __A , __A = (rotora, rotora, rotora) , __A = "" , ): """simple docstring""" _a = text.upper() _a , _a , _a = _validator( __A , __A , plugb.upper()) _a , _a , _a = rotor_position _a , _a , _a = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _a = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _a = plugboard[symbol] # rotor ra -------------------------- _a = abc.index(__A) + rotorposa _a = rotora[index % len(__A)] # rotor rb -------------------------- _a = abc.index(__A) + rotorposa _a = rotora[index % len(__A)] # rotor rc -------------------------- _a = abc.index(__A) + rotorposa _a = rotora[index % len(__A)] # reflector -------------------------- # this is the reason you don't need another machine to decipher _a = reflector[symbol] # 2nd rotors _a = abc[rotora.index(__A) - rotorposa] _a = abc[rotora.index(__A) - rotorposa] _a = abc[rotora.index(__A) - rotorposa] # 2nd plugboard if symbol in plugboard: _a = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__A): _a = 0 rotorposa += 1 if rotorposa >= len(__A): _a = 0 rotorposa += 1 if rotorposa >= len(__A): _a = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__A) return "".join(__A) if __name__ == "__main__": lowercase_ = "This is my Python script that emulates the Enigma machine from WWII." lowercase_ = (1, 1, 1) lowercase_ = "pictures" lowercase_ = (rotora, rotora, rotora) lowercase_ = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
704
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = 256 class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = ['melgan'] def __init__(self , A , A , A , A , A , ) -> None: """simple docstring""" super().__init__() # From MELGAN _a = math.log(1E-5 ) # Matches MelGAN training. _a = 4.0 # Largest value for most examples _a = 128 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def a__ (self , A , A=(-1.0, 1.0) , A=False ) -> List[str]: """simple docstring""" _a , _a = output_range if clip: _a = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. _a = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a__ (self , A , A=(-1.0, 1.0) , A=False ) -> Optional[Any]: """simple docstring""" _a , _a = input_range _a = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. _a = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a__ (self , A , A , A ) -> Optional[int]: """simple docstring""" _a = input_tokens > 0 _a , _a = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) _a , _a = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a__ (self , A , A , A ) -> Any: """simple docstring""" _a = noise_time if not torch.is_tensor(A ): _a = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _a = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _a = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__(self , A , A = None , A = 100 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(A )}.''' ) _a = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _a = np.zeros([1, 0, self.n_dims] , np.floataa ) _a = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: _a = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _a = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _a = ones _a = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) _a = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _a = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _a = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _a = self.scheduler.step(A , A , A , generator=A ).prev_sample _a = self.scale_to_features(A , input_range=[-1.0, 1.0] ) _a = mel[:1] _a = mel.cpu().float().numpy() _a = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": _a = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _a = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
352
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _A , unittest.TestCase ): lowercase = None lowercase = BloomTokenizerFast lowercase = BloomTokenizerFast lowercase = True lowercase = False lowercase = 'tokenizer_file' lowercase = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def __a ( self : str ) -> List[str]: '''simple docstring''' super().setUp() lowercase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Union[str, Any] , **__lowerCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __a ( self : List[Any] ) -> str: '''simple docstring''' lowercase = self.get_rust_tokenizer() lowercase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase = tokenizer.batch_encode_plus(__lowerCamelCase )['''input_ids'''] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowercase = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __a ( self : List[Any] , __lowerCamelCase : List[Any]=6 ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase = '''This is a simple input''' lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase = ('''This is a simple input''', '''This is a pair''') lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.batch_encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.encode(__lowerCamelCase , max_length=__lowerCamelCase ) tokenizer_r.batch_encode_plus(__lowerCamelCase , max_length=__lowerCamelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase = None # Hotfixing padding = None self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='''max_length''' , ) def __a ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_rust_tokenizer() lowercase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__lowerCamelCase ) lowercase = next(iter(__lowerCamelCase ) )['''premise'''] # pick up one data lowercase = list(sample_data.values() ) lowercase = list(map(tokenizer.encode , __lowerCamelCase ) ) lowercase = [tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) for x in output_tokens] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __a ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
604
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A__ ) for k, v in self.__dict__.items()} )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : List[Any] = LEDConfig UpperCamelCase_ : Tuple = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=37 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Tuple=4 , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : str = eos_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : List[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : Dict = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : int = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : Tuple = prepare_led_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tf.concat( [tf.zeros_like(UpperCAmelCase_ )[:, :-1], tf.ones_like(UpperCAmelCase_ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : int = global_attention_mask return config, inputs_dict def _A ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : str = TFLEDModel(config=UpperCAmelCase_ ).get_decoder() SCREAMING_SNAKE_CASE : str = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : List[str] = input_ids[:1, :] SCREAMING_SNAKE_CASE : Any = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # first forward pass SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : List[str] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Tuple = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase_ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : int = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : int = False UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ ) def _A ( self : Optional[int] ): self.config_tester.run_common_tests() def _A ( self : int ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : List[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = self.model_tester.seq_length SCREAMING_SNAKE_CASE : List[str] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(UpperCAmelCase_ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_decoder_attentions_output(UpperCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _A ( self : List[Any] ): pass def _A ( self : Optional[Any] ): # TODO: Head-masking not yet implement pass def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) snake_case = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : int = (1, 1024, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE : Any = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Optional[int] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Any = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 , rtol=1E-3 )
62
"""simple docstring""" import math from collections.abc import Callable def UpperCAmelCase ( snake_case : Callable[[float], float] , snake_case : float , snake_case : float ): _lowerCAmelCase:float = xa _lowerCAmelCase:float = xa while True: if x_n == x_na or function(snake_case ) == function(snake_case ): raise ZeroDivisionError('''float division by zero, could not find root''' ) _lowerCAmelCase:float = x_na - ( function(snake_case ) / ((function(snake_case ) - function(snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase:Optional[int] = x_na _lowerCAmelCase:Dict = x_na def UpperCAmelCase ( snake_case : float ): return math.pow(snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
227
0
'''simple docstring''' import random def UpperCamelCase__ ( _lowercase : int , _lowercase : float , _lowercase : bool = False ) -> dict: __UpperCAmelCase: dict = {i: [] for i in range(_lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowercase ): for j in range(i + 1 , _lowercase ): if random.random() < probability: graph[i].append(_lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowercase ) return graph def UpperCamelCase__ ( _lowercase : int ) -> dict: return { i: [j for j in range(_lowercase ) if i != j] for i in range(_lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
466
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake SCREAMING_SNAKE_CASE_ = numpy.array([0, 0]) SCREAMING_SNAKE_CASE_ = numpy.array([0.5, 0.866_0254]) SCREAMING_SNAKE_CASE_ = numpy.array([1, 0]) SCREAMING_SNAKE_CASE_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] , _lowercase : int ) -> list[numpy.ndarray]: __UpperCAmelCase: int = initial_vectors for _ in range(_lowercase ): __UpperCAmelCase: Any = iteration_step(_lowercase ) return vectors def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> list[numpy.ndarray]: __UpperCAmelCase: Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): __UpperCAmelCase: Union[str, Any] = vectors[i + 1] new_vectors.append(_lowercase ) __UpperCAmelCase: Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase__ ( _lowercase : numpy.ndarray , _lowercase : float ) -> numpy.ndarray: __UpperCAmelCase: Tuple = numpy.radians(_lowercase ) __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = numpy.cos(_lowercase ), numpy.sin(_lowercase ) __UpperCAmelCase: Tuple = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowercase , _lowercase ) def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> None: __UpperCAmelCase: Union[str, Any] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __UpperCAmelCase, __UpperCAmelCase: Dict = zip(*_lowercase ) plt.plot(_lowercase , _lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
466
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["input_values", "padding_mask"] def __init__( self : Dict , lowercase__ : int = 1 , lowercase__ : int = 2_4_0_0_0 , lowercase__ : float = 0.0 , lowercase__ : float = None , lowercase__ : float = None , **lowercase__ : List[Any] , ): super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__ ) __lowercase : List[Any] = chunk_length_s __lowercase : Union[str, Any] = overlap @property def snake_case ( self : Dict ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case ( self : str ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : str , lowercase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase__ : Optional[Union[bool, str, PaddingStrategy]] = None , lowercase__ : Optional[bool] = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs __lowercase : List[str] = True __lowercase : str = bool( isinstance(lowercase__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase : Union[str, Any] = [np.asarray(lowercase__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowercase__ , np.ndarray ): __lowercase : str = np.asarray(lowercase__ , dtype=np.floataa ) elif isinstance(lowercase__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __lowercase : Tuple = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __lowercase : List[Any] = [np.asarray(lowercase__ ).T] # verify inputs are valid for idx, example in enumerate(lowercase__ ): if example.ndim > 2: raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' ) __lowercase : Optional[int] = None __lowercase : List[str] = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __lowercase : List[str] = min(array.shape[0] for array in raw_audio ) __lowercase : Optional[Any] = int(np.floor(max_length / self.chunk_stride ) ) __lowercase : List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __lowercase : Optional[Any] = max(array.shape[0] for array in raw_audio ) __lowercase : int = int(np.ceil(max_length / self.chunk_stride ) ) __lowercase : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length __lowercase : List[str] = "max_length" else: __lowercase : List[str] = input_values # normal padding on batch if padded_inputs is None: __lowercase : List[str] = self.pad( lowercase__ , max_length=lowercase__ , truncation=lowercase__ , padding=lowercase__ , return_attention_mask=lowercase__ , ) if padding: __lowercase : int = padded_inputs.pop("attention_mask" ) __lowercase : Any = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: __lowercase : Optional[int] = example[..., None] input_values.append(example.T ) __lowercase : List[str] = input_values if return_tensors is not None: __lowercase : str = padded_inputs.convert_to_tensors(lowercase__ ) return padded_inputs
575
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
575
1
import argparse import os import re import packaging.version __SCREAMING_SNAKE_CASE : Union[str, Any] = '''examples/''' __SCREAMING_SNAKE_CASE : Tuple = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __SCREAMING_SNAKE_CASE : Tuple = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __SCREAMING_SNAKE_CASE : List[str] = '''README.md''' def snake_case_ ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : List[Any] ): '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase =f.read() _lowerCAmelCase , _lowerCAmelCase =REPLACE_PATTERNS[pattern] _lowerCAmelCase =replace.replace("""VERSION""" , lowercase__ ) _lowerCAmelCase =re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowercase__ ) def snake_case_ ( lowercase__ : Union[str, Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="""examples""" ) def snake_case_ ( lowercase__ : Dict , lowercase__ : str=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase ="""🤗 Transformers currently provides the following architectures""" _lowerCAmelCase ="""1. Want to contribute a new model?""" with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase =f.readlines() # Find the start of the list. _lowerCAmelCase =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _lowerCAmelCase =lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowercase__ ) def snake_case_ ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: _lowerCAmelCase =f.read() _lowerCAmelCase =REPLACE_PATTERNS["""init"""][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def snake_case_ ( lowercase__ : Any=False ): '''simple docstring''' _lowerCAmelCase =get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _lowerCAmelCase =default_version.base_version elif patch: _lowerCAmelCase =f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: _lowerCAmelCase =f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. _lowerCAmelCase =input(f"Which version are you releasing? [{default_version}]" ) if len(lowercase__ ) == 0: _lowerCAmelCase =default_version print(f"Updating version to {version}." ) global_version_update(lowercase__ , patch=lowercase__ ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =get_version() _lowerCAmelCase =f"{current_version.major}.{current_version.minor + 1}.0.dev0" _lowerCAmelCase =current_version.base_version # Check with the user we got that right. _lowerCAmelCase =input(f"Which version are we developing now? [{dev_version}]" ) if len(lowercase__ ) == 0: _lowerCAmelCase =dev_version print(f"Updating version to {version}." ) global_version_update(lowercase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
149
from maths.prime_factors import prime_factors def snake_case_ ( lowercase__ : int ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase =f"Input value of [number={number}] must be an integer" raise TypeError(lowercase__ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
149
1
"""simple docstring""" import os from distutils.util import strtobool def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' for e in env_keys: _lowerCamelCase : List[Any] = int(os.environ.get(_lowerCamelCase , -1 ) ) if val >= 0: return val return default def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return strtobool(_lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="no" ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return value
46
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): def _UpperCAmelCase ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = load_tool("text-to-speech" ) self.tool.setup() def _UpperCAmelCase ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = self.tool("hey" ) UpperCAmelCase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = self.tool("hey" ) UpperCAmelCase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
475
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "switch_transformers" __lowerCamelCase : str = ["past_key_values"] __lowerCamelCase : Any = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _lowerCAmelCase=32128 , _lowerCAmelCase=768 , _lowerCAmelCase=64 , _lowerCAmelCase=2048 , _lowerCAmelCase=64 , _lowerCAmelCase=12 , _lowerCAmelCase=3 , _lowerCAmelCase=12 , _lowerCAmelCase=3 , _lowerCAmelCase=12 , _lowerCAmelCase=8 , _lowerCAmelCase=False , _lowerCAmelCase=0.01 , _lowerCAmelCase="float32" , _lowerCAmelCase=False , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.001 , _lowerCAmelCase=0.001 , _lowerCAmelCase=1.0 , _lowerCAmelCase="relu" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ) -> Optional[int]: _lowerCAmelCase = vocab_size _lowerCAmelCase = d_model _lowerCAmelCase = d_kv _lowerCAmelCase = d_ff _lowerCAmelCase = num_sparse_encoder_layers _lowerCAmelCase = num_layers _lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _lowerCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: _lowerCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _lowerCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: _lowerCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers _lowerCAmelCase = num_heads _lowerCAmelCase = num_experts _lowerCAmelCase = expert_capacity _lowerCAmelCase = router_bias _lowerCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _lowerCAmelCase = router_dtype _lowerCAmelCase = router_ignore_padding_tokens _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_factor _lowerCAmelCase = feed_forward_proj _lowerCAmelCase = use_cache _lowerCAmelCase = add_router_probs _lowerCAmelCase = router_z_loss_coef _lowerCAmelCase = router_aux_loss_coef _lowerCAmelCase = self.feed_forward_proj.split("-" ) _lowerCAmelCase = act_info[-1] _lowerCAmelCase = act_info[0] == "gated" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase = "gelu_new" super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase , )
489
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __a(SCREAMING_SNAKE_CASE_ : float = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCAmelCase = 0 _lowerCAmelCase = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
489
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } SCREAMING_SNAKE_CASE_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( __SCREAMING_SNAKE_CASE ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = "left" def __init__( self , a_ , a_=False , a_=True , a_=False , a_="<s>" , a_="</s>" , a_="<unk>" , a_="<sep>" , a_="<pad>" , a_="<cls>" , a_="<mask>" , a_=["<eop>", "<eod>"] , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it a_ : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token a_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) a_ : Optional[int] = 3 a_ : str = do_lower_case a_ : int = remove_space a_ : Dict = keep_accents a_ : Tuple = vocab_file a_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def snake_case_ ( self ): return len(self.sp_model ) def snake_case_ ( self ): a_ : Dict = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): a_ : List[Any] = self.__dict__.copy() a_ : Optional[int] = None return state def __setstate__( self , a_ ): a_ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : str = {} a_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , a_ ): if self.remove_space: a_ : Optional[int] = " ".join(inputs.strip().split() ) else: a_ : List[str] = inputs a_ : Optional[Any] = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: a_ : Dict = unicodedata.normalize("NFKD" , snake_case_ ) a_ : int = "".join([c for c in outputs if not unicodedata.combining(snake_case_ )] ) if self.do_lower_case: a_ : Union[str, Any] = outputs.lower() return outputs def snake_case_ ( self , a_ ): a_ : int = self.preprocess_text(snake_case_ ) a_ : Optional[int] = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) a_ : str = [] for piece in pieces: if len(snake_case_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a_ : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a_ : int = cur_pieces[1:] else: a_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case_ ) else: new_pieces.append(snake_case_ ) return new_pieces def snake_case_ ( self , a_ ): return self.sp_model.PieceToId(snake_case_ ) def snake_case_ ( self , a_ ): return self.sp_model.IdToPiece(snake_case_ ) def snake_case_ ( self , a_ ): a_ : List[str] = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def snake_case_ ( self , a_ , a_ = False , a_ = None , a_ = True , **a_ , ): a_ : int = kwargs.pop("use_source_tokenizer" , snake_case_ ) a_ : Union[str, Any] = self.convert_ids_to_tokens(snake_case_ , skip_special_tokens=snake_case_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a_ : List[Any] = [] a_ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case_ ) ) a_ : List[str] = [] sub_texts.append(snake_case_ ) else: current_sub_text.append(snake_case_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens a_ : Tuple = "".join(snake_case_ ) a_ : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a_ : int = self.clean_up_tokenization(snake_case_ ) return clean_text else: return text def snake_case_ ( self , a_ , a_ = None ): a_ : Optional[int] = [self.sep_token_id] a_ : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is not None: return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1, 1] return ([0] * len(snake_case_ )) + [1, 1] def snake_case_ ( self , a_ , a_ = None ): a_ : Union[str, Any] = [self.sep_token_id] a_ : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : List[Any] = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: a_ : str = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
237
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCAmelCase : Dict = parse(importlib.metadata.version('''torch''')) def UpperCamelCase ( lowercase_ : Union[str, Version] , lowercase_ : str , lowercase_ : str ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase =STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ , lowercase_ ): lowercase =parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ , parse(lowercase_ ) ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> Union[str, Any]: '''simple docstring''' return compare_versions(lowercase_ , lowercase_ , lowercase_ )
72
0
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = '''''' for i in table: res += inp[i - 1] return res def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" return data[1:] + data[0] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" snake_case_ = '''''' for i in range(len(SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" snake_case_ = int('''0b''' + data[0] + data[-1] , 2 ) snake_case_ = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = message[:4] snake_case_ = message[4:] snake_case_ = apply_table(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = apply_sbox(SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 snake_case_ = apply_sbox(SCREAMING_SNAKE_CASE , temp[4:] ) snake_case_ = '''0''' * (2 - len(SCREAMING_SNAKE_CASE )) + l # noqa: E741 snake_case_ = '''0''' * (2 - len(SCREAMING_SNAKE_CASE )) + r snake_case_ = apply_table(l + r , SCREAMING_SNAKE_CASE ) snake_case_ = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": UpperCAmelCase = input("""Enter 10 bit key: """) UpperCAmelCase = input("""Enter 8 bit message: """) UpperCAmelCase = [6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase = [2, 4, 3, 1] UpperCAmelCase = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase = apply_table(key, paa_table) UpperCAmelCase = temp[:5] UpperCAmelCase = temp[5:] UpperCAmelCase = left_shift(left) UpperCAmelCase = left_shift(right) UpperCAmelCase = apply_table(left + right, pa_table) UpperCAmelCase = left_shift(left) UpperCAmelCase = left_shift(right) UpperCAmelCase = left_shift(left) UpperCAmelCase = left_shift(right) UpperCAmelCase = apply_table(left + right, pa_table) # encryption UpperCAmelCase = apply_table(message, IP) UpperCAmelCase = function(expansion, sa, sa, keya, temp) UpperCAmelCase = temp[4:] + temp[:4] UpperCAmelCase = function(expansion, sa, sa, keya, temp) UpperCAmelCase = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCAmelCase = apply_table(CT, IP) UpperCAmelCase = function(expansion, sa, sa, keya, temp) UpperCAmelCase = temp[4:] + temp[:4] UpperCAmelCase = function(expansion, sa, sa, keya, temp) UpperCAmelCase = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
531
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=2 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.type_sequence_label_size snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = DeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): snake_case_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ = False snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): snake_case_ = problem_type['''title'''] snake_case_ = problem_type['''num_labels'''] snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: snake_case_ = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) snake_case_ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: snake_case_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCamelCase__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = DeiTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): snake_case_ = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( _UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): snake_case_ = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(_UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(_UpperCAmelCase )
531
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _snake_case (unittest.TestCase): @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ,return_dict=_snake_case ).to(_snake_case ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ : int = tokenizer("Hello there" ,return_tensors="pt" ).input_ids UpperCAmelCase_ : str = tokenizer("Hi I am" ,return_tensors="pt" ).input_ids UpperCAmelCase_ : Optional[int] = model(input_ids.to(_snake_case ) ,labels=labels.to(_snake_case ) ).loss UpperCAmelCase_ : Any = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ : Tuple = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
71
'''simple docstring''' A_ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset([]) A_ = frozenset(["image"]) A_ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image"]) A_ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "negative_prompt"]) A_ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) A_ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image", "mask_image"]) A_ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["example_image", "image", "mask_image"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset(["input_tokens"]) A_ = frozenset(["input_tokens"])
143
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCamelCase ( a_ ): _lowerCamelCase :int = "bert" def __init__( self : Optional[int] , UpperCamelCase : Dict=3_05_22 , UpperCamelCase : List[str]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : Any=30_72 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Any=5_12 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : Any=1E-1_2 , UpperCamelCase : Tuple=0 , UpperCamelCase : List[Any]="absolute" , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=None , **UpperCamelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = type_vocab_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : Dict = classifier_dropout class _lowerCamelCase ( a_ ): @property def _lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
717
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = """▁""" _A = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} _A = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } _A = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } _A = { """ernie-m-base""": 5_1_4, """ernie-m-large""": 5_1_4, } _A = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = ["input_ids"] _lowerCamelCase :Any = VOCAB_FILES_NAMES _lowerCamelCase :List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :List[Any] = RESOURCE_FILES_NAMES def __init__( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=False , UpperCamelCase : int="utf8" , UpperCamelCase : List[Any]="[UNK]" , UpperCamelCase : int="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : str="[CLS]" , UpperCamelCase : Dict="[MASK]" , UpperCamelCase : Optional[Dict[str, Any]] = None , **UpperCamelCase : Dict , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , vocab_file=UpperCamelCase , encoding=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) lowerCAmelCase__ : Any = do_lower_case lowerCAmelCase__ : Optional[Any] = sentencepiece_model_ckpt lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase__ : Optional[int] = self.load_vocab(filepath=UpperCamelCase ) else: lowerCAmelCase__ : Tuple = {self.sp_model.id_to_piece(UpperCamelCase ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase__ : List[str] = {v: k for k, v in self.vocab.items()} def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int ) -> Any: """simple docstring""" if text is None: return None lowerCAmelCase__ : Optional[Any] = self.tokenize(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = """""", [] for i, ch in enumerate(UpperCamelCase ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase__ : Union[str, Any] = self.SP_CHAR_MAPPING.get(UpperCamelCase ) else: lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFKC""" , UpperCamelCase ) if self.is_whitespace(UpperCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase__ : List[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase__ : List[str] = token[1:] lowerCAmelCase__ : Dict = text[offset:].index(UpperCamelCase ) + offset lowerCAmelCase__ : List[Any] = start + len(UpperCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase__ : Optional[int] = end return token_mapping @property def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.vocab ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : Any = None return state def __setstate__( self : List[str] , UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : str ) -> str: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase , UpperCamelCase ) for c in text) ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=64 , UpperCamelCase : List[Any]=0.1 ) -> Any: """simple docstring""" if self.sp_model_kwargs.get("""enable_sampling""" ) is True: lowerCAmelCase__ : Union[str, Any] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: lowerCAmelCase__ : Union[str, Any] = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: lowerCAmelCase__ : Union[str, Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: lowerCAmelCase__ : Union[str, Any] = self.sp_model.EncodeAsPieces(UpperCamelCase ) else: lowerCAmelCase__ : List[str] = self.sp_model.SampleEncodeAsPieces(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = [] for pi, piece in enumerate(UpperCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase ) and pi != 0: new_pieces.append(UpperCamelCase ) continue else: continue lowerCAmelCase__ : List[Any] = 0 for i, chunk in enumerate(UpperCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase ) or self.is_punct(UpperCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase__ : Dict = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase__ : Any = i if len(UpperCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = """""".join(UpperCamelCase ).replace(UpperCamelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = self.convert_ids_to_tokens(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = """""".join(UpperCamelCase ).replace(UpperCamelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" return self.vocab.get(UpperCamelCase , self.vocab.get(self.unk_token ) ) def _lowerCAmelCase ( self : str , UpperCamelCase : Any ) -> Tuple: """simple docstring""" return self.reverse_vocab.get(UpperCamelCase , self.unk_token ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Tuple=None ) -> List[str]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] lowerCAmelCase__ : List[str] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any]=None ) -> Any: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict=None , UpperCamelCase : Any=False ) -> List[Any]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase ) + 1) + [1] * (len(UpperCamelCase ) + 3) def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowerCAmelCase ( self : Tuple , UpperCamelCase : str ) -> Tuple: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowerCAmelCase ( self : int , UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase ) == 1: lowerCAmelCase__ : List[Any] = unicodedata.category(UpperCamelCase ) if cat == "Zs": return True return False def _lowerCAmelCase ( self : str , UpperCamelCase : Any ) -> int: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {} with io.open(UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase ): lowerCAmelCase__ : Any = line.rstrip("""\n""" ) lowerCAmelCase__ : Optional[Any] = int(UpperCamelCase ) return token_to_idx def _lowerCAmelCase ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase__ : Any = 0 if os.path.isdir(UpperCamelCase ): lowerCAmelCase__ : List[str] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCAmelCase__ : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase__ : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """sentencepiece.bpe.model""" ) with open(UpperCamelCase , """wb""" ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (vocab_file,)
507
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
def a (lowerCAmelCase__ = 100 ): __a = set() __a = 0 __a = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): __a = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
209
from __future__ import annotations SCREAMING_SNAKE_CASE = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A ): __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def snake_case_ ( self ): __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) __a = vertex queue.append(__A ) def snake_case_ ( self , __A ): if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__A ) if target_vertex_parent is None: __a = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__A ) return self.shortest_path(__A ) + f'''->{target_vertex}''' if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
209
1
class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode UpperCamelCase : Tuple = False def __UpperCamelCase( self , A_ ): '''simple docstring''' for word in words: self.insert(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = self for char in word: if char not in curr.nodes: UpperCamelCase : int = TrieNode() UpperCamelCase : List[str] = curr.nodes[char] UpperCamelCase : int = True def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self for char in word: if char not in curr.nodes: return False UpperCamelCase : Any = curr.nodes[char] return curr.is_leaf def __UpperCamelCase( self , A_ ): '''simple docstring''' def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase : Union[str, Any] = False return len(curr.nodes ) == 0 UpperCamelCase : List[str] = word[index] UpperCamelCase : Any = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase : Any = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> None: if node.is_leaf: print(_lowerCAmelCase , end=" " ) for key, value in node.nodes.items(): print_words(_lowerCAmelCase , word + key ) def A_ ( ) -> bool: UpperCamelCase : Optional[Any] = "banana bananas bandana band apple all beast".split() UpperCamelCase : Any = TrieNode() root.insert_many(_lowerCAmelCase ) # print_words(root, "") assert all(root.find(_lowerCAmelCase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> None: print(str(_lowerCAmelCase ) , "works!" if passes else "doesn't work :(" ) def A_ ( ) -> None: assert test_trie() def A_ ( ) -> None: print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
629
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCamelCase : str = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
629
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ : Tuple = 256_047 A__ : Dict = 256_145 @require_sentencepiece @require_tokenizers class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _A = NllbTokenizer _A = NllbTokenizerFast _A = True _A = True _A = {} def lowerCAmelCase__ ( self )-> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = NllbTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Dict = NllbTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase__ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase__ : Any = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase__ : int = tempfile.mkdtemp() UpperCAmelCase__ : Tuple = tokenizer_r.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ : Any = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : List[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Tuple = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase__ : List[str] = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) UpperCAmelCase__ : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ : int = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @require_torch def lowerCAmelCase__ ( self )-> List[str]: if not self.test_seqaseq: return UpperCAmelCase__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. UpperCAmelCase__ : Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] UpperCAmelCase__ : Dict = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: UpperCAmelCase__ : str = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase__ , tgt_texts=lowerCamelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified UpperCAmelCase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( lowerCamelCase__ , tgt_texts=lowerCamelCase__ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) UpperCAmelCase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase__ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , lowerCamelCase__ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def lowerCAmelCase__ ( self )-> Tuple: pass def lowerCAmelCase__ ( self )-> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : str = [AddedToken("<special>" , lstrip=lowerCamelCase__ )] UpperCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase__ : str = tokenizer_r.encode("Hey this is a <special> token" ) UpperCAmelCase__ : str = tokenizer_r.encode("<special>" , add_special_tokens=lowerCamelCase__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ ) UpperCAmelCase__ : Tuple = tokenizer_p.encode("Hey this is a <special> token" ) UpperCAmelCase__ : Dict = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' _A = "facebook/nllb-200-distilled-600M" _A = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _A = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _A = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def lowerCAmelCase__ ( cls )-> Union[str, Any]: UpperCAmelCase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) UpperCAmelCase__ : str = 1 return cls def lowerCAmelCase__ ( self )-> Optional[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) def lowerCAmelCase__ ( self )-> List[str]: self.assertIn(lowerCamelCase__ , self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase__ : List[Any] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on UpperCAmelCase__ : Optional[Any] = self.tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) UpperCAmelCase__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase__ ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Optional[int] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowerCamelCase__ ) UpperCAmelCase__ : Tuple = 10 UpperCAmelCase__ : Union[str, Any] = self.tokenizer(lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self )-> Dict: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase__ : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ : int = NllbTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase__ ) @require_torch def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase__ : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) UpperCAmelCase__ : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Optional[Any] = self.tokenizer(self.src_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=3 , return_tensors="pt" ) UpperCAmelCase__ : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=10 , return_tensors="pt" ) UpperCAmelCase__ : List[Any] = targets["input_ids"] UpperCAmelCase__ : Tuple = shift_tokens_right( lowerCamelCase__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Optional[Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Dict = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
from collections import deque class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> int: A = process_name # process name A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A = arrival_time A = burst_time # remaining burst time A = 0 # total time of the process wait in ready queue A = 0 # time from arrival time to completion time class lowerCAmelCase__ : def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , ) -> Any: A = number_of_queues # time slice of queues that round robin algorithm applied A = time_slices # unfinished process is in this ready_queue A = queue # current time A = current_time # finished process is in this sequence queue A = deque() def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Any ) -> List[Any]: A = [] for i in range(len(A_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCamelCase ( self : int , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: A = [] for i in range(len(A_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : str ) -> str: A = [] for i in range(len(A_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] ) -> Tuple: return [q.burst_time for q in queue] def __UpperCamelCase ( self : Any , __UpperCamelCase : Tuple ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] ) -> Any: A = deque() # sequence deque of finished process while len(A_ ) != 0: A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(A_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A = 0 # set the process's turnaround time because it is finished A = self.current_time - cp.arrival_time # set the completion time A = self.current_time # add the process to queue that has finished queue finished.append(A_ ) self.finish_queue.extend(A_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCamelCase ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any ) -> Any: A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(A_ ) ): A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(A_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(A_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A = 0 # set the finish time A = self.current_time # update the process' turnaround time because it is finished A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(A_ ) self.finish_queue.extend(A_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCamelCase ( self : List[str] ) -> Optional[int]: for i in range(self.number_of_queues - 1 ): A = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __snake_case :Tuple =Process('P1', 0, 53) __snake_case :Dict =Process('P2', 0, 17) __snake_case :Union[str, Any] =Process('P3', 0, 68) __snake_case :int =Process('P4', 0, 24) __snake_case :Dict =3 __snake_case :Optional[Any] =[17, 25] __snake_case :Optional[int] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __snake_case :Union[str, Any] =Process('P1', 0, 53) __snake_case :str =Process('P2', 0, 17) __snake_case :Union[str, Any] =Process('P3', 0, 68) __snake_case :Any =Process('P4', 0, 24) __snake_case :Optional[int] =3 __snake_case :Tuple =[17, 25] __snake_case :Any =deque([Pa, Pa, Pa, Pa]) __snake_case :Dict =MLFQ(number_of_queues, time_slices, queue, 0) __snake_case :Any =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
106
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] ) -> bool: _UpperCAmelCase : int = len(lowerCAmelCase ) # We need to create solution object to save path. _UpperCAmelCase : List[Any] = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] _UpperCAmelCase : Tuple = run_maze(lowerCAmelCase , 0 , 0 , lowerCAmelCase ) if solved: print("\n".join(str(lowerCAmelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[list[int]] ) -> bool: _UpperCAmelCase : str = len(lowerCAmelCase ) # Final check point. if i == j == (size - 1): _UpperCAmelCase : Tuple = 1 return True _UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase : Tuple = 1 # check for directions if ( run_maze(lowerCAmelCase , i + 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j + 1 , lowerCAmelCase ) or run_maze(lowerCAmelCase , i - 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j - 1 , lowerCAmelCase ) ): return True _UpperCAmelCase : Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
300
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=17 , SCREAMING_SNAKE_CASE=23 , SCREAMING_SNAKE_CASE=11 , SCREAMING_SNAKE_CASE=True , ) -> str: """simple docstring""" A : str = parent A : Optional[Any] = batch_size A : str = seq_length A : str = act_dim A : int = state_dim A : Tuple = hidden_size A : List[str] = max_length A : List[Any] = is_training def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) A : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) A : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) A : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) A : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) A : Any = random_attention_mask((self.batch_size, self.seq_length) ) A : List[str] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" A : Optional[Any] = DecisionTransformerModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = self.prepare_config_and_inputs() ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Optional[int] = config_and_inputs A : Optional[int] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (DecisionTransformerModel,) if is_torch_available() else () __magic_name__ = () __magic_name__ = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __magic_name__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = DecisionTransformerModelTester(self ) A : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[int] = DecisionTransformerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A, A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : str = model_class(SCREAMING_SNAKE_CASE ) A : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Tuple = [*signature.parameters.keys()] A : str = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Dict = 2 # number of steps of autoregressive prediction we will perform A : List[Any] = 10 # defined by the RL environment, may be normalized A : Tuple = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) A : List[Any] = model.to(SCREAMING_SNAKE_CASE ) A : List[Any] = model.config torch.manual_seed(0 ) A : str = torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE , dtype=torch.floataa ) # env.reset() A : List[str] = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=SCREAMING_SNAKE_CASE ) A : int = torch.tensor(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=torch.floataa ).reshape(1 , 1 , 1 ) A : Dict = state A : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=SCREAMING_SNAKE_CASE , dtype=torch.floataa ) A : Union[str, Any] = torch.zeros(1 , 0 , device=SCREAMING_SNAKE_CASE , dtype=torch.floataa ) A : Tuple = torch.tensor(0 , device=SCREAMING_SNAKE_CASE , dtype=torch.long ).reshape(1 , 1 ) for step in range(SCREAMING_SNAKE_CASE ): A : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=SCREAMING_SNAKE_CASE )] , dim=1 ) A : List[Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=SCREAMING_SNAKE_CASE )] , dim=1 ) A : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): A, A, A : Optional[Any] = model( states=SCREAMING_SNAKE_CASE , actions=SCREAMING_SNAKE_CASE , rewards=SCREAMING_SNAKE_CASE , returns_to_go=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) A, A, A, A : Optional[Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE , dtype=torch.floataa ), 1.0, False, {}, ) A : List[Any] = action_pred[0, -1] A : List[str] = torch.cat([states, state] , dim=1 ) A : int = returns_to_go[0, -1] - reward A : int = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) A : str = torch.cat( [timesteps, torch.ones((1, 1) , device=SCREAMING_SNAKE_CASE , dtype=torch.long ) * (step + 1)] , dim=1 )
343
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase : Optional[int] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowercase : Optional[int] = 'zero2' lowercase : List[str] = 'zero3' lowercase : List[str] = [ZEROa, ZEROa] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = parameterized.to_safe_name('''_'''.join(str(snake_case__ ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowercase : Any = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class A ( __snake_case ): @parameterized.expand(SCREAMING_SNAKE_CASE , name_func=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=SCREAMING_SNAKE_CASE , model=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE , name_func=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=SCREAMING_SNAKE_CASE , model=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE , ) @parameterized.expand(SCREAMING_SNAKE_CASE , name_func=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" self.run_and_check( stage=SCREAMING_SNAKE_CASE , model=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE , name_func=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.run_and_check( stage=SCREAMING_SNAKE_CASE , model=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" pass def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , ) -> Optional[Any]: """simple docstring""" A : Optional[int] = models[model] A : Any = self.run_trainer( stage=SCREAMING_SNAKE_CASE , model_name=SCREAMING_SNAKE_CASE , eval_steps=SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE , ) self.do_checks(SCREAMING_SNAKE_CASE ) return output_dir def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" A : Any = self.get_auto_remove_tmp_dir('''./xxx''' , after=SCREAMING_SNAKE_CASE ) A : Dict = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A : Any = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() A : Union[str, Any] = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] A : List[Any] = self.get_launcher(SCREAMING_SNAKE_CASE ) A : int = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) return output_dir def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" A : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
343
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ : Any = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ : int = dict(zip(A_ , range(len(A_)))) lowerCAmelCase_ : Tuple = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(A_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(A_)) lowerCAmelCase_ : Optional[Any] = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , A_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(A_ , A_) def UpperCAmelCase__ ( self : List[Any] , **A_ : str): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A_) def UpperCAmelCase__ ( self : List[str] , **A_ : Any): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A_) def UpperCAmelCase__ ( self : Union[str, Any] , **A_ : Optional[int]): return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_) def UpperCAmelCase__ ( self : Tuple): shutil.rmtree(self.tmpdirname) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] lowerCAmelCase_ : List[str] = [Image.fromarray(np.moveaxis(A_ , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : Tuple = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) processor_slow.save_pretrained(self.tmpdirname) lowerCAmelCase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A_) lowerCAmelCase_ : List[str] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) processor_fast.save_pretrained(self.tmpdirname) lowerCAmelCase_ : int = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , A_) self.assertIsInstance(processor_fast.tokenizer , A_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , A_) self.assertIsInstance(processor_fast.image_processor , A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') lowerCAmelCase_ : Optional[Any] = self.get_image_processor(do_normalize=A_ , padding_value=1.0) lowerCAmelCase_ : Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , A_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , A_) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : Optional[Any] = self.get_tokenizer() lowerCAmelCase_ : Tuple = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) lowerCAmelCase_ : List[Any] = self.prepare_image_inputs() lowerCAmelCase_ : List[str] = image_processor(A_ , return_tensors='''np''') lowerCAmelCase_ : Tuple = processor(images=A_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) lowerCAmelCase_ : Any = '''lower newer''' lowerCAmelCase_ : Tuple = processor(text=A_) lowerCAmelCase_ : int = tokenizer(A_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.get_image_processor() lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : List[str] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) lowerCAmelCase_ : int = '''lower newer''' lowerCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase_ : Union[str, Any] = processor(text=A_ , images=A_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(A_): processor() def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : int = self.get_image_processor() lowerCAmelCase_ : str = self.get_tokenizer() lowerCAmelCase_ : Tuple = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) lowerCAmelCase_ : Dict = self.prepare_image_inputs() lowerCAmelCase_ : Optional[int] = self.prepare_image_inputs() lowerCAmelCase_ : int = processor(images=A_ , visual_prompt=A_) self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''conditional_pixel_values''']) # test if it raises when no input is passed with pytest.raises(A_): processor() def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Tuple = CLIPSegProcessor(tokenizer=A_ , image_processor=A_) lowerCAmelCase_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : Union[str, Any] = processor.batch_decode(A_) lowerCAmelCase_ : str = tokenizer.batch_decode(A_) self.assertListEqual(A_ , A_)
171
def UpperCamelCase( __UpperCamelCase : list ,__UpperCamelCase : list ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): if index == number_of_items: return 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[int] = knapsack(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ : Optional[Any] = values[index] + knapsack( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,max_weight - weights[index] ,index + 1 ) return max(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
171
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """▁""" _lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCAmelCase = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } _lowerCAmelCase = { """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _lowerCAmelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCAmelCase__ ( snake_case__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = [] snake_case_ = [] def __init__( self , A__ , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=None , A__=None , A__=None , A__ = None , A__=None , A__=False , **A__ , ): """simple docstring""" UpperCAmelCase_: Dict = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token UpperCAmelCase_: int = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_: Optional[Any] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) UpperCAmelCase_: Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) UpperCAmelCase_: Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_: Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_: Tuple = 1 UpperCAmelCase_: Optional[int] = len(self.sp_model ) UpperCAmelCase_: List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } UpperCAmelCase_: List[str] = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_: Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_: str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_: Optional[int] = src_lang if src_lang is not None else "eng_Latn" UpperCAmelCase_: Optional[int] = self.lang_code_to_id[self._src_lang] UpperCAmelCase_: Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" UpperCAmelCase_: Any = self.__dict__.copy() UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , A__ ): """simple docstring""" UpperCAmelCase_: str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case_ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self , A__ , A__ = None , A__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) UpperCAmelCase_: List[str] = [1] * len(self.prefix_tokens ) UpperCAmelCase_: Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def snake_case_ ( self , A__ , A__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self , A__ , A__ = None ): """simple docstring""" UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , A__ , A__ , A__ , A__ , **A__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_: Optional[Any] = src_lang UpperCAmelCase_: str = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) UpperCAmelCase_: Union[str, Any] = self.convert_tokens_to_ids(A__ ) UpperCAmelCase_: Optional[int] = tgt_lang_id return inputs def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , A__ ): """simple docstring""" return self.sp_model.encode(A__ , out_type=A__ ) def snake_case_ ( self , A__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_: int = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , A__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[str] = "".join(A__ ).replace(A__ , " " ).strip() return out_string def snake_case_ ( self , A__ , A__ = None ): """simple docstring""" if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_: str = os.path.join( A__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , "wb" ) as fi: UpperCAmelCase_: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def snake_case_ ( self , A__ , A__ = "eng_Latn" , A__ = None , A__ = "fra_Latn" , **A__ , ): """simple docstring""" UpperCAmelCase_: List[str] = src_lang UpperCAmelCase_: Dict = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def snake_case_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase_: Tuple = [] UpperCAmelCase_: Optional[int] = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_: Any = [self.cur_lang_code] UpperCAmelCase_: Optional[int] = [self.eos_token_id] def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase_: List[str] = [] UpperCAmelCase_: List[str] = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_: List[str] = [self.cur_lang_code] UpperCAmelCase_: str = [self.eos_token_id]
703
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCAmelCase = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def lowercase ( _a ,_a ,_a ,_a=None ) -> int: # Initialise PyTorch model UpperCAmelCase_: Dict = XLNetConfig.from_json_file(_a ) UpperCAmelCase_: List[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) UpperCAmelCase_: int = finetuning_task UpperCAmelCase_: List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Tuple = XLNetForSequenceClassification(_a ) elif "squad" in finetuning_task: UpperCAmelCase_: Any = finetuning_task UpperCAmelCase_: Tuple = XLNetForQuestionAnswering(_a ) else: UpperCAmelCase_: int = XLNetLMHeadModel(_a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_a ,_a ,_a ) # Save pytorch-model UpperCAmelCase_: List[Any] = os.path.join(_a ,_a ) UpperCAmelCase_: Union[str, Any] = os.path.join(_a ,_a ) print(f"Save PyTorch model to {os.path.abspath(_a )}" ) torch.save(model.state_dict() ,_a ) print(f"Save configuration file to {os.path.abspath(_a )}" ) with open(_a ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _lowerCAmelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
306
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a = 1, __a = 50, __a = None, __a = "pil", __a = True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = self.unet.config.sample_size _lowerCAmelCase : Optional[Any] = (batch_size, 3, img_size, img_size) _lowerCAmelCase : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCAmelCase : Union[str, Any] = randn_tensor(__a, generator=__a, device=self.device) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper _lowerCAmelCase : Optional[Any] = self.scheduler.schedule[t] _lowerCAmelCase : int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCAmelCase , _lowerCAmelCase : Dict = self.scheduler.add_noise_to_input(__a, __a, generator=__a) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCAmelCase : Optional[int] = self.scheduler.step(__a, __a, __a, __a) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample _lowerCAmelCase : List[str] = self.scheduler.step_correct( __a, __a, __a, __a, step_output.prev_sample, step_output["derivative"], ) _lowerCAmelCase : Optional[int] = step_output.prev_sample _lowerCAmelCase : Tuple = (sample / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : int = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : int = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
500
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 _lowerCAmelCase : str = torch.tensor(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase : Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase : List[Any] = logits[0, masked_index, :] _lowerCAmelCase : int = logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = prob.topk(k=_lowerCamelCase , dim=0 ) _lowerCAmelCase : Dict = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCamelCase ) )] ) _lowerCAmelCase : List[str] = tokenizer.mask_token _lowerCAmelCase : Optional[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): _lowerCAmelCase : Dict = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowerCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowerCamelCase ) , _lowerCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCamelCase , _lowerCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _snake_case = CamembertTokenizer.from_pretrained("camembert-base") _snake_case = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _snake_case = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
500
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
713
'''simple docstring''' from __future__ import annotations import pandas as pd def __snake_case ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): lowerCamelCase_ = [0] * no_of_processes lowerCamelCase_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCAmelCase_ ): lowerCamelCase_ = burst_time[i] lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 999999999 lowerCamelCase_ = 0 lowerCamelCase_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCAmelCase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowerCamelCase_ = remaining_time[j] lowerCamelCase_ = j lowerCamelCase_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowerCamelCase_ = remaining_time[short] if minm == 0: lowerCamelCase_ = 999999999 if remaining_time[short] == 0: complete += 1 lowerCamelCase_ = False # Find finish time of current process lowerCamelCase_ = increment_time + 1 # Calculate waiting time lowerCamelCase_ = finish_time - arrival_time[short] lowerCamelCase_ = finar - burst_time[short] if waiting_time[short] < 0: lowerCamelCase_ = 0 # Increment time increment_time += 1 return waiting_time def __snake_case ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] ): lowerCamelCase_ = [0] * no_of_processes for i in range(UpperCAmelCase_ ): lowerCamelCase_ = burst_time[i] + waiting_time[i] return turn_around_time def __snake_case ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i in range(UpperCAmelCase_ ): lowerCamelCase_ = total_waiting_time + waiting_time[i] lowerCamelCase_ = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") a_ : Dict = int(input()) a_ : Any = [0] * no_of_processes a_ : Optional[int] = [0] * no_of_processes a_ : Tuple = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) a_ , a_ : str = map(int, input().split()) a_ : List[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a_ : int = burst_time a_ : Union[str, Any] = no_of_processes a_ : Optional[int] = waiting_time a_ : Any = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a_ : Optional[int] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
445
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _A ( _lowercase , _lowercase , _lowercase=0 ) -> Any: """simple docstring""" if name is None: __UpperCamelCase = None else: __UpperCamelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' __UpperCamelCase = fmt.format(_lowercase ) # Print and recurse (if needed). if isinstance(_lowercase , _lowercase ): if msg is not None: print(_lowercase ) for k in val.keys(): recursive_print(_lowercase , val[k] , spaces + 2 ) elif isinstance(_lowercase , torch.Tensor ): print(_lowercase , ':' , val.size() ) else: print(_lowercase , ':' , _lowercase ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] __UpperCamelCase = param.view(*_lowercase ) __UpperCamelCase = param.transpose(0 , 2 ) __UpperCamelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] __UpperCamelCase = param.view(*_lowercase ) __UpperCamelCase = param.transpose(0 , 1 ).contiguous() __UpperCamelCase = param.view(*_lowercase ) return param def _A ( _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = {} # old versions did not store training args __UpperCamelCase = input_state_dict.get('args' , _lowercase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __UpperCamelCase = ds_args.padded_vocab_size __UpperCamelCase = ds_args.max_position_embeddings __UpperCamelCase = ds_args.hidden_size __UpperCamelCase = ds_args.num_layers __UpperCamelCase = ds_args.num_attention_heads __UpperCamelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __UpperCamelCase = config.n_head # The hidden_size per head. __UpperCamelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __UpperCamelCase = input_state_dict['checkpoint_version'] else: __UpperCamelCase = 0.0 # The model. __UpperCamelCase = input_state_dict['model'] # The language model. __UpperCamelCase = model['language_model'] # The embeddings. __UpperCamelCase = lm['embedding'] # The word embeddings. __UpperCamelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. __UpperCamelCase = word_embeddings[: config.vocab_size, :] __UpperCamelCase = word_embeddings # The position embeddings. __UpperCamelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __UpperCamelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. __UpperCamelCase = pos_embeddings # The transformer. __UpperCamelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. __UpperCamelCase = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. __UpperCamelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. __UpperCamelCase = layer_re.match(_lowercase ) # Stop if that's not a layer if m is None: break # The index of the layer. __UpperCamelCase = int(m.group(1 ) ) # The name of the operation. __UpperCamelCase = m.group(2 ) # Is it a weight or a bias? __UpperCamelCase = m.group(3 ) # The name of the layer. __UpperCamelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): __UpperCamelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' __UpperCamelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowercase , _lowercase ) __UpperCamelCase = causal_mask # Insert a "dummy" tensor for masked_bias. __UpperCamelCase = torch.tensor(-1e4 , dtype=torch.floataa ) __UpperCamelCase = masked_bias __UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __UpperCamelCase = out_val.transpose(0 , 1 ).contiguous() # Store. __UpperCamelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase ) # Store. No change of shape. __UpperCamelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": __UpperCamelCase = megatron_to_transformers[op_name] __UpperCamelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __UpperCamelCase = megatron_to_transformers[op_name] __UpperCamelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __UpperCamelCase = transformer['final_layernorm.weight'] __UpperCamelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. __UpperCamelCase = word_embeddings # It should be done! return output_state_dict def _A ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_lowercase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_lowercase , help='An optional config json file describing the pre-trained model.' , ) __UpperCamelCase = parser.parse_args() # Extract the basename. __UpperCamelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: __UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) else: __UpperCamelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) __UpperCamelCase = input_state_dict.get('args' , _lowercase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __UpperCamelCase = 'gelu_fast' elif ds_args.openai_gelu: __UpperCamelCase = 'gelu_new' else: __UpperCamelCase = 'gelu' else: # in the very early days this used to be "gelu_new" __UpperCamelCase = 'gelu_new' # Spell out all parameters in case the defaults change. __UpperCamelCase = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_lowercase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_lowercase , summary_activation=_lowercase , summary_proj_to_labels=_lowercase , summary_first_dropout=0.1 , scale_attn_weights=_lowercase , use_cache=_lowercase , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: __UpperCamelCase = GPTaConfig.from_json_file(args.config_file ) __UpperCamelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) __UpperCamelCase = convert_megatron_checkpoint(_lowercase , _lowercase , _lowercase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowercase , _lowercase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __UpperCamelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __UpperCamelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": __UpperCamelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: __UpperCamelCase = 'gpt2' __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = type(_lowercase ).__name__ __UpperCamelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_lowercase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_lowercase ) # Store the state_dict to file. __UpperCamelCase = os.path.join(_lowercase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_lowercase , _lowercase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): for i in range(len(A_ ) - 1 , 0 , -1 ): lowerCAmelCase__ : Optional[Any] = False for j in range(A_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j - 1], unsorted[j] lowerCAmelCase__ : Dict = True for j in range(A_ ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowerCAmelCase__ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
450
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ): if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) lowercase__ = config_class.from_json_file(SCREAMING_SNAKE_CASE_ ) lowercase__ = True lowercase__ = True print(f'''Building TensorFlow model from configuration: {config}''' ) lowercase__ = model_class(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase__ = cached_file( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase__ = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if compare_with_pt_model: lowercase__ = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE_ ) # build the network lowercase__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) lowercase__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , state_dict=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowercase__ = pt_model(**pt_model.dummy_inputs ) lowercase__ = pto[0].numpy() lowercase__ = tfo[0].numpy() lowercase__ = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(SCREAMING_SNAKE_CASE_ , save_format="h5" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ): if args_model_type is None: lowercase__ = list(MODEL_CLASSES.keys() ) else: lowercase__ = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE_ , start=1 ): print("=" * 100 ) print(f''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE_ )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue lowercase__ = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE_ )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) else: lowercase__ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) else: lowercase__ = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE_ ): lowercase__ = "converted_model" convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE_ , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE_ , config_file=SCREAMING_SNAKE_CASE_ , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE_ , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=SCREAMING_SNAKE_CASE_ , ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE_ ) os.remove(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
37
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowercase__ = f'''{src_lang}-{tgt_lang}''' lowercase__ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase_ , lowercase_ , lowercase_ = model_name.split("""-""") lowercase_ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
37
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase : List[str] =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp _lowercase : Any =5 _lowercase : int =10 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( snake_case__ , unittest.TestCase ): _a : Dict = SpeechaTextTokenizer _a : Optional[Any] = False _a : List[Any] = True def __a ( self : Tuple ): super().setUp() lowerCamelCase_ : str = sp.SentencePieceProcessor() spm_model.Load(lowerCamelCase ) lowerCamelCase_ : Any = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCamelCase ) )] lowerCamelCase_ : Optional[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowerCamelCase_ : Union[str, Any] = Path(self.tmpdirname ) save_json(lowerCamelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCamelCase_ : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : List[Any] ): lowerCamelCase_ : List[Any] = '<pad>' lowerCamelCase_ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __a ( self : Any ): lowerCamelCase_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowerCamelCase ) , 10_01 ) def __a ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __a ( self : List[str] ): lowerCamelCase_ : str = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) lowerCamelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCamelCase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual(lowerCamelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def __a ( self : Union[str, Any] ): # fmt: off lowerCamelCase_ : Any = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase_ ( unittest.TestCase ): _a : Optional[Any] = 'valhalla/s2t_mustc_multilinguial_medium' _a : Optional[Any] = 'C\'est trop cool' _a : List[Any] = 'Esto es genial' @classmethod def __a ( cls : List[Any] ): lowerCamelCase_ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def __a ( self : Optional[int] ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __a ( self : Dict ): self.assertIn(lowerCamelCase , self.tokenizer.all_special_ids ) lowerCamelCase_ : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] lowerCamelCase_ : int = self.tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) lowerCamelCase_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase ) def __a ( self : Tuple ): lowerCamelCase_ : Any = 'fr' lowerCamelCase_ : Tuple = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowerCamelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __a ( self : List[str] ): lowerCamelCase_ : Tuple = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCamelCase_ : Any = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
364
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase_ ( snake_case__ ): _a : Union[str, Any] = (DPMSolverSDEScheduler,) _a : List[Any] = 1_0 def __a ( self : Any , **lowerCamelCase : str ): lowerCamelCase_ : Any = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowerCamelCase ) return config def __a ( self : Tuple ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __a ( self : int ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __a ( self : Any ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __a ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __a ( self : Optional[int] ): lowerCamelCase_ : int = self.scheduler_classes[0] lowerCamelCase_ : str = self.get_scheduler_config() lowerCamelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : Optional[Any] = self.dummy_model() lowerCamelCase_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : Union[str, Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : str = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Tuple = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Tuple = output.prev_sample lowerCamelCase_ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Tuple ): lowerCamelCase_ : List[str] = self.scheduler_classes[0] lowerCamelCase_ : Any = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase_ : Tuple = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : Any = self.dummy_model() lowerCamelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = output.prev_sample lowerCamelCase_ : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : List[Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __a ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config() lowerCamelCase_ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCamelCase_ : Dict = self.dummy_model() lowerCamelCase_ : Dict = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ : Tuple = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : List[str] = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = output.prev_sample lowerCamelCase_ : List[Any] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : str = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Any ): lowerCamelCase_ : Dict = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config() lowerCamelCase_ : Union[str, Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCamelCase_ : int = self.dummy_model() lowerCamelCase_ : str = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma lowerCamelCase_ : Dict = sample.to(lowerCamelCase ) for t in scheduler.timesteps: lowerCamelCase_ : Optional[Any] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Any = output.prev_sample lowerCamelCase_ : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
364
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
283
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Optional[Any] = '▁' __A : Any = {'vocab_file': 'sentencepiece.bpe.model'} __A : int = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } __A : str = { 'xlm-roberta-base': 5_1_2, 'xlm-roberta-large': 5_1_2, 'xlm-roberta-large-finetuned-conll02-dutch': 5_1_2, 'xlm-roberta-large-finetuned-conll02-spanish': 5_1_2, 'xlm-roberta-large-finetuned-conll03-english': 5_1_2, 'xlm-roberta-large-finetuned-conll03-german': 5_1_2, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : List[Any]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : List[str]="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : Tuple , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
16
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
1
"""simple docstring""" import gc import threading import time import psutil import torch class __UpperCamelCase : def __init__( self ) -> List[str]: a : List[str] = psutil.Process() a : Dict = False def __a ( self ) -> Any: a : str = -1 while True: a : List[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __a ( self ) -> str: a : Dict = True a : Optional[Any] = threading.Thread(target=self.peak_monitor ) a : Optional[int] = True self.thread.start() def __a ( self ) -> Any: a : Optional[int] = False self.thread.join() return self.cpu_memory_peak a : str = PeakCPUMemory() def _SCREAMING_SNAKE_CASE ( ) ->List[Any]: '''simple docstring''' a : str = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a : Any = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a : List[str] = torch.cuda.memory_allocated(__SCREAMING_SNAKE_CASE ) torch.cuda.reset_peak_memory_stats() return measures def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->int: '''simple docstring''' a : Optional[Any] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem a : Tuple = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 a : Optional[Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a : List[Any] = (torch.cuda.memory_allocated(__SCREAMING_SNAKE_CASE ) - start_measures[str(__SCREAMING_SNAKE_CASE )]) / 2**20 a : List[Any] = (torch.cuda.max_memory_allocated(__SCREAMING_SNAKE_CASE ) - start_measures[str(__SCREAMING_SNAKE_CASE )]) / 2**20 return measures def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : int ) ->Optional[int]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__SCREAMING_SNAKE_CASE )]:.2f}MiB""" ) a : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
701
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a : Any = logging.get_logger(__name__) a : Tuple = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class __UpperCamelCase : def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> str: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) a : Optional[int] = model a : int = kwargs.get("model_save_dir" , lowerCAmelCase__ ) a : Tuple = kwargs.get("latest_model_name" , lowerCAmelCase__ ) def __call__( self , **lowerCAmelCase__ ) -> Dict: a : List[str] = {k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Union[str, Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) a : List[str] = "CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> int: a : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME a : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) a : List[str] = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) a : str = self.model_save_dir.joinpath(lowerCAmelCase__ ) if src_path.exists(): a : Any = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass def __a ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> str: if os.path.isfile(lowerCAmelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[int]: a : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__ ): a : Tuple = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) a : Tuple = Path(lowerCAmelCase__ ) # load model from hub else: # download model a : Optional[Any] = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) a : Optional[int] = Path(lowerCAmelCase__ ).parent a : List[Any] = Path(lowerCAmelCase__ ).name a : int = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: a : Any = None if len(str(lowerCAmelCase__ ).split("@" ) ) == 2: a, a : Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
31
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase_ = "tiny-wmt19-en-ru" # Build # borrowed from a test lowerCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase_ = dict(zip(vocab, range(len(vocab)))) lowerCamelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(tmpdirname) lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) lowerCamelCase_ = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase_ = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase_ = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test lowerCamelCase_ = tokenizer(["Making tiny model"], return_tensors="pt") lowerCamelCase_ = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
151
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 16 lowerCamelCase_ = 32 def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase = 16 ): SCREAMING_SNAKE_CASE__ =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ =load_dataset("""glue""", """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ =tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=__UpperCamelCase, max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ =datasets.map( __UpperCamelCase, batched=__UpperCamelCase, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ =tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ =8 else: SCREAMING_SNAKE_CASE__ =None return tokenizer.pad( __UpperCamelCase, padding="""longest""", max_length=__UpperCamelCase, pad_to_multiple_of=__UpperCamelCase, return_tensors="""pt""", ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ =DataLoader( tokenized_datasets["""train"""], shuffle=__UpperCamelCase, collate_fn=__UpperCamelCase, batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =DataLoader( tokenized_datasets["""validation"""], shuffle=__UpperCamelCase, collate_fn=__UpperCamelCase, batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", __UpperCamelCase ) == "1": SCREAMING_SNAKE_CASE__ =2 # New Code # SCREAMING_SNAKE_CASE__ =int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ =Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ =config["""lr"""] SCREAMING_SNAKE_CASE__ =int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ =int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ =int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ =evaluate.load("""glue""", """mrpc""" ) set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =get_dataloaders(__UpperCamelCase, __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ =AdamW(params=model.parameters(), lr=__UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ =get_linear_schedule_with_warmup( optimizer=__UpperCamelCase, num_warmup_steps=100, num_training_steps=(len(__UpperCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =accelerator.prepare( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ =model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ =model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase, references=__UpperCamelCase, ) SCREAMING_SNAKE_CASE__ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", __UpperCamelCase ) def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=__UpperCamelCase, default=__UpperCamelCase, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) # New Code # parser.add_argument( """--gradient_accumulation_steps""", type=__UpperCamelCase, default=1, help="""The number of minibatches to be ran before gradients are accumulated.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ =parser.parse_args() SCREAMING_SNAKE_CASE__ ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase, __UpperCamelCase ) if __name__ == "__main__": main()
151
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a : Optional[Any] = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=None ) -> List[Any]: '''simple docstring''' snake_case_ = XLNetConfig.from_json_file(__UpperCAmelCase ) snake_case_ = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) snake_case_ = finetuning_task snake_case_ = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case_ = XLNetForSequenceClassification(__UpperCAmelCase ) elif "squad" in finetuning_task: snake_case_ = finetuning_task snake_case_ = XLNetForQuestionAnswering(__UpperCAmelCase ) else: snake_case_ = XLNetLMHeadModel(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Save pytorch-model snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) print(F"Save PyTorch model to {os.path.abspath(__UpperCAmelCase )}" ) torch.save(model.state_dict(), __UpperCAmelCase ) print(F"Save configuration file to {os.path.abspath(__UpperCAmelCase )}" ) with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) a : Optional[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
593
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a : Optional[int] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): def __init__( self : List[str] , *lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Dict ): super().__init__(*lowercase_ , **lowercase_ ) snake_case_ = eval_examples snake_case_ = post_process_function snake_case_ = quant_trainer_args snake_case_ = 128 # default number of calibration samples def A_ ( self : int , lowercase_ : Tuple=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case_ = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case_ = self._remove_unused_columns(lowercase_ , description='''Calibration''' ) return DataLoader( lowercase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase_ , ) def A_ ( self : Dict , lowercase_ : str=None ): snake_case_ = self.train_dataset if calib_dataset is None else calib_dataset snake_case_ = self.get_calib_dataloader(lowercase_ ) snake_case_ = self.model quant_trainer.configure_model(lowercase_ , self.quant_trainer_args , calib=lowercase_ ) model.eval() quant_trainer.enable_calibration(lowercase_ ) logger.info('''***** Running calibration *****''' ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(lowercase_ ): # Prediction step snake_case_ ,snake_case_ ,snake_case_ = self.prediction_step(lowercase_ , lowercase_ , prediction_loss_only=lowercase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowercase_ , self.quant_trainer_args ) snake_case_ = model def A_ ( self : Optional[int] , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : Optional[int]=None , lowercase_ : str = "eval" ): snake_case_ = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ = self.get_eval_dataloader(lowercase_ ) snake_case_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ = self.compute_metrics snake_case_ = None snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ = eval_loop( lowercase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , ) finally: snake_case_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case_ = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) snake_case_ = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): snake_case_ = metrics.pop(lowercase_ ) self.log(lowercase_ ) else: snake_case_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def A_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict=None , lowercase_ : str = "test" ): snake_case_ = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ = self.compute_metrics snake_case_ = None snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ = eval_loop( lowercase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , ) finally: snake_case_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ = self.post_process_function(lowercase_ , lowercase_ , output.predictions , '''predict''' ) snake_case_ = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): snake_case_ = metrics.pop(lowercase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ ) def A_ ( self : Any , lowercase_ : List[Any]="./" ): snake_case_ = self.eval_dataset snake_case_ = self.get_eval_dataloader(lowercase_ ) snake_case_ = next(iter(lowercase_ ) ) # saving device - to make it consistent snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case_ = tuple(v.to(lowercase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case_ = True snake_case_ = self.model.to(lowercase_ ) model.eval() model.float() snake_case_ = model.module if hasattr(lowercase_ , '''module''' ) else model quant_trainer.configure_model(lowercase_ , self.quant_trainer_args ) snake_case_ = os.path.join(lowercase_ , '''model.onnx''' ) logger.info(F"exporting model to {output_model_file}" ) snake_case_ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( lowercase_ , lowercase_ , lowercase_ , export_params=lowercase_ , opset_version=13 , do_constant_folding=lowercase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=lowercase_ , ) logger.info('''onnx export finished''' )
593
1
'''simple docstring''' def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase = set() return any( node not in visited and depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for node in graph ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" visited.add(lowerCAmelCase_ ) rec_stk.add(lowerCAmelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCAmelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
310
'''simple docstring''' from collections.abc import Generator def UpperCAmelCase_ ( ): """simple docstring""" lowercase , lowercase = 0, 1 while True: lowercase , lowercase = b, a + b yield b def UpperCAmelCase_ ( lowerCAmelCase_ = 1000 ): """simple docstring""" lowercase = 1 lowercase = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
310
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
597
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =KandinskyVaaImgaImgPipeline UpperCAmelCase_ =["image_embeds", "negative_image_embeds", "image"] UpperCAmelCase_ =[ "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase_ =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ =False @property def _UpperCamelCase ( self ) -> Optional[Any]: return 32 @property def _UpperCamelCase ( self ) -> Tuple: return 32 @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> List[Any]: return 100 @property def _UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**_A ) return model @property def _UpperCamelCase ( self ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE_ = DDIMScheduler(**_A ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_A ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_A ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE_ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) SCREAMING_SNAKE_CASE_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
597
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def snake_case ( ): UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() return args.f class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : str ) -> None: UpperCAmelCase_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[str] ) -> Tuple: UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowerCAmelCase_ , "argv" , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase_ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Tuple = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase_ ) UpperCAmelCase_ : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase_ )
95
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ (unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=224 , lowerCAmelCase_ : List[Any]=30 , lowerCAmelCase_ : Any=400 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase_ : str=[0.5, 0.5, 0.5] , ) -> Dict: UpperCAmelCase_ : int = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : List[str] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : List[str] = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size" ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : str = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Optional[int] = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
95
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = CLIPConfig lowerCAmelCase__ = ["CLIPEncoderLayer"] def __init__( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase_ = CLIPVisionModelWithProjection(config.vision_config ) lowercase_ = nn.Linear(config.vision_config.projection_dim , 1 ) lowercase_ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=0.5 , UpperCAmelCase=0.5 ) -> int: '''simple docstring''' lowercase_ = self.vision_model(UpperCAmelCase )[0] lowercase_ = self.p_head(UpperCAmelCase ) lowercase_ = nsfw_detected.flatten() lowercase_ = nsfw_detected > p_threshold lowercase_ = nsfw_detected.tolist() if any(UpperCAmelCase ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase ): if nsfw_detected_: lowercase_ = np.zeros(images[idx].shape ) lowercase_ = self.w_head(UpperCAmelCase ) lowercase_ = watermark_detected.flatten() lowercase_ = watermark_detected > w_threshold lowercase_ = watermark_detected.tolist() if any(UpperCAmelCase ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(UpperCAmelCase ): if watermark_detected_: lowercase_ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
601
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str]=2 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: int = 10 , __lowerCamelCase: int = 2 ): '''simple docstring''' def get_dataset(__lowerCamelCase: List[Any] ): lowercase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=None ): '''simple docstring''' lowercase_ = [] for epoch in range(__lowerCamelCase ): # Train quickly model.train() for batch in dataloader: lowercase_ , lowercase_ = batch lowercase_ = model(__lowerCamelCase ) lowercase_ = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) accelerator.backward(__lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.randn(1 ) ) lowercase_ = nn.Parameter(torch.randn(1 ) ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return x * self.a + self.b class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=UpperCAmelCase , automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() # Train baseline lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial lowercase_ = os.path.join(UpperCAmelCase , "initial" ) accelerator.save_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything lowercase_ = os.path.join(UpperCAmelCase , "checkpoint" ) accelerator.save_state(UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(UpperCAmelCase ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCAmelCase ) lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.tensor([1, 2, 3] ) lowercase_ = torch.tensor([2, 3, 4] ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(net.parameters() ) lowercase_ = Accelerator() with self.assertRaises(UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = torch.optim.lr_scheduler.StepLR(UpperCAmelCase , step_size=1 , gamma=0.99 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() lowercase_ = scheduler.state_dict() train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(UpperCAmelCase , scheduler.state_dict() ) def A__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase , total_limit=2 ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ = accelerator.prepare(UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """/tmp/accelerate/state_checkpointing""" SCREAMING_SNAKE_CASE__ = DummyModel() SCREAMING_SNAKE_CASE__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dummy_dataloaders() SCREAMING_SNAKE_CASE__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
601
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = XLMTokenizer SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] __lowerCAmelCase : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE)))) __lowerCAmelCase : Optional[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] __lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w") as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE)) with open(self.merges_file , "w") as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = "lower newer" __lowerCAmelCase : List[Any] = "lower newer" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = XLMTokenizer(self.vocab_file , self.merges_file) __lowerCAmelCase : Optional[Any] = "lower" __lowerCAmelCase : List[Any] = ["low", "er</w>"] __lowerCAmelCase : int = tokenizer.tokenize(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = tokens + ["<unk>"] __lowerCAmelCase : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = XLMTokenizer.from_pretrained("xlm-mlm-en-2048") __lowerCAmelCase : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
293
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: ArgumentParser) -> Optional[int]: """simple docstring""" raise NotImplementedError() @abstractmethod def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict: """simple docstring""" raise NotImplementedError()
293
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _snake_case ( A_ : Any="" ): """simple docstring""" a_ : Dict = tempfile.mkdtemp() return os.path.join(A_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 a_ : int = AgentAudio(lowerCAmelCase_ ) a_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) # Ensure that the file contains the same value as the original tensor a_ , a_ : List[str] = sf.read(lowerCAmelCase_ ) self.assertTrue(torch.allclose(lowerCAmelCase_ , torch.tensor(lowerCAmelCase_ ) , atol=1E-4 ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = torch.rand(12 , dtype=torch.floataa ) - 0.5 a_ : str = get_new_path(suffix=""".wav""" ) sf.write(lowerCAmelCase_ , lowerCAmelCase_ , 1_60_00 ) a_ : Optional[int] = AgentAudio(lowerCAmelCase_ ) self.assertTrue(torch.allclose(lowerCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase_ ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = torch.randint(0 , 2_56 , (64, 64, 3) ) a_ : List[str] = AgentImage(lowerCAmelCase_ ) a_ : Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" a_ : Any = Image.open(lowerCAmelCase_ ) a_ : List[Any] = AgentImage(lowerCAmelCase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" a_ : Union[str, Any] = Image.open(lowerCAmelCase_ ) a_ : Union[str, Any] = AgentImage(lowerCAmelCase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = """Hey!""" a_ : Tuple = AgentText(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , agent_type.to_string() ) self.assertEqual(lowerCAmelCase_ , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
460
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): a_ : str = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = """sshleifer/tiny-gpt2""" a_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : List[Any] = PyTorchBenchmark(lowerCAmelCase_ ) a_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = """sgugger/tiny-distilbert-classification""" a_ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , only_pretrain_model=lowerCAmelCase_ , ) a_ : Optional[Any] = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = """sshleifer/tiny-gpt2""" a_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , torchscript=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : Optional[Any] = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = """sshleifer/tiny-gpt2""" a_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , fpaa=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : List[Any] = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = """sshleifer/tiny-gpt2""" a_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) # set architectures equal to `None` a_ : Any = None a_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : Optional[Any] = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) a_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = """sshleifer/tiny-gpt2""" a_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : int = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = """sshleifer/tiny-gpt2""" a_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCAmelCase_ , multi_process=lowerCAmelCase_ , ) a_ : List[str] = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = """sshleifer/tiny-gpt2""" a_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) a_ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : Tuple = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) a_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = """sshleifer/tinier_bart""" a_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) a_ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : Union[str, Any] = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) a_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = """sshleifer/tiny-gpt2""" a_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase_ ) a_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : Union[str, Any] = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) a_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = """sshleifer/tinier_bart""" a_ : int = AutoConfig.from_pretrained(lowerCAmelCase_ ) a_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase_ , ) a_ : int = PyTorchBenchmark(lowerCAmelCase_ , configs=[config] ) a_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: a_ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , save_to_csv=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCAmelCase_ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowerCAmelCase_ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowerCAmelCase_ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowerCAmelCase_ , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowerCAmelCase_ , """env.csv""" ) , multi_process=lowerCAmelCase_ , ) a_ : Tuple = PyTorchBenchmark(lowerCAmelCase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """env.csv""" ) ).exists() ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCAmelCase_ ): self.assertTrue(hasattr(lowerCAmelCase_ , """sequential""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """cumulative""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """current""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: a_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase_ , inference=lowerCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCAmelCase_ , """log.txt""" ) , log_print=lowerCAmelCase_ , trace_memory_line_by_line=lowerCAmelCase_ , multi_process=lowerCAmelCase_ , ) a_ : Dict = PyTorchBenchmark(lowerCAmelCase_ ) a_ : Tuple = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCAmelCase_ , """log.txt""" ) ).exists() )
460
1
"""simple docstring""" # flake8: noqa # Lint as: python3 __snake_case : Optional[int] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
293
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __snake_case = 0 __snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __snake_case = tuple[int, int] class __lowerCamelCase : def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,): '''simple docstring''' __UpperCamelCase = pos_x __UpperCamelCase = pos_y __UpperCamelCase = (pos_y, pos_x) __UpperCamelCase = goal_x __UpperCamelCase = goal_y __UpperCamelCase = g_cost __UpperCamelCase = parent __UpperCamelCase = self.calculate_heuristic() __UpperCamelCase = self.g_cost + self.h_cost def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.pos_x - self.goal_x __UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: int,A_: Node ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__( self: Any,A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ ) __UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ ) __UpperCamelCase = [self.start] __UpperCamelCase = [] __UpperCamelCase = False def snake_case_ ( self: Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) __UpperCamelCase = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def snake_case_ ( self: int,A_: Node ): '''simple docstring''' __UpperCamelCase = [] for action in delta: __UpperCamelCase = parent.pos_x + action[1] __UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) ) return successors def snake_case_ ( self: Any,A_: Node | None ): '''simple docstring''' __UpperCamelCase = node __UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__( self: List[Any],A_: TPosition,A_: TPosition ): '''simple docstring''' __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = AStar(A_,A_ ) __UpperCamelCase = False def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) __UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_,A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) __UpperCamelCase = current_bwd_node __UpperCamelCase = current_fwd_node __UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path __UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def snake_case_ ( self: List[str],A_: Node,A_: Node ): '''simple docstring''' __UpperCamelCase = self.fwd_astar.retrace_path(A_ ) __UpperCamelCase = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() __UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __snake_case = (0, 0) __snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __snake_case = time.time() __snake_case = AStar(init, goal) __snake_case = a_star.search() __snake_case = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __snake_case = time.time() __snake_case = BidirectionalAStar(init, goal) __snake_case = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
1
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case: Any = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) snake_case: str = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(_UpperCAmelCase ) from datasets import load_dataset snake_case: int = load_dataset("""nielsr/rvlcdip-demo""" ) snake_case: str = dataset['''train'''][0]['''image'''].convert("""RGB""" ) snake_case: Optional[int] = image_processor(_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case: Optional[Any] = model(**_UpperCAmelCase ) snake_case: List[str] = outputs.logits snake_case: Any = torch.Size((1, 16) ) self.assertEqual(logits.shape , _UpperCAmelCase ) snake_case: str = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=_UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
713
from __future__ import annotations def a_ (_lowerCAmelCase : int )-> list[int]: snake_case: List[str] = 2 snake_case: Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
164
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , _lowercase ).groups()[0] class __lowerCamelCase (_a ): def __init__( self: Optional[int],A_: Tuple,A_: Optional[Any]=None,A_: Dict=None ): '''simple docstring''' __UpperCamelCase = file_names __UpperCamelCase = image_transform __UpperCamelCase = label_to_id def __len__( self: Any ): '''simple docstring''' return len(self.file_names ) def __getitem__( self: Dict,A_: Dict ): '''simple docstring''' __UpperCamelCase = self.file_names[idx] __UpperCamelCase = PIL.Image.open(A_ ) __UpperCamelCase = raw_image.convert('RGB' ) if self.image_transform is not None: __UpperCamelCase = self.image_transform(A_ ) __UpperCamelCase = extract_label(A_ ) if self.label_to_id is not None: __UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = config['image_size'] if not isinstance(_lowercase , (list, tuple) ): __UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": __UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCamelCase = os.path.split(_lowercase )[-1].split('.' )[0] accelerator.init_trackers(_lowercase , _lowercase ) # Grab all the image filenames __UpperCamelCase = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences __UpperCamelCase = [extract_label(_lowercase ) for fname in file_names] __UpperCamelCase = list(set(_lowercase ) ) id_to_label.sort() __UpperCamelCase = {lbl: i for i, lbl in enumerate(_lowercase )} # Set the seed before splitting the data. np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # Split our filenames between train and validation __UpperCamelCase = np.random.permutation(len(_lowercase ) ) __UpperCamelCase = int(0.8 * len(_lowercase ) ) __UpperCamelCase = random_perm[:cut] __UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCamelCase = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase ) # For evaluation, we use a deterministic Resize __UpperCamelCase = Compose([Resize(_lowercase ), ToTensor()] ) __UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase ) # Instantiate dataloaders. __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = create_model('resnet50d' , pretrained=_lowercase , num_classes=len(_lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCamelCase = False for param in model.get_classifier().parameters(): __UpperCamelCase = True # We normalize the batches of images to be a bit faster. __UpperCamelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) __UpperCamelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __UpperCamelCase = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCamelCase = os.path.splitext(_lowercase )[0] if "epoch" in training_difference: __UpperCamelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 __UpperCamelCase = None else: __UpperCamelCase = int(training_difference.replace('step_' , '' ) ) __UpperCamelCase = resume_step // len(_lowercase ) resume_step -= starting_epoch * len(_lowercase ) # Now we train the model for epoch in range(_lowercase , _lowercase ): model.train() if args.with_tracking: __UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCamelCase = accelerator.skip_first_batches(_lowercase , _lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std __UpperCamelCase = model(_lowercase ) __UpperCamelCase = torch.nn.functional.cross_entropy(_lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) model.eval() __UpperCamelCase = 0 __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std with torch.no_grad(): __UpperCamelCase = model(_lowercase ) __UpperCamelCase = outputs.argmax(dim=-1 ) __UpperCamelCase, __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) __UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_lowercase ), 'epoch': epoch, } , step=_lowercase , ) if checkpointing_steps == "epoch": __UpperCamelCase = f'''epoch_{epoch}''' if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) if args.with_tracking: accelerator.end_training() def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_lowercase , default=_lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_lowercase , default=_lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = "▁" __lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = BigBirdTokenizer __SCREAMING_SNAKE_CASE : str = BigBirdTokenizerFast __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE : List[Any] = True def UpperCAmelCase__ ( self : int ): super().setUp() _UpperCAmelCase = self.tokenizer_class(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = "<s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(__UpperCamelCase ) , 1_004 ) def UpperCAmelCase__ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCAmelCase__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = BigBirdTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) _UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCAmelCase__ ( self : Any ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = "Hello World!" _UpperCAmelCase = [65, 18_536, 2_260, 101, 66] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _UpperCAmelCase = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors="pt" , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = BigBirdConfig(attention_type="original_full" ) _UpperCAmelCase = BigBirdModel(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _UpperCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): # fmt: off _UpperCAmelCase = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
129
0
"""simple docstring""" import math def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if not isinstance(_lowerCAmelCase, _lowerCAmelCase ): _UpperCAmelCase : Tuple = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCAmelCase ) if number < 1: _UpperCAmelCase : List[Any] = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowerCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _UpperCAmelCase : Optional[Any] = int(math.log(number // 3, 2 ) ) + 2 _UpperCAmelCase : int = [3, 5] _UpperCAmelCase : Optional[int] = 2 _UpperCAmelCase : Dict = 3 for block in range(1, _lowerCAmelCase ): for _ in range(_lowerCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCamelCase__ : Optional[int] = 0 try: lowerCamelCase__ : Optional[int] = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
238
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase ( _lowerCAmelCase : Tuple ) -> Tuple: return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> int: _UpperCAmelCase : Optional[int] = np.max(_outputs, axis=-1, keepdims=_lowerCAmelCase ) _UpperCAmelCase : str = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=_lowerCAmelCase ) class _UpperCAmelCase ( __a): __a : Tuple = """sigmoid""" __a : str = """softmax""" __a : List[Any] = """none""" @add_end_docstrings( __a , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCAmelCase ( __a): __a : int = False __a : Union[str, Any] = ClassificationFunction.NONE def __init__( self , **_A ) -> Tuple: '''simple docstring''' super().__init__(**_A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __snake_case ( self , _A=None , _A=None , _A="" , **_A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = tokenizer_kwargs _UpperCAmelCase : Tuple = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: _UpperCAmelCase : Optional[int] = self.model.config.return_all_scores if isinstance(_A , _A ) or top_k is None: _UpperCAmelCase : List[str] = top_k _UpperCAmelCase : List[str] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , _A , ) if return_all_scores: _UpperCAmelCase : List[str] = None else: _UpperCAmelCase : Union[str, Any] = 1 if isinstance(_A , _A ): _UpperCAmelCase : Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCAmelCase : Union[str, Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_A , **_A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = super().__call__(*_A , **_A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCAmelCase : int = """top_k""" not in kwargs if isinstance(args[0] , _A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __snake_case ( self , _A , **_A ) -> Dict[str, GenericTensor]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.framework if isinstance(_A , _A ): return self.tokenizer(**_A , return_tensors=_A , **_A ) elif isinstance(_A , _A ) and len(_A ) == 1 and isinstance(inputs[0] , _A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_A , **_A ) elif isinstance(_A , _A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(_A , return_tensors=_A , **_A ) def __snake_case ( self , _A ) -> str: '''simple docstring''' return self.model(**_A ) def __snake_case ( self , _A , _A=None , _A=1 , _A=True ) -> Dict: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCAmelCase : Any = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCAmelCase : int = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: _UpperCAmelCase : int = self.model.config.function_to_apply else: _UpperCAmelCase : Any = ClassificationFunction.NONE _UpperCAmelCase : List[Any] = model_outputs["""logits"""][0] _UpperCAmelCase : Union[str, Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCAmelCase : str = sigmoid(_A ) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCAmelCase : str = softmax(_A ) elif function_to_apply == ClassificationFunction.NONE: _UpperCAmelCase : Union[str, Any] = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCAmelCase : List[str] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(_A ) ] if not _legacy: dict_scores.sort(key=lambda _A : x["score"] , reverse=_A ) if top_k is not None: _UpperCAmelCase : Tuple = dict_scores[:top_k] return dict_scores
238
1
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : float ): '''simple docstring''' return 0.0 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) SCREAMING_SNAKE_CASE : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 5_12 SCREAMING_SNAKE_CASE : Optional[int] = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE : Tuple = [filter_type.process(lowerCamelCase_ ) for item in inputs] SCREAMING_SNAKE_CASE : Any = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE : Optional[Any] = np.abs(np.fft.fft(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = 20 * np.logaa(lowerCamelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds SCREAMING_SNAKE_CASE : Any = get_bounds(lowerCamelCase_ , lowerCamelCase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(lowerCamelCase_ ) plt.show() def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 5_12 SCREAMING_SNAKE_CASE : Optional[Any] = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE : str = [filter_type.process(lowerCamelCase_ ) for item in inputs] SCREAMING_SNAKE_CASE : List[Any] = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE : Optional[Any] = np.angle(np.fft.fft(lowerCamelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(lowerCamelCase_ , -2 * pi ) ) plt.show()
79
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCAmelCase = random.Random() def __A ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE : Optional[Any] = global_rng SCREAMING_SNAKE_CASE : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int]=7 , lowerCamelCase_ : Optional[int]=4_00 , lowerCamelCase_ : int=20_00 , lowerCamelCase_ : List[str]=20_48 , lowerCamelCase_ : Optional[Any]=1_28 , lowerCamelCase_ : Optional[Any]=1 , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : Dict=30 , lowerCamelCase_ : Dict=4_41_00 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : Any = max_seq_length SCREAMING_SNAKE_CASE : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : int = spectrogram_length SCREAMING_SNAKE_CASE : List[Any] = feature_size SCREAMING_SNAKE_CASE : Any = num_audio_channels SCREAMING_SNAKE_CASE : Tuple = hop_length SCREAMING_SNAKE_CASE : str = chunk_length SCREAMING_SNAKE_CASE : Dict = sampling_rate def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Any=False ): '''simple docstring''' def _flatten(lowerCamelCase_ : Dict ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = TvltFeatureExtractor def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TvltFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """sampling_rate""" ) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Any = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : List[Any] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : Optional[int] = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : int = os.path.join(lowerCamelCase_ , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : int = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : List[str] = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : List[str] = feature_extractor( lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 , mask_audio=lowerCamelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] SCREAMING_SNAKE_CASE : int = np.asarray(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Union[str, Any] = ds.sort("""id""" ).select(range(lowerCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Tuple = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(lowerCamelCase_ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase_ , atol=1e-4 ) )
79
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__ ( _a ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self._create_example_records() lowerCAmelCase__ = Dataset.from_list(__UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(__UpperCAmelCase ): self.assertDictEqual(__UpperCAmelCase , example_records[i] ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self._create_example_records() lowerCAmelCase__ = Dataset.from_list(__UpperCAmelCase ) lowerCAmelCase__ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCAmelCase ( self )-> Any: # checks what happens with missing columns '''simple docstring''' lowerCAmelCase__ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] lowerCAmelCase__ = Dataset.from_list(__UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def UpperCAmelCase ( self )-> Optional[int]: # checks if the type can be inferred from the second record '''simple docstring''' lowerCAmelCase__ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] lowerCAmelCase__ = Dataset.from_list(__UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = Dataset.from_list([] ) self.assertEqual(len(__UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
339
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return getitem, k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" return setitem, k, v def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" return delitem, k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> str: """simple docstring""" try: return fun(_UpperCamelCase , *_UpperCamelCase ), None except Exception as e: return None, e lowerCAmelCase_ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCAmelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCAmelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCAmelCase_ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCAmelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Any = HashMap(initial_block_size=4 ) snake_case_ : Union[str, Any] = {} for _, (fun, *args) in enumerate(_UpperCamelCase ): snake_case_ , snake_case_ : str = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) assert my_res == py_res assert str(_UpperCamelCase ) == str(_UpperCamelCase ) assert set(_UpperCamelCase ) == set(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" def is_public(_UpperCamelCase ) -> bool: return not name.startswith('''_''' ) snake_case_ : str = {name for name in dir({} ) if is_public(_UpperCamelCase )} snake_case_ : str = {name for name in dir(HashMap() ) if is_public(_UpperCamelCase )} assert dict_public_names > hash_public_names
60
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Union[str, Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) a__ = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 ) a__ = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowercase__ ( self , _a , _a ): """simple docstring""" for example in examples: a__ = video_classifier(_a ) self.assertEqual( _a , [ {'score': ANY(_a ), 'label': ANY(_a )}, {'score': ANY(_a ), 'label': ANY(_a )}, ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" a__ = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' a__ = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) a__ = pipeline( 'video-classification' , model=_a , feature_extractor=_a , frame_sampling_rate=4 ) a__ = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) a__ = video_classifier(_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) a__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def lowercase__ ( self ): """simple docstring""" pass
126
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A : str = 16 __A : Union[str, Any] = 32 def lowerCAmelCase_ ( a : str ): return int(x / 2**20 ) class _UpperCamelCase : '''simple docstring''' def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero a__ = torch.cuda.memory_allocated() return self def __exit__( self , *_a ): """simple docstring""" gc.collect() torch.cuda.empty_cache() a__ = torch.cuda.memory_allocated() a__ = torch.cuda.max_memory_allocated() a__ = bamb(self.end - self.begin ) a__ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( a : Accelerator , a : int = 16 , a : str = "bert-base-cased" , a : int = 320 , a : int = 160 , ): a__ = AutoTokenizer.from_pretrained(a ) a__ = load_dataset( 'glue' , 'mrpc' , split={'train': f'''train[:{n_train}]''', 'validation': f'''validation[:{n_val}]'''} ) def tokenize_function(a : Any ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( a , batched=a , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(a , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets['train'] , shuffle=a , collate_fn=a , batch_size=a ) a__ = DataLoader( tokenized_datasets['validation'] , shuffle=a , collate_fn=a , batch_size=a ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( a : Optional[int] , a : Optional[Any] ): # Initialize accelerator a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config['lr'] a__ = int(config['num_epochs'] ) a__ = int(config['seed'] ) a__ = int(config['batch_size'] ) a__ = args.model_name_or_path set_seed(a ) a__ , a__ = get_dataloaders(a , a , a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(a , return_dict=a ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=a ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: a__ = 1 a__ = (len(a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=0 , num_training_steps=a , ) else: a__ = DummyScheduler(a , total_num_steps=a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( a , a , a , a , a ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = {} for epoch in range(a , a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(a ): a__ = model(**a ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) a__ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(a , a ) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=a , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=a , ) parser.add_argument( '--output_dir' , type=a , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=a , default=a , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=a , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=a , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=a , default=1 , help='Number of train epochs.' , ) a__ = parser.parse_args() a__ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(a , a ) if __name__ == "__main__": main()
126
1
"""simple docstring""" from math import factorial class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : int = real if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [1] * rank else: a : str = rank def __repr__( self ) -> Dict: return ( f"""{self.real}+""" f"""{'+'.join(str(lowerCAmelCase__ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def __a ( self ) -> Optional[Any]: a : Optional[int] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCAmelCase__ ) def __add__( self , lowerCAmelCase__ ) -> List[str]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return Dual(self.real + other , self.duals ) a : Tuple = self.duals.copy() a : Optional[Any] = other.duals.copy() if len(lowerCAmelCase__ ) > len(lowerCAmelCase__ ): o_dual.extend([1] * (len(lowerCAmelCase__ ) - len(lowerCAmelCase__ )) ) elif len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ): s_dual.extend([1] * (len(lowerCAmelCase__ ) - len(lowerCAmelCase__ )) ) a : Optional[Any] = [] for i in range(len(lowerCAmelCase__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCAmelCase__ ) lowerCamelCase : int =__add__ def __sub__( self , lowerCAmelCase__ ) -> Optional[Any]: return self + other * -1 def __mul__( self , lowerCAmelCase__ ) -> Any: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCAmelCase__ ) a : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCAmelCase__ ) lowerCamelCase : List[str] =__mul__ def __truediv__( self , lowerCAmelCase__ ) -> Dict: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Dict = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCAmelCase__ ) raise ValueError def __floordiv__( self , lowerCAmelCase__ ) -> List[Any]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCAmelCase__ ) raise ValueError def __pow__( self , lowerCAmelCase__ ) -> Tuple: if n < 0 or isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self a : Dict = self for _ in range(n - 1 ): x *= self return x def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[Any] ) ->List[str]: '''simple docstring''' if not callable(_lowercase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowercase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowercase , _lowercase ): raise ValueError("differentiate() requires an int as input for order" ) a : Dict = Dual(_lowercase , 1 ) a : Any = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->List[Any]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
633
"""simple docstring""" import gc import threading import time import psutil import torch class __UpperCamelCase : def __init__( self ) -> Any: a : str = psutil.Process() a : str = False def __a ( self ) -> str: a : List[Any] = -1 while True: a : str = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __a ( self ) -> List[str]: a : Dict = True a : Optional[Any] = threading.Thread(target=self.peak_monitor ) a : List[Any] = True self.thread.start() def __a ( self ) -> List[str]: a : Optional[int] = False self.thread.join() return self.cpu_memory_peak a : Tuple = PeakCPUMemory() def _SCREAMING_SNAKE_CASE ( ) ->List[Any]: '''simple docstring''' a : List[str] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a : Tuple = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a : Any = torch.cuda.memory_allocated(_lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Union[str, Any]: '''simple docstring''' a : int = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem a : List[Any] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 a : Union[str, Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a : Optional[Any] = (torch.cuda.memory_allocated(_lowercase ) - start_measures[str(_lowercase )]) / 2**20 a : Optional[Any] = (torch.cuda.max_memory_allocated(_lowercase ) - start_measures[str(_lowercase )]) / 2**20 return measures def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Union[str, Any] ) ->Optional[int]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_lowercase )]:.2f}MiB""" ) a : str = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
633
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __SCREAMING_SNAKE_CASE : Dict =logging.getLogger(__name__) @dataclass class A_ ( __a ): _A :Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) _A :bool = field(default=__a , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) _A :bool = field( default=__a , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _A :bool = field(default=__a , metadata={'''help''': '''whether to use adafactor'''} ) _A :Optional[float] = field( default=__a , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) _A :Optional[float] = field( default=__a , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) _A :Optional[float] = field(default=__a , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) _A :Optional[float] = field( default=__a , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) _A :Optional[str] = field( default='''linear''' , metadata={'''help''': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
72
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __SCREAMING_SNAKE_CASE : List[Any] ='''.''' if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] =os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') __SCREAMING_SNAKE_CASE : Dict =[] __SCREAMING_SNAKE_CASE : Dict =[] with open(doctest_file_path) as fp: for line in fp: __SCREAMING_SNAKE_CASE : Optional[Any] =line.strip() __SCREAMING_SNAKE_CASE : Tuple =os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __SCREAMING_SNAKE_CASE : Optional[Any] ='''\n'''.join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
72
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] A__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = torch.load(__lowerCAmelCase , map_location='''cpu''' ) return sd def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=rename_keys_prefix ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = OrderedDict() snake_case__ : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case__ : Dict = key for name_pair in rename_keys_prefix: snake_case__ : List[Any] = new_key.replace(name_pair[0] , name_pair[1] ) snake_case__ : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case__ : List[Any] = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: snake_case__ : str = '''pretraining''' if "vcr" in checkpoint_path: snake_case__ : str = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: snake_case__ : Dict = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: snake_case__ : Any = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: snake_case__ : List[Any] = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: snake_case__ : int = {'''visual_embedding_dim''': 512} snake_case__ : Any = '''multichoice''' elif "vqa_advanced" in checkpoint_path: snake_case__ : Optional[int] = {'''visual_embedding_dim''': 2048} snake_case__ : Union[str, Any] = '''vqa_advanced''' elif "vqa" in checkpoint_path: snake_case__ : int = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} snake_case__ : List[Any] = '''vqa''' elif "nlvr" in checkpoint_path: snake_case__ : Optional[int] = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } snake_case__ : Any = '''nlvr''' snake_case__ : str = VisualBertConfig(**__lowerCAmelCase ) # Load State Dict snake_case__ : str = load_state_dict(__lowerCAmelCase ) snake_case__ : Optional[Any] = get_new_dict(__lowerCAmelCase , __lowerCAmelCase ) if model_type == "pretraining": snake_case__ : Union[str, Any] = VisualBertForPreTraining(__lowerCAmelCase ) elif model_type == "vqa": snake_case__ : Optional[int] = VisualBertForQuestionAnswering(__lowerCAmelCase ) elif model_type == "nlvr": snake_case__ : List[str] = VisualBertForVisualReasoning(__lowerCAmelCase ) elif model_type == "multichoice": snake_case__ : Optional[int] = VisualBertForMultipleChoice(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') A__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
252
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = " " ) -> list: """simple docstring""" snake_case__ : str = [] snake_case__ : int = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) snake_case__ : Dict = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
252
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: Tuple = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """bert""" def __init__( self : Tuple , __snake_case : Union[str, Any]=30522 , __snake_case : int=768 , __snake_case : Dict=12 , __snake_case : Optional[Any]=12 , __snake_case : List[Any]=3072 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : Any=0.1 , __snake_case : int=512 , __snake_case : Any=2 , __snake_case : Optional[int]=0.02 , __snake_case : Tuple=1E-12 , __snake_case : List[Any]=0 , __snake_case : Union[str, Any]="absolute" , __snake_case : str=True , __snake_case : List[str]=None , **__snake_case : Optional[Any] , ) -> int: super().__init__(pad_token_id=__snake_case , **__snake_case ) UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : int = position_embedding_type UpperCAmelCase : Dict = use_cache UpperCAmelCase : Any = classifier_dropout class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" @property def A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
528
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__: Union[str, Any] = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[str] = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase__: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
528
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Dict = list(lowerCAmelCase__ ) snake_case : List[str] = list(lowerCAmelCase__ ) snake_case : Any = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count += 1 snake_case : int = '_' if count > 1: return False else: return "".join(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : str = [] while True: snake_case : Dict = ['$'] * len(lowerCAmelCase__ ) snake_case : str = [] for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1 ,len(lowerCAmelCase__ ) ): snake_case : Optional[Any] = compare_string(binary[i] ,binary[j] ) if k is False: snake_case : str = '*' snake_case : List[Any] = '*' temp.append("""X""" ) for i in range(len(lowerCAmelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase__ ) == 0: return pi snake_case : Optional[Any] = list(set(lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: snake_case : Optional[Any] = [] for minterm in minterms: snake_case : int = '' for _ in range(lowerCAmelCase__ ): snake_case : Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase__ ) return temp def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Optional[int] = list(lowerCAmelCase__ ) snake_case : List[Any] = list(lowerCAmelCase__ ) snake_case : Optional[Any] = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: snake_case : Optional[Any] = [] snake_case : str = [0] * len(lowerCAmelCase__ ) for i in range(len(chart[0] ) ): snake_case : Union[str, Any] = 0 snake_case : Dict = -1 for j in range(len(lowerCAmelCase__ ) ): if chart[j][i] == 1: count += 1 snake_case : int = j if count == 1: snake_case : Any = 1 for i in range(len(lowerCAmelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase__ ) ): snake_case : int = 0 temp.append(prime_implicants[i] ) while True: snake_case : int = 0 snake_case : Any = -1 snake_case : str = 0 for i in range(len(lowerCAmelCase__ ) ): snake_case : Optional[int] = chart[i].count(1 ) if count_n > max_n: snake_case : str = count_n snake_case : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase__ ) ): snake_case : List[Any] = 0 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: snake_case : Optional[int] = [[0 for x in range(len(lowerCAmelCase__ ) )] for x in range(len(lowerCAmelCase__ ) )] for i in range(len(lowerCAmelCase__ ) ): snake_case : int = prime_implicants[i].count("""_""" ) for j in range(len(lowerCAmelCase__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,lowerCAmelCase__ ): snake_case : Union[str, Any] = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[Any] = int(input("""Enter the no. of variables\n""" ) ) snake_case : List[Any] = [ float(lowerCAmelCase__ ) for x in input( """Enter the decimal representation of Minterms \'Spaces Separated\'\n""" ).split() ] snake_case : List[str] = decimal_to_binary(lowerCAmelCase__ ,lowerCAmelCase__ ) snake_case : Optional[int] = check(lowerCAmelCase__ ) print("""Prime Implicants are:""" ) print(lowerCAmelCase__ ) snake_case : Optional[int] = prime_implicant_chart(lowerCAmelCase__ ,lowerCAmelCase__ ) snake_case : Dict = selection(lowerCAmelCase__ ,lowerCAmelCase__ ) print("""Essential Prime Implicants are:""" ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
587
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase_ ( snake_case__ ): _a : Union[str, Any] = (DPMSolverSDEScheduler,) _a : List[Any] = 1_0 def __a ( self : Any , **lowerCamelCase : str ): lowerCamelCase_ : Any = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowerCamelCase ) return config def __a ( self : Tuple ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __a ( self : int ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __a ( self : Any ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __a ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __a ( self : Optional[int] ): lowerCamelCase_ : int = self.scheduler_classes[0] lowerCamelCase_ : str = self.get_scheduler_config() lowerCamelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : Optional[Any] = self.dummy_model() lowerCamelCase_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : Union[str, Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : str = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Tuple = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Tuple = output.prev_sample lowerCamelCase_ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Tuple ): lowerCamelCase_ : List[str] = self.scheduler_classes[0] lowerCamelCase_ : Any = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase_ : Tuple = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ : Any = self.dummy_model() lowerCamelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = output.prev_sample lowerCamelCase_ : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : List[Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __a ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config() lowerCamelCase_ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCamelCase_ : Dict = self.dummy_model() lowerCamelCase_ : Dict = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ : Tuple = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : List[str] = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Optional[int] = output.prev_sample lowerCamelCase_ : List[Any] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : str = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Any ): lowerCamelCase_ : Dict = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config() lowerCamelCase_ : Union[str, Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCamelCase_ : int = self.dummy_model() lowerCamelCase_ : str = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma lowerCamelCase_ : Dict = sample.to(lowerCamelCase ) for t in scheduler.timesteps: lowerCamelCase_ : Optional[Any] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = model(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Dict = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Any = output.prev_sample lowerCamelCase_ : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCamelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
364
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( a__ ): """simple docstring""" __magic_name__ :Optional[Any] = "pegasus" __magic_name__ :List[str] = ["past_key_values"] __magic_name__ :Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __UpperCAmelCase=5_0_2_6_5 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = vocab_size lowerCAmelCase__ :Union[str, Any] = max_position_embeddings lowerCAmelCase__ :int = d_model lowerCAmelCase__ :Dict = encoder_ffn_dim lowerCAmelCase__ :Any = encoder_layers lowerCAmelCase__ :List[Any] = encoder_attention_heads lowerCAmelCase__ :Union[str, Any] = decoder_ffn_dim lowerCAmelCase__ :Optional[Any] = decoder_layers lowerCAmelCase__ :List[str] = decoder_attention_heads lowerCAmelCase__ :Tuple = dropout lowerCAmelCase__ :str = attention_dropout lowerCAmelCase__ :str = activation_dropout lowerCAmelCase__ :Any = activation_function lowerCAmelCase__ :List[Any] = init_std lowerCAmelCase__ :List[str] = encoder_layerdrop lowerCAmelCase__ :List[Any] = decoder_layerdrop lowerCAmelCase__ :str = use_cache lowerCAmelCase__ :Dict = encoder_layers lowerCAmelCase__ :List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def snake_case ( self ): '''simple docstring''' return self.encoder_attention_heads @property def snake_case ( self ): '''simple docstring''' return self.d_model
710
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = ["""image_processor""", """tokenizer"""] __magic_name__ :str = """BlipImageProcessor""" __magic_name__ :Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = False super().__init__(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.image_processor def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCAmelCase__ :int = self.tokenizer lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ :Dict = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) if text is not None: lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) else: lowerCAmelCase__ :Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCAmelCase ) return encoding_image_processor def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
560
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __a ( _snake_case, _snake_case ): @register_to_config def __init__( self : Optional[Any] ,lowerCamelCase : int = 768 ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 ,lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(1 ,lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Union[str, torch.device]] = None ,lowerCamelCase : Optional[torch.dtype] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds * self.std) + self.mean return embeds
109
def _lowerCamelCase ( ): return 1 def _lowerCamelCase ( a_ : int): return 0 if x < 0 else two_pence(x - 2) + one_pence() def _lowerCamelCase ( a_ : int): return 0 if x < 0 else five_pence(x - 5) + two_pence(a_) def _lowerCamelCase ( a_ : int): return 0 if x < 0 else ten_pence(x - 10) + five_pence(a_) def _lowerCamelCase ( a_ : int): return 0 if x < 0 else twenty_pence(x - 20) + ten_pence(a_) def _lowerCamelCase ( a_ : int): return 0 if x < 0 else fifty_pence(x - 50) + twenty_pence(a_) def _lowerCamelCase ( a_ : int): return 0 if x < 0 else one_pound(x - 1_00) + fifty_pence(a_) def _lowerCamelCase ( a_ : int): return 0 if x < 0 else two_pound(x - 2_00) + one_pound(a_) def _lowerCamelCase ( a_ : int = 2_00): return two_pound(a_) if __name__ == "__main__": print(solution(int(input().strip())))
166
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase__ ='2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase__ =concatenate_datasets lowercase__ =DownloadConfig lowercase__ =DownloadManager lowercase__ =DownloadMode lowercase__ =DownloadConfig lowercase__ =DownloadMode lowercase__ =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
511
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ , A__ ): a_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
511
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _snake_case ( A ) -> np.ndarray: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def _snake_case ( A ) -> np.ndarray: return (gray > 127) & (gray <= 255) def _snake_case ( A , A ) -> np.ndarray: lowerCAmelCase__ = np.zeros_like(A ) lowerCAmelCase__ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase__ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase__ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase__ = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCAmelCase = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' __UpperCAmelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCAmelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCAmelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCAmelCase = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
90
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = list[list[int]] # assigning initial values to the grid __UpperCAmelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCAmelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _snake_case ( A , A , A , A ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _snake_case ( A ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _snake_case ( A ) -> Matrix | None: if location := find_empty_location(A ): lowerCAmelCase__ , lowerCAmelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): lowerCAmelCase__ = digit if sudoku(A ) is not None: return grid lowerCAmelCase__ = 0 return None def _snake_case ( A ) -> None: for row in grid: for cell in row: print(A , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __UpperCAmelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
90
1
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ConsistencyModelPipeline _SCREAMING_SNAKE_CASE : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _SCREAMING_SNAKE_CASE : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _SCREAMING_SNAKE_CASE : Tuple = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def lowerCAmelCase ( self : List[Any] ): __snake_case = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def lowerCAmelCase ( self : Optional[int] ): __snake_case = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def lowerCAmelCase ( self : Dict , snake_case_ : Dict=False ): if class_cond: __snake_case = self.dummy_cond_unet else: __snake_case = self.dummy_uncond_unet # Default to CM multistep sampler __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = { "unet": unet, "scheduler": scheduler, } return components def lowerCAmelCase ( self : Dict , snake_case_ : Dict , snake_case_ : int=0 ): if str(snake_case_ ).startswith("mps" ): __snake_case = torch.manual_seed(snake_case_ ) else: __snake_case = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __snake_case = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def lowerCAmelCase ( self : Tuple ): __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = ConsistencyModelPipeline(**snake_case_ ) __snake_case = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_dummy_inputs(snake_case_ ) __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase ( self : Dict ): __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components(class_cond=snake_case_ ) __snake_case = ConsistencyModelPipeline(**snake_case_ ) __snake_case = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_dummy_inputs(snake_case_ ) __snake_case = 0 __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase ( self : Tuple ): __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = ConsistencyModelPipeline(**snake_case_ ) __snake_case = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_dummy_inputs(snake_case_ ) __snake_case = 1 __snake_case = None __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase ( self : int ): __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components(class_cond=snake_case_ ) __snake_case = ConsistencyModelPipeline(**snake_case_ ) __snake_case = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_dummy_inputs(snake_case_ ) __snake_case = 1 __snake_case = None __snake_case = 0 __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Union[str, Any]=0 , snake_case_ : Any=False , snake_case_ : Tuple="cpu" , snake_case_ : Any=torch.floataa , snake_case_ : Any=(1, 3, 64, 64) ): __snake_case = torch.manual_seed(snake_case_ ) __snake_case = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __snake_case = self.get_fixed_latents(seed=snake_case_ , device=snake_case_ , dtype=snake_case_ , shape=snake_case_ ) __snake_case = latents return inputs def lowerCAmelCase ( self : Any , snake_case_ : Dict=0 , snake_case_ : int="cpu" , snake_case_ : Optional[int]=torch.floataa , snake_case_ : Optional[int]=(1, 3, 64, 64) ): if type(snake_case_ ) == str: __snake_case = torch.device(snake_case_ ) __snake_case = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __snake_case = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) return latents def lowerCAmelCase ( self : Dict ): __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_inputs() __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCAmelCase ( self : List[Any] ): __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_inputs() __snake_case = 1 __snake_case = None __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowerCAmelCase ( self : Optional[Any] ): __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowerCAmelCase ( self : Any ): __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) __snake_case = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) __snake_case = 1 __snake_case = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): __snake_case = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
614
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
614
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if config_name_or_path is None: a__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: a__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: a__ = question_encoder_name_or_path a__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. a__ = RagConfig.from_pretrained(_lowercase ) a__ = AutoConfig.from_pretrained(_lowercase ) a__ = AutoConfig.from_pretrained(_lowercase ) a__ = gen_config a__ = question_encoder_config a__ = model_class.from_pretrained_question_encoder_generator( _lowercase , _lowercase , config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. a__ = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) a__ = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCamelCase_ : List[Any] = parser.parse_args() UpperCamelCase_ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
331
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = BloomTokenizerFast UpperCamelCase__ = BloomTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = '''tokenizer_file''' UpperCamelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def lowerCAmelCase_ ( self : Dict ): super().setUp() a__ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Dict ,**a__ : List[str] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**a__ ) def lowerCAmelCase_ ( self : Tuple ): a__ = self.get_rust_tokenizer() a__ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] a__ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] a__ = tokenizer.batch_encode_plus(a__ )["input_ids"] self.assertListEqual(a__ ,a__ ) a__ = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ ,a__ ) def lowerCAmelCase_ ( self : Tuple ,a__ : List[str]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ = self.rust_tokenizer_class.from_pretrained(a__ ,**a__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input a__ = "This is a simple input" a__ = ["This is a simple input 1", "This is a simple input 2"] a__ = ("This is a simple input", "This is a pair") a__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(a__ ,max_length=a__ ) tokenizer_r.encode_plus(a__ ,max_length=a__ ) tokenizer_r.batch_encode_plus(a__ ,max_length=a__ ) tokenizer_r.encode(a__ ,max_length=a__ ) tokenizer_r.batch_encode_plus(a__ ,max_length=a__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) a__ = None # Hotfixing padding = None self.assertRaises(a__ ,tokenizer_r.encode ,a__ ,max_length=a__ ,padding="max_length" ) # Simple input self.assertRaises(a__ ,tokenizer_r.encode_plus ,a__ ,max_length=a__ ,padding="max_length" ) # Simple input self.assertRaises( a__ ,tokenizer_r.batch_encode_plus ,a__ ,max_length=a__ ,padding="max_length" ,) # Pair input self.assertRaises(a__ ,tokenizer_r.encode ,a__ ,max_length=a__ ,padding="max_length" ) # Pair input self.assertRaises(a__ ,tokenizer_r.encode_plus ,a__ ,max_length=a__ ,padding="max_length" ) # Pair input self.assertRaises( a__ ,tokenizer_r.batch_encode_plus ,a__ ,max_length=a__ ,padding="max_length" ,) def lowerCAmelCase_ ( self : Any ): a__ = self.get_rust_tokenizer() a__ = load_dataset("xnli" ,"all_languages" ,split="test" ,streaming=a__ ) a__ = next(iter(a__ ) )["premise"] # pick up one data a__ = list(sample_data.values() ) a__ = list(map(tokenizer.encode ,a__ ) ) a__ = [tokenizer.decode(a__ ,clean_up_tokenization_spaces=a__ ) for x in output_tokens] self.assertListEqual(a__ ,a__ ) def lowerCAmelCase_ ( self : Union[str, Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
331
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=sys.maxsize ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''bilinear''' lowercase : Optional[Any] =max_size lowercase : List[Any] =short_edge_length def __call__( self : int , UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' lowercase : Any =[] for img in imgs: lowercase , lowercase : Optional[Any] =img.shape[:2] # later: provide list and randomly choose index for resize lowercase : str =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase : int =size * 1.0 / min(UpperCAmelCase , UpperCAmelCase ) if h < w: lowercase , lowercase : Dict =size, scale * w else: lowercase , lowercase : str =scale * h, size if max(UpperCAmelCase , UpperCAmelCase ) > self.max_size: lowercase : Any =self.max_size * 1.0 / max(UpperCAmelCase , UpperCAmelCase ) lowercase : Tuple =newh * scale lowercase : Any =neww * scale lowercase : List[str] =int(neww + 0.5 ) lowercase : List[str] =int(newh + 0.5 ) if img.dtype == np.uinta: lowercase : Optional[int] =Image.fromarray(UpperCAmelCase ) lowercase : List[str] =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase : Optional[Any] =np.asarray(UpperCAmelCase ) else: lowercase : Any =img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase : Union[str, Any] =nn.functional.interpolate( UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase ).squeeze(0 ) img_augs.append(UpperCAmelCase ) return img_augs class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[Any] =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase : Any =cfg.INPUT.FORMAT lowercase : List[Any] =cfg.SIZE_DIVISIBILITY lowercase : List[str] =cfg.PAD_VALUE lowercase : Dict =cfg.INPUT.MAX_SIZE_TEST lowercase : Optional[Any] =cfg.MODEL.DEVICE lowercase : int =torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : Tuple =torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : int =lambda UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A__ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =tuple(max(UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) lowercase : Union[str, Any] =[im.shape[-2:] for im in images] lowercase : Tuple =[ nn.functional.pad( UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCAmelCase , UpperCAmelCase ) ] return torch.stack(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) def __call__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=False ) -> List[Any]: '''simple docstring''' with torch.no_grad(): if not isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Any =[images] if single_image: assert len(UpperCAmelCase ) == 1 for i in range(len(UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCAmelCase , images.pop(UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase : Union[str, Any] =torch.tensor([im.shape[:2] for im in images] ) lowercase : Dict =self.aug(UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase : List[str] =[self.normalizer(UpperCAmelCase ) for x in images] # now pad them to do the following operations lowercase , lowercase : Dict =self.pad(UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase : Union[str, Any] =torch.true_divide(UpperCAmelCase , UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase_ ( __A : Tuple , __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase_ ( __A : Dict , __A : Tuple[int, int] ) -> Union[str, Any]: """simple docstring""" assert torch.isfinite(__A ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase : Optional[Any] =box_size tensor[:, 0].clamp_(min=0 , max=__A ) tensor[:, 1].clamp_(min=0 , max=__A ) tensor[:, 2].clamp_(min=0 , max=__A ) tensor[:, 3].clamp_(min=0 , max=__A )
8
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=100 , __lowercase=13 , __lowercase=30 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=4 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=None , __lowercase=[0, 1, 2, 3] , ): """simple docstring""" __A : Dict = parent __A : int = 100 __A : int = batch_size __A : str = image_size __A : Dict = patch_size __A : Dict = num_channels __A : Optional[int] = is_training __A : List[str] = use_labels __A : Dict = hidden_size __A : List[str] = num_hidden_layers __A : Optional[int] = num_attention_heads __A : str = intermediate_size __A : Union[str, Any] = hidden_act __A : int = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Dict = type_sequence_label_size __A : Dict = initializer_range __A : str = scope __A : Tuple = out_indices __A : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A : List[str] = (image_size // patch_size) ** 2 __A : List[Any] = num_patches + 1 def snake_case__ ( self ): """simple docstring""" __A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Dict = None __A : Tuple = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A : Any = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self ): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : Optional[int] = BeitModel(config=__lowercase ) model.to(__lowercase ) model.eval() __A : int = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : int = BeitForMaskedImageModeling(config=__lowercase ) model.to(__lowercase ) model.eval() __A : str = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : Any = self.type_sequence_label_size __A : Any = BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Dict = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A : List[str] = 1 __A : int = BeitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : str = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : List[str] = self.num_labels __A : List[str] = BeitForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[Any] = model(__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __A : int = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def snake_case__ ( self ): """simple docstring""" __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : Dict = config_and_inputs __A : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Union[str, Any] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Optional[int] = False __lowercase : str = False __lowercase : Dict = False def snake_case__ ( self ): """simple docstring""" __A : Optional[Any] = BeitModelTester(self ) __A : Union[str, Any] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def snake_case__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def snake_case__ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case__ ( self ): """simple docstring""" pass def snake_case__ ( self ): """simple docstring""" __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def snake_case__ ( self ): """simple docstring""" __A ,__A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(__lowercase ) __A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Dict = [*signature.parameters.keys()] __A : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowercase ) def snake_case__ ( self ): """simple docstring""" __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) def snake_case__ ( self ): """simple docstring""" if not self.model_tester.is_training: return __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling]: continue __A : Dict = model_class(__lowercase ) model.to(__lowercase ) model.train() __A : Optional[int] = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __A : List[Any] = model(**__lowercase ).loss loss.backward() def snake_case__ ( self ): """simple docstring""" __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __A : Union[str, Any] = False __A : List[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __A : Any = model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() __A : Any = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __A : Tuple = model(**__lowercase ).loss loss.backward() def snake_case__ ( self ): """simple docstring""" __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : int = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: __A : Optional[Any] = model_class(config=__lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def snake_case__ ( self ): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = BeitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _lowercase ( ): __A : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): """simple docstring""" return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case__ ( self ): """simple docstring""" __A : List[str] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__lowercase ) __A : Optional[Any] = self.default_image_processor __A : Union[str, Any] = prepare_img() __A : List[Any] = image_processor(images=__lowercase , return_tensors='pt' ).pixel_values.to(__lowercase ) # prepare bool_masked_pos __A : Tuple = torch.ones((1, 196) , dtype=torch.bool ).to(__lowercase ) # forward pass with torch.no_grad(): __A : Tuple = model(pixel_values=__lowercase , bool_masked_pos=__lowercase ) __A : str = outputs.logits # verify the logits __A : List[Any] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __lowercase ) __A : Optional[int] = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __lowercase , atol=1E-2 ) ) @slow def snake_case__ ( self ): """simple docstring""" __A : Any = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__lowercase ) __A : Union[str, Any] = self.default_image_processor __A : List[Any] = prepare_img() __A : Optional[Any] = image_processor(images=__lowercase , return_tensors='pt' ).to(__lowercase ) # forward pass with torch.no_grad(): __A : Any = model(**__lowercase ) __A : Optional[Any] = outputs.logits # verify the logits __A : List[str] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __lowercase ) __A : Optional[Any] = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1E-4 ) ) __A : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def snake_case__ ( self ): """simple docstring""" __A : List[str] = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __lowercase ) __A : Union[str, Any] = self.default_image_processor __A : Union[str, Any] = prepare_img() __A : List[str] = image_processor(images=__lowercase , return_tensors='pt' ).to(__lowercase ) # forward pass with torch.no_grad(): __A : List[str] = model(**__lowercase ) __A : str = outputs.logits # verify the logits __A : List[str] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __lowercase ) __A : Dict = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , __lowercase , atol=1E-4 ) ) __A : Union[str, Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def snake_case__ ( self ): """simple docstring""" __A : Tuple = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __A : Any = model.to(__lowercase ) __A : List[str] = BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __A : Optional[Any] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __A : int = Image.open(ds[0]['file'] ) __A : Union[str, Any] = image_processor(images=__lowercase , return_tensors='pt' ).to(__lowercase ) # forward pass with torch.no_grad(): __A : Optional[Any] = model(**__lowercase ) __A : List[str] = outputs.logits # verify the logits __A : int = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __lowercase ) __A : Dict = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __A : Union[str, Any] = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__lowercase , ) else: __A : Optional[int] = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def snake_case__ ( self ): """simple docstring""" __A : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __A : Optional[Any] = model.to(__lowercase ) __A : str = BeitImageProcessor(do_resize=__lowercase , size=640 , do_center_crop=__lowercase ) __A : Optional[int] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __A : int = Image.open(ds[0]['file'] ) __A : Any = image_processor(images=__lowercase , return_tensors='pt' ).to(__lowercase ) # forward pass with torch.no_grad(): __A : Dict = model(**__lowercase ) __A : Tuple = outputs.logits.detach().cpu() __A : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(500, 300)] ) __A : Tuple = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __lowercase ) __A : str = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __A : int = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __lowercase )
365
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowercase ( ): __A : Dict = ArgumentParser('Accelerate CLI tool', usage='accelerate <command> [<args>]', allow_abbrev=UpperCamelCase__ ) __A : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __A : Optional[Any] = parser.parse_args() if not hasattr(UpperCamelCase__, 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
365
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
228
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __A( a ): snake_case_ = 42 @flax_register_to_config class __A( nn.Module , a , a ): snake_case_ = 3_2 snake_case_ = 4 snake_case_ = 4 snake_case_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case_ = False snake_case_ = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case_ = 2 snake_case_ = 8 snake_case_ = None snake_case_ = 1_2_8_0 snake_case_ = 0.0 snake_case_ = False snake_case_ = jnp.floataa snake_case_ = True snake_case_ = 0 snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> FrozenDict: '''simple docstring''' __a = (1, self.in_channels, self.sample_size, self.sample_size) __a = jnp.zeros(_snake_case , dtype=jnp.floataa ) __a = jnp.ones((1,) , dtype=jnp.intaa ) __a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a , __a = jax.random.split(_snake_case ) __a = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_snake_case , _snake_case , _snake_case , _snake_case )["params"] def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.block_out_channels __a = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a = self.num_attention_heads or self.attention_head_dim # input __a = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a = FlaxTimestepEmbedding(_snake_case , dtype=self.dtype ) __a = self.only_cross_attention if isinstance(_snake_case , _snake_case ): __a = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_snake_case , _snake_case ): __a = (num_attention_heads,) * len(self.down_block_types ) # down __a = [] __a = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __a = output_channel __a = block_out_channels[i] __a = i == len(_snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a = FlaxCrossAttnDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a = FlaxDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_snake_case ) __a = down_blocks # mid __a = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __a = [] __a = list(reversed(_snake_case ) ) __a = list(reversed(_snake_case ) ) __a = list(reversed(_snake_case ) ) __a = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __a = output_channel __a = reversed_block_out_channels[i] __a = reversed_block_out_channels[min(i + 1 , len(_snake_case ) - 1 )] __a = i == len(_snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": __a = FlaxCrossAttnUpBlockaD( in_channels=_snake_case , out_channels=_snake_case , prev_output_channel=_snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a = FlaxUpBlockaD( in_channels=_snake_case , out_channels=_snake_case , prev_output_channel=_snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_snake_case ) __a = output_channel __a = up_blocks # out __a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case = True , _snake_case = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(_snake_case , jnp.ndarray ): __a = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: __a = timesteps.astype(dtype=jnp.floataa ) __a = jnp.expand_dims(_snake_case , 0 ) __a = self.time_proj(_snake_case ) __a = self.time_embedding(_snake_case ) # 2. pre-process __a = jnp.transpose(_snake_case , (0, 2, 3, 1) ) __a = self.conv_in(_snake_case ) # 3. down __a = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case , _snake_case ): __a , __a = down_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) else: __a , __a = down_block(_snake_case , _snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __a = () for down_block_res_sample, down_block_additional_residual in zip( _snake_case , _snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __a = new_down_block_res_samples # 4. mid __a = self.mid_block(_snake_case , _snake_case , _snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __a = down_block_res_samples[-(self.layers_per_block + 1) :] __a = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_snake_case , _snake_case ): __a = up_block( _snake_case , temb=_snake_case , encoder_hidden_states=_snake_case , res_hidden_states_tuple=_snake_case , deterministic=not train , ) else: __a = up_block(_snake_case , temb=_snake_case , res_hidden_states_tuple=_snake_case , deterministic=not train ) # 6. post-process __a = self.conv_norm_out(_snake_case ) __a = nn.silu(_snake_case ) __a = self.conv_out(_snake_case ) __a = jnp.transpose(_snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_snake_case )
219
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger() @dataclass class __A: snake_case_ = 42 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def __call__( self , _snake_case ) -> Dict: '''simple docstring''' __a = Tracker(self.dest )(_snake_case ).parametrized __a = Tracker(self.src )(_snake_case ).parametrized __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" F""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): __a = timm.create_model(a__ , pretrained=a__ ).eval() __a = ResNetForImageClassification(a__ ).eval() __a = ModuleTransfer(src=a__ , dest=a__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(a__ ) assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one." __a = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(a__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : List[Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> List[Any]: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ) -> Union[str, Any]: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ) -> Union[str, Any]: if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten ''' F'''with: \"{text}\".''' ) _snake_case = text else: logger.warning( F'''User input added while unprocessed input was existing: \"{self.new_user_input}\" new input ''' F'''ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _snake_case = text def lowerCAmelCase ( self ) -> List[Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: self.generated_responses.append(lowerCamelCase__ ) def lowerCAmelCase ( self ) -> str: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> int: _snake_case = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _snake_case = '''user''' if is_user else '''bot''' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __lowerCAmelCase , r'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class UpperCamelCase_ ( __lowerCAmelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ) -> str: _snake_case = super().__call__(lowerCamelCase__ , num_workers=lowerCamelCase__ , **lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) == 1: return outputs[0] return outputs def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ) -> Dict[str, Any]: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCamelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCamelCase__ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ) -> List[Any]: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['''attention_mask'''][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCamelCase__ , **lowerCamelCase__ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ) -> Optional[Any]: _snake_case = model_outputs['''output_ids'''] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ , ) _snake_case = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(lowerCamelCase__ ) return conversation def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) if len(lowerCamelCase__ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
718
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
541
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowercase_ = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) _a = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _a = '''<|endoftext|>''' if eos_token is None else eos_token _a = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _a = unk_token if pad_token is None else pad_token _a = eos_token if bos_token is None else bos_token else: _a = '''<pad>''' if pad_token is None else pad_token _a = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off _a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _a = re.compile( f'''[{''.join(map(A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__(self ) -> Tuple: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> str: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def a__ (self ) -> int: """simple docstring""" return len(self.sp_model ) def a__ (self , A ) -> str: """simple docstring""" _a = self.non_printing_characters_re.sub('''''' , A ) # Normalize whitespaces _a = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization _a = unicodedata.normalize('''NFC''' , A ) return text def a__ (self , A , **A ) -> List[str]: """simple docstring""" _a = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> int: """simple docstring""" return self.sp_model.PieceToId(A ) def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.IdToPiece(A ) @staticmethod def a__ (A ) -> str: """simple docstring""" return out_string def a__ (self , A ) -> str: """simple docstring""" _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _a = True _a = [] else: current_sub_tokens.append(A ) _a = False out_string += self.sp_model.decode(A ) return out_string def a__ (self ) -> Dict[str, int]: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def a__ (self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(A , A ): _a = self.preprocess_text(A ) _a = self.sp_model.encode(A ) else: _a = [self.preprocess_text(A ) for t in text] _a = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": _a = torch.tensor(A ) return token_ids def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.decode(A ) def a__ (self , A ) -> List[int]: """simple docstring""" _a = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _a = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
11
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) ) def __lowerCamelCase ( ) ->None: snake_case__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ = math.log(len(UpperCAmelCase_ ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Optional[int] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = ['DeiTFeatureExtractor'] snake_case : Any = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
339
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent snake_case : List[Any] = {'UserAgent': UserAgent().random} def lowercase__ ( __UpperCamelCase : Optional[int] ): '''simple docstring''' __lowercase = script.contents[0] __lowercase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase__: def __init__( self , __UpperCAmelCase ): """simple docstring""" __lowercase = F'''https://www.instagram.com/{username}/''' __lowercase = self.get_json() def __magic_name__ ( self ): """simple docstring""" __lowercase = requests.get(self.url , headers=__UpperCAmelCase ).text __lowercase = BeautifulSoup(__UpperCAmelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): """simple docstring""" return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["username"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["full_name"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["biography"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["business_email"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["external_url"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def __magic_name__ ( self ): """simple docstring""" return self.user_data["is_private"] def lowercase__ ( __UpperCamelCase : str = "github" ): '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions __lowercase = InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() snake_case : int = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
339
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A = None, A = None, A = False, A = False, A = None, A = None, **A, ): '''simple docstring''' super().__init__( features=A, cache_dir=A, keep_in_memory=A, streaming=A, num_proc=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = Generator( cache_dir=A, features=A, generator=A, gen_kwargs=A, **A, ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : Optional[Any] = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None self.builder.download_and_prepare( download_config=A, download_mode=A, verification_mode=A, base_path=A, num_proc=self.num_proc, ) SCREAMING_SNAKE_CASE : List[str] = self.builder.as_dataset( split='train', verification_mode=A, in_memory=self.keep_in_memory ) return dataset
28
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowerCamelCase = 192 __lowerCamelCase = 768 __lowerCamelCase = 12 __lowerCamelCase = 3 __lowerCamelCase = [800, 1333] __lowerCamelCase = False elif yolos_name == "yolos_s_dWr": __lowerCamelCase = 330 __lowerCamelCase = 14 __lowerCamelCase = 6 __lowerCamelCase = 1320 elif "yolos_s" in yolos_name: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 6 elif "yolos_b" in yolos_name: __lowerCamelCase = [800, 1344] __lowerCamelCase = 91 __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = """coco-detection-id2label.json""" __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: config.hidden_size, :] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[-config.hidden_size :, :] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if "backbone" in name: __lowerCamelCase = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: __lowerCamelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: __lowerCamelCase = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: __lowerCamelCase = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: __lowerCamelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: __lowerCamelCase = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: __lowerCamelCase = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: __lowerCamelCase = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def lowerCamelCase__ ( A__ : str , A__ : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(A__ ) if "qkv" in key: __lowerCamelCase = key.split(""".""" ) __lowerCamelCase = int(key_split[2] ) __lowerCamelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[ dim : dim * 2, : ] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = val return orig_state_dict def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A__ : str , A__ : List[Any] , A__ : Tuple , A__ : Tuple = False ): '''simple docstring''' __lowerCamelCase = get_yolos_config(A__ ) # load original state_dict __lowerCamelCase = torch.load(A__ , map_location="""cpu""" )["""model"""] # load 🤗 model __lowerCamelCase = YolosForObjectDetection(A__ ) model.eval() __lowerCamelCase = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) # Check outputs on an image, prepared by YolosImageProcessor __lowerCamelCase = 800 if yolos_name != """yolos_ti""" else 512 __lowerCamelCase = YolosImageProcessor(format="""coco_detection""" , size=A__ ) __lowerCamelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCamelCase = model(**A__ ) __lowerCamelCase, __lowerCamelCase = outputs.logits, outputs.pred_boxes __lowerCamelCase, __lowerCamelCase = None, None if yolos_name == "yolos_ti": __lowerCamelCase = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __lowerCamelCase = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __lowerCamelCase = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __lowerCamelCase = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __lowerCamelCase = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __lowerCamelCase = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __lowerCamelCase = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __lowerCamelCase = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __lowerCamelCase = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __lowerCamelCase = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , A__ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , A__ , atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if push_to_hub: __lowerCamelCase = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) __lowerCamelCase = model_mapping[yolos_name] image_processor.push_to_hub(A__ , organization="""hustvl""" ) model.push_to_hub(A__ , organization="""hustvl""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
704
def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCamelCase = set() return any( node not in visited and depth_first_search(A__ , A__ , A__ , A__ ) for node in graph ) def lowerCamelCase__ ( A__ : dict , A__ : int , A__ : set , A__ : set ): '''simple docstring''' visited.add(A__ ) rec_stk.add(A__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(A__ , A__ , A__ , A__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(A__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
80
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase ="\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase ="huggingface-tools/default-prompts" __lowerCAmelCase ={"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ): """simple docstring""" if prompt_or_repo_id is None: UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
333
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase = "_" if count > 1: return False else: return "".join(_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] while True: UpperCAmelCase = ["$"] * len(_lowerCAmelCase ) UpperCAmelCase = [] for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase = "*" UpperCAmelCase = "*" temp.append("X" ) for i in range(len(_lowerCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCAmelCase ) == 0: return pi UpperCAmelCase = list(set(_lowerCAmelCase ) ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] for minterm in minterms: UpperCAmelCase = "" for _ in range(_lowerCAmelCase ): UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCAmelCase ) return temp def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [0] * len(_lowerCAmelCase ) for i in range(len(chart[0] ) ): UpperCAmelCase = 0 UpperCAmelCase = -1 for j in range(len(_lowerCAmelCase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase = j if count == 1: UpperCAmelCase = 1 for i in range(len(_lowerCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCAmelCase ) ): UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase = count_n UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCAmelCase ) ): UpperCAmelCase = 0 def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [[0 for x in range(len(_lowerCAmelCase ) )] for x in range(len(_lowerCAmelCase ) )] for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase = prime_implicants[i].count("_" ) for j in range(len(_lowerCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCAmelCase ): UpperCAmelCase = 1 return chart def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase = [ float(_lowerCAmelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase = decimal_to_binary(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = check(_lowerCAmelCase ) print("Prime Implicants are:" ) print(_lowerCAmelCase ) UpperCAmelCase = prime_implicant_chart(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = selection(_lowerCAmelCase , _lowerCAmelCase ) print("Essential Prime Implicants are:" ) print(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
333
1
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __UpperCAmelCase =datasets.logging.get_logger(__name__) __UpperCAmelCase ="""\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ __UpperCAmelCase ="""\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ __UpperCAmelCase =""" Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def __a ( A , A , A=False , A=False , A=True , A=False , A="dummy_doc" ) -> Tuple: '''simple docstring''' A__ = {doc: key_lines} A__ = {doc: sys_lines} A__ = {} A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ , A__ = reader.get_doc_mentions(A , key_doc_lines[doc] , A ) key_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(A , key_doc_lines[doc] , A , A ) A__ , A__ = reader.get_doc_mentions(A , sys_doc_lines[doc] , A ) sys_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(A , key_doc_lines[doc] , A , A ) if remove_nested: A__ , A__ = reader.remove_nested_coref_mentions(A , A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A__ , A__ = reader.remove_nested_coref_mentions(A , A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A__ = reader.get_mention_assignments(A , A ) A__ = reader.get_mention_assignments(A , A ) A__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def __a ( A , A , A , A , A , A , A ) -> List[Any]: '''simple docstring''' A__ = get_coref_infos(A , A , A , A , A , A ) A__ = {} A__ = 0 A__ = 0 for name, metric in metrics: A__ , A__ , A__ = evaluator.evaluate_documents(A , A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: A__ = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def __a ( A ) -> List[str]: '''simple docstring''' A__ = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: A__ = line.split()[5] if not parse_col == "-": A__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowercase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' A__ = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: A__ = util.check_gold_parse_annotation(UpperCamelCase__ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A__ = evaluate( key_lines=UpperCamelCase__ , sys_lines=UpperCamelCase__ , metrics=UpperCamelCase__ , NP_only=UpperCamelCase__ , remove_nested=UpperCamelCase__ , keep_singletons=UpperCamelCase__ , min_span=UpperCamelCase__ , ) return score
261
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = StableDiffusionInstructPixaPixPipeline lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ = CLIPTextModel(UpperCamelCase__ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ) if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = "french fries" A__ = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = [inputs["prompt"]] * 2 A__ = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 A__ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A__ = image / 2 + 0.5 A__ = image.permute(0 , 3 , 1 , 2 ) A__ = image.repeat(2 , 1 , 1 , 1 ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] A__ = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) )[0] A__ = components["vae"] A__ = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ = vae.encode(inputs[image_param] ).latent_dist.mode() A__ = pipe(**UpperCamelCase__ )[0] A__ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , UpperCamelCase__=0 ): '''simple docstring''' A__ = torch.manual_seed(UpperCamelCase__ ) A__ = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) A__ = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = 0 def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ = False A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase_ ( self ): '''simple docstring''' A__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ = inputs["image"].resize((5_04, 5_04) ) A__ = "timbrooks/instruct-pix2pix" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = pipe(**UpperCamelCase__ ) A__ = output.images[0] A__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
261
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' for attribute in key.split(""".""" ): __UpperCAmelCase : Union[str, Any] = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __UpperCAmelCase : Dict = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __UpperCAmelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Optional[int] = value elif weight_type == "bias": __UpperCAmelCase : Tuple = value else: __UpperCAmelCase : Any = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : int = fairseq_model.state_dict() __UpperCAmelCase : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __UpperCAmelCase : Dict = None for name, value in fairseq_dict.items(): __UpperCAmelCase : Any = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : List[str] = True elif name.split(""".""" )[0] == "proj": __UpperCAmelCase : Any = fairseq_model.proj __UpperCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase : Optional[int] = True if "*" in mapped_key: __UpperCAmelCase : Tuple = name.split(_UpperCamelCase )[0].split(""".""" )[-2] __UpperCAmelCase : Dict = mapped_key.replace("""*""" , _UpperCamelCase ) if "weight_g" in name: __UpperCAmelCase : Dict = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Union[str, Any] = """weight_v""" elif "bias" in name: __UpperCAmelCase : int = """bias""" elif "weight" in name: __UpperCAmelCase : Optional[Any] = """weight""" else: __UpperCAmelCase : int = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : Dict = name.split(""".""" ) __UpperCAmelCase : Tuple = int(items[0] ) __UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = emb.weight.shape __UpperCAmelCase : Union[str, Any] = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) __UpperCAmelCase : int = emb.weight.data return lin_layer def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : List[str] = f.readlines() __UpperCAmelCase : Union[str, Any] = [line.split(""" """ )[0] for line in lines] __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : str = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = WavaVecaConfig.from_pretrained(_UpperCamelCase ) __UpperCAmelCase : Dict = SpeechaTextaConfig.from_pretrained( _UpperCamelCase , vocab_size=_UpperCamelCase , decoder_layers=_UpperCamelCase , do_stable_layer_norm=_UpperCamelCase ) __UpperCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __UpperCAmelCase : List[Any] = model[0].eval() # set weights for wav2vec2 encoder __UpperCAmelCase : Dict = WavaVecaModel(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = recursively_load_weights_wavaveca(model.encoder , _UpperCamelCase ) __UpperCAmelCase : List[Any] = SpeechaTextaForCausalLM(_UpperCamelCase ) __UpperCAmelCase ,__UpperCAmelCase : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_UpperCamelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) __UpperCAmelCase : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCAmelCase : int = SpeechEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) __UpperCAmelCase : Dict = False # add projection layer __UpperCAmelCase : List[Any] = nn.Parameter(projection_layer.weight ) __UpperCAmelCase : Optional[int] = nn.Parameter(projection_layer.bias ) __UpperCAmelCase : Tuple = create_vocab_dict(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : List[Any] = SpeechaTextaTokenizer(os.path.join(_UpperCamelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_UpperCamelCase ) __UpperCAmelCase : int = hf_wavavec.config.to_dict() __UpperCAmelCase : List[str] = tokenizer.pad_token_id __UpperCAmelCase : Dict = tokenizer.bos_token_id __UpperCAmelCase : List[str] = tokenizer.eos_token_id __UpperCAmelCase : int = """speech_to_text_2""" __UpperCAmelCase : List[Any] = """wav2vec2""" __UpperCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') UpperCAmelCase : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
139
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase : Tuple = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[Any] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BartTokenizer def __init__( self : int , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Tuple="replace" , UpperCamelCase : Optional[int]="<s>" , UpperCamelCase : str="</s>" , UpperCamelCase : str="</s>" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : Any="<mask>" , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Tuple=True , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase : int = add_prefix_space __UpperCAmelCase : List[Any] = pre_tok_class(**UpperCamelCase ) __UpperCAmelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCAmelCase : Union[str, Any] = """post_processor""" __UpperCAmelCase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) if tokenizer_component_instance: __UpperCAmelCase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCAmelCase : int = tuple(state["""sep"""] ) if "cls" in state: __UpperCAmelCase : Optional[int] = tuple(state["""cls"""] ) __UpperCAmelCase : int = False if state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : Dict = add_prefix_space __UpperCAmelCase : Optional[int] = True if state.get("""trim_offsets""" , UpperCamelCase ) != trim_offsets: __UpperCAmelCase : str = trim_offsets __UpperCAmelCase : int = True if changes_to_apply: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , state.pop("""type""" ) ) __UpperCAmelCase : Tuple = component_class(**UpperCamelCase ) setattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else value __UpperCAmelCase : Any = value def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : str = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Dict=None ): '''simple docstring''' __UpperCAmelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
139
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : List[str] ={'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =[ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __SCREAMING_SNAKE_CASE : str = MaskFormerConfig(backbone_config=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[Any] = 847 __SCREAMING_SNAKE_CASE : Optional[int] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Dict = 150 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Union[str, Any] = 171 __SCREAMING_SNAKE_CASE : Tuple = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __SCREAMING_SNAKE_CASE : Dict = 133 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[int] = 19 __SCREAMING_SNAKE_CASE : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Tuple = 65 __SCREAMING_SNAKE_CASE : Optional[Any] = '''mapillary-vistas-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Any = {int(lowercase__ ): v for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # fmt: off __SCREAMING_SNAKE_CASE : Any = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-hidden_size :] # fmt: on def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Dict = get_maskformer_config(lowercase__ ) # load original state_dict with open(lowercase__ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Any = pickle.load(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __SCREAMING_SNAKE_CASE : Dict = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # update to torch tensors for key, value in state_dict.items(): __SCREAMING_SNAKE_CASE : Any = torch.from_numpy(lowercase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerForInstanceSegmentation(lowercase__ ) model.eval() for name, param in model.named_parameters(): print(lowercase__ , param.shape ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() if "vistas" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 65 elif "cityscapes" in model_name: __SCREAMING_SNAKE_CASE : str = 65535 else: __SCREAMING_SNAKE_CASE : Optional[Any] = 255 __SCREAMING_SNAKE_CASE : Dict = True if '''ade''' in model_name else False __SCREAMING_SNAKE_CASE : int = MaskFormerImageProcessor(ignore_index=lowercase__ , reduce_labels=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor(lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = model(**lowercase__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
260
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCamelCase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_6 , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=1_4 , UpperCAmelCase=1_0 , UpperCAmelCase=1_9 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=2_5 , UpperCAmelCase=5 , ): '''simple docstring''' __UpperCAmelCase =d_model __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =prediction_length __UpperCAmelCase =context_length __UpperCAmelCase =cardinality __UpperCAmelCase =num_time_features __UpperCAmelCase =lags_sequence __UpperCAmelCase =embedding_dimension __UpperCAmelCase =is_training __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =context_length __UpperCAmelCase =prediction_length + label_length __UpperCAmelCase =label_length __UpperCAmelCase =moving_average __UpperCAmelCase =autocorrelation_factor def A__ (self): '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =config.context_length + max(config.lags_sequence) __UpperCAmelCase =ids_tensor([self.batch_size, 1] , config.cardinality[0]) __UpperCAmelCase =floats_tensor([self.batch_size, _past_length, config.num_time_features]) __UpperCAmelCase =floats_tensor([self.batch_size, _past_length]) __UpperCAmelCase =floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs __UpperCAmelCase =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) __UpperCAmelCase =floats_tensor([self.batch_size, config.prediction_length]) __UpperCAmelCase ={ '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def A__ (self): '''simple docstring''' __UpperCAmelCase =self.get_config() __UpperCAmelCase =self.prepare_autoformer_inputs_dict(UpperCAmelCase) return config, inputs_dict def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.prepare_config_and_inputs() return config, inputs_dict def A__ (self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =AutoformerModel(config=UpperCAmelCase).to(UpperCAmelCase).eval() __UpperCAmelCase =model(**UpperCAmelCase) __UpperCAmelCase =outputs.encoder_last_hidden_state __UpperCAmelCase =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase =model.get_encoder() encoder.save_pretrained(UpperCAmelCase) __UpperCAmelCase =AutoformerEncoder.from_pretrained(UpperCAmelCase).to(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =model.create_network_inputs(**UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) __UpperCAmelCase =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __UpperCAmelCase =encoder(inputs_embeds=UpperCAmelCase)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) __UpperCAmelCase =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1) .unsqueeze(1) .repeat(1 , config.prediction_length , 1) ) __UpperCAmelCase =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __UpperCAmelCase =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __UpperCAmelCase =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase =model.get_decoder() decoder.save_pretrained(UpperCAmelCase) __UpperCAmelCase =AutoformerDecoder.from_pretrained(UpperCAmelCase).to(UpperCAmelCase) __UpperCAmelCase =decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a_ : Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a_ : int = (AutoformerForPrediction,) if is_torch_available() else () a_ : int = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : Optional[Any] = False a_ : Optional[int] = False a_ : Union[str, Any] = False a_ : List[str] = False a_ : Optional[int] = False def A__ (self): '''simple docstring''' __UpperCAmelCase =AutoformerModelTester(self) __UpperCAmelCase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase) def A__ (self): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase) self.assertEqual(info['''missing_keys'''] , []) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase) @unittest.skip(reason='''Model has no tokens embeddings''') def A__ (self): '''simple docstring''' pass def A__ (self): '''simple docstring''' __UpperCAmelCase =inspect.signature(getattr(UpperCAmelCase , '''forward''')) # The main input is the name of the argument after `self` __UpperCAmelCase =list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =[ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''') expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ]) self.assertListEqual(arg_names[: len(UpperCAmelCase)] , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =True __UpperCAmelCase =getattr(self.model_tester , '''seq_length''' , UpperCAmelCase) __UpperCAmelCase =getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase) __UpperCAmelCase =getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase) __UpperCAmelCase =getattr(self.model_tester , '''d_model''' , UpperCAmelCase) __UpperCAmelCase =getattr(self.model_tester , '''num_attention_heads''' , UpperCAmelCase) __UpperCAmelCase =d_model // num_attention_heads for model_class in self.all_model_classes: __UpperCAmelCase =True __UpperCAmelCase =False __UpperCAmelCase =True __UpperCAmelCase =model_class(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) __UpperCAmelCase =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase =True __UpperCAmelCase =model_class(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) __UpperCAmelCase =outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __UpperCAmelCase =len(UpperCAmelCase) __UpperCAmelCase =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase) # decoder attentions __UpperCAmelCase =outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple)) self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __UpperCAmelCase =outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple)) self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __UpperCAmelCase =True __UpperCAmelCase =True __UpperCAmelCase =model_class(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() with torch.no_grad(): __UpperCAmelCase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase)) self.assertEqual(out_len + 2 , len(UpperCAmelCase)) __UpperCAmelCase =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ (self): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE ( snake_case__="train-batch.pt" ) -> List[Any]: __UpperCAmelCase =hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=snake_case__ , repo_type='''dataset''' ) __UpperCAmelCase =torch.load(snake_case__ , map_location=snake_case__ ) return batch @require_torch @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A__ (self): '''simple docstring''' __UpperCAmelCase =AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(UpperCAmelCase) __UpperCAmelCase =prepare_batch() with torch.no_grad(): __UpperCAmelCase =model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __UpperCAmelCase =torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape , UpperCAmelCase) __UpperCAmelCase =torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase)) def A__ (self): '''simple docstring''' __UpperCAmelCase =AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(UpperCAmelCase) __UpperCAmelCase =prepare_batch('''val-batch.pt''') with torch.no_grad(): __UpperCAmelCase =model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __UpperCAmelCase =torch.Size((6_4, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape , UpperCAmelCase) __UpperCAmelCase =torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase)) def A__ (self): '''simple docstring''' __UpperCAmelCase =AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(UpperCAmelCase) __UpperCAmelCase =prepare_batch('''val-batch.pt''') with torch.no_grad(): __UpperCAmelCase =model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __UpperCAmelCase =torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape , UpperCAmelCase) __UpperCAmelCase =torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase) __UpperCAmelCase =outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1))
132
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = '▁' UpperCamelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase_ = { 'google/pegasus-xsum': 5_1_2, } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : int = VOCAB_FILES_NAMES a_ : str = PRETRAINED_VOCAB_FILES_MAP a_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PegasusTokenizer a_ : str = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=1_0_3 , **UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase , UpperCAmelCase): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase)}, but is""" f""" {type(UpperCAmelCase)}""") __UpperCAmelCase =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase) , self.offset - 1) ] if len(set(UpperCAmelCase)) != len(UpperCAmelCase): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") __UpperCAmelCase =additional_special_tokens_extended else: __UpperCAmelCase =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , pad_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , mask_token=UpperCAmelCase , mask_token_sent=UpperCAmelCase , offset=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) __UpperCAmelCase =vocab_file __UpperCAmelCase =False if not self.vocab_file else True def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""") return [1 if x in all_special_ids else 0 for x in seq] def A__ (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def A__ (self , UpperCAmelCase , UpperCAmelCase=None): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ (self , UpperCAmelCase , UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(UpperCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCAmelCase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase): copyfile(self.vocab_file , UpperCAmelCase) return (out_vocab_file,)
132
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if index == number_of_items: return 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Union[str, Any] =0 lowerCamelCase__ : List[str] =knapsack(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index + 1 ) if weights[index] <= max_weight: lowerCamelCase__ : Dict =values[index] + knapsack( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_weight - weights[index] , index + 1 ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
625
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["CLIPFeatureExtractor"] _lowercase : int = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
625
1
"""simple docstring""" print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
77
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A = 250_004 A = 250_020 @require_sentencepiece @require_tokenizers class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = MBartTokenizer lowercase_ = MBartTokenizerFast lowercase_ = True lowercase_ = True def a_ ( self : str): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Any = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Dict = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_) __UpperCAmelCase : Optional[int] = tokenizer.tokenize("This is a test") self.assertListEqual(UpperCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(UpperCamelCase_) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase_) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def a_ ( self : Dict): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = tokenizer_r.save_pretrained(UpperCamelCase_) __UpperCAmelCase : Any = tokenizer_p.save_pretrained(UpperCamelCase_) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) __UpperCAmelCase : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_) # Checks everything loads correctly in the same way __UpperCAmelCase : int = tokenizer_r.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(UpperCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase_) # Save tokenizer rust, legacy_format=True __UpperCAmelCase : Optional[int] = tempfile.mkdtemp() __UpperCAmelCase : Dict = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_) __UpperCAmelCase : int = tokenizer_p.save_pretrained(UpperCamelCase_) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_) # Checks everything loads correctly in the same way __UpperCAmelCase : int = tokenizer_r.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(UpperCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_)) shutil.rmtree(UpperCamelCase_) # Save tokenizer rust, legacy_format=False __UpperCAmelCase : Tuple = tempfile.mkdtemp() __UpperCAmelCase : int = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_) __UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(UpperCamelCase_) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way __UpperCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(UpperCamelCase_) __UpperCAmelCase : str = tokenizer_p.from_pretrained(UpperCamelCase_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_)) shutil.rmtree(UpperCamelCase_) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): lowercase_ = "facebook/mbart-large-en-ro" lowercase_ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowercase_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowercase_ = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def a_ ( cls : int): """simple docstring""" __UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO") __UpperCAmelCase : Union[str, Any] = 1 return cls def a_ ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids) __UpperCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] __UpperCAmelCase : Optional[Any] = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_) __UpperCAmelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_) self.assertEqual(UpperCamelCase_ , UpperCamelCase_) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , UpperCamelCase_) __UpperCAmelCase : Tuple = 10 __UpperCAmelCase : List[Any] = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , UpperCamelCase_) self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]) , [250026, 250001]) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_) __UpperCAmelCase : List[Any] = MBartTokenizer.from_pretrained(UpperCamelCase_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_) @require_torch def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors="pt") __UpperCAmelCase : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) __UpperCAmelCase : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_) self.assertEqual((2, 14) , batch.input_ids.shape) self.assertEqual((2, 14) , batch.attention_mask.shape) __UpperCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE]) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors="pt") __UpperCAmelCase : Any = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors="pt") __UpperCAmelCase : int = targets["input_ids"] __UpperCAmelCase : Any = shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def a_ ( self : int): """simple docstring""" __UpperCAmelCase : int = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR") self.assertEqual( nested_simplify(UpperCamelCase_) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
77
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCAmelCase : Optional[Any] = parse(importlib.metadata.version('torch')) def a__ ( A_, A_, A_ ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) __magic_name__ = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_, lowercase_ ): __magic_name__ = parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_, parse(lowercase_ ) ) def a__ ( A_, A_ ): '''simple docstring''' return compare_versions(lowercase_, lowercase_, lowercase_ )
707
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def a__ ( A_ ): '''simple docstring''' __magic_name__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __magic_name__ = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""", A_ ) if matches: __magic_name__ = float(matches[1] ) __magic_name__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ = 1001 __magic_name__ = """imagenet-1k-id2label.json""" __magic_name__ = """huggingface/label-files""" __magic_name__ = json.load(open(hf_hub_download(A_, A_, repo_type="""dataset""" ), """r""" ) ) __magic_name__ = {int(A_ ) + 1: v for k, v in idalabel.items()} __magic_name__ = """background""" __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def a__ ( ): '''simple docstring''' __magic_name__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ = Image.open(requests.get(A_, stream=A_ ).raw ) return im @torch.no_grad() def a__ ( A_, A_, A_, A_=False ): '''simple docstring''' __magic_name__ = get_mobilenet_va_config(A_ ) # Load 🤗 model __magic_name__ = MobileNetVaForImageClassification(A_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A_, A_, A_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size}, size={"""shortest_edge""": config.image_size + 32}, ) __magic_name__ = image_processor(images=prepare_img(), return_tensors="""pt""" ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __magic_name__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3], A_, atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if push_to_hub: print("""Pushing to the hub...""" ) __magic_name__ = """google/""" + model_name image_processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
76
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 16000 ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = int(round(sample_rate * max_length ) ) if len(UpperCamelCase ) <= sample_length: return wav lowerCAmelCase__ : List[str] = randint(0 , len(UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __lowercase : str = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __lowercase : str = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __lowercase : str = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __lowercase : str = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __lowercase : float = field( default=2_0 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : str = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowercase : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __lowercase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def UpperCAmelCase_ ( self ) -> List[Any]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" ,__UpperCAmelCase ,) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ : Dict = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCAmelCase__ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowerCAmelCase__ : int = DatasetDict() lowerCAmelCase__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCAmelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCAmelCase__ : Optional[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCAmelCase__ : Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase ): lowerCAmelCase__ : List[str] = [] for audio in batch[data_args.audio_column_name]: lowerCAmelCase__ : Dict = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(UpperCamelCase ) lowerCAmelCase__ : List[Any] = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ : Dict = {model_input_name: inputs.get(UpperCamelCase )} lowerCAmelCase__ : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCamelCase ): lowerCAmelCase__ : str = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowerCAmelCase__ : str = feature_extractor(UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ : Tuple = {model_input_name: inputs.get(UpperCamelCase )} lowerCAmelCase__ : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase__ : Dict = raw_datasets["""train"""].features[data_args.label_column_name].names lowerCAmelCase__ , lowerCAmelCase__ : List[str] = {}, {} for i, label in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = str(UpperCamelCase ) lowerCAmelCase__ : Tuple = label # Load the accuracy metric from the datasets package lowerCAmelCase__ : List[Any] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=eval_pred.label_ids ) lowerCAmelCase__ : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel=UpperCamelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ : List[Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ : Union[str, Any] = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ : Any = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(UpperCamelCase , output_all_columns=UpperCamelCase ) # Initialize our trainer lowerCAmelCase__ : int = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , ) # Training if training_args.do_train: lowerCAmelCase__ : Optional[int] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ : Dict = last_checkpoint lowerCAmelCase__ : Dict = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase__ : Union[str, Any] = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase ) trainer.save_metrics("""eval""" , UpperCamelCase ) # Write model card and (optionally) push to hub lowerCAmelCase__ : str = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) if __name__ == "__main__": main()
565
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = TextToVideoSDPipeline __lowercase : Any = TEXT_TO_IMAGE_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowercase : Dict = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def UpperCAmelCase_ ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) lowerCAmelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=__UpperCAmelCase ,set_alpha_to_one=__UpperCAmelCase ,) torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) lowerCAmelCase__ : Union[str, Any] = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase__ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> List[Any]: if str(__UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = TextToVideoSDPipeline(**__UpperCAmelCase ) lowerCAmelCase__ : str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : Any = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = """np""" lowerCAmelCase__ : int = sd_pipe(**__UpperCAmelCase ).frames lowerCAmelCase__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCAmelCase__ : Dict = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ) -> Optional[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def UpperCAmelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase ,expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCAmelCase_ ( self ) -> int: pass def UpperCAmelCase_ ( self ) -> List[str]: return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) lowerCAmelCase__ : str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCAmelCase__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase__ : List[Any] = pipe.to("""cuda""" ) lowerCAmelCase__ : Tuple = """Spiderman is surfing""" lowerCAmelCase__ : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ : str = pipe(__UpperCAmelCase ,generator=__UpperCAmelCase ,num_inference_steps=25 ,output_type="""pt""" ).frames lowerCAmelCase__ : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) lowerCAmelCase__ : int = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCAmelCase__ : List[Any] = pipe.to("""cuda""" ) lowerCAmelCase__ : List[str] = """Spiderman is surfing""" lowerCAmelCase__ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(__UpperCAmelCase ,generator=__UpperCAmelCase ,num_inference_steps=2 ,output_type="""pt""" ).frames lowerCAmelCase__ : List[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
565
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase_ : Union[str, Any] = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : Dict, UpperCamelCase__ : Any, UpperCamelCase__ : int, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[Any] ): if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(UpperCamelCase__ ), version.parse(UpperCamelCase__ ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : Optional[str] = None ): __A : Tuple = f"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$', UpperCamelCase__ ): __A ,__A ,__A : Optional[Any] = requirement, None, None else: __A : Any = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)', UpperCamelCase__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f""" got {requirement}""" ) __A ,__A : Optional[Any] = match[0] __A : Optional[int] = want_full.split(',' ) # there could be multiple requirements __A : Union[str, Any] = {} for w in want_range: __A : str = re.findall(r'^([\s!=<>]{1,2})(.+)', UpperCamelCase__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f""" but got {requirement}""" ) __A ,__A : int = match[0] __A : Optional[Any] = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __A : Dict = '.'.join([str(UpperCamelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) return # check if any version is installed try: __A : Union[str, Any] = importlib.metadata.version(UpperCamelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : List[Any] ): __A : int = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(UpperCamelCase__, UpperCamelCase__ )
540
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase_ : Any = logging.getLogger(__name__) def _lowercase ( ): __A : Tuple = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path', type=UpperCamelCase__, default='data/dump.txt', help='The path to the data.' ) parser.add_argument('--tokenizer_type', type=UpperCamelCase__, default='bert', choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name', type=UpperCamelCase__, default='bert-base-uncased', help='The tokenizer to use.' ) parser.add_argument('--dump_file', type=UpperCamelCase__, default='data/dump', help='The dump file prefix.' ) __A : Tuple = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": __A : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) __A : Any = tokenizer.special_tokens_map['cls_token'] # `[CLS]` __A : List[Any] = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __A : Any = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __A : List[Any] = tokenizer.special_tokens_map['cls_token'] # `<s>` __A : Dict = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __A : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __A : Any = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __A : Union[str, Any] = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, 'r', encoding='utf8' ) as fp: __A : Optional[int] = fp.readlines() logger.info('Start encoding' ) logger.info(f"""{len(UpperCamelCase__ )} examples to process.""" ) __A : int = [] __A : List[str] = 0 __A : Tuple = 10000 __A : List[str] = time.time() for text in data: __A : int = f"""{bos} {text.strip()} {sep}""" __A : List[Any] = tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) rslt.append(UpperCamelCase__ ) iter += 1 if iter % interval == 0: __A : Any = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) __A : Any = time.time() logger.info('Finished binarization' ) logger.info(f"""{len(UpperCamelCase__ )} examples processed.""" ) __A : List[str] = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" __A : str = tokenizer.vocab_size if vocab_size < (1 << 16): __A : Optional[int] = [np.uintaa(UpperCamelCase__ ) for d in rslt] else: __A : int = [np.intaa(UpperCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(UpperCamelCase__, 'wb' ) as handle: pickle.dump(rslt_, UpperCamelCase__, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
540
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : '''simple docstring''' @staticmethod def snake_case__ ( *snake_case__, **snake_case__ ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @require_torch def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : Dict = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", ) lowercase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : int = image_classifier(snake_case__, candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case__ ), [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ], ) lowercase_ : List[str] = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ), [ [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], ], ) @require_tf def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""", framework="""tf""" ) lowercase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : str = image_classifier(snake_case__, candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(snake_case__ ), [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], ) lowercase_ : Optional[Any] = image_classifier([image] * 5, candidate_labels=["""A""", """B""", """C"""], batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ), [ [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], [ {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, {"""score""": 0.333, """label""": ANY(snake_case__ )}, ], ], ) @slow @require_torch def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : Dict = pipeline( task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", ) # This is an image of 2 cats with remotes and no planes lowercase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Any = image_classifier(snake_case__, candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(snake_case__ ), [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ) lowercase_ : Optional[Any] = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ), [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5, ) @slow @require_tf def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Union[str, Any] = pipeline( task="""zero-shot-image-classification""", model="""openai/clip-vit-base-patch32""", framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowercase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = image_classifier(snake_case__, candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(snake_case__ ), [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ) lowercase_ : int = image_classifier([image] * 5, candidate_labels=["""cat""", """plane""", """remote"""], batch_size=2 ) self.assertEqual( nested_simplify(snake_case__ ), [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5, )
458
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __a : Optional[int] = StableUnCLIPPipeline __a : int = TEXT_TO_IMAGE_PARAMS __a : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS __a : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __a : Tuple = False def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : int = 32 lowercase_ : Tuple = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase_ : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=snake_case__, projection_dim=snake_case__, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) ) torch.manual_seed(0 ) lowercase_ : Tuple = PriorTransformer( num_attention_heads=2, attention_head_dim=12, embedding_dim=snake_case__, num_layers=1, ) torch.manual_seed(0 ) lowercase_ : Optional[Any] = DDPMScheduler( variance_type="""fixed_small_log""", prediction_type="""sample""", num_train_timesteps=10_00, clip_sample=snake_case__, clip_sample_range=5.0, beta_schedule="""squaredcos_cap_v2""", ) # regular denoising components torch.manual_seed(0 ) lowercase_ : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) lowercase_ : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowercase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase_ : List[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=snake_case__, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) ) torch.manual_seed(0 ) lowercase_ : Optional[int] = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="""projection""", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=snake_case__, layers_per_block=1, upcast_attention=snake_case__, use_linear_projection=snake_case__, ) torch.manual_seed(0 ) lowercase_ : Dict = DDIMScheduler( beta_schedule="""scaled_linear""", beta_start=0.00085, beta_end=0.012, prediction_type="""v_prediction""", set_alpha_to_one=snake_case__, steps_offset=1, ) torch.manual_seed(0 ) lowercase_ : str = AutoencoderKL() lowercase_ : str = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def snake_case__ ( self, snake_case__, snake_case__=0 ) -> str: """simple docstring""" if str(snake_case__ ).startswith("""mps""" ): lowercase_ : Tuple = torch.manual_seed(snake_case__ ) else: lowercase_ : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : int = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : List[str] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> Any: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowercase_ : List[Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""", torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase_ : Dict = pipe("""anime turle""", generator=snake_case__, output_type="""np""" ) lowercase_ : str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__, snake_case__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ : str = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""", torch_dtype=torch.floataa ) lowercase_ : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : List[Any] = pipe( """anime turtle""", prior_num_inference_steps=2, num_inference_steps=2, output_type="""np""", ) lowercase_ : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
458
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _lowercase ( a , unittest.TestCase ): _UpperCamelCase = XLMProphetNetTokenizer _UpperCamelCase = False _UpperCamelCase = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): A : Union[str, Any] = '''[PAD]''' A : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def snake_case ( self ): A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_UpperCAmelCase ) , 1_012 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def snake_case ( self ): A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) A : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) A : Union[str, Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def snake_case ( self ): return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def snake_case ( self ): A : Union[str, Any] = '''Hello World!''' A : Any = [35_389, 6_672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def snake_case ( self ): # fmt: off A : List[Any] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
537
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : List[str] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ) -> str: if attention_mask is None: _lowercase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=99, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=32, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=0.0_2, ) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = parent _lowercase : Union[str, Any] = batch_size _lowercase : List[Any] = seq_length _lowercase : Optional[int] = is_training _lowercase : List[str] = use_labels _lowercase : List[str] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : str = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Union[str, Any] = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : Optional[int] = initializer_range def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) _lowercase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa)), -1) _lowercase : Union[str, Any] = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) _lowercase : Any = prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase) return config, inputs_dict def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Any = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = 20 _lowercase : Dict = model_class_name(lowerCamelCase) _lowercase : List[Any] = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Dict = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4') _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : Optional[Any] = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : Optional[int] = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) _lowercase : int = model.decode(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = 20 _lowercase : Tuple = model_class_name(lowerCamelCase) _lowercase : Any = model.encode(inputs_dict['input_ids']) _lowercase , _lowercase : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) _lowercase : Dict = model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4') _lowercase : List[str] = model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) _lowercase : Tuple = model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase) _lowercase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''') @require_flax class _lowerCamelCase( unittest.TestCase ): lowercase_ : Optional[int] = 99 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) _lowercase : Optional[Any] = input_ids.shape[0] _lowercase : int = BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase , _lowercase , _lowercase : Any = self._get_config_and_data() _lowercase : Tuple = FlaxBlenderbotForConditionalGeneration(lowerCamelCase) _lowercase : List[str] = lm_model(input_ids=lowerCamelCase) _lowercase : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) _lowercase : str = FlaxBlenderbotForConditionalGeneration(lowerCamelCase) _lowercase : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa) _lowercase : Any = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa) _lowercase : Tuple = lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase) _lowercase : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa) _lowercase : Dict = shift_tokens_right(lowerCamelCase, 1, 2) _lowercase : str = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() _lowercase : Union[str, Any] = np.equal(lowerCamelCase, 1).astype(np.floataa).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(lowerCamelCase, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class _lowerCamelCase( _a, unittest.TestCase, _a ): lowercase_ : Any = True lowercase_ : Optional[int] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = FlaxBlenderbotModelTester(self) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : Optional[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase) _lowercase : Any = model_class(lowerCamelCase) @jax.jit def encode_jitted(lowerCamelCase, lowerCamelCase=None, **lowerCamelCase): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase) with self.subTest('JIT Enabled'): _lowercase : List[str] = encode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Union[str, Any] = encode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase : int = model_class(lowerCamelCase) _lowercase : Union[str, Any] = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask']) _lowercase : Optional[int] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase, lowerCamelCase, lowerCamelCase): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('JIT Enabled'): _lowercase : Union[str, Any] = decode_jitted(**lowerCamelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): _lowercase : Optional[int] = decode_jitted(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase)) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase): self.assertEqual(jitted_output.shape, output.shape) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _lowercase : Optional[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1)) * model.config.eos_token_id _lowercase : Optional[Any] = model(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @unittest.skipUnless(jax_device != 'cpu', '3B test too slow on CPU.') @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} _lowercase : Any = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} _lowercase : Any = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B', from_pt=lowerCamelCase) _lowercase : Dict = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B') _lowercase : int = ['Sam'] _lowercase : str = tokenizer(lowerCamelCase, return_tensors='jax') _lowercase : Optional[Any] = model.generate(**lowerCamelCase, **lowerCamelCase) _lowercase : Any = 'Sam is a great name. It means "sun" in Gaelic.' _lowercase : Tuple = tokenizer.batch_decode(lowerCamelCase, **lowerCamelCase) assert generated_txt[0].strip() == tgt_text
89
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _SCREAMING_SNAKE_CASE (tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Union[str, Any] , UpperCamelCase : float , UpperCamelCase : Callable , UpperCamelCase : int , UpperCamelCase : float = 1.0 , UpperCamelCase : str = None , )->Optional[int]: super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = initial_learning_rate __SCREAMING_SNAKE_CASE : Optional[Any] = warmup_steps __SCREAMING_SNAKE_CASE : Optional[int] = power __SCREAMING_SNAKE_CASE : List[Any] = decay_schedule_fn __SCREAMING_SNAKE_CASE : int = name def __call__( self : List[Any] , UpperCamelCase : Any )->Optional[int]: with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(UpperCamelCase , tf.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __SCREAMING_SNAKE_CASE : Any = global_step_float / warmup_steps_float __SCREAMING_SNAKE_CASE : Tuple = self.initial_learning_rate * tf.math.pow(UpperCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase , ) def __snake_case ( self : str )->List[str]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 0.9 , __lowerCamelCase : float = 0.999 , __lowerCamelCase : float = 1E-8 , __lowerCamelCase : Optional[float] = None , __lowerCamelCase : Optional[float] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 , __lowerCamelCase : Optional[List[str]] = None , ): __SCREAMING_SNAKE_CASE : Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCamelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCamelCase , ) if num_warmup_steps: __SCREAMING_SNAKE_CASE : List[str] = WarmUp( initial_learning_rate=__lowerCamelCase , decay_schedule_fn=__lowerCamelCase , warmup_steps=__lowerCamelCase , ) if weight_decay_rate > 0.0: __SCREAMING_SNAKE_CASE : int = AdamWeightDecay( learning_rate=__lowerCamelCase , weight_decay_rate=__lowerCamelCase , beta_a=__lowerCamelCase , beta_a=__lowerCamelCase , epsilon=__lowerCamelCase , clipnorm=__lowerCamelCase , global_clipnorm=__lowerCamelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=__lowerCamelCase , ) else: __SCREAMING_SNAKE_CASE : Any = tf.keras.optimizers.Adam( learning_rate=__lowerCamelCase , beta_a=__lowerCamelCase , beta_a=__lowerCamelCase , epsilon=__lowerCamelCase , clipnorm=__lowerCamelCase , global_clipnorm=__lowerCamelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : Optional[Any] , UpperCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , UpperCamelCase : float = 0.9 , UpperCamelCase : float = 0.9_9_9 , UpperCamelCase : float = 1E-7 , UpperCamelCase : bool = False , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[List[str]] = None , UpperCamelCase : Optional[List[str]] = None , UpperCamelCase : str = "AdamWeightDecay" , **UpperCamelCase : int , )->List[Any]: super().__init__(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = weight_decay_rate __SCREAMING_SNAKE_CASE : Optional[Any] = include_in_weight_decay __SCREAMING_SNAKE_CASE : Any = exclude_from_weight_decay @classmethod def __snake_case ( cls : Any , UpperCamelCase : Optional[int] )->List[Any]: __SCREAMING_SNAKE_CASE : List[str] = {"WarmUp": WarmUp} return super(UpperCamelCase , cls ).from_config(UpperCamelCase , custom_objects=UpperCamelCase ) def __snake_case ( self : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : int )->int: super(UpperCamelCase , self )._prepare_local(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def __snake_case ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Tuple )->Any: __SCREAMING_SNAKE_CASE : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def __snake_case ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int]=None , **UpperCamelCase : str )->List[Any]: __SCREAMING_SNAKE_CASE : int = list(zip(*UpperCamelCase ) ) return super(UpperCamelCase , self ).apply_gradients(zip(UpperCamelCase , UpperCamelCase ) , name=UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Any )->Optional[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __SCREAMING_SNAKE_CASE : Any = apply_state or {} __SCREAMING_SNAKE_CASE : Optional[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __SCREAMING_SNAKE_CASE : Any = self._fallback_apply_state(UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __snake_case ( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : int=None )->List[Any]: __SCREAMING_SNAKE_CASE : str = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = self._decay_weights_op(UpperCamelCase , UpperCamelCase , UpperCamelCase ) with tf.control_dependencies([decay] ): return super(UpperCamelCase , self )._resource_apply_dense(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=None )->List[Any]: __SCREAMING_SNAKE_CASE : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = self._decay_weights_op(UpperCamelCase , UpperCamelCase , UpperCamelCase ) with tf.control_dependencies([decay] ): return super(UpperCamelCase , self )._resource_apply_sparse(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Tuple )->Any: __SCREAMING_SNAKE_CASE : Optional[Any] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def __snake_case ( self : Dict , UpperCamelCase : Optional[Any] )->Tuple: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase , UpperCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase , UpperCamelCase ) is not None: return False return True class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : List[Any] )->Tuple: __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Dict = None @property def __snake_case ( self : str )->str: if self._accum_steps is None: __SCREAMING_SNAKE_CASE : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __snake_case ( self : Any )->int: if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , UpperCamelCase : int )->Optional[Any]: if not self._gradients: __SCREAMING_SNAKE_CASE : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase ) , trainable=UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase ) self._accum_steps.assign_add(1 ) def __snake_case ( self : Any )->Any: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase ) )
710
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCamelCase = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") _lowerCamelCase = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCamelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCamelCase = sorted(arg_to_scheduler.keys()) _lowerCamelCase = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _SCREAMING_SNAKE_CASE (pl.LightningModule ): def __init__( self : Dict , UpperCamelCase : argparse.Namespace , UpperCamelCase : str=None , UpperCamelCase : Tuple="base" , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : int , )->Dict: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[Any] = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : Dict = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PretrainedConfig = config __SCREAMING_SNAKE_CASE : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase , UpperCamelCase ): assert hasattr(self.config , UpperCamelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : PreTrainedTokenizer = tokenizer __SCREAMING_SNAKE_CASE : str = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , ) else: __SCREAMING_SNAKE_CASE : Optional[int] = model def __snake_case ( self : Dict , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] )->Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Tuple: __SCREAMING_SNAKE_CASE : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE : List[str] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __snake_case ( self : int )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.model __SCREAMING_SNAKE_CASE : Any = ["bias", "LayerNorm.weight"] __SCREAMING_SNAKE_CASE : Optional[int] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE : Dict = Adafactor( UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = AdamW( UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE : List[Any] = optimizer __SCREAMING_SNAKE_CASE : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Any )->Optional[Any]: return self.validation_step(UpperCamelCase , UpperCamelCase ) def __snake_case ( self : List[Any] , UpperCamelCase : Tuple )->List[Any]: return self.validation_end(UpperCamelCase ) def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case ( self : Union[str, Any] , UpperCamelCase : Tuple )->Optional[Any]: if stage == "test": __SCREAMING_SNAKE_CASE : List[str] = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = len(self.train_dataloader().dataset ) def __snake_case ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False )->List[Any]: raise NotImplementedError("You must implement this for your task" ) def __snake_case ( self : List[Any] )->Union[str, Any]: return self.train_loader def __snake_case ( self : Tuple )->Union[str, Any]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Any: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def __snake_case ( self : int , UpperCamelCase : List[str] )->int: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __snake_case ( self : Union[str, Any] , UpperCamelCase : Dict[str, Any] )->None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.output_dir.joinpath("best_tfmr" ) __SCREAMING_SNAKE_CASE : List[Any] = self.step_count self.model.save_pretrained(UpperCamelCase ) self.tokenizer.save_pretrained(UpperCamelCase ) @staticmethod def __snake_case ( UpperCamelCase : Any , UpperCamelCase : Optional[Any] )->List[str]: parser.add_argument( "--model_name_or_path" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=UpperCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=UpperCamelCase , type=UpperCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(UpperCamelCase ).parent / "test_run" / "cache" ) , type=UpperCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=UpperCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=UpperCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=UpperCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=UpperCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=UpperCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=UpperCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=UpperCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=UpperCamelCase ) parser.add_argument("--train_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--eval_batch_size" , default=3_2 , type=UpperCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple )->Tuple: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] )->Tuple: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase ) class _SCREAMING_SNAKE_CASE (pl.Callback ): def __snake_case ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Dict )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.lr_schedulers[0]["scheduler"] __SCREAMING_SNAKE_CASE : Optional[int] = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase ) def __snake_case ( self : Tuple , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Union[str, Any]: rank_zero_info("***** Validation results *****" ) __SCREAMING_SNAKE_CASE : Optional[Any] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def __snake_case ( self : str , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule )->Optional[Any]: rank_zero_info("***** Test results *****" ) __SCREAMING_SNAKE_CASE : List[Any] = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE : List[str] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(UpperCamelCase , "w" ) as writer: for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(UpperCamelCase , str(metrics[key] ) ) ) def _lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int ): """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "model_checkpoints" ) , type=__lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCamelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowerCamelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowerCamelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowerCamelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "dummy-train-data" ) , type=__lowerCamelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def _lowerCAmelCase ( __lowerCamelCase : BaseTransformer , __lowerCamelCase : argparse.Namespace , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=[] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Any , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE : List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE : Tuple = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCamelCase ) if logging_callback is None: __SCREAMING_SNAKE_CASE : List[str] = LoggingCallback() __SCREAMING_SNAKE_CASE : str = {} if args.fpaa: __SCREAMING_SNAKE_CASE : Any = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE : List[Any] = "auto" __SCREAMING_SNAKE_CASE : List[Any] = "ddp" __SCREAMING_SNAKE_CASE : List[str] = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Optional[int] = "auto" __SCREAMING_SNAKE_CASE : Optional[int] = pl.Trainer.from_argparse_args( __lowerCamelCase , weights_summary=__lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCamelCase , ) if args.do_train: trainer.fit(__lowerCamelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
447
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCamelCase (a_ ): snake_case_ = """data2vec-audio""" def __init__( self , __UpperCamelCase=3_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-5 , __UpperCamelCase="gelu" , __UpperCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_6 , __UpperCamelCase=1_9 , __UpperCamelCase=5 , __UpperCamelCase=0.0_5 , __UpperCamelCase=1_0 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=1_0 , __UpperCamelCase=0 , __UpperCamelCase="sum" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_5_6 , __UpperCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_1_2 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=False , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=None , **__UpperCamelCase , )-> str: super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = conv_pos_kernel_size __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = list(__UpperCamelCase ) __lowerCAmelCase = xvector_output_dim @property def __UpperCAmelCase ( self )-> Tuple: return math.prod(self.conv_stride )
367
from __future__ import annotations def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = len(__snake_case ) # We need to create solution object to save path. __lowerCAmelCase = [[0 for _ in range(__snake_case )] for _ in range(__snake_case )] __lowerCAmelCase = run_maze(__snake_case , 0 , 0 , __snake_case ) if solved: print("\n".join(str(__snake_case ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case ): __lowerCAmelCase = len(__snake_case ) # Final check point. if i == j == (size - 1): __lowerCAmelCase = 1 return True __lowerCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds __lowerCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCAmelCase = 1 # check for directions if ( run_maze(__snake_case , i + 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j + 1 , __snake_case ) or run_maze(__snake_case , i - 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j - 1 , __snake_case ) ): return True __lowerCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
367
1
"""simple docstring""" from __future__ import annotations a_ : int = '''#''' class __lowercase: '''simple docstring''' def __init__( self ): __lowerCamelCase : dict = {} def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = self._trie for char in text: if char not in trie: __lowerCamelCase : Any = {} __lowerCamelCase : Any = trie[char] __lowerCamelCase : Union[str, Any] = True def snake_case_ ( self , __a ): __lowerCamelCase : Any = self._trie for char in prefix: if char in trie: __lowerCamelCase : Optional[Any] = trie[char] else: return [] return self._elements(__a ) def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = [] for c, v in d.items(): __lowerCamelCase : Optional[int] = [' '] if c == END else [(c + s) for s in self._elements(__a )] result.extend(__a ) return tuple(__a ) a_ : Any = Trie() a_ : Dict = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def UpperCAmelCase ( A__: str ) -> tuple: __lowerCamelCase : int = trie.find_word(A__ ) return tuple(string + word for word in suffixes ) def UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
263
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a_ : Optional[int] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.0_1), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __lowercase( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case_ ( cls ): __lowerCamelCase : Tuple = TOKEN HfFolder.save_token(__a ) @classmethod def snake_case_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def snake_case_ ( self ): __lowerCamelCase : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id='test-config' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): __lowerCamelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='valid_org/test-config-org' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): CustomConfig.register_for_auto_class() __lowerCamelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCamelCase : Tuple = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCamelCase : List[str] = c.n_embd + 1 # int __lowerCamelCase : Dict = c.resid_pdrop + 1.0 # float __lowerCamelCase : int = not c.scale_attn_weights # bool __lowerCamelCase : Optional[int] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__a , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__a , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__a , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__a , c.summary_type , 'mismatch for key: summary_type' ) def snake_case_ ( self ): __lowerCamelCase : Tuple = PretrainedConfig() __lowerCamelCase : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCamelCase : int = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {", ".join(__a )}.''' ) def snake_case_ ( self ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCamelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__a ) def snake_case_ ( self ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : Tuple = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Optional[Any] = HTTPError __lowerCamelCase : str = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : Optional[Any] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCamelCase : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowerCamelCase : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCamelCase : Any = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCamelCase : Any = ['config.42.0.0.json'] __lowerCamelCase : Tuple = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , 'config.4.0.0.json' ) , os.path.join(__a , 'config.42.0.0.json' ) ) __lowerCamelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def snake_case_ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCamelCase : List[str] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCamelCase : Tuple = 'v4.0.0' __lowerCamelCase , __lowerCamelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCamelCase : Union[str, Any] = 'v3.0.0' __lowerCamelCase : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
263
1
"""simple docstring""" import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A = os.path.join(git_repo_path, "src", "diffusers") class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_UpperCAmelCase , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowercase__: int = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_UpperCAmelCase , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowercase__: Optional[int] = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_UpperCAmelCase , '''torch_and_transformers_and_onnx''' ) def _snake_case ( self ): lowercase__: Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _UpperCAmelCase ) self.assertIn('''torch_and_transformers''' , _UpperCAmelCase ) self.assertIn('''flax_and_transformers''' , _UpperCAmelCase ) self.assertIn('''torch_and_transformers_and_onnx''' , _UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def _snake_case ( self ): lowercase__: Optional[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_UpperCAmelCase , '''\nCONSTANT = None\n''' ) lowercase__: Tuple = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _UpperCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase__: Dict = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' lowercase__: Union[str, Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' lowercase__: str = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _UpperCAmelCase )
586
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "swin2sr" _UpperCAmelCase :Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _UpperCAmelCase=64 , _UpperCAmelCase=1 , _UpperCAmelCase=3 , _UpperCAmelCase=180 , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=8 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=2 , _UpperCAmelCase=1.0 , _UpperCAmelCase="1conv" , _UpperCAmelCase="pixelshuffle" , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = image_size lowercase__: List[Any] = patch_size lowercase__: Union[str, Any] = num_channels lowercase__: List[str] = embed_dim lowercase__: Optional[int] = depths lowercase__: Union[str, Any] = len(_UpperCAmelCase ) lowercase__: Union[str, Any] = num_heads lowercase__: str = window_size lowercase__: List[Any] = mlp_ratio lowercase__: List[Any] = qkv_bias lowercase__: List[str] = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Any = drop_path_rate lowercase__: str = hidden_act lowercase__: List[str] = use_absolute_embeddings lowercase__: Tuple = layer_norm_eps lowercase__: Optional[int] = initializer_range lowercase__: Tuple = upscale lowercase__: Optional[int] = img_range lowercase__: List[Any] = resi_connection lowercase__: Union[str, Any] = upsampler
586
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if "resnet-50" in model_name: _lowerCAmelCase : int = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: _lowerCAmelCase : Optional[Any] = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) _lowerCAmelCase : str = DetrConfig(use_timm_backbone=lowerCAmelCase__ , backbone_config=lowerCAmelCase__ ) # set label attributes _lowerCAmelCase : str = "panoptic" in model_name if is_panoptic: _lowerCAmelCase : List[str] = 2_50 else: _lowerCAmelCase : Tuple = 91 _lowerCAmelCase : List[Any] = "huggingface/label-files" _lowerCAmelCase : int = "coco-detection-id2label.json" _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Any = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _lowerCAmelCase : int = idalabel _lowerCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Tuple = state_dict.pop(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = val def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" _lowerCAmelCase : Tuple = "" if is_panoptic: _lowerCAmelCase : List[Any] = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : Any = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Any = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:2_56, :] _lowerCAmelCase : int = in_proj_bias[:2_56] _lowerCAmelCase : Dict = in_proj_weight[2_56:5_12, :] _lowerCAmelCase : Tuple = in_proj_bias[2_56:5_12] _lowerCAmelCase : Union[str, Any] = in_proj_weight[-2_56:, :] _lowerCAmelCase : Any = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase : Union[str, Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[Any] = in_proj_weight[:2_56, :] _lowerCAmelCase : str = in_proj_bias[:2_56] _lowerCAmelCase : Optional[int] = in_proj_weight[2_56:5_12, :] _lowerCAmelCase : List[Any] = in_proj_bias[2_56:5_12] _lowerCAmelCase : Tuple = in_proj_weight[-2_56:, :] _lowerCAmelCase : Dict = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention _lowerCAmelCase : int = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _lowerCAmelCase : str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCAmelCase : Optional[Any] = in_proj_weight_cross_attn[:2_56, :] _lowerCAmelCase : Optional[int] = in_proj_bias_cross_attn[:2_56] _lowerCAmelCase : Optional[Any] = in_proj_weight_cross_attn[2_56:5_12, :] _lowerCAmelCase : Tuple = in_proj_bias_cross_attn[2_56:5_12] _lowerCAmelCase : int = in_proj_weight_cross_attn[-2_56:, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[-2_56:] def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Tuple = get_detr_config(lowerCAmelCase__ ) # load original model from torch hub _lowerCAmelCase : str = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"""Converting model {model_name}...""" ) _lowerCAmelCase : Union[str, Any] = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase__ ).eval() _lowerCAmelCase : str = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase__ ): if is_panoptic: _lowerCAmelCase : Dict = "detr." + src rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Tuple = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): _lowerCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase__ ) _lowerCAmelCase : int = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: _lowerCAmelCase : Any = state_dict.pop(lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _lowerCAmelCase : Optional[int] = state_dict.pop(lowerCAmelCase__ ) _lowerCAmelCase : Dict = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : List[Any] = DetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify our conversion on an image _lowerCAmelCase : Union[str, Any] = "coco_panoptic" if is_panoptic else "coco_detection" _lowerCAmelCase : List[Any] = DetrImageProcessor(format=lowerCAmelCase__ ) _lowerCAmelCase : List[str] = processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : int = encoding["pixel_values"] _lowerCAmelCase : List[str] = detr(lowerCAmelCase__ ) _lowerCAmelCase : Any = model(lowerCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") snake_case = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
587
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
587
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCAmelCase = BeautifulSoup(requests.get(__A ).text , '''html.parser''' ) UpperCAmelCase = soup.findAll('''h1''' ) UpperCAmelCase = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__A , __A )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
210
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' snake_case: Dict = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = self.get_dummy_inputs() snake_case: Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: int = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) snake_case: Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = self.get_dummy_inputs() snake_case: int = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: int = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.get_dummy_inputs() snake_case: Tuple = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Dict = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.get_dummy_inputs() snake_case: int = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) snake_case: Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.get_dummy_inputs() snake_case: Any = pipe(**SCREAMING_SNAKE_CASE__ ).images snake_case: int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case: int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ort.SessionOptions() snake_case: int = False return options def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case: Dict = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default snake_case: Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'A fantasy landscape, trending on artstation' snake_case: List[Any] = torch.manual_seed(0 ) snake_case: str = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Tuple = output.images snake_case: Any = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case: Any = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case: str = init_image.resize((1_28, 1_28) ) snake_case: Tuple = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) snake_case: List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'A fantasy landscape, trending on artstation' snake_case: Any = torch.manual_seed(0 ) snake_case: Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) snake_case: Any = output.images snake_case: int = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case: Dict = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
329
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
from copy import deepcopy class __a : """simple docstring""" def __init__( self : Any ,_UpperCamelCase : list[int] | None = None ,_UpperCamelCase : int | None = None ) -> None: '''simple docstring''' if arr is None and size is not None: SCREAMING_SNAKE_CASE__ =size SCREAMING_SNAKE_CASE__ =[0] * size elif arr is not None: self.init(_UpperCamelCase ) else: raise ValueError("""Either arr or size must be specified""" ) def __A ( self : List[Any] ,_UpperCamelCase : list[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ =len(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =deepcopy(_UpperCamelCase ) for i in range(1 ,self.size ): SCREAMING_SNAKE_CASE__ =self.next_(_UpperCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def __A ( self : List[str] ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.tree[:] for i in range(self.size - 1 ,0 ,-1 ): SCREAMING_SNAKE_CASE__ =self.next_(_UpperCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __A ( _UpperCamelCase : int ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def __A ( _UpperCamelCase : int ) -> int: '''simple docstring''' return index - (index & (-index)) def __A ( self : int ,_UpperCamelCase : int ,_UpperCamelCase : int ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value SCREAMING_SNAKE_CASE__ =self.next_(_UpperCamelCase ) def __A ( self : str ,_UpperCamelCase : int ,_UpperCamelCase : int ) -> None: '''simple docstring''' self.add(_UpperCamelCase ,value - self.get(_UpperCamelCase ) ) def __A ( self : Optional[Any] ,_UpperCamelCase : int ) -> int: '''simple docstring''' if right == 0: return 0 SCREAMING_SNAKE_CASE__ =self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] SCREAMING_SNAKE_CASE__ =self.prev(_UpperCamelCase ) return result def __A ( self : Union[str, Any] ,_UpperCamelCase : int ,_UpperCamelCase : int ) -> int: '''simple docstring''' return self.prefix(_UpperCamelCase ) - self.prefix(_UpperCamelCase ) def __A ( self : List[str] ,_UpperCamelCase : int ) -> int: '''simple docstring''' return self.query(_UpperCamelCase ,index + 1 ) def __A ( self : List[str] ,_UpperCamelCase : int ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 SCREAMING_SNAKE_CASE__ =1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 SCREAMING_SNAKE_CASE__ =0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
151
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] lowerCamelCase_ = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ ={ """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE__ =int(re.match(R""".*layer_(\d*).*""", __UpperCamelCase )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def UpperCAmelCase_ ( __UpperCamelCase ): if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE__ =re.search(R"""[^\d](\d+)$""", str(__UpperCamelCase ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) SCREAMING_SNAKE_CASE__ =int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): # Construct model if bloom_config_file == "": SCREAMING_SNAKE_CASE__ =BloomConfig() else: SCREAMING_SNAKE_CASE__ =BloomConfig.from_json_file(__UpperCamelCase ) if shard_model: SCREAMING_SNAKE_CASE__ =os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =sorted(filter(lambda __UpperCamelCase : s.startswith("""layer""" ) and "model_00" in s, __UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ ={"""weight_map""": {}, """metadata""": {}} SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ =None SCREAMING_SNAKE_CASE__ =BloomConfig() for j, file in enumerate(__UpperCamelCase ): print("""Processing file: {}""".format(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE__ =file.replace("""model_00""", f"""model_0{i}""" ) SCREAMING_SNAKE_CASE__ =torch.load(os.path.join(__UpperCamelCase, __UpperCamelCase ), map_location="""cpu""" ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE__ =list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE__ =temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE__ =temp else: for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE__ =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE__ =torch.cat([tensors[key], temp[key]], dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE__ =tensors[key] / pretraining_tp torch.save( __UpperCamelCase, os.path.join( __UpperCamelCase, """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ), str(len(__UpperCamelCase ) ).zfill(5 ) ), ), ) for key in tensors.keys(): SCREAMING_SNAKE_CASE__ =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE__ ="""pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ), str(len(__UpperCamelCase ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE__ =BloomConfig() SCREAMING_SNAKE_CASE__ =pytorch_dump_folder_path + """/""" + CONFIG_NAME SCREAMING_SNAKE_CASE__ =total_size with open(__UpperCamelCase, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCamelCase, WEIGHTS_NAME + """.index.json""" ), """w""", encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ =json.dumps(__UpperCamelCase, indent=2, sort_keys=__UpperCamelCase ) + """\n""" f.write(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ =BloomModel(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =os.listdir(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =sorted(filter(lambda __UpperCamelCase : s.startswith("""layer""" ) and "model_00" in s, __UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =None for i, file in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ =None for i in range(__UpperCamelCase ): # load all TP files SCREAMING_SNAKE_CASE__ =file.replace("""model_00""", f"""model_0{i}""" ) SCREAMING_SNAKE_CASE__ =torch.load(os.path.join(__UpperCamelCase, __UpperCamelCase ), map_location="""cpu""" ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE__ =list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE__ =temp.pop(__UpperCamelCase ) if tensors is None: SCREAMING_SNAKE_CASE__ =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE__ =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE__ =torch.cat([tensors[key], temp[key]], dim=__UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE__ =tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE__ =model.load_state_dict(__UpperCamelCase, strict=__UpperCamelCase ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: SCREAMING_SNAKE_CASE__ =set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE__ =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(__UpperCamelCase, exist_ok=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME SCREAMING_SNAKE_CASE__ =pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE__ =model.to(config.torch_dtype ) torch.save(model.state_dict(), __UpperCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__UpperCamelCase, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) lowerCamelCase_ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
151
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Dict ): __lowerCAmelCase = R"\w+[.]\d+" __lowerCAmelCase = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: __lowerCAmelCase = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __lowerCAmelCase = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __lowerCAmelCase = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __lowerCAmelCase = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": __lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCAmelCase = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCAmelCase = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __lowerCAmelCase = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters __lowerCAmelCase , __lowerCAmelCase = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
552
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = VideoMAEConfig() set_architecture_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "finetuned" not in model_name: __lowerCAmelCase = False if "finetuned" in model_name: __lowerCAmelCase = "huggingface/label-files" if "kinetics" in model_name: __lowerCAmelCase = 4_00 __lowerCAmelCase = "kinetics400-id2label.json" elif "ssv2" in model_name: __lowerCAmelCase = 1_74 __lowerCAmelCase = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ): if "small" in model_name: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 3 __lowerCAmelCase = 1_92 __lowerCAmelCase = 7_68 elif "large" in model_name: __lowerCAmelCase = 10_24 __lowerCAmelCase = 40_96 __lowerCAmelCase = 24 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 5_12 __lowerCAmelCase = 20_48 elif "huge" in model_name: __lowerCAmelCase = 12_80 __lowerCAmelCase = 51_20 __lowerCAmelCase = 32 __lowerCAmelCase = 16 __lowerCAmelCase = 12 __lowerCAmelCase = 8 __lowerCAmelCase = 6_40 __lowerCAmelCase = 25_60 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if "encoder." in name: __lowerCAmelCase = name.replace("encoder." , "" ) if "cls_token" in name: __lowerCAmelCase = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: __lowerCAmelCase = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: __lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: __lowerCAmelCase = name.replace("attn" , "attention.self" ) if "attn" in name: __lowerCAmelCase = name.replace("attn" , "attention.attention" ) if "norm1" in name: __lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __lowerCAmelCase = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __lowerCAmelCase = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __lowerCAmelCase = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCAmelCase = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: __lowerCAmelCase = name.replace("head" , "classifier" ) return name def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if key.startswith("encoder." ): __lowerCAmelCase = key.replace("encoder." , "" ) if "qkv" in key: __lowerCAmelCase = key.split("." ) if key.startswith("decoder.blocks" ): __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = int(key_split[2] ) __lowerCAmelCase = "decoder.decoder_layers." if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = "videomae.encoder.layer." if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val return orig_state_dict def _a ( ): __lowerCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __lowerCAmelCase = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = get_videomae_config(SCREAMING_SNAKE_CASE_ ) if "finetuned" in model_name: __lowerCAmelCase = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE_ ) else: __lowerCAmelCase = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) # download original checkpoint, hosted on Google Drive __lowerCAmelCase = "pytorch_model.bin" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) if "model" in files: __lowerCAmelCase = files["model"] else: __lowerCAmelCase = files["module"] __lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # verify model on basic input __lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) if "finetuned" not in model_name: __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits __lowerCAmelCase = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 4_00] ) __lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 1_74] ) __lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __lowerCAmelCase = torch.Size([1, 14_08, 15_36] ) __lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __lowerCAmelCase = torch.Size([1, 14_08, 15_36] ) __lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __lowerCAmelCase = torch.Size([1, 14_08, 15_36] ) __lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 4_00] ) __lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 4_00] ) __lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 4_00] ) __lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCAmelCase = torch.Size([1, 4_00] ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __lowerCAmelCase = torch.Size([1, 14_08, 15_36] ) __lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 1_74] ) __lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __lowerCAmelCase = torch.Size([1, 14_08, 15_36] ) __lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCAmelCase = torch.Size([1, 1_74] ) __lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCAmelCase = outputs.loss assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="nielsr" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
552
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('transformers.models.speecht5') UpperCamelCase__ = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } UpperCamelCase__ = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } UpperCamelCase__ = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } UpperCamelCase__ = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } UpperCamelCase__ = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } UpperCamelCase__ = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } UpperCamelCase__ = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } UpperCamelCase__ = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] UpperCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] UpperCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] UpperCamelCase__ = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for attribute in key.split("." ): lowercase_ : Dict = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: lowercase_ : List[Any] = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: lowercase_ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase_ : int = value elif weight_type == "weight_g": lowercase_ : Union[str, Any] = value elif weight_type == "weight_v": lowercase_ : Tuple = value elif weight_type == "bias": lowercase_ : Tuple = value elif weight_type == "running_mean": lowercase_ : List[str] = value elif weight_type == "running_var": lowercase_ : Any = value elif weight_type == "num_batches_tracked": lowercase_ : List[str] = value else: lowercase_ : Dict = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase_ , lowercase_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] if task == "s2t": lowercase_ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder lowercase_ : Tuple = MAPPING_S2T lowercase_ : Any = IGNORE_KEYS_S2T elif task == "t2s": lowercase_ : Tuple = None lowercase_ : Dict = MAPPING_T2S lowercase_ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": lowercase_ : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder lowercase_ : Optional[int] = MAPPING_S2S lowercase_ : Tuple = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCamelCase , _UpperCamelCase ): logger.info(F"""{name} was ignored""" ) continue lowercase_ : int = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase_ , lowercase_ : int = key.split(".*." ) if prefix in name and suffix in name: lowercase_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase_ : int = True if "*" in mapped_key: lowercase_ : Any = name.split(_UpperCamelCase )[0].split("." )[-2] lowercase_ : Optional[int] = mapped_key.replace("*" , _UpperCamelCase ) if "weight_g" in name: lowercase_ : Optional[Any] = "weight_g" elif "weight_v" in name: lowercase_ : str = "weight_v" elif "bias" in name: lowercase_ : Dict = "bias" elif "weight" in name: lowercase_ : int = "weight" elif "running_mean" in name: lowercase_ : Dict = "running_mean" elif "running_var" in name: lowercase_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: lowercase_ : Dict = "num_batches_tracked" else: lowercase_ : Tuple = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = full_name.split("conv_layers." )[-1] lowercase_ : Dict = name.split("." ) lowercase_ : Optional[Any] = int(items[0] ) lowercase_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase_ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase_ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase_ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase_ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): """simple docstring""" if config_path is not None: lowercase_ : Union[str, Any] = SpeechTaConfig.from_pretrained(_UpperCamelCase ) else: lowercase_ : List[str] = SpeechTaConfig() if task == "s2t": lowercase_ : Any = config.max_text_positions lowercase_ : List[str] = SpeechTaForSpeechToText(_UpperCamelCase ) elif task == "t2s": lowercase_ : Optional[Any] = 1876 lowercase_ : List[str] = 600 lowercase_ : Union[str, Any] = config.max_speech_positions lowercase_ : str = SpeechTaForTextToSpeech(_UpperCamelCase ) elif task == "s2s": lowercase_ : List[Any] = 1876 lowercase_ : List[str] = config.max_speech_positions lowercase_ : List[Any] = SpeechTaForSpeechToSpeech(_UpperCamelCase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: lowercase_ : Union[str, Any] = SpeechTaTokenizer(_UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase_ : Optional[Any] = AddedToken("<mask>" , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) lowercase_ : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) lowercase_ : str = SpeechTaFeatureExtractor() lowercase_ : Dict = SpeechTaProcessor(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) lowercase_ : str = torch.load(_UpperCamelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _UpperCamelCase , _UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
620
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : def __init__( self : int , a : Dict , a : Optional[Any]=1_3 , a : str=3_0 , a : Dict=2 , a : List[Any]=3 , a : Optional[int]=True , a : Tuple=True , a : List[Any]=3_2 , a : int=2 , a : List[str]=4 , a : Dict=3_7 , a : Optional[Any]="gelu" , a : List[str]=0.1 , a : Dict=0.1 , a : List[Any]=1_0 , a : Union[str, Any]=0.02 , a : Union[str, Any]=3 , a : int=None , a : Any=2 , ): '''simple docstring''' lowercase_ : Any = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Any = image_size lowercase_ : str = patch_size lowercase_ : int = num_channels lowercase_ : str = is_training lowercase_ : str = use_labels lowercase_ : List[Any] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : str = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : str = scope lowercase_ : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ : Any = (image_size // patch_size) ** 2 lowercase_ : str = num_patches + 2 def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_labels: lowercase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase__ ( self : Any , a : List[str] , a : str , a : Tuple ): '''simple docstring''' lowercase_ : List[str] = TFDeiTModel(config=a ) lowercase_ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , a : Optional[int] , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowercase_ : List[str] = TFDeiTForMaskedImageModeling(config=a ) lowercase_ : Union[str, Any] = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Tuple = TFDeiTForMaskedImageModeling(a ) lowercase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self : int , a : List[str] , a : List[str] , a : Optional[int] ): '''simple docstring''' lowercase_ : str = self.type_sequence_label_size lowercase_ : Union[str, Any] = TFDeiTForImageClassification(a ) lowercase_ : int = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : str = TFDeiTForImageClassification(a ) lowercase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Any = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Optional[int] = config_and_inputs lowercase_ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: Tuple = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowerCamelCase: Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowerCamelCase: Union[str, Any] = False __lowerCamelCase: Any = False __lowerCamelCase: List[str] = False __lowerCamelCase: Optional[Any] = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = TFDeiTModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , tf.keras.layers.Dense ) ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(a ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def lowerCAmelCase__ ( self : Any , a : int , a : Union[str, Any] , a : Any=False ): '''simple docstring''' lowercase_ : Union[str, Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = TFDeiTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) lowercase_ : Union[str, Any] = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Optional[Any] = image_processor(images=a , return_tensors="tf" ) # forward pass lowercase_ : int = model(**a ) # verify the logits lowercase_ : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase_ : Optional[Any] = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
620
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : List[str] = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = ["MobileNetV2FeatureExtractor"] SCREAMING_SNAKE_CASE__ : Any = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
636
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Optional[Any] = random.Random() def _a ( lowercase__ : List[str] , lowercase__ : List[Any]=1.0 , lowercase__ : Optional[int]=None , lowercase__ : List[str]=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ : Optional[int] = global_rng SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case ( unittest.TestCase ): def __init__( self : List[Any] , a_ : Optional[Any] , a_ : Union[str, Any]=7 , a_ : Any=400 , a_ : List[Any]=2000 , a_ : Tuple=1 , a_ : Optional[int]=0.0 , a_ : Optional[Any]=1_6000 , a_ : str=True , a_ : Union[str, Any]=80 , a_ : Dict=16 , a_ : Tuple=64 , a_ : Any="hann_window" , a_ : Union[str, Any]=80 , a_ : List[Any]=7600 , a_ : Optional[Any]=1e-1_0 , a_ : Dict=True , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = min_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ : int = feature_size SCREAMING_SNAKE_CASE__ : str = padding_value SCREAMING_SNAKE_CASE__ : Any = sampling_rate SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : int = num_mel_bins SCREAMING_SNAKE_CASE__ : int = hop_length SCREAMING_SNAKE_CASE__ : str = win_length SCREAMING_SNAKE_CASE__ : Optional[Any] = win_function SCREAMING_SNAKE_CASE__ : List[str] = fmin SCREAMING_SNAKE_CASE__ : Dict = fmax SCREAMING_SNAKE_CASE__ : int = mel_floor SCREAMING_SNAKE_CASE__ : Tuple = return_attention_mask def __lowercase( self : Dict )-> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowercase( self : List[Any] , a_ : str=False , a_ : List[Any]=False )-> Optional[Any]: """simple docstring""" def _flatten(a_ : int ): return list(itertools.chain(*a_ ) ) if equal_length: SCREAMING_SNAKE_CASE__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : int = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs def __lowercase( self : Any , a_ : int=False , a_ : Any=False )-> Union[str, Any]: """simple docstring""" if equal_length: SCREAMING_SNAKE_CASE__ : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : List[str] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = SpeechTaFeatureExtractor def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = SpeechTaFeatureExtractionTester(self ) def __lowercase( self : Any , a_ : Optional[int] )-> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def __lowercase( self : Tuple )-> Dict: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Tuple = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : str = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : List[Any] = range(800 , 1400 , 200 ) SCREAMING_SNAKE_CASE__ : int = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , max_length=a_ , padding=a_ ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowercase( self : Optional[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : List[str] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : str = feat_extract( a_ , truncation=a_ , max_length=2000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __lowercase( self : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ : Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowercase( self : Any )-> Optional[int]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Dict = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(audio_target=a_ , padding=a_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : int = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : str = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : Dict )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE__ : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : Tuple )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : str = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : List[Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.pad(a_ , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Any = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def __lowercase( self : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Tuple = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : str = min(a_ ) SCREAMING_SNAKE_CASE__ : Any = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( a_ , padding='max_length' , max_length=a_ , truncation=a_ , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowercase( self : Optional[int] , a_ : List[str] )-> Any: """simple docstring""" from datasets import load_dataset SCREAMING_SNAKE_CASE__ : int = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ : List[Any] = ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on SCREAMING_SNAKE_CASE__ : List[str] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1e-6 ) ) def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : int = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : str = feature_extractor(audio_target=a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
636
1
def A__ ( snake_case_ : list ): if len(snake_case_ ) <= 1: return [tuple(snake_case_ )] SCREAMING_SNAKE_CASE__: Union[str, Any]= [] def generate(snake_case_ : int , snake_case_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[int]= arr[k - 1], arr[0] generate(k - 1 , snake_case_ ) generate(len(snake_case_ ) , snake_case_ ) return res if __name__ == "__main__": lowercase_ : Any = input('Enter numbers separated by a comma:\n').strip() lowercase_ : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
64
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
'''simple docstring''' import requests A: Tuple = "YOUR API KEY" def _UpperCAmelCase ( a : str , a : str = giphy_api_key ) -> list: """simple docstring""" lowercase_ : Dict = '+'.join(query.split() ) lowercase_ : str = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" lowercase_ : str = requests.get(a ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
7
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A: List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a : Any , a : Dict=False , a : Union[str, Any]=False , a : Tuple=False ) -> List[str]: """simple docstring""" lowercase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): lowercase_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ : str = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) lowercase_ : int = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = in_proj_bias[: config.hidden_size] lowercase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Dict = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : List[str] ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a , a ) def _UpperCAmelCase ( a : Optional[Any] , a : Tuple , a : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = dct.pop(a ) lowercase_ : Dict = val @torch.no_grad() def _UpperCAmelCase ( a : List[Any] , a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=a ) lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : List[str] = False lowercase_ : str = False if "vqa" in checkpoint_url: lowercase_ : str = True lowercase_ : Optional[int] = 3_1_2_9 lowercase_ : Any = 'huggingface/label-files' lowercase_ : Optional[Any] = 'vqa2-id2label.json' lowercase_ : int = json.load(open(hf_hub_download(a , a , repo_type='dataset' ) , 'r' ) ) lowercase_ : Optional[int] = {int(a ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} lowercase_ : List[Any] = ViltForQuestionAnswering(a ) elif "nlvr" in checkpoint_url: lowercase_ : Dict = True lowercase_ : List[str] = 2 lowercase_ : Tuple = {0: 'False', 1: 'True'} lowercase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} lowercase_ : int = 3 lowercase_ : Any = ViltForImagesAndTextClassification(a ) elif "irtr" in checkpoint_url: lowercase_ : Union[str, Any] = True lowercase_ : Dict = ViltForImageAndTextRetrieval(a ) elif "mlm_itm" in checkpoint_url: lowercase_ : int = True lowercase_ : Tuple = ViltForMaskedLM(a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowercase_ : List[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' )['state_dict'] lowercase_ : Union[str, Any] = create_rename_keys(a , a , a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a ) if mlm_model or irtr_model: lowercase_ : str = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a , a ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase_ , lowercase_ : Dict = model.load_state_dict(a , strict=a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a ) # Define processor lowercase_ : Optional[int] = ViltImageProcessor(size=3_8_4 ) lowercase_ : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase_ : Any = ViltProcessor(a , a ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a ).raw ) lowercase_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowercase_ : Union[str, Any] = processor(a , a , return_tensors='pt' ) lowercase_ : List[str] = processor(a , a , return_tensors='pt' ) lowercase_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase_ : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a ).raw ) if mlm_model: lowercase_ : Dict = 'a bunch of [MASK] laying on a [MASK].' else: lowercase_ : List[Any] = 'How many cats are there?' lowercase_ : List[Any] = processor(a , a , return_tensors='pt' ) lowercase_ : Optional[int] = model(**a ) # Verify outputs if mlm_model: lowercase_ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowercase_ : Optional[Any] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify masked token prediction equals "cats" lowercase_ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase_ : Optional[Any] = torch.Size([1, 3_1_2_9] ) lowercase_ : Tuple = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a , atol=1e-4 ) # verify vqa prediction equals "2" lowercase_ : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase_ : Optional[Any] = torch.Size([1, 2] ) lowercase_ : Optional[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a ).mkdir(exist_ok=a ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a ) processor.save_pretrained(a ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A: Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
1