code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) SCREAMING_SNAKE_CASE__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase: __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __snake_case : bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __snake_case : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case : bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _lowercase ( self : List[str] ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class __lowerCAmelCase: __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case : Optional[str] = field(default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __snake_case : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __snake_case : bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __snake_case : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __snake_case : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __snake_case : Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __snake_case : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case : bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def _lowercase ( self : str ): """simple docstring""" if self.train_file is not None: SCREAMING_SNAKE_CASE_ :List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ :Optional[Any] = [json.loads(SCREAMING_SNAKE_CASE ) for line in f.read().splitlines() if (len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace())] assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = {c: dataset[c] for c in dataset.column_names} SCREAMING_SNAKE_CASE_ :Optional[int] = refs return Dataset.from_dict(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_ :Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): SCREAMING_SNAKE_CASE_ :Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) SCREAMING_SNAKE_CASE_ :Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: SCREAMING_SNAKE_CASE_ :Optional[Any] = {} if data_args.train_file is not None: SCREAMING_SNAKE_CASE_ :Any = data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE_ :str = data_args.validation_file SCREAMING_SNAKE_CASE_ :Dict = data_args.train_file.split('.' )[-1] if extension == "txt": SCREAMING_SNAKE_CASE_ :Union[str, Any] = 'text' SCREAMING_SNAKE_CASE_ :Tuple = load_dataset(SCREAMING_SNAKE_CASE , data_files=SCREAMING_SNAKE_CASE ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ :Dict = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE_ :List[Any] = AutoConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ :List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: SCREAMING_SNAKE_CASE_ :int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :int = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ :Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) SCREAMING_SNAKE_CASE_ :Tuple = AutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: SCREAMING_SNAKE_CASE_ :str = datasets['train'].column_names else: SCREAMING_SNAKE_CASE_ :List[Any] = datasets['validation'].column_names SCREAMING_SNAKE_CASE_ :List[str] = 'text' if 'text' in column_names else column_names[0] SCREAMING_SNAKE_CASE_ :Union[str, Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(SCREAMING_SNAKE_CASE ): # Remove empty lines SCREAMING_SNAKE_CASE_ :List[str] = [line for line in examples['text'] if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: SCREAMING_SNAKE_CASE_ :List[str] = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: SCREAMING_SNAKE_CASE_ :List[str] = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer SCREAMING_SNAKE_CASE_ :List[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: SCREAMING_SNAKE_CASE_ :Optional[int] = False # Data collator # This one will take care of randomly masking the tokens. SCREAMING_SNAKE_CASE_ :Optional[Any] = DataCollatorForWholeWordMask(tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer SCREAMING_SNAKE_CASE_ :Optional[int] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE_ :int = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE_ :int = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE_ :Dict = None SCREAMING_SNAKE_CASE_ :Tuple = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE_ :Dict = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation SCREAMING_SNAKE_CASE_ :Optional[int] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE_ :Dict = trainer.evaluate() SCREAMING_SNAKE_CASE_ :Optional[int] = math.exp(eval_output['eval_loss'] ) SCREAMING_SNAKE_CASE_ :str = perplexity SCREAMING_SNAKE_CASE_ :str = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): main() if __name__ == "__main__": main()
709
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : List[str] = ['image_processor', 'tokenizer'] __snake_case : Optional[int] = 'Pix2StructImageProcessor' __snake_case : Optional[int] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = False super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = 2_048 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE : str , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.tokenizer SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ :Any = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Any = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ :List[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ :Any = text_encoding.pop('input_ids' ) else: SCREAMING_SNAKE_CASE_ :Any = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE ) return encoding_image_processor def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ :Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
233
0
'''simple docstring''' UpperCAmelCase__ = '''Alexander Joslin''' import operator as op from .stack import Stack def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __A= {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} __A= Stack() __A= Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 __A= operator_stack.peek() operator_stack.pop() __A= operand_stack.peek() operand_stack.pop() __A= operand_stack.peek() operand_stack.pop() __A= operators[opr](_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase__ = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
186
'''simple docstring''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : int ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: __A= _modexpt(_SCREAMING_SNAKE_CASE,exponent // 2,_SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE,exponent - 1,_SCREAMING_SNAKE_CASE )) % modulo_value def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 1777,_SCREAMING_SNAKE_CASE : int = 1855,_SCREAMING_SNAKE_CASE : int = 8 ): """simple docstring""" __A= base for _ in range(1,_SCREAMING_SNAKE_CASE ): __A= _modexpt(_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE,10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
186
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE : List[str] = 16 __SCREAMING_SNAKE_CASE : Union[str, Any] = 32 def snake_case_ ( lowercase__ : str , lowercase__ : Optional[Any] = 16 ): '''simple docstring''' _lowerCAmelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase =datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase =16 elif accelerator.mixed_precision != "no": _lowerCAmelCase =8 else: _lowerCAmelCase =None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _lowerCAmelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) _lowerCAmelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE : Optional[int] = mocked_dataloaders # noqa: F811 def snake_case_ ( lowercase__ : Any , lowercase__ : Union[str, Any] ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": _lowerCAmelCase =2 # New Code # _lowerCAmelCase =int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase =config["""lr"""] _lowerCAmelCase =int(config["""num_epochs"""] ) _lowerCAmelCase =int(config["""seed"""] ) _lowerCAmelCase =int(config["""batch_size"""] ) _lowerCAmelCase =evaluate.load("""glue""" , """mrpc""" ) set_seed(lowercase__ ) _lowerCAmelCase , _lowerCAmelCase =get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase =model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase =AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler _lowerCAmelCase =get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase__ ): _lowerCAmelCase =model(**lowercase__ ) _lowerCAmelCase =output.loss accelerator.backward(lowercase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase =model(**lowercase__ ) _lowerCAmelCase =outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) _lowerCAmelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowercase__ ) def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowercase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
702
def snake_case_ ( lowercase__ : list[int] ): '''simple docstring''' _lowerCAmelCase =[] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): _lowerCAmelCase =nums.pop(0 ) _lowerCAmelCase =permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def snake_case_ ( lowercase__ : Optional[Any] ): '''simple docstring''' def backtrack(lowercase__ : List[Any] ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] # backtrack _lowerCAmelCase =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __SCREAMING_SNAKE_CASE : Any = permutea([1, 2, 3]) print(res) doctest.testmod()
149
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig A_ : Tuple = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : List[Any] = 'tapas' def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[int]=3_0_5_2_2 , __UpperCAmelCase : Optional[int]=7_6_8 , __UpperCAmelCase : Union[str, Any]=1_2 , __UpperCAmelCase : str=1_2 , __UpperCAmelCase : Optional[int]=3_0_7_2 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=1_0_2_4 , __UpperCAmelCase : Union[str, Any]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : str=1e-12 , __UpperCAmelCase : int=0 , __UpperCAmelCase : Optional[Any]=10.0 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]=1.0 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=1.0 , __UpperCAmelCase : Optional[Any]=1.0 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : int="ratio" , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=6_4 , __UpperCAmelCase : Optional[Any]=3_2 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
196
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : def __init__( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict=1_3 , __UpperCAmelCase : Optional[Any]=3_0 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : int=5 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : Union[str, Any]=3_7 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Optional[Any]=1_0 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Any=0.6 , __UpperCAmelCase : Dict=None , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = mask_ratio SCREAMING_SNAKE_CASE__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE__ = ViTMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Optional[int] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__ : str = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase__ : Tuple = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : str = False lowerCamelCase__ : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = ViTMAEModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] ) -> List[Any]: # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE__ = pt_noise super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) # Make sure we don't have nans SCREAMING_SNAKE_CASE__ = after_outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: pass @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = ViTMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE__ = ViTMAEConfig() SCREAMING_SNAKE_CASE__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1e-4 ) )
196
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : str = logging.get_logger(__name__) # General docstring lowerCAmelCase : Optional[Any] = """RegNetConfig""" # Base docstring lowerCAmelCase : int = """facebook/regnet-y-040""" lowerCAmelCase : Optional[Any] = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Any = """facebook/regnet-y-040""" lowerCAmelCase : Optional[Any] = """tabby, tabby cat""" lowerCAmelCase : Tuple = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 3 , snake_case__ = 1 , snake_case__ = 1 , snake_case__ = "relu" , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCAmelCase : List[Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding='VALID' , groups=snake_case__ , use_bias=snake_case__ , name='convolution' , ) _lowerCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) _lowerCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.convolution(self.padding(snake_case__ ) ) _lowerCAmelCase : Union[str, Any] = self.normalization(snake_case__ ) _lowerCAmelCase : int = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : str = config.num_channels _lowerCAmelCase : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCAmelCase : List[Any] = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) _lowerCAmelCase : Tuple = self.embedder(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = 2 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name='convolution' ) _lowerCAmelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def a ( self , snake_case__ , snake_case__ = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) _lowerCAmelCase : str = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.pooler(snake_case__ ) for layer_module in self.attention: _lowerCAmelCase : Tuple = layer_module(snake_case__ ) _lowerCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Optional[Any] = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCAmelCase : Any = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.2' ), ] _lowerCAmelCase : List[str] = ACTaFN[config.hidden_act] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = hidden_state for layer_module in self.layers: _lowerCAmelCase : int = layer_module(snake_case__ ) _lowerCAmelCase : int = self.shortcut(snake_case__ ) hidden_state += residual _lowerCAmelCase : Tuple = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : List[str] = in_channels != out_channels or stride != 1 _lowerCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Optional[Any] = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _lowerCAmelCase : Tuple = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name='layer.3' ), ] _lowerCAmelCase : Tuple = ACTaFN[config.hidden_act] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = hidden_state for layer_module in self.layers: _lowerCAmelCase : List[Any] = layer_module(snake_case__ ) _lowerCAmelCase : Tuple = self.shortcut(snake_case__ ) hidden_state += residual _lowerCAmelCase : str = self.activation(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 2 , snake_case__ = 2 , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Dict = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _lowerCAmelCase : Optional[int] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name='layers.0' ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def a ( self , snake_case__ ): '''simple docstring''' for layer_module in self.layers: _lowerCAmelCase : int = layer_module(snake_case__ ) return hidden_state class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : str = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _lowerCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F'stages.{i+1}' ) ) def a ( self , snake_case__ , snake_case__ = False , snake_case__ = True ): '''simple docstring''' _lowerCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : str = hidden_states + (hidden_state,) _lowerCAmelCase : List[str] = stage_module(snake_case__ ) if output_hidden_states: _lowerCAmelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" __magic_name__ = RegNetConfig def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = config _lowerCAmelCase : Union[str, Any] = TFRegNetEmbeddings(snake_case__ , name='embedder' ) _lowerCAmelCase : Optional[int] = TFRegNetEncoder(snake_case__ , name='encoder' ) _lowerCAmelCase : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name='pooler' ) @unpack_inputs def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : int = self.embedder(snake_case__ , training=snake_case__ ) _lowerCAmelCase : List[str] = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) _lowerCAmelCase : List[Any] = encoder_outputs[0] _lowerCAmelCase : Tuple = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules _lowerCAmelCase : Optional[int] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) _lowerCAmelCase : Optional[Any] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCAmelCase : Union[str, Any] = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = RegNetConfig __magic_name__ = "regnet" __magic_name__ = "pixel_values" @property def a ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : List[Any] = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : Dict = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE_ , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = TFRegNetMainLayer(snake_case__ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__=False , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : str = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE_ , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = config.num_labels _lowerCAmelCase : Optional[Any] = TFRegNetMainLayer(snake_case__ , name='regnet' ) # classification head _lowerCAmelCase : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__=False , ): '''simple docstring''' _lowerCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) _lowerCAmelCase : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : List[Any] = self.classifier[0](snake_case__ ) _lowerCAmelCase : Tuple = self.classifier[1](snake_case__ ) _lowerCAmelCase : int = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: _lowerCAmelCase : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
711
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , 'width_multiplier' ) ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=2 , snake_case__=3 , snake_case__="swish" , snake_case__=3 , snake_case__=32 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=10 , snake_case__=None , snake_case__=0.25 , snake_case__=0.0 , snake_case__=0.0 , ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = conv_kernel_size _lowerCAmelCase : Optional[Any] = output_stride _lowerCAmelCase : List[Any] = classifier_dropout_prob _lowerCAmelCase : str = use_labels _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : str = scope _lowerCAmelCase : Any = width_multiplier _lowerCAmelCase : Union[str, Any] = ffn_dropout _lowerCAmelCase : Optional[int] = attn_dropout def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = MobileViTVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : List[Any] = MobileViTVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MobileViTVaForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCAmelCase : Any = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = config_and_inputs _lowerCAmelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : int = MobileViTVaModelTester(self ) _lowerCAmelCase : Dict = MobileViTVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def a ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def a ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(snake_case__ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : int = [*signature.parameters.keys()] _lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def a ( self ): '''simple docstring''' def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) _lowerCAmelCase : List[str] = outputs.hidden_states _lowerCAmelCase : List[str] = 5 self.assertEqual(len(snake_case__ ) , snake_case__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCAmelCase : List[Any] = 2 for i in range(len(snake_case__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @slow def a ( self ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = MobileViTVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( snake_case__ ) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Optional[int] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Tuple = model(**snake_case__ ) # verify the logits _lowerCAmelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _lowerCAmelCase : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Any = model.to(snake_case__ ) _lowerCAmelCase : int = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**snake_case__ ) _lowerCAmelCase : Dict = outputs.logits # verify the logits _lowerCAmelCase : str = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCAmelCase : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : List[Any] = model.to(snake_case__ ) _lowerCAmelCase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Tuple = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Any = model(**snake_case__ ) _lowerCAmelCase : Optional[Any] = outputs.logits.detach().cpu() _lowerCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(50, 60)] ) _lowerCAmelCase : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case__ ) _lowerCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) _lowerCAmelCase : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case__ )
630
0
lowerCamelCase : str = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
367
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE__ = (720, 1_280) # Height, Width SCREAMING_SNAKE_CASE__ = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE__ = 1 / 100 SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = 250 def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = get_dataset(a , a ) for index in range(a ): SCREAMING_SNAKE_CASE_ :Any = random.sample(range(len(a ) ) , 4 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = update_image_and_anno( a , a , a , a , a , filter_scale=a , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE_ :int = random_chars(32 ) SCREAMING_SNAKE_CASE_ :Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] SCREAMING_SNAKE_CASE_ :Dict = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for anno in new_annos: SCREAMING_SNAKE_CASE_ :Any = anno[3] - anno[1] SCREAMING_SNAKE_CASE_ :Union[str, Any] = anno[4] - anno[2] SCREAMING_SNAKE_CASE_ :Any = anno[1] + width / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = anno[2] + height / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(a ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for label_file in glob.glob(os.path.join(a , "*.txt" ) ): SCREAMING_SNAKE_CASE_ :List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(a ) as in_file: SCREAMING_SNAKE_CASE_ :List[Any] = in_file.readlines() SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join(a , F"{label_name}.jpg" ) SCREAMING_SNAKE_CASE_ :Dict = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE_ :Dict = obj_list.rstrip("\n" ).split(" " ) SCREAMING_SNAKE_CASE_ :Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :Dict = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE_ :List[Any] = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def lowercase ( a , a , a , a , a , a = 0.0 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ :Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :Any = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE_ :List[Any] = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE_ :Any = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for i, index in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[int] = all_img_list[index] path_list.append(a ) SCREAMING_SNAKE_CASE_ :Tuple = all_annos[index] SCREAMING_SNAKE_CASE_ :Any = cva.imread(a ) if i == 0: # top-left SCREAMING_SNAKE_CASE_ :int = cva.resize(a , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Any = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Optional[Any] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :List[Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE_ :Dict = cva.resize(a , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[int] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Dict = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE_ :List[str] = cva.resize(a , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Dict = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Union[str, Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE_ :Optional[Any] = cva.resize( a , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Dict = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE_ :Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase ( a ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE_ :Dict = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print("DONE ✅")
631
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase : List[Any] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_2_8, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 5_0, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 1_0, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 1_0, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @classmethod def a__ ( cls ) -> List[str]: lowercase : Dict = TOKEN HfFolder.save_token(_lowercase ) @classmethod def a__ ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def a__ ( self ) -> Dict: lowercase : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase : Tuple = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase , repo_id="test-config" , push_to_hub=_lowercase , use_auth_token=self._token ) lowercase : int = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def a__ ( self ) -> Any: lowercase : Optional[int] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase : List[str] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase , repo_id="valid_org/test-config-org" , push_to_hub=_lowercase , use_auth_token=self._token ) lowercase : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def a__ ( self ) -> List[Any]: CustomConfig.register_for_auto_class() lowercase : Union[str, Any] = CustomConfig(attribute=4_2 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase : str = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 4_2 ) class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' def a__ ( self ) -> Dict: lowercase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase : Union[str, Any] = c.n_embd + 1 # int lowercase : List[str] = c.resid_pdrop + 1.0 # float lowercase : int = not c.scale_attn_weights # bool lowercase : str = c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(_lowercase , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(_lowercase , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(_lowercase , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(_lowercase , c.summary_type , "mismatch for key: summary_type" ) def a__ ( self ) -> Optional[int]: lowercase : Union[str, Any] = PretrainedConfig() lowercase : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _lowercase , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(_lowercase , _lowercase )] if len(_lowercase ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(_lowercase )}.''' ) def a__ ( self ) -> Optional[int]: with self.assertRaises(_lowercase ): # config is in subfolder, the following should not work without specifying the subfolder lowercase : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(_lowercase ) def a__ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down lowercase : List[Any] = mock.Mock() lowercase : Tuple = 5_0_0 lowercase : str = {} lowercase : Union[str, Any] = HTTPError lowercase : Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_lowercase ) as mock_head: lowercase : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 lowercase : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def a__ ( self ) -> List[str]: lowercase : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) lowercase : Union[str, Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_lowercase ) lowercase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(_lowercase , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase : Union[str, Any] = AutoConfig.from_pretrained(_lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase : Union[str, Any] = ["config.42.0.0.json"] lowercase : Optional[int] = 7_6_8 configuration.save_pretrained(_lowercase ) shutil.move(os.path.join(_lowercase , "config.4.0.0.json" ) , os.path.join(_lowercase , "config.42.0.0.json" ) ) lowercase : Optional[Any] = AutoConfig.from_pretrained(_lowercase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def a__ ( self ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase : Tuple = "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase : Optional[Any] = "v4.0.0" lowercase , lowercase : Dict = new_transformers.models.auto.AutoConfig.from_pretrained( _lowercase , return_unused_kwargs=_lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_lowercase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase : Optional[Any] = "v3.0.0" lowercase : int = old_transformers.models.auto.AutoConfig.from_pretrained(_lowercase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
703
'''simple docstring''' def _A ( A ) -> list: lowercase : Optional[Any] = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase : List[str] = True for i in range(0 ,len(A ) - 1 ,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase , lowercase : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase : Any = False for i in range(1 ,len(A ) - 1 ,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase , lowercase : Any = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase : Optional[int] = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") lowerCAmelCase : Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase : str = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
425
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] ="""convnextv2""" def __init__( self : Union[str, Any] , UpperCamelCase : Dict=3 , UpperCamelCase : str=4 , UpperCamelCase : List[Any]=4 , UpperCamelCase : str=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=1e-1_2 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : List[Any]=2_24 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Optional[int] = num_channels _snake_case : Union[str, Any] = patch_size _snake_case : Any = num_stages _snake_case : Optional[Any] = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes _snake_case : List[str] = [3, 3, 9, 3] if depths is None else depths _snake_case : Optional[int] = hidden_act _snake_case : Union[str, Any] = initializer_range _snake_case : Any = layer_norm_eps _snake_case : Tuple = drop_path_rate _snake_case : str = image_size _snake_case : Any = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _snake_case , _snake_case : int = get_aligned_output_features_output_indices( out_features=UpperCamelCase , out_indices=UpperCamelCase , stage_names=self.stage_names )
411
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPFeatureExtractor"""] lowerCAmelCase_ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
1
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
715
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
0
from ..utils import DummyObject, requires_backends class A_ ( metaclass=_lowerCAmelCase ): _A :Union[str, Any] = ["note_seq"] def __init__( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : List[str] ): requires_backends(self , ["""note_seq"""] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *snake_case__ : int , **snake_case__ : Tuple ): requires_backends(cls , ["""note_seq"""] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *snake_case__ : Any , **snake_case__ : Optional[int] ): requires_backends(cls , ["""note_seq"""] )
428
'''simple docstring''' import re def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> bool: """simple docstring""" lowerCAmelCase = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": UpperCAmelCase = '0094702343221' print(is_sri_lankan_phone_number(phone))
433
0
"""simple docstring""" import cmath import math def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = math.radians(UpperCamelCase__ ) A__ = math.radians(UpperCamelCase__ ) # Convert voltage and current to rectangular form A__ = cmath.rect(UpperCamelCase__ , UpperCamelCase__ ) A__ = cmath.rect(UpperCamelCase__ , UpperCamelCase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
536
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> str: A__ = get_activation('swish' ) self.assertIsInstance(__UpperCAmelCase ,nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def snake_case__ ( self ) -> Optional[Any]: A__ = get_activation('silu' ) self.assertIsInstance(__UpperCAmelCase ,nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def snake_case__ ( self ) -> List[str]: A__ = get_activation('mish' ) self.assertIsInstance(__UpperCAmelCase ,nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def snake_case__ ( self ) -> List[str]: A__ = get_activation('gelu' ) self.assertIsInstance(__UpperCAmelCase ,nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
536
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __lowerCamelCase ( lowerCAmelCase ): a__: Any = 'blenderbot-small' a__: Tuple = ['past_key_values'] a__: Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , UpperCAmelCase=5_0265 , UpperCAmelCase=512 , UpperCAmelCase=8 , UpperCAmelCase=2048 , UpperCAmelCase=16 , UpperCAmelCase=8 , UpperCAmelCase=2048 , UpperCAmelCase=16 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=512 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=2 , **UpperCAmelCase , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = d_model lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_ = {0: '''batch'''} lowerCamelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(UpperCAmelCase ): lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def UpperCAmelCase__ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super().outputs else: lowerCamelCase_ = super(UpperCAmelCase , self ).outputs if self.use_past: lowerCamelCase_ , lowerCamelCase_ = self.num_layers for i in range(UpperCAmelCase ): lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Generate decoder inputs lowerCamelCase_ = seq_length if not self.use_past else 1 lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase_ = dict(**UpperCAmelCase , **UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['''input_ids'''].shape lowerCamelCase_ = common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = decoder_seq_length + 3 lowerCamelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCAmelCase , UpperCAmelCase )] , dim=1 ) lowerCamelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ = min(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = max(UpperCAmelCase , UpperCAmelCase ) - min_num_layers lowerCamelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase ), ) ) # TODO: test this. lowerCamelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCAmelCase , UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ , lowerCamelCase_ = self.num_layers lowerCamelCase_ , lowerCamelCase_ = self.num_attention_heads lowerCamelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ = common_inputs['''attention_mask'''].dtype lowerCamelCase_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) lowerCamelCase_ = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(UpperCAmelCase ) ] return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase_ = tokenizer.num_special_tokens_to_add(UpperCAmelCase ) lowerCamelCase_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase_ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase_ = dict(tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase ) ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) elif self.task == "causal-lm": lowerCamelCase_ = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) else: lowerCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) return common_inputs def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ = super()._flatten_past_key_values_(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: lowerCamelCase_ = super(UpperCAmelCase , self )._flatten_past_key_values_( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
29
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('''DataClass''', Any) lowerCAmelCase__ = NewType('''DataClassType''', Any) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def a__ ( SCREAMING_SNAKE_CASE : list ): '''simple docstring''' lowerCAmelCase : Any = {str(SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE : str_to_choice.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( *, SCREAMING_SNAKE_CASE : Union[str, List[str]] = None , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : Any = dataclasses.MISSING , SCREAMING_SNAKE_CASE : Callable[[], Any] = dataclasses.MISSING , SCREAMING_SNAKE_CASE : dict = None , **SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase : Tuple = {} if aliases is not None: lowerCAmelCase : Union[str, Any] = aliases if help is not None: lowerCAmelCase : Optional[Any] = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , default_factory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Iterable[DataClassType] def __init__( self , snake_case__ , **snake_case__ ): """simple docstring""" if "formatter_class" not in kwargs: lowerCAmelCase : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**snake_case__ ) if dataclasses.is_dataclass(snake_case__ ): lowerCAmelCase : List[Any] = [dataclass_types] lowerCAmelCase : List[str] = list(snake_case__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(snake_case__ ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = f"""--{field.name}""" lowerCAmelCase : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , snake_case__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) lowerCAmelCase : List[str] = kwargs.pop("aliases" , [] ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : int = [aliases] lowerCAmelCase : int = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(snake_case__ , "UnionType" ) and isinstance(snake_case__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(snake_case__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f""" Problem encountered in field '{field.name}'.""" ) if type(snake_case__ ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase : str = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase : Optional[int] = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase : List[Any] = ( field.type.__args__[0] if isinstance(snake_case__ , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase : List[Any] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase : List[Any] = {} if origin_type is Literal or (isinstance(field.type , snake_case__ ) and issubclass(field.type , snake_case__ )): if origin_type is Literal: lowerCAmelCase : str = field.type.__args__ else: lowerCAmelCase : List[str] = [x.value for x in field.type] lowerCAmelCase : List[Any] = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: lowerCAmelCase : int = field.default else: lowerCAmelCase : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase : Dict = copy(snake_case__ ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase : int = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase : Any = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase : List[str] = "?" # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase : Union[str, Any] = True elif isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = field.type.__args__[0] lowerCAmelCase : List[str] = "+" if field.default_factory is not dataclasses.MISSING: lowerCAmelCase : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase : int = True else: lowerCAmelCase : Optional[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase : Union[str, Any] = field.default_factory() else: lowerCAmelCase : List[str] = True parser.add_argument(snake_case__ , *snake_case__ , **snake_case__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase : Any = False parser.add_argument(f"""--no_{field.name}""" , action="store_false" , dest=field.name , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if hasattr(snake_case__ , "_argument_group_name" ): lowerCAmelCase : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase : Any = self try: lowerCAmelCase : Dict[str, type] = get_type_hints(snake_case__ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(snake_case__ ): lowerCAmelCase : Optional[int] = ".".join(map(snake_case__ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(snake_case__ ): if not field.init: continue lowerCAmelCase : Any = type_hints[field.name] self._parse_dataclass_field(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__=None , snake_case__=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase : Dict = [] if args_filename: args_files.append(Path(snake_case__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase : Optional[Any] = ArgumentParser() args_file_parser.add_argument(snake_case__ , type=snake_case__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase , lowerCAmelCase : List[Any] = args_file_parser.parse_known_args(args=snake_case__ ) lowerCAmelCase : Optional[int] = vars(snake_case__ ).get(args_file_flag.lstrip("-" ) , snake_case__ ) if cmd_args_file_paths: args_files.extend([Path(snake_case__ ) for p in cmd_args_file_paths] ) lowerCAmelCase : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.parse_known_args(args=snake_case__ ) lowerCAmelCase : List[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase : Union[str, Any] = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} lowerCAmelCase : List[str] = {k: v for k, v in vars(snake_case__ ).items() if k in keys} for k in keys: delattr(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = dtype(**snake_case__ ) outputs.append(snake_case__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(snake_case__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" lowerCAmelCase : Optional[Any] = set(args.keys() ) lowerCAmelCase : Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase : Optional[Any] = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} lowerCAmelCase : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase : Tuple = dtype(**snake_case__ ) outputs.append(snake_case__ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(snake_case__ )}""" ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" with open(Path(snake_case__ ) , encoding="utf-8" ) as open_json_file: lowerCAmelCase : Dict = json.loads(open_json_file.read() ) lowerCAmelCase : Union[str, Any] = self.parse_dict(snake_case__ , allow_extra_keys=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" lowerCAmelCase : List[Any] = self.parse_dict(yaml.safe_load(Path(snake_case__ ).read_text() ) , allow_extra_keys=snake_case__ ) return tuple(snake_case__ )
645
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase__ = {'unk_token': '<unk>'} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) lowerCAmelCase__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase__ = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCamelCase ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCamelCase ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase__ = self.get_image_processor(do_normalize=_UpperCamelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(_UpperCamelCase , return_tensors='np' ) lowerCAmelCase__ = processor(images=_UpperCamelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = processor(text=_UpperCamelCase , return_tensors='np' ) lowerCAmelCase__ = tokenizer(_UpperCamelCase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'google/owlvit-base-patch32' lowerCAmelCase__ = OwlViTProcessor.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = ['cat', 'nasa badge'] lowerCAmelCase__ = processor(text=_UpperCamelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'google/owlvit-base-patch32' lowerCAmelCase__ = OwlViTProcessor.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = [['cat', 'nasa badge'], ['person']] lowerCAmelCase__ = processor(text=_UpperCamelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(_UpperCamelCase ) lowerCAmelCase__ = max([len(_UpperCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'google/owlvit-base-patch32' lowerCAmelCase__ = OwlViTProcessor.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = ['cat', 'nasa badge'] lowerCAmelCase__ = processor(text=_UpperCamelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs['input_ids'] lowerCAmelCase__ = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=_UpperCamelCase , query_images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(_UpperCamelCase ) lowerCAmelCase__ = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
365
from __future__ import annotations __snake_case : Any = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ = {} lowerCAmelCase__ = source_vertex def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = {self.source_vertex} lowerCAmelCase__ = None lowerCAmelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_UpperCamelCase ) lowerCAmelCase__ = vertex queue.append(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ = self.parent.get(_UpperCamelCase ) if target_vertex_parent is None: lowerCAmelCase__ = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_UpperCamelCase ) return self.shortest_path(_UpperCamelCase ) + F"->{target_vertex}" if __name__ == "__main__": __snake_case : Optional[Any] = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
365
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ : Any = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : List[Any] = True def A_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str = DebertaVaTokenizer(snake_case , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = "this is a test" UpperCAmelCase : Any = "this is a test" return input_text, output_text def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = "<pad>" UpperCAmelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(snake_case ) , 3_0_0_0_1 ) def A_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = " \tHeLLo!how \n Are yoU? " UpperCAmelCase : Union[str, Any] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on UpperCAmelCase : Any = DebertaVaTokenizer(snake_case , do_lower_case=snake_case ) UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : str = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case ) UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def A_ ( self ): '''simple docstring''' pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = "I was born in 92000, and this is falsé." UpperCAmelCase : Optional[int] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase : Dict = DebertaVaTokenizer(snake_case , split_by_punct=snake_case ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : List[Any] = DebertaVaTokenizerFast(snake_case , split_by_punct=snake_case ) UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = "I was born in 92000, and this is falsé." UpperCAmelCase : List[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase : List[str] = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Dict = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." UpperCAmelCase : Union[str, Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase : Optional[int] = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Dict = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = "I was born in 92000, and this is falsé." UpperCAmelCase : int = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase : List[str] = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : int = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = " \tHeLLo!how \n Are yoU? " UpperCAmelCase : Dict = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on UpperCAmelCase : List[Any] = DebertaVaTokenizer(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : str = DebertaVaTokenizerFast(snake_case , do_lower_case=snake_case , split_by_punct=snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : Any = "I was born in 92000, and this is falsé." UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Dict = tokenizer.encode(snake_case , add_special_tokens=snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = "This is a test" UpperCAmelCase : Union[str, Any] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] UpperCAmelCase : int = ["▁", "T", "his", "▁is", "▁a", "▁test"] UpperCAmelCase : Tuple = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] UpperCAmelCase : Optional[int] = DebertaVaTokenizer(snake_case , keep_accents=snake_case ) UpperCAmelCase : Any = DebertaVaTokenizerFast(snake_case , keep_accents=snake_case ) UpperCAmelCase : List[Any] = tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Tuple = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Any = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual(snake_case , snake_case ) # fmt: off UpperCAmelCase : Any = "I was born in 92000, and this is falsé." UpperCAmelCase : Optional[int] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] UpperCAmelCase : Any = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase : int = tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : str = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Optional[Any] = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual(snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(snake_case ) UpperCAmelCase : Tuple = tokenizer.encode("sequence builders" ) UpperCAmelCase : Optional[Any] = tokenizer.encode("multi-sequence build" ) UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case ) UpperCAmelCase : str = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case , ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
679
'''simple docstring''' import argparse from collections import defaultdict def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = F"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Tuple = f.readlines() UpperCAmelCase : Tuple = F"class {class_name}(" UpperCAmelCase : str = F"{4 * ' '}def {test_name}(" UpperCAmelCase : Dict = F"{8 * ' '}{correct_line.split()[0]}" UpperCAmelCase : Tuple = F"{16 * ' '}{correct_line.split()[0]}" UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Tuple = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = [] for line in lines: if line.startswith(__magic_name__ ): UpperCAmelCase : int = True elif in_class and line.startswith(__magic_name__ ): UpperCAmelCase : Dict = True elif in_class and in_func and (line.startswith(__magic_name__ ) or line.startswith(__magic_name__ )): UpperCAmelCase : List[str] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase : List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase : List[str] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"{spaces * ' '}{correct_line}" ) UpperCAmelCase : List[str] = False else: new_lines.append(__magic_name__ ) with open(__magic_name__ , "w" ) as f: for line in new_lines: f.write(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__=None ): '''simple docstring''' if fail is not None: with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Optional[int] = {l.strip() for l in f.readlines()} else: UpperCAmelCase : Any = None with open(__magic_name__ , "r" ) as f: UpperCAmelCase : Tuple = f.readlines() UpperCAmelCase : int = defaultdict(__magic_name__ ) for line in correct_lines: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": a : str = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) a : List[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
679
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __A =pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __A =dataset.iloc[:, 1:2].values __A =dataset.iloc[:, 2].values __A , __A , __A , __A =train_test_split(X, y, test_size=0.2, random_state=0) __A =PolynomialFeatures(degree=4) __A =poly_reg.fit_transform(X) __A =LinearRegression() pol_reg.fit(X_poly, y) def a ( ): '''simple docstring''' plt.scatter(_UpperCAmelCase , _UpperCAmelCase , color='''red''' ) plt.plot(_UpperCAmelCase , pol_reg.predict(poly_reg.fit_transform(_UpperCAmelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
241
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={ "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
241
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase__( snake_case_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __lowercase = field __lowercase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} __lowercase = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def __magic_name__ ( self ): """simple docstring""" if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __lowercase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) __lowercase = dataset __lowercase = path_or_buf __lowercase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase = num_proc __lowercase = """utf-8""" __lowercase = to_json_kwargs def __magic_name__ ( self ): """simple docstring""" __lowercase = self.to_json_kwargs.pop("""path_or_buf""" , __UpperCAmelCase ) __lowercase = self.to_json_kwargs.pop("""orient""" , """records""" ) __lowercase = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) __lowercase = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) __lowercase = self.to_json_kwargs.pop("""compression""" , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=__UpperCAmelCase ) as buffer: __lowercase = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) __lowercase = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = args __lowercase = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowercase = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): """simple docstring""" __lowercase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): __lowercase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: __lowercase , __lowercase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(__UpperCAmelCase ) return written
566
'''simple docstring''' def lowercase__ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ): '''simple docstring''' __lowercase = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _lowerCAmelCase :Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _lowerCAmelCase :Dict = """main""" # Default branch name _lowerCAmelCase :Union[str, Any] = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _lowerCAmelCase :Union[str, Any] = """aaaaaaa""" # This commit does not exist, so we should 404. _lowerCAmelCase :int = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _lowerCAmelCase :List[Any] = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def __lowerCAmelCase ( ) -> int: '''simple docstring''' print('Bonjour!' ) yield print('Au revoir!' ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> str: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def _UpperCamelCase ( self , lowercase__ ) -> str: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def _UpperCamelCase ( self , lowercase__ ) -> Any: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def _UpperCamelCase ( self , lowercase__ ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def _UpperCamelCase ( self ) -> Optional[int]: self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) self.assertEqual(find_labels(lowercase__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase__ ) , ['start_positions', 'end_positions'] ) class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) @require_tf def _UpperCamelCase ( self ) -> str: self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) self.assertEqual(find_labels(lowercase__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(lowercase__ ) , ['start_positions', 'end_positions'] ) class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase__ ) , ['labels'] ) @require_flax def _UpperCamelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(lowercase__ ) , [] ) self.assertEqual(find_labels(lowercase__ ) , [] ) self.assertEqual(find_labels(lowercase__ ) , [] ) class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(lowercase__ ) , [] )
701
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = params lowercase = np.array(snake_case ) lowercase = np.array([len(snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , snake_case ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.params.max_model_input_size lowercase = self.lengths > max_len logger.info(F'''Splitting {sum(snake_case )} too long sequences.''' ) def divide_chunks(snake_case , snake_case ): return [l[i : i + n] for i in range(0 , len(snake_case ) , snake_case )] lowercase = [] lowercase = [] if self.params.mlm: lowercase , lowercase = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase , lowercase = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase = np.insert(snake_case , 0 , snake_case ) if sub_s[-1] != sep_id: lowercase = np.insert(snake_case , len(snake_case ) , snake_case ) assert len(snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(snake_case ) new_tok_ids.extend(snake_case ) new_lengths.extend([len(snake_case ) for l in sub_seqs] ) lowercase = np.array(snake_case ) lowercase = np.array(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = len(self ) lowercase = self.lengths > 11 lowercase = self.token_ids[indices] lowercase = self.lengths[indices] lowercase = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def SCREAMING_SNAKE_CASE__ ( self ): if "unk_token" not in self.params.special_tok_ids: return else: lowercase = self.params.special_tok_ids['unk_token'] lowercase = len(self ) lowercase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase = (unk_occs / self.lengths) < 0.5 lowercase = self.token_ids[indices] lowercase = self.lengths[indices] lowercase = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [t[0] for t in batch] lowercase = [t[1] for t in batch] assert len(snake_case ) == len(snake_case ) # Max for paddings lowercase = max(snake_case ) # Pad token ids if self.params.mlm: lowercase = self.params.special_tok_ids['pad_token'] else: lowercase = self.params.special_tok_ids['unk_token'] lowercase = [list(t.astype(snake_case ) ) + [pad_idx] * (max_seq_len_ - len(snake_case )) for t in token_ids] assert len(tk_ ) == len(snake_case ) assert all(len(snake_case ) == max_seq_len_ for t in tk_ ) lowercase = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase = torch.tensor(snake_case ) # (bs) return tk_t, lg_t
84
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=0.9 , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , ): __UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 30} __UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"height": 30, "width": 30} __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Optional[int] = do_resize_and_center_crop __UpperCAmelCase : Any = size __UpperCAmelCase : Dict = crop_pct __UpperCAmelCase : Optional[Any] = crop_size __UpperCAmelCase : Optional[int] = do_normalize __UpperCAmelCase : Union[str, Any] = image_mean __UpperCAmelCase : List[str] = image_std def _snake_case ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A (__magic_name__ , unittest.TestCase ): snake_case :Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : str = PoolFormerImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "image_std" ) ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) __UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
168
0
from __future__ import annotations from random import choice def a_ ( _A ) -> List[Any]: """simple docstring""" return choice(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" snake_case__ = random_pivot(_A ) # partition based on pivot # linear time snake_case__ = [e for e in lst if e < pivot] snake_case__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
720
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : int = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "roformer" def __init__( self: Tuple , UpperCamelCase: Optional[Any]=5_00_00 , UpperCamelCase: str=None , UpperCamelCase: Any=7_68 , UpperCamelCase: Dict=12 , UpperCamelCase: List[Any]=12 , UpperCamelCase: List[str]=30_72 , UpperCamelCase: int="gelu" , UpperCamelCase: str=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Any=15_36 , UpperCamelCase: Dict=2 , UpperCamelCase: Dict=0.02 , UpperCamelCase: List[str]=1e-12 , UpperCamelCase: int=0 , UpperCamelCase: Any=False , UpperCamelCase: int=True , **UpperCamelCase: List[Any] , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) snake_case__ = vocab_size snake_case__ = hidden_size if embedding_size is None else embedding_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = rotary_value snake_case__ = use_cache class __SCREAMING_SNAKE_CASE( a_ ): @property def lowerCAmelCase_ ( self: Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ = {0: 'batch', 1: 'sequence'} snake_case__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
372
0
"""simple docstring""" from PIL import Image def UpperCAmelCase ( A : Image , A : int ): '''simple docstring''' _UpperCAmelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(A ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 lowercase = change_contrast(img, 1_70) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
573
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = FlaxViTModel(config=snake_case ) _UpperCAmelCase = model(snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase = (self.patch_size, self.patch_size) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxViTForImageClassification(config=snake_case ) _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxViTForImageClassification(snake_case ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self ) -> None: _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(snake_case , snake_case ) _UpperCAmelCase = model_class(snake_case ) @jax.jit def model_jitted(snake_case , **snake_case ): return model(pixel_values=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): _UpperCAmelCase = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _UpperCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case )
573
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowerCAmelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any=False ) -> Optional[int]: try: _UpperCamelCase : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase : List[str] = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_SLOW""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_REMOTE""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_LOCAL""", default=True) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio _SCREAMING_SNAKE_CASE = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam _SCREAMING_SNAKE_CASE = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility _SCREAMING_SNAKE_CASE = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows _SCREAMING_SNAKE_CASE = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def __lowerCAmelCase ( __lowerCAmelCase : str ) -> Optional[Any]: try: import faiss # noqa except ImportError: _UpperCamelCase : Optional[int] = unittest.skip("test requires faiss" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: try: import regex # noqa except ImportError: _UpperCamelCase : List[Any] = unittest.skip("test requires regex" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Tuple ) -> Dict: try: import elasticsearch # noqa except ImportError: _UpperCamelCase : Tuple = unittest.skip("test requires elasticsearch" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Tuple ) -> List[str]: try: import sqlalchemy # noqa except ImportError: _UpperCamelCase : Optional[int] = unittest.skip("test requires sqlalchemy" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> str: if not config.TORCH_AVAILABLE: _UpperCamelCase : Optional[int] = unittest.skip("test requires PyTorch" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> Dict: if not config.TF_AVAILABLE: _UpperCamelCase : str = unittest.skip("test requires TensorFlow" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Union[str, Any] ) -> List[str]: if not config.JAX_AVAILABLE: _UpperCamelCase : Optional[Any] = unittest.skip("test requires JAX" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : List[Any] ) -> Optional[Any]: if not config.PIL_AVAILABLE: _UpperCamelCase : List[Any] = unittest.skip("test requires Pillow" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Dict ) -> int: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__lowerCAmelCase ) else: return test_case def __lowerCAmelCase ( __lowerCAmelCase : Union[str, Any] ) -> List[str]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__lowerCAmelCase ) else: return test_case def __lowerCAmelCase ( __lowerCAmelCase : Tuple ) -> Tuple: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__lowerCAmelCase ) else: return test_case def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> Union[str, Any]: def _require_spacy_model(__lowerCAmelCase : Tuple ): try: import spacy # noqa F401 spacy.load(__lowerCAmelCase ) except ImportError: return unittest.skip("test requires spacy" )(__lowerCAmelCase ) except OSError: return unittest.skip("test requires spacy model '{}'".format(__lowerCAmelCase ) )(__lowerCAmelCase ) else: return test_case return _require_spacy_model def __lowerCAmelCase ( __lowerCAmelCase : List[str] ) -> List[Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__lowerCAmelCase ) else: return test_case def __lowerCAmelCase ( __lowerCAmelCase : Tuple ) -> str: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__lowerCAmelCase ) else: return test_case def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> Dict: if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase : Dict = unittest.skip("test is slow" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> List[Any]: if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase : Union[str, Any] = unittest.skip("test is local" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : str ) -> Union[str, Any]: if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase : Union[str, Any] = unittest.skip("test is packaged" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[Any]: if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase : Optional[Any] = unittest.skip("test requires remote" )(__lowerCAmelCase ) return test_case def __lowerCAmelCase ( *__lowerCAmelCase : Dict ) -> Dict: def decorate(cls : Union[str, Any] ): for name, fn in cls.__dict__.items(): if callable(__lowerCAmelCase ) and name.startswith("test" ): for decorator in decorators: _UpperCamelCase : Tuple = decorator(__lowerCAmelCase ) setattr(cls , __lowerCAmelCase , __lowerCAmelCase ) return cls return decorate class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def __lowerCAmelCase ( __lowerCAmelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase : Dict=1e-1_6 ) -> Optional[Any]: _UpperCamelCase : int = requests.Session().request def timeout_request(__lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[int] ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase : str = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) _UpperCamelCase : int = timeout try: return online_request(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase : str = url _UpperCamelCase : List[str] = e.args[0] _UpperCamelCase : Union[str, Any] = (max_retry_error.args[0].replace("10.255.255.1" , f"OfflineMock[{url}]" ),) _UpperCamelCase : List[Any] = (max_retry_error,) raise def raise_connection_error(__lowerCAmelCase : Any , __lowerCAmelCase : List[str] , **__lowerCAmelCase : List[str] ): raise requests.ConnectionError("Offline mode is enabled." , request=__lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCAmelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __lowerCAmelCase ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[Any] ) -> List[Any]: _UpperCamelCase : List[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCAmelCase , **__lowerCAmelCase ) as tmp_dir: try: os.chdir(__lowerCAmelCase ) yield finally: os.chdir(__lowerCAmelCase ) @contextmanager def __lowerCAmelCase ( ) -> Optional[Any]: import gc gc.collect() _UpperCamelCase : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowerCAmelCase ( ) -> Optional[int]: import gc gc.collect() _UpperCamelCase : Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowerCAmelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ) -> Optional[Any]: return deepcopy(__lowerCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__lowerCAmelCase ).integers(0 , 100 , 10 ).tolist() def __lowerCAmelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ): try: return func(*__lowerCAmelCase , **__lowerCAmelCase ) except HTTPError as err: if str(__lowerCAmelCase ).startswith("500" ) or str(__lowerCAmelCase ).startswith("502" ): pytest.xfail(str(__lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCAmelCase ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = returncode _UpperCamelCase : str = stdout _UpperCamelCase : int = stderr async def __lowerCAmelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> List[str]: while True: _UpperCamelCase : List[str] = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def __lowerCAmelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : str=False , __lowerCAmelCase : List[Any]=False ) -> _RunOutput: if echo: print("\nRunning: " , " ".join(__lowerCAmelCase ) ) _UpperCamelCase : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = [] def tee(__lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]="" ): _UpperCamelCase : Tuple = line.decode("utf-8" ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label="stderr:" ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Tuple=180 , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Dict=True ) -> _RunOutput: _UpperCamelCase : List[Any] = asyncio.get_event_loop() _UpperCamelCase : Dict = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) _UpperCamelCase : Any = " ".join(__lowerCAmelCase ) if result.returncode > 0: _UpperCamelCase : int = "\n".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def __lowerCAmelCase ( ) -> str: _UpperCamelCase : Optional[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) _UpperCamelCase : Any = re.sub(R"^gw" , "" , __lowerCAmelCase , 0 , re.M ) return int(__lowerCAmelCase ) def __lowerCAmelCase ( ) -> int: _UpperCamelCase : List[str] = 29500 _UpperCamelCase : Dict = pytest_xdist_worker_id() return port + uniq_delta
239
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """vit_mae""" def __init__(self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=2_24 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=16 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=0.75 , lowerCAmelCase__=False , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Dict = image_size _UpperCamelCase : Union[str, Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Optional[int] = qkv_bias _UpperCamelCase : List[str] = decoder_num_attention_heads _UpperCamelCase : int = decoder_hidden_size _UpperCamelCase : Dict = decoder_num_hidden_layers _UpperCamelCase : Dict = decoder_intermediate_size _UpperCamelCase : str = mask_ratio _UpperCamelCase : List[str] = norm_pix_loss
239
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCamelCase__ : Optional[int] = F"""https://www.google.com/search?q={query}&num=100""" UpperCamelCase__ : Any = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCamelCase__ : Dict = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCamelCase__ : int = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
105
import math from numpy import inf from scipy.integrate import quad def _A ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
563
0
"""simple docstring""" def UpperCamelCase ( _A , _A , _A , _A , _A , _A ) -> Tuple: if index == r: for j in range(_A ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : str = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase ( _A , _A , _A ) -> Optional[int]: lowercase : Dict = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
717
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Dict = """van""" def __init__( self :List[Any] , __magic_name__ :Optional[Any]=224 , __magic_name__ :Union[str, Any]=3 , __magic_name__ :Dict=[7, 3, 3, 3] , __magic_name__ :int=[4, 2, 2, 2] , __magic_name__ :Optional[Any]=[64, 128, 320, 512] , __magic_name__ :List[str]=[3, 3, 12, 3] , __magic_name__ :Any=[8, 8, 4, 4] , __magic_name__ :str="gelu" , __magic_name__ :int=0.02 , __magic_name__ :List[Any]=1E-6 , __magic_name__ :Optional[Any]=1E-2 , __magic_name__ :Optional[Any]=0.0 , __magic_name__ :Any=0.0 , **__magic_name__ :Optional[Any] , ) ->Any: super().__init__(**__magic_name__ ) lowercase : Dict = image_size lowercase : Optional[int] = num_channels lowercase : List[str] = patch_sizes lowercase : List[Any] = strides lowercase : List[Any] = hidden_sizes lowercase : int = depths lowercase : str = mlp_ratios lowercase : Optional[Any] = hidden_act lowercase : Optional[Any] = initializer_range lowercase : Optional[Any] = layer_norm_eps lowercase : Optional[int] = layer_scale_init_value lowercase : Union[str, Any] = drop_path_rate lowercase : Tuple = dropout_rate
348
0
def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase , int(b / 2 ) ) * actual_power(lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase , int(b / 2 ) ) * actual_power(lowerCAmelCase , int(b / 2 ) ) def __A(lowerCAmelCase , lowerCAmelCase ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCAmelCase , lowerCAmelCase ) return actual_power(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
612
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = 0 while b > 0: if b & 1: __UpperCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
303
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _snake_case : List[str] = logging.get_logger(__name__) class A ( __lowercase ): def __init__( self : Dict , lowerCAmelCase_ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Any: """simple docstring""" super().__init__() _a = nn.ModuleList(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : List[torch.tensor] , lowerCAmelCase_ : List[float] , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ , self.nets ) ): _a = controlnet( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # merge samples if i == 0: _a = down_samples, mid_sample else: _a = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Callable = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[str] = None , ) -> List[Any]: """simple docstring""" _a = 0 _a = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCAmelCase_ , is_main_process=lowerCAmelCase_ , save_function=lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ , variant=lowerCAmelCase_ , ) idx += 1 _a = model_path_to_save + F'_{idx}' @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] , **lowerCAmelCase_ : List[Any] ) -> Any: """simple docstring""" _a = 0 _a = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _a = pretrained_model_path while os.path.isdir(lowerCAmelCase_ ): _a = ControlNetModel.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) controlnets.append(lowerCAmelCase_ ) idx += 1 _a = pretrained_model_path + F'_{idx}' logger.info(F'{len(lowerCAmelCase_ )} controlnets loaded from {pretrained_model_path}.' ) if len(lowerCAmelCase_ ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(lowerCAmelCase_ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(lowerCAmelCase_ )
706
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case_ (UpperCamelCase : BertModel , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _a = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase ): os.makedirs(UpperCamelCase ) _a = model.state_dict() def to_tf_var_name(UpperCamelCase : str ): for patt, repl in iter(UpperCamelCase ): _a = name.replace(UpperCamelCase , UpperCamelCase ) return f'bert/{name}' def create_tf_var(UpperCamelCase : np.ndarray , UpperCamelCase : str , UpperCamelCase : tf.Session ): _a = tf.dtypes.as_dtype(tensor.dtype ) _a = tf.get_variable(dtype=UpperCamelCase , shape=tensor.shape , name=UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a = to_tf_var_name(UpperCamelCase ) _a = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a = torch_tensor.T _a = create_tf_var(tensor=UpperCamelCase , name=UpperCamelCase , session=UpperCamelCase ) tf.keras.backend.set_value(UpperCamelCase , UpperCamelCase ) _a = session.run(UpperCamelCase ) print(f'Successfully created {tf_name}: {np.allclose(UpperCamelCase , UpperCamelCase )}' ) _a = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase , os.path.join(UpperCamelCase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def snake_case_ (UpperCamelCase : Tuple=None ): '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase , required=UpperCamelCase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase , required=UpperCamelCase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase , required=UpperCamelCase , help='''Directory in which to save tensorflow model''' ) _a = parser.parse_args(UpperCamelCase ) _a = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
377
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """detr""" a__ : Union[str, Any] = ["""past_key_values"""] a__ : Tuple = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_00 , SCREAMING_SNAKE_CASE__ : List[Any]=6 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple="relu" , SCREAMING_SNAKE_CASE__ : Dict=2_56 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any="sine" , SCREAMING_SNAKE_CASE__ : List[Any]="resnet50" , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = backbone_config.get('''model_type''' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None, None, None __lowerCamelCase = use_timm_backbone __lowerCamelCase = backbone_config __lowerCamelCase = num_channels __lowerCamelCase = num_queries __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = encoder_layers __lowerCamelCase = auxiliary_loss __lowerCamelCase = position_embedding_type __lowerCamelCase = backbone __lowerCamelCase = use_pretrained_backbone __lowerCamelCase = dilation # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = mask_loss_coefficient __lowerCamelCase = dice_loss_coefficient __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __A ( self : List[Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Optional[int] ) -> int: return self.d_model @classmethod def __A ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : str ) -> Dict[str, any]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = version.parse("""1.11""" ) @property def __A ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : Any ) -> int: return 12
298
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( __lowercase , __lowercase ): @register_to_config def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None ) -> List[str]: super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : VQModel a__ : CLIPTextModel a__ : CLIPTokenizer a__ : TransformeraDModel a__ : LearnedClassifierFreeSamplingEmbeddings a__ : VQDiffusionScheduler def __init__( self : int , SCREAMING_SNAKE_CASE__ : VQModel , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : TransformeraDModel , SCREAMING_SNAKE_CASE__ : VQDiffusionScheduler , SCREAMING_SNAKE_CASE__ : LearnedClassifierFreeSamplingEmbeddings , ) -> Any: super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE__ , 1 , 1 ) else: __lowerCamelCase = [''''''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE__ )}.''' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ ).sample if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE__ , dim=1 , keepdim=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : float ) -> torch.FloatTensor: __lowerCamelCase , __lowerCamelCase = torch.sort(SCREAMING_SNAKE_CASE__ , 1 , descending=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.exp(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
298
1
def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCAmelCase_ , n - 1 , lowerCAmelCase_) * a) % mod else: lowerCamelCase_ : Tuple = binary_exponentiation(lowerCAmelCase_ , n / 2 , lowerCAmelCase_) return (b * b) % mod # a prime number __magic_name__ = 7_0_1 __magic_name__ = 1_0_0_0_0_0_0_0_0_0 __magic_name__ = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
73
def __magic_name__ ( lowerCAmelCase_ = 10 , lowerCAmelCase_ = 1000 , lowerCAmelCase_ = True): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' return int((number_a + number_a) / 2) def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(lowerCAmelCase_) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowerCamelCase_ : Optional[int] = lower lowerCamelCase_ : Tuple = higher lowerCamelCase_ : Union[str, Any] = [] while True: lowerCamelCase_ : Optional[int] = get_avg(lowerCAmelCase_ , lowerCAmelCase_) last_numbers.append(lowerCAmelCase_) if answer(lowerCAmelCase_) == "low": lowerCamelCase_ : Any = number elif answer(lowerCAmelCase_) == "high": lowerCamelCase_ : Optional[int] = number else: break print(F"""guess the number : {last_numbers[-1]}""") print(F"""details : {last_numbers!s}""") def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : Optional[int] = int(input("Enter lower value : ").strip()) lowerCamelCase_ : List[str] = int(input("Enter high value : ").strip()) lowerCamelCase_ : List[str] = int(input("Enter value to guess : ").strip()) guess_the_number(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) if __name__ == "__main__": main()
73
1
import torch def lowerCAmelCase_ ( ): if torch.cuda.is_available(): __snake_case : int = torch.cuda.device_count() else: __snake_case : Tuple = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
81
from __future__ import annotations import bisect def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> int: """simple docstring""" if hi < 0: __UpperCAmelCase =len(A_ ) while lo < hi: __UpperCAmelCase =lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase =mid + 1 else: __UpperCAmelCase =mid return lo def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> int: """simple docstring""" if hi < 0: __UpperCAmelCase =len(A_ ) while lo < hi: __UpperCAmelCase =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase =mid + 1 else: __UpperCAmelCase =mid return lo def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(A_ , A_ , A_ , A_ ) , A_ ) def lowercase__ ( A_: list[int] , A_: int , A_: int = 0 , A_: int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(A_ , A_ , A_ , A_ ) , A_ ) def lowercase__ ( A_: list[int] , A_: int ) -> int | None: """simple docstring""" __UpperCAmelCase =0 __UpperCAmelCase =len(A_ ) - 1 while left <= right: __UpperCAmelCase =left + (right - left) // 2 __UpperCAmelCase =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase =midpoint - 1 else: __UpperCAmelCase =midpoint + 1 return None def lowercase__ ( A_: list[int] , A_: int ) -> int | None: """simple docstring""" __UpperCAmelCase =bisect.bisect_left(A_ , A_ ) if index != len(A_ ) and sorted_collection[index] == item: return index return None def lowercase__ ( A_: list[int] , A_: int , A_: int , A_: int ) -> int | None: """simple docstring""" if right < left: return None __UpperCAmelCase =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(A_ , A_ , A_ , midpoint - 1 ) else: return binary_search_by_recursion(A_ , A_ , midpoint + 1 , A_ ) if __name__ == "__main__": __A = input("Enter numbers separated by comma:\n").strip() __A = sorted(int(item) for item in user_input.split(",")) __A = int(input("Enter a single number to be found in the list:\n")) __A = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
68
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=99 , lowerCamelCase=0 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=2 , lowerCamelCase=0.0_2 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase="last" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_lengths snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = gelu_activation snake_case__ = sinusoidal_embeddings snake_case__ = causal snake_case__ = asm snake_case__ = n_langs snake_case__ = vocab_size snake_case__ = n_special snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = summary_type snake_case__ = use_proj snake_case__ = scope snake_case__ = bos_token_id def A_ ( self ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_input_lengths: snake_case__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , 2 ).float() snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = XLMModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase ) snake_case__ = model(lowerCamelCase , langs=lowerCamelCase ) snake_case__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = XLMWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = XLMForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase ) snake_case__ = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) snake_case__ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = XLMForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase ) snake_case__ = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , ) snake_case__ = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , ) ((snake_case__ ) , ) = result_with_labels.to_tuple() snake_case__ = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) ((snake_case__ ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = XLMForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase ) snake_case__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = self.num_labels snake_case__ = XLMForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = self.num_choices snake_case__ = XLMForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _A : Optional[int] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _A : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A : Tuple = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): snake_case__ = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def A_ ( self ): snake_case__ = XLMModelTester(self ) snake_case__ = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ): self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_attentions in attentions] , [True] * len(lowerCamelCase ) ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase ): # adds PAD dummy token snake_case__ = min_length + idx + 1 snake_case__ = min_length + idx + 1 snake_case__ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase ) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ): self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase ) , ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase ): # adds PAD dummy token snake_case__ = min_length + idx + 1 snake_case__ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase ) , ) pass @slow def A_ ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = XLMModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def A_ ( self ): snake_case__ = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase ) snake_case__ = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCamelCase ) # the president snake_case__ = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case__ = model.generate(lowerCamelCase , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase )
712
from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [] snake_case__ = 11 snake_case__ = int("1" + "0" * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 snake_case__ = 10 return solutions def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 2 ): snake_case__ = 1.0 for fraction in fraction_list(__lowerCAmelCase ): snake_case__ = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
530
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCamelCase : List[str] = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class a ( unittest.TestCase ): def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) lowerCAmelCase = os.path.abspath('examples' ) for item in os.listdir(_snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase = os.path.join(_snake_case , _snake_case ) if os.path.isfile(_snake_case ) and ".py" in item_path: with self.subTest( tested_script=_snake_case , feature_script=_snake_case , tested_section='main()' if parser_only else 'training_function()' , ): lowerCAmelCase = compare_against_test( os.path.join(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case ) lowerCAmelCase = '\n'.join(_snake_case ) if special_strings is not None: for string in special_strings: lowerCAmelCase = diff.replace(_snake_case , '' ) self.assertEqual(_snake_case , '' ) def UpperCamelCase__ ( self ): """simple docstring""" self.one_complete_example('complete_nlp_example.py' , _snake_case ) self.one_complete_example('complete_nlp_example.py' , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) lowerCAmelCase = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , _snake_case , _snake_case , _snake_case ) self.one_complete_example('complete_cv_example.py' , _snake_case , _snake_case , _snake_case ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class a ( a__ ): snake_case__ = False @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" super().setUpClass() lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case ) self.assertNotIn('epoch 0:' , _snake_case ) self.assertIn('epoch 1:' , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case ) if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , _snake_case ) self.assertIn('epoch 1:' , _snake_case ) else: self.assertIn('epoch 0:' , _snake_case ) self.assertIn('epoch 1:' , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): lowerCAmelCase = run_command(self._launch_args + testargs , return_stdout=_snake_case ) lowerCAmelCase = re.findall('({.+})' , _snake_case ) lowerCAmelCase = [r for r in results if 'accuracy' in r][-1] lowerCAmelCase = ast.literal_eval(_snake_case ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_snake_case , 'tracking' ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
4
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase (__snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = LongformerTokenizer _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : List[str] = LongformerTokenizerFast _SCREAMING_SNAKE_CASE : Dict = True def __snake_case ( self :Dict ) ->Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : Tuple = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowercase : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : Dict = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def __snake_case ( self :List[Any] , **__magic_name__ :Any ) ->Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __snake_case ( self :Optional[Any] , **__magic_name__ :Optional[Any] ) ->Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __snake_case ( self :Tuple , __magic_name__ :Dict ) ->str: lowercase : List[str] = """lower newer""" lowercase : Any = """lower newer""" return input_text, output_text def __snake_case ( self :Tuple ) ->Union[str, Any]: lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase : List[str] = """lower newer""" lowercase : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase : Optional[int] = tokenizer.tokenize(__magic_name__ ) # , add_prefix_space=True) self.assertListEqual(__magic_name__ , __magic_name__ ) lowercase : str = tokens + [tokenizer.unk_token] lowercase : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __snake_case ( self :Any ) ->str: lowercase : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__magic_name__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__magic_name__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __snake_case ( self :Tuple ) ->Union[str, Any]: lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) lowercase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) lowercase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowercase : List[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowercase : int = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __snake_case ( self :Optional[Any] ) ->int: lowercase : Optional[int] = self.get_tokenizer() lowercase : Tuple = """Encode this sequence.""" lowercase : Dict = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowercase : List[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowercase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) lowercase : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__magic_name__ , __magic_name__ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowercase : Union[str, Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) lowercase : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) # Testing spaces after special tokens lowercase : Any = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ )} ) # mask token has a left space lowercase : Any = tokenizer.convert_tokens_to_ids(__magic_name__ ) lowercase : Any = """Encode <mask> sequence""" lowercase : str = """Encode <mask>sequence""" lowercase : Optional[int] = tokenizer.encode(__magic_name__ ) lowercase : List[str] = encoded.index(__magic_name__ ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__magic_name__ , __magic_name__ ) lowercase : Tuple = tokenizer.encode(__magic_name__ ) lowercase : List[str] = encoded.index(__magic_name__ ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__magic_name__ , __magic_name__ ) def __snake_case ( self :Any ) ->int: pass def __snake_case ( self :List[Any] ) ->str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : int = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) lowercase : List[str] = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) lowercase : Optional[int] = """A, <mask> AllenNLP sentence.""" lowercase : Any = tokenizer_r.encode_plus(__magic_name__ , add_special_tokens=__magic_name__ , return_token_type_ids=__magic_name__ ) lowercase : str = tokenizer_p.encode_plus(__magic_name__ , add_special_tokens=__magic_name__ , return_token_type_ids=__magic_name__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __magic_name__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __magic_name__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __snake_case ( self :List[str] ) ->Tuple: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __magic_name__ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __magic_name__ ) self.assertEqual(post_processor_state["""trim_offsets"""] , __magic_name__ ) def __snake_case ( self :Dict ) ->List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase : Optional[Any] = f"""{text_of_1_token} {text_of_1_token}""" lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : List[Any] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : List[Any] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : List[str] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ), len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : Optional[int] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ), len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : Optional[int] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : Union[str, Any] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ) + 1, 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : int = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : Optional[int] = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ), 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) lowercase : str = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ ) lowercase : Any = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ), 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , )
264
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput UpperCAmelCase = 8 def lowercase ( a__ : Dict , a__ : List[Any]=BITS ) -> Union[str, Any]: _UpperCamelCase = x.device _UpperCamelCase = (x * 255).int().clamp(0 , 255 ) _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ ) _UpperCamelCase = rearrange(a__ , '''d -> d 1 1''' ) _UpperCamelCase = rearrange(a__ , '''b c h w -> b c 1 h w''' ) _UpperCamelCase = ((x & mask) != 0).float() _UpperCamelCase = rearrange(a__ , '''b c d h w -> b (c d) h w''' ) _UpperCamelCase = bits * 2 - 1 return bits def lowercase ( a__ : List[Any] , a__ : List[Any]=BITS ) -> Optional[Any]: _UpperCamelCase = x.device _UpperCamelCase = (x > 0).int() _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ , dtype=torch.intaa ) _UpperCamelCase = rearrange(a__ , '''d -> d 1 1''' ) _UpperCamelCase = rearrange(a__ , '''b (c d) h w -> b c d h w''' , d=8 ) _UpperCamelCase = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def lowercase ( self : Dict , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : float = 0.0 , a__ : bool = True , a__ : Union[str, Any]=None , a__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[timestep] _UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCamelCase = self._get_variance(a__ , a__ ) _UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCamelCase = model_output.device if torch.is_tensor(a__ ) else '''cpu''' _UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a__ ).to(a__ ) _UpperCamelCase = self._get_variance(a__ , a__ ) ** 0.5 * eta * noise _UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) def lowercase ( self : int , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : Union[str, Any]="epsilon" , a__ : Union[str, Any]=None , a__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: _UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCamelCase , _UpperCamelCase = torch.split(a__ , sample.shape[1] , dim=1 ) else: _UpperCamelCase = None # 1. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[t] _UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCamelCase = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCamelCase = 0 if t > 0: _UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a__ ).to(model_output.device ) _UpperCamelCase = (self._get_variance(a__ , predicted_variance=a__ ) ** 0.5) * noise _UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) class UpperCAmelCase_ ( _lowercase): def __init__( self : Optional[int] , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , __UpperCamelCase : Optional[float] = 1.0 , ) -> Dict: super().__init__() _UpperCamelCase = bit_scale _UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(__UpperCamelCase , __UpperCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : Optional[int] = 256 , __UpperCamelCase : Optional[int] = 256 , __UpperCamelCase : Optional[int] = 50 , __UpperCamelCase : Optional[torch.Generator] = None , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Dict , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__UpperCamelCase , ) _UpperCamelCase = decimal_to_bits(__UpperCamelCase ) * self.bit_scale _UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCamelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample _UpperCamelCase = bits_to_decimal(__UpperCamelCase ) if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
718
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCAmelCase = logging.getLogger() def lowercase ( ) -> Union[str, Any]: _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def lowercase ( a__ : Tuple , a__ : Dict="eval" ) -> List[Any]: _UpperCamelCase = os.path.join(a__ , F'''{split}_results.json''' ) if os.path.exists(a__ ): with open(a__ , '''r''' ) as f: return json.load(a__ ) raise ValueError(F'''can\'t find {path}''' ) UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _lowercase): def _UpperCamelCase ( self : str ) -> int: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_flax_glue.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_clm_flax.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_summarization_flax.main() _UpperCamelCase = get_results(__UpperCamelCase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_mlm_flax.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_ta_mlm_flax.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def _UpperCamelCase ( self : List[str] ) -> Optional[int]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_flax_ner.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(__UpperCamelCase , '''argv''' , __UpperCamelCase ): run_qa.main() _UpperCamelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
342
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="ylacombe/bark-small" lowerCamelCase__: Tuple =tempfile.mkdtemp() lowerCamelCase__: Tuple ="en_speaker_1" lowerCamelCase__: Optional[int] ="This is a test string" lowerCamelCase__: List[str] ="speaker_embeddings_path.json" lowerCamelCase__: int ="speaker_embeddings" def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , **UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =self.get_tokenizer() lowerCamelCase__: List[str] =BarkProcessor(tokenizer=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Dict =BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase__: Dict =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") lowerCamelCase__: Any =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Any =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase__: List[str] =35 lowerCamelCase__: Optional[Any] =2 lowerCamelCase__: Optional[Any] =8 lowerCamelCase__: Optional[int] ={ "semantic_prompt": np.ones(UpperCAmelCase_), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset lowerCamelCase__: Any =processor(text=self.input_string , voice_preset=UpperCAmelCase_) lowerCamelCase__: int =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from npz file lowerCamelCase__: Union[str, Any] =os.path.join(self.tmpdirname , "file.npz") np.savez(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =processor(text=self.input_string , voice_preset=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from the hub lowerCamelCase__: Any =processor(text=self.input_string , voice_preset=self.voice_preset) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =self.get_tokenizer() lowerCamelCase__: Dict =BarkProcessor(tokenizer=UpperCAmelCase_) lowerCamelCase__: List[Any] =processor(text=self.input_string) lowerCamelCase__: Optional[int] =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
59
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase : '''simple docstring''' def __init__( self :str , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=6_4 , lowerCamelCase_ :Dict=None ) -> Dict: """simple docstring""" UpperCamelCase__ = np.random.default_rng(lowerCamelCase_ ) UpperCamelCase__ = length UpperCamelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) UpperCamelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self :Dict ) -> Optional[Any]: """simple docstring""" return self.length def __getitem__( self :Optional[int] , lowerCamelCase_ :str ) -> int: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class lowerCAmelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[str, Any]=0 , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Dict=False ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ = True def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Optional[int]=None ) -> str: """simple docstring""" if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) UpperCamelCase__ = False return x * self.a[0] + self.b[0] class lowerCAmelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :Tuple=0 , lowerCamelCase_ :Tuple=0 , lowerCamelCase_ :Optional[Any]=False ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) UpperCamelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) UpperCamelCase__ = True def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Tuple=None ) -> str: """simple docstring""" if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) UpperCamelCase__ = False return x * self.a + self.b def snake_case__ ( _snake_case : Any , _snake_case : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer UpperCamelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase__ = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} UpperCamelCase__ = load_dataset("csv" , data_files=_snake_case ) UpperCamelCase__ = datasets["train"].unique("label" ) UpperCamelCase__ = {v: i for i, v in enumerate(_snake_case )} def tokenize_function(_snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_snake_case , max_length=_snake_case , padding="max_length" ) if "label" in examples: UpperCamelCase__ = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ = datasets.map( _snake_case , batched=_snake_case , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_snake_case : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCamelCase__ = DataLoader(tokenized_datasets["train"] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=2 ) UpperCamelCase__ = DataLoader(tokenized_datasets["validation"] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=1 ) return train_dataloader, eval_dataloader
718
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A : List[str] = logging.getLogger(__name__) A : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) A : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : '''simple docstring''' A = field( default=snake_case__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) A = field( default=snake_case__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case__ )} , ) A = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A = field( default=snake_case__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCAmelCase : '''simple docstring''' A = field( default=snake_case__ , metadata={'help': 'The input training data file (a text file).'} ) A = field( default=snake_case__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) A = field( default=snake_case__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) A = field( default=snake_case__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) A = field( default=snake_case__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) A = field( default=snake_case__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) A = field( default=snake_case__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) A = field(default=snake_case__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) A = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) A = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) A = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) A = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) A = field( default=snake_case__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case__ ( _snake_case : DataTrainingArguments , _snake_case : PreTrainedTokenizer , _snake_case : bool = False , _snake_case : Optional[str] = None , ): """simple docstring""" def _dataset(_snake_case : str , _snake_case : int=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , ref_path=_snake_case , ) return LineByLineTextDataset(tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCamelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: UpperCamelCase__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) UpperCamelCase__ = AutoModelWithLMHead.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: UpperCamelCase__ = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCamelCase__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCamelCase__ = ( get_dataset(_snake_case , tokenizer=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCamelCase__ = ( get_dataset(_snake_case , tokenizer=_snake_case , evaluate=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCamelCase__ = DataCollatorForPermutationLanguageModeling( tokenizer=_snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCamelCase__ = DataCollatorForWholeWordMask( tokenizer=_snake_case , mlm_probability=data_args.mlm_probability ) else: UpperCamelCase__ = DataCollatorForLanguageModeling( tokenizer=_snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase__ = Trainer( model=_snake_case , args=_snake_case , data_collator=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , prediction_loss_only=_snake_case , ) # Training if training_args.do_train: UpperCamelCase__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = math.exp(eval_output["eval_loss"] ) UpperCamelCase__ = {"perplexity": perplexity} UpperCamelCase__ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_snake_case ) return results def snake_case__ ( _snake_case : List[str] ): """simple docstring""" main() if __name__ == "__main__": main()
304
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = tf.data.AUTOTUNE def _a ( ) -> str: a = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=_A , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=_A , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=_A , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=_A , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=_A , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=_A , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=_A , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=_A , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=_A , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=_A , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=_A , default=1e-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=_A , default=1e-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=_A , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=_A , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=_A , required=_A , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=_A , help='''Model ID to upload to on the Hugging Face Hub.''' ) a = parser.parse_args() return args def _a ( a :int ) -> Optional[Any]: try: if args.tpu_name: a = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: a = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(_A ) tf.tpu.experimental.initialize_tpu_system(_A ) return tpu def _a ( a :Optional[int] ) -> List[Any]: a = 0 for file in file_list: a = file.split('''/''' )[-1] a = re.search(r'''-\d+-(\d+)\.tfrecord''' , _A ).group(1 ) a = int(_A ) num_samples += sample_count return num_samples def _a ( a :int , a :Dict , a :Any , a :Dict , a :Optional[Any] , a :int=None ) -> str: a = count_samples(_A ) a = tf.data.Dataset.from_tensor_slices(_A ) if shuffle: a = dataset.shuffle(len(_A ) ) a = tf.data.TFRecordDataset(_A , num_parallel_reads=_A ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here a = dataset.apply(tf.data.experimental.assert_cardinality(_A ) ) a = dataset.map(_A , num_parallel_calls=_A ) if shuffle: assert shuffle_buffer_size is not None a = dataset.shuffle(args.shuffle_buffer_size ) a = dataset.batch(_A , drop_remainder=_A ) a = dataset.map(_A , num_parallel_calls=_A ) a = dataset.prefetch(_A ) return dataset def _a ( a :Any ) -> List[Any]: if not args.no_tpu: a = initialize_tpu(_A ) a = tf.distribute.TPUStrategy(_A ) else: a = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) a = AutoTokenizer.from_pretrained(args.tokenizer ) a = AutoConfig.from_pretrained(args.pretrained_model_config ) a = tokenizer.vocab_size a = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(F"""No .tfrecord files found in {args.train_dataset}.""" ) a = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(F"""No .tfrecord files found in {args.eval_dataset}.""" ) a = count_samples(_A ) a = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) a = steps_per_epoch * args.num_epochs with strategy.scope(): a = TFAutoModelForMaskedLM.from_config(_A ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built a , a = create_optimizer( num_train_steps=_A , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_A , metrics=['''accuracy'''] ) def decode_fn(a :List[str] ): a = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_A , _A ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. a = DataCollatorForLanguageModeling( tokenizer=_A , mlm_probability=args.mlm_probability , mlm=_A , return_tensors='''tf''' ) def mask_with_collator(a :Tuple ): # TF really needs an isin() function a = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) a , a = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(_A ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_A , ) return batch a = args.per_replica_batch_size * strategy.num_replicas_in_sync a = prepare_dataset( _A , decode_fn=_A , mask_fn=_A , batch_size=_A , shuffle=_A , shuffle_buffer_size=args.shuffle_buffer_size , ) a = prepare_dataset( _A , decode_fn=_A , mask_fn=_A , batch_size=_A , shuffle=_A , ) a = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_A ) ) model.fit( _A , validation_data=_A , epochs=args.num_epochs , callbacks=_A , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase__ = parse_args() main(args)
117
def lowerCamelCase__ ( ): '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(_A ) > 500 ) if __name__ == "__main__": print(solution())
376
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( lowercase ): __lowercase : List[str] = ["image_processor", "tokenizer"] __lowercase : Any = "FlavaImageProcessor" __lowercase : str = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ) -> Tuple: """simple docstring""" _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) _UpperCamelCase = kwargs.pop("feature_extractor" ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.image_processor def __call__( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = True , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> int: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCamelCase = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if images is not None: _UpperCamelCase = self.image_processor( lowerCamelCase_ , return_image_mask=lowerCamelCase_ , return_codebook_pixels=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if text is not None and images is not None: encoding.update(lowerCamelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def lowercase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowercase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase ( self ) -> str: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase_ , ) return self.image_processor_class @property def lowercase ( self ) -> Tuple: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase_ , ) return self.image_processor
711
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __lowerCAmelCase = True from torch.cuda.amp import autocast __lowerCAmelCase = logging.getLogger(__name__) def _lowercase ( a__ : List[str]=None , a__ : Optional[int]=None ) -> Optional[int]: """simple docstring""" return field(default_factory=lambda: default , metadata=a__ ) @dataclass class lowerCamelCase_ : __lowercase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowercase : Optional[str] = field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowercase : Optional[bool] = field( default=lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) __lowercase : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) __lowercase : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCamelCase_ : __lowercase : Optional[str] = field( default=lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowercase : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __lowercase : bool = field( default=lowercase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowercase : Optional[int] = field( default=lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __lowercase : Optional[int] = field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowercase : Optional[int] = field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) __lowercase : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class lowerCamelCase_ : __lowercase : WavaVecaProcessor __lowercase : Union[bool, str] = True __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : Optional[int] = None def __call__( self , lowerCamelCase_ ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCamelCase = [{"input_values": feature["input_values"]} for feature in features] _UpperCamelCase = [{"input_ids": feature["labels"]} for feature in features] _UpperCamelCase = self.processor.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _UpperCamelCase = self.processor.pad( labels=lowerCamelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) _UpperCamelCase = labels return batch class lowerCamelCase_ ( lowercase ): def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> torch.Tensor: """simple docstring""" model.train() _UpperCamelCase = self._prepare_inputs(lowerCamelCase_ ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(lowerCamelCase_ , lowerCamelCase_ ) else: _UpperCamelCase = self.compute_loss(lowerCamelCase_ , lowerCamelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase_ ) else: loss.backward() return loss.detach() def _lowercase ( ) -> Tuple: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , a__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _UpperCamelCase = f'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(a__ : Tuple ): _UpperCamelCase = re.sub(a__ , "" , batch["sentence"] ).lower() + " " return batch _UpperCamelCase = train_dataset.map(a__ , remove_columns=["sentence"] ) _UpperCamelCase = eval_dataset.map(a__ , remove_columns=["sentence"] ) def extract_all_chars(a__ : Tuple ): _UpperCamelCase = " ".join(batch["text"] ) _UpperCamelCase = list(set(a__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( a__ , batched=a__ , batch_size=-1 , keep_in_memory=a__ , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( a__ , batched=a__ , batch_size=-1 , keep_in_memory=a__ , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(a__ )} _UpperCamelCase = vocab_dict[" "] del vocab_dict[" "] _UpperCamelCase = len(a__ ) _UpperCamelCase = len(a__ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(a__ , a__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=a__ , return_attention_mask=a__ ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(a__ ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(a__ ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(a__ : List[Any] ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch["path"] ) _UpperCamelCase = resampler(a__ ).squeeze().numpy() _UpperCamelCase = 1_60_00 _UpperCamelCase = batch["text"] return batch _UpperCamelCase = train_dataset.map( a__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( a__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(a__ : Dict ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _UpperCamelCase = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(a__ ) return batch _UpperCamelCase = train_dataset.map( a__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=a__ , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( a__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=a__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric("wer" ) def compute_metrics(a__ : Union[str, Any] ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(a__ , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(a__ ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=a__ ) _UpperCamelCase = wer_metric.compute(predictions=a__ , references=a__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=a__ , padding=a__ ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=a__ , data_collator=a__ , args=a__ , compute_metrics=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) _UpperCamelCase = min(a__ , len(a__ ) ) trainer.log_metrics("train" , a__ ) trainer.save_metrics("train" , a__ ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(a__ ) _UpperCamelCase = min(a__ , len(a__ ) ) trainer.log_metrics("eval" , a__ ) trainer.save_metrics("eval" , a__ ) return results if __name__ == "__main__": main()
589
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) __A = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : snake_case__ = field( default=UpperCAmelCase_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase_ )} , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _snake_case : snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "The input training data file (a text file)."} ) snake_case__ = field( default=UpperCAmelCase_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) snake_case__ = field(default=UpperCAmelCase_ , metadata={"help": "Whether ot not to use whole word mask."} ) snake_case__ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) snake_case__ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) snake_case__ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) snake_case__ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) snake_case__ = field( default=UpperCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: str , _lowerCamelCase: Tuple = False , _lowerCamelCase: Optional[int] = None , ) -> Tuple: '''simple docstring''' def _dataset(_lowerCamelCase: Optional[Any] , _lowerCamelCase: Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_lowerCamelCase , file_path=_lowerCamelCase , block_size=args.block_size , ref_path=_lowerCamelCase , ) return LineByLineTextDataset(tokenizer=_lowerCamelCase , file_path=_lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_lowerCamelCase , file_path=_lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowercase_ ( ) -> Tuple: '''simple docstring''' __lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowerCamelCase : Tuple = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowerCamelCase : Any = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowerCamelCase : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __lowerCamelCase : Any = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __lowerCamelCase : Optional[Any] = AutoModelWithLMHead.from_config(_lowerCamelCase ) model.resize_token_embeddings(len(_lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __lowerCamelCase : Tuple = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowerCamelCase : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowerCamelCase : Dict = ( get_dataset(_lowerCamelCase , tokenizer=_lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowerCamelCase : Union[str, Any] = ( get_dataset(_lowerCamelCase , tokenizer=_lowerCamelCase , evaluate=_lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowerCamelCase : List[str] = DataCollatorForPermutationLanguageModeling( tokenizer=_lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowerCamelCase : Optional[int] = DataCollatorForWholeWordMask( tokenizer=_lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowerCamelCase : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=_lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCamelCase : Optional[int] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , data_collator=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , prediction_loss_only=_lowerCamelCase , ) # Training if training_args.do_train: __lowerCamelCase : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCamelCase : Any = trainer.evaluate() __lowerCamelCase : List[str] = math.exp(eval_output["eval_loss"] ) __lowerCamelCase : Optional[Any] = {"perplexity": perplexity} __lowerCamelCase : Optional[Any] = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _lowerCamelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_lowerCamelCase ) return results def lowercase_ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
646
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase ="""▁""" __UpperCAmelCase =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = BertGenerationTokenizer lowercase__ : int = False lowercase__ : Optional[Any] = True def lowercase_ ( self ): '''simple docstring''' super().setUp() A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): '''simple docstring''' A__ = "<s>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase__ ) , 10_02 ) def lowercase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowercase_ ( self ): '''simple docstring''' A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ ( self ): '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = "Hello World!" A__ = [1_85_36, 22_60, 1_01] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) A__ = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def lowercase_ ( self ): '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = " ".join(UpperCamelCase__ ) A__ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = BertGenerationConfig() A__ = BertGenerationEncoder(UpperCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
337
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ :Any = [ 'good first issue', 'feature request', 'wip', ] def lowerCamelCase_ ( ) ->str: """simple docstring""" __UpperCAmelCase : str = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase : Tuple = g.get_repo('''huggingface/accelerate''' ) __UpperCAmelCase : str = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None __UpperCAmelCase : Optional[Any] = dt.utcnow() __UpperCAmelCase : Optional[int] = (current_time - issue.updated_at).days __UpperCAmelCase : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
374
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Dict = nn.Linear(3 , 4 ) __UpperCAmelCase : Union[str, Any] = nn.BatchNormad(4 ) __UpperCAmelCase : List[str] = nn.Linear(4 , 5 ) def A_ ( self : Any , __lowercase : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowercase ) ) ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' def A_ ( self : Union[str, Any] , __lowercase : Optional[int] , *__lowercase : str , **__lowercase : Optional[int] ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class snake_case ( __UpperCAmelCase ): '''simple docstring''' def A_ ( self : Any , __lowercase : Tuple , __lowercase : Any ): '''simple docstring''' return output + 1 class snake_case ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() __UpperCAmelCase : Optional[int] = ModelHook() add_hook_to_module(__lowercase , __lowercase ) self.assertEqual(test_model._hf_hook , __lowercase ) self.assertTrue(hasattr(__lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__lowercase ) self.assertFalse(hasattr(__lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(__lowercase , '''_old_forward''' ) ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = ModelForTest() __UpperCAmelCase : Tuple = ModelHook() add_hook_to_module(__lowercase , __lowercase ) add_hook_to_module(__lowercase , __lowercase , append=__lowercase ) self.assertEqual(isinstance(test_model._hf_hook , __lowercase ) , __lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__lowercase ) self.assertFalse(hasattr(__lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(__lowercase , '''_old_forward''' ) ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() __UpperCAmelCase : Tuple = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = test_model(x + 1 ) __UpperCAmelCase : Optional[Any] = test_model(x + 2 ) __UpperCAmelCase : Optional[int] = PreForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : int = PreForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Any = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Tuple = test_model(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1e-5 ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : int = ModelForTest() __UpperCAmelCase : List[Any] = torch.randn(2 , 3 ) __UpperCAmelCase : Tuple = test_model(__lowercase ) __UpperCAmelCase : int = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : str = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : List[str] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[int] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Dict = test_model(__lowercase ) assert torch.allclose(__lowercase , output + 2 , atol=1e-5 ) def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = ModelForTest() __UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3 ) __UpperCAmelCase : str = test_model(__lowercase ) __UpperCAmelCase : Union[str, Any] = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : int = test_model(__lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __UpperCAmelCase : Dict = torch.randn(2 , 3 ) __UpperCAmelCase : Any = model(__lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__lowercase , AlignDevicesHook(io_same_device=__lowercase ) ) __UpperCAmelCase : List[Any] = torch.randn(2 , 3 ).to(0 ) __UpperCAmelCase : int = model(__lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def A_ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : Tuple = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[int] = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : int = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload __UpperCAmelCase : str = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : Optional[Any] = torch.randn(2 , 3 ) __UpperCAmelCase : List[Any] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : Optional[Any] = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(__lowercase , execution_device=__lowercase , offload=__lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Dict = torch.device(__lowercase ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : Optional[int] = torch.randn(2 , 3 ) __UpperCAmelCase : Dict = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(__lowercase , execution_device=__lowercase , offload=__lowercase , offload_buffers=__lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : Dict = torch.randn(2 , 3 ) __UpperCAmelCase : str = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( __lowercase , execution_device=__lowercase , offload=__lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[Any] = torch.device(__lowercase ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : Any = torch.randn(2 , 3 ) __UpperCAmelCase : Dict = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( __lowercase , execution_device=__lowercase , offload=__lowercase , weights_map=model.state_dict() , offload_buffers=__lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : List[str] = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
374
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A ( UpperCamelCase__ ): a__ : BigBirdConfig a__ : jnp.dtype = jnp.floataa a__ : bool = True def _lowercase (self : Dict ): super().setup() UpperCAmelCase_ = nn.Dense(5 , dtype=self.dtype ) def __call__(self : Optional[Any] , *__a : Tuple , **__a : List[Any] ): UpperCAmelCase_ = super().__call__(*__a , **__a ) UpperCAmelCase_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A ( UpperCamelCase__ ): a__ : str = FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> str: '''simple docstring''' def cross_entropy(snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any]=None ): UpperCAmelCase_ = logits.shape[-1] UpperCAmelCase_ = (labels[..., None] == jnp.arange(snake_case_ )[None]).astype("f4" ) UpperCAmelCase_ = jax.nn.log_softmax(snake_case_ , axis=-1 ) UpperCAmelCase_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase_ = reduction(snake_case_ ) return loss UpperCAmelCase_ = partial(snake_case_ , reduction=jnp.mean ) UpperCAmelCase_ = cross_entropy(snake_case_ , snake_case_ ) UpperCAmelCase_ = cross_entropy(snake_case_ , snake_case_ ) UpperCAmelCase_ = cross_entropy(snake_case_ , snake_case_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A : a__ : str = "google/bigbird-roberta-base" a__ : int = 3_000 a__ : int = 10_500 a__ : int = 128 a__ : int = 3 a__ : int = 1 a__ : int = 5 # tx_args a__ : float = 3e-5 a__ : float = 0.0 a__ : int = 20_000 a__ : float = 0.0_0_9_5 a__ : str = "bigbird-roberta-natural-questions" a__ : str = "training-expt" a__ : str = "data/nq-training.jsonl" a__ : str = "data/nq-validation.jsonl" def _lowercase (self : str ): os.makedirs(self.base_dir , exist_ok=__a ) UpperCAmelCase_ = os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase_ = self.batch_size_per_device * jax.device_count() @dataclass class __A : a__ : int a__ : int = 4_096 # no dynamic padding on TPUs def __call__(self : List[Any] , __a : Any ): UpperCAmelCase_ = self.collate_fn(__a ) UpperCAmelCase_ = jax.tree_util.tree_map(__a , __a ) return batch def _lowercase (self : Tuple , __a : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.fetch_inputs(features["input_ids"] ) UpperCAmelCase_ = { "input_ids": jnp.array(__a , dtype=jnp.intaa ), "attention_mask": jnp.array(__a , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def _lowercase (self : str , __a : list ): UpperCAmelCase_ = [self._fetch_inputs(__a ) for ids in input_ids] return zip(*__a ) def _lowercase (self : List[Any] , __a : list ): UpperCAmelCase_ = [1 for _ in range(len(__a ) )] while len(__a ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any , snake_case_ : List[Any]=None ) -> Any: '''simple docstring''' if seed is not None: UpperCAmelCase_ = dataset.shuffle(seed=snake_case_ ) for i in range(len(snake_case_ ) // batch_size ): UpperCAmelCase_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case_ ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , **snake_case_ : Any ) -> Optional[int]: '''simple docstring''' def loss_fn(snake_case_ : Tuple ): UpperCAmelCase_ = model_inputs.pop("start_labels" ) UpperCAmelCase_ = model_inputs.pop("end_labels" ) UpperCAmelCase_ = model_inputs.pop("pooled_labels" ) UpperCAmelCase_ = state.apply_fn(**snake_case_ , params=snake_case_ , dropout_rng=snake_case_ , train=snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = outputs return state.loss_fn( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(snake_case_ ) UpperCAmelCase_ = jax.value_and_grad(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = grad_fn(state.params ) UpperCAmelCase_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) UpperCAmelCase_ = jax.lax.pmean(snake_case_ , "batch" ) UpperCAmelCase_ = state.apply_gradients(grads=snake_case_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase_ ( snake_case_ : List[str] , **snake_case_ : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = model_inputs.pop("start_labels" ) UpperCAmelCase_ = model_inputs.pop("end_labels" ) UpperCAmelCase_ = model_inputs.pop("pooled_labels" ) UpperCAmelCase_ = state.apply_fn(**snake_case_ , params=state.params , train=snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = outputs UpperCAmelCase_ = state.loss_fn(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class __A ( train_state.TrainState ): a__ : Callable = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class __A : a__ : Args a__ : Callable a__ : Callable a__ : Callable a__ : Callable a__ : wandb a__ : Callable = None def _lowercase (self : str , __a : Union[str, Any] , __a : List[Any] , __a : Any , __a : int=None ): UpperCAmelCase_ = model.params UpperCAmelCase_ = TrainState.create( apply_fn=model.__call__ , params=__a , tx=__a , loss_fn=__a , ) if ckpt_dir is not None: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = restore_checkpoint(__a , __a ) UpperCAmelCase_ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } UpperCAmelCase_ , UpperCAmelCase_ = build_tx(**__a ) UpperCAmelCase_ = train_state.TrainState( step=__a , apply_fn=model.__call__ , params=__a , tx=__a , opt_state=__a , ) UpperCAmelCase_ = args UpperCAmelCase_ = data_collator UpperCAmelCase_ = lr UpperCAmelCase_ = params UpperCAmelCase_ = jax_utils.replicate(__a ) return state def _lowercase (self : Tuple , __a : Dict , __a : str , __a : Any ): UpperCAmelCase_ = self.args UpperCAmelCase_ = len(__a ) // args.batch_size UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.split(__a , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase_ = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_ = get_batched_dataset(__a , args.batch_size , seed=__a ) UpperCAmelCase_ = 0 for batch in tqdm(__a , total=__a , desc=f"""Running EPOCH-{epoch}""" ): UpperCAmelCase_ = self.data_collator(__a ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.train_step_fn(__a , __a , **__a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase_ = jax_utils.unreplicate(state.step ) UpperCAmelCase_ = running_loss.item() / i UpperCAmelCase_ = self.scheduler_fn(state_step - 1 ) UpperCAmelCase_ = self.evaluate(__a , __a ) UpperCAmelCase_ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__a ) ) self.logger.log(__a , commit=__a ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=__a ) def _lowercase (self : List[str] , __a : List[Any] , __a : Any ): UpperCAmelCase_ = get_batched_dataset(__a , self.args.batch_size ) UpperCAmelCase_ = len(__a ) // self.args.batch_size UpperCAmelCase_ = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_ = 0 for batch in tqdm(__a , total=__a , desc="Evaluating ... " ): UpperCAmelCase_ = self.data_collator(__a ) UpperCAmelCase_ = self.val_step_fn(__a , **__a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def _lowercase (self : Optional[int] , __a : List[str] , __a : int ): UpperCAmelCase_ = jax_utils.unreplicate(__a ) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(__a , params=state.params ) with open(os.path.join(__a , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__a , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__a , "data_collator.joblib" ) ) with open(os.path.join(__a , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __a ) print("DONE" ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(snake_case_ , "flax_model.msgpack" ) , "rb" ) as f: UpperCAmelCase_ = from_bytes(state.params , f.read() ) with open(os.path.join(snake_case_ , "opt_state.msgpack" ) , "rb" ) as f: UpperCAmelCase_ = from_bytes(state.opt_state , f.read() ) UpperCAmelCase_ = joblib.load(os.path.join(snake_case_ , "args.joblib" ) ) UpperCAmelCase_ = joblib.load(os.path.join(snake_case_ , "data_collator.joblib" ) ) with open(os.path.join(snake_case_ , "training_state.json" ) , "r" ) as f: UpperCAmelCase_ = json.load(snake_case_ ) UpperCAmelCase_ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = num_train_steps - warmup_steps UpperCAmelCase_ = optax.linear_schedule(init_value=snake_case_ , end_value=snake_case_ , transition_steps=snake_case_ ) UpperCAmelCase_ = optax.linear_schedule(init_value=snake_case_ , end_value=1E-7 , transition_steps=snake_case_ ) UpperCAmelCase_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int ) -> Optional[Any]: '''simple docstring''' def weight_decay_mask(snake_case_ : Any ): UpperCAmelCase_ = traverse_util.flatten_dict(snake_case_ ) UpperCAmelCase_ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case_ ) UpperCAmelCase_ = scheduler_fn(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = optax.adamw(learning_rate=snake_case_ , weight_decay=snake_case_ , mask=snake_case_ ) return tx, lr
78
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = """▁""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ : List[Any] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } SCREAMING_SNAKE_CASE__ : Optional[int] = { """google/reformer-crime-and-punishment""": 52_42_88, } class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) __magic_name__ :Optional[Any] = vocab_file __magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def A ( self ): """simple docstring""" return self.sp_model.get_piece_size() def A ( self ): """simple docstring""" __magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.__dict__.copy() __magic_name__ :Optional[Any] = None return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ :Optional[int] = {} __magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.piece_to_id(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" if index < self.sp_model.get_piece_size(): __magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase ) return token def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = [] __magic_name__ :Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token __magic_name__ :Optional[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ :Optional[int] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: __magic_name__ :Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
0
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase : int = namedtuple("CoinsDistribResult", "moves excess") def __a ( _lowercase ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(_lowercase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_lowercase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_lowercase ) != count_coins(_lowercase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_lowercase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = get_distrib(node.left ) lowerCamelCase__ , lowerCamelCase__ : List[str] = get_distrib(node.right ) lowerCamelCase__ : Dict = 1 - left_distrib_excess lowerCamelCase__ : List[str] = 1 - right_distrib_excess lowerCamelCase__ : List[str] = ( left_distrib_moves + right_distrib_moves + abs(_lowercase ) + abs(_lowercase ) ) lowerCamelCase__ : Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_lowercase , _lowercase ) return get_distrib(_lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
121
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Any = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCamelCase__ : Optional[Any] = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowerCamelCase__ : Any = args.output + '''.pt''' lowerCamelCase__ : List[str] = OrderedDict() with tf.device('''/CPU:0''' ): lowerCamelCase__ : List[str] = tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase__ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase__ : Any = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCamelCase__ : Tuple = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCamelCase__ : Union[str, Any] = 8 lowerCamelCase__ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCamelCase__ : Any = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCamelCase__ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCamelCase__ : Optional[int] = key_name[-9:-7] for i in range(16 ): lowerCamelCase__ : str = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCamelCase__ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): lowerCamelCase__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCamelCase__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCamelCase__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Union[str, Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): lowerCamelCase__ : int = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCamelCase__ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[Any] = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): lowerCamelCase__ : Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : Tuple = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): lowerCamelCase__ : str = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCamelCase__ : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase__ : Optional[Any] = state[:, 0, :, :] lowerCamelCase__ : int = state[:, 1, :, :] lowerCamelCase__ : Optional[int] = state[:, 2, :, :] lowerCamelCase__ : str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCamelCase__ : Dict = torch.tensor(_lowercase ) lowerCamelCase__ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) lowerCamelCase__ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCamelCase__ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): lowerCamelCase__ : List[str] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCamelCase__ : Any = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): lowerCamelCase__ : str = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCamelCase__ : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Any = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCamelCase__ : Optional[int] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCamelCase__ : List[Any] = '''model.%s.weight''' % nlayer lowerCamelCase__ : List[Any] = vnp.copy() # same in embedded lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): lowerCamelCase__ : str = '''lm_head.weight''' lowerCamelCase__ : Dict = vnp.copy() # same in embedded lowerCamelCase__ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): lowerCamelCase__ : List[Any] = '''final_logits_bias''' lowerCamelCase__ : List[str] = vnp.copy() # same in embedded lowerCamelCase__ : int = state.reshape((1, -1) ) lowerCamelCase__ : Optional[int] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCamelCase__ : List[Any] = '''model.last_project.weight''' lowerCamelCase__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase__ : Dict = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCamelCase__ : Dict = '''model.last_project.bias''' lowerCamelCase__ : Tuple = vnp.copy() # same because it is one dimensional lowerCamelCase__ : Dict = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") UpperCAmelCase : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
121
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Dict , a_ : List[str]=False , a_ : Any=True , a_ : int=False , a_ : Union[str, Any]="<s>" , a_ : Optional[int]="</s>" , a_ : int="<unk>" , a_ : List[Any]="<sep>" , a_ : Dict="<pad>" , a_ : Any="<cls>" , a_ : Optional[Any]="<mask>" , a_ : int=["<eop>", "<eod>"] , a_ : Optional[Dict[str, Any]] = None , **a_ : int , ) -> None: '''simple docstring''' a__ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ : Union[str, Any] = 3 a__ : Dict = do_lower_case a__ : Union[str, Any] = remove_space a__ : int = keep_accents a__ : str = vocab_file a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) a__ : Optional[int] = jieba a__ : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Union[str, Any] = None return state def __setstate__( self : Tuple , a_ : int ) -> List[str]: '''simple docstring''' a__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : str = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[Any] ) -> List[str]: '''simple docstring''' if self.remove_space: a__ : Union[str, Any] = " ".join(inputs.strip().split() ) else: a__ : Optional[Any] = inputs a__ : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__ : Union[str, Any] = unicodedata.normalize("NFKD" , a_ ) a__ : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: a__ : List[Any] = outputs.lower() return outputs def UpperCAmelCase ( self : Any , a_ : str ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.preprocess_text(a_ ) a__ : Dict = self.sp_model.encode(a_ , out_type=a_ ) a__ : Optional[Any] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ : List[str] = cur_pieces[1:] else: a__ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCAmelCase ( self : int , a_ : Dict ) -> int: '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCAmelCase ( self : Dict , a_ : Tuple ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(a_ ) def UpperCAmelCase ( self : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' a__ : Optional[Any] = "".join(a_ ).replace(a_ , " " ).strip() return out_string def UpperCAmelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[Any] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCAmelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self : Dict , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Optional[int] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a__ : int = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCAmelCase ( self : str , *a_ : Union[str, Any] , **a_ : Any ) -> int: '''simple docstring''' a__ : Optional[int] = super()._decode(*a_ , **a_ ) a__ : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
642
0
"""simple docstring""" def lowercase ( __snake_case : str ): assert column_title.isupper() lowercase_ : str = 0 lowercase_ : Dict = len(__snake_case ) - 1 lowercase_ : Union[str, Any] = 0 while index >= 0: lowercase_ : str = (ord(column_title[index] ) - 6_4) * pow(2_6 , __snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
141
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): @property def A ( self : str ) -> List[str]: torch.manual_seed(0 ) lowercase_ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A ( self : List[Any] ) -> str: lowercase_ : Any = self.dummy_uncond_unet lowercase_ : List[Any] = ScoreSdeVeScheduler() lowercase_ : int = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) lowercase_ : int = torch.manual_seed(0 ) lowercase_ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=A ).images lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : List[Any] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=A , return_dict=A )[ 0 ] lowercase_ : int = image[0, -3:, -3:, -1] lowercase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Any ) -> int: lowercase_ : Any = '''google/ncsnpp-church-256''' lowercase_ : int = UNetaDModel.from_pretrained(A ) lowercase_ : Dict = ScoreSdeVeScheduler.from_pretrained(A ) lowercase_ : Optional[Any] = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) lowercase_ : Optional[int] = torch.manual_seed(0 ) lowercase_ : Tuple = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=A ).images lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) lowercase_ : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
141
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
268
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } UpperCamelCase__ = { '''facebook/s2t-small-librispeech-asr''': 1024, } UpperCamelCase__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] UpperCamelCase__ = {'''mustc''': MUSTC_LANGS} class __snake_case ( snake_case__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = MAX_MODEL_INPUT_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = [] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<unk>" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: """simple docstring""" __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , do_upper_case=_UpperCamelCase , do_lower_case=_UpperCamelCase , tgt_lang=_UpperCamelCase , lang_codes=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) __snake_case = do_upper_case __snake_case = do_lower_case __snake_case = load_json(_UpperCamelCase ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = spm_file __snake_case = load_spm(_UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case = lang_codes __snake_case = LANGUAGES[lang_codes] __snake_case = [F'<lang:{lang}>' for lang in self.langs] __snake_case = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} __snake_case = self.lang_tokens __snake_case = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case = {} @property def a ( self ) -> int: """simple docstring""" return len(self.encoder ) @property def a ( self ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def a ( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCamelCase ) def a ( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = self.lang_code_to_id[tgt_lang] __snake_case = [lang_code_id] def a ( self , _UpperCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def a ( self , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder[self.unk_token] ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" return self.decoder.get(_UpperCamelCase , self.unk_token ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" __snake_case = [] __snake_case = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case = self.sp_model.decode(_UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case = [] else: current_sub_tokens.append(_UpperCamelCase ) __snake_case = self.sp_model.decode(_UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) __snake_case = [1] * len(self.prefix_tokens ) __snake_case = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def a ( self ) -> Dict: """simple docstring""" __snake_case = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case = {} __snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: """simple docstring""" __snake_case = Path(_UpperCamelCase ) assert save_dir.is_dir(), F'{save_directory} should be a directory' __snake_case = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __snake_case = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCamelCase , """wb""" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (str(_UpperCamelCase ), str(_UpperCamelCase )) def lowerCamelCase__ ( __A :str ,__A :Dict[str, Any] ): """simple docstring""" __snake_case = sentencepiece.SentencePieceProcessor(**__A ) spm.Load(str(__A ) ) return spm def lowerCamelCase__ ( __A :str ): """simple docstring""" with open(__A ,"""r""" ) as f: return json.load(__A ) def lowerCamelCase__ ( __A :Optional[Any] ,__A :str ): """simple docstring""" with open(__A ,"""w""" ) as f: json.dump(__A ,__A ,indent=2 )
268
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = ['OwlViTFeatureExtractor'] snake_case_ : Union[str, Any] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from __future__ import annotations def __snake_case ( _UpperCAmelCase : list[int]): UpperCamelCase = len(_UpperCAmelCase) // 2 # choose the middle 3 elements UpperCamelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
350
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=99 , snake_case__=13 , snake_case__=7 , snake_case__=9 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__=8 , snake_case__=0.1 , snake_case__=0.002 , snake_case__=1 , snake_case__=0 , snake_case__=0 , snake_case__=None , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Dict = encoder_seq_length _lowerCAmelCase : Any = decoder_seq_length # For common tests _lowerCAmelCase : int = self.decoder_seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Optional[Any] = use_attention_mask _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Tuple = d_ff _lowerCAmelCase : Dict = relative_attention_num_buckets _lowerCAmelCase : Any = dropout_rate _lowerCAmelCase : Tuple = initializer_factor _lowerCAmelCase : Optional[int] = eos_token_id _lowerCAmelCase : str = pad_token_id _lowerCAmelCase : str = decoder_start_token_id _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = decoder_layers def a ( self ): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase : str = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase : Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case__ ) if decoder_head_mask is None: _lowerCAmelCase : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case__ ) if cross_attn_head_mask is None: _lowerCAmelCase : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase : str = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : Any = self.get_config() _lowerCAmelCase : List[Any] = config.num_attention_heads _lowerCAmelCase : str = self.prepare_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, input_dict def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def a ( self ): '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a ( self ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' _lowerCAmelCase : int = UMTaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Any = model( input_ids=snake_case__ , decoder_input_ids=snake_case__ , attention_mask=snake_case__ , decoder_attention_mask=snake_case__ , ) _lowerCAmelCase : Any = model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) _lowerCAmelCase : str = result.last_hidden_state _lowerCAmelCase : Any = result.past_key_values _lowerCAmelCase : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Tuple = UMTaModel(config=snake_case__ ).get_decoder().to(snake_case__ ).eval() # first forward pass _lowerCAmelCase : List[Any] = model(snake_case__ , use_cache=snake_case__ ) _lowerCAmelCase : Dict = model(snake_case__ ) _lowerCAmelCase : Optional[int] = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) _lowerCAmelCase , _lowerCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Any = model(snake_case__ )['last_hidden_state'] _lowerCAmelCase : Dict = model(snake_case__ , past_key_values=snake_case__ )['last_hidden_state'] # select random slice _lowerCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : int = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def a ( self , snake_case__ , snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = UMTaModel(config=snake_case__ ).to(snake_case__ ).half().eval() _lowerCAmelCase : Dict = model(**snake_case__ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case__ ).any().item() ) @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __magic_name__ = (UMTaForConditionalGeneration,) if is_torch_available() else () __magic_name__ = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = True # The small UMT5 model needs higher percentages for CPU/MP tests __magic_name__ = [0.8, 0.9] def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = UMTaModel(config_and_inputs[0] ).to(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=snake_case__ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = config_and_inputs[0] _lowerCAmelCase : int = UMTaForConditionalGeneration(snake_case__ ).eval() model.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case__ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case__ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case__ ), } for attn_name, (name, mask) in zip(snake_case__ , head_masking.items() ): _lowerCAmelCase : Tuple = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase : Optional[int] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case__ ) _lowerCAmelCase : Optional[Any] = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case__ , return_dict_in_generate=snake_case__ , **snake_case__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase : Tuple = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def a ( self ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case__ ).to(snake_case__ ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case__ , legacy=snake_case__ ) _lowerCAmelCase : Optional[Any] = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _lowerCAmelCase : str = tokenizer(snake_case__ , return_tensors='pt' , padding=snake_case__ ).input_ids # fmt: off _lowerCAmelCase : Optional[Any] = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case__ , snake_case__ ) _lowerCAmelCase : str = model.generate(input_ids.to(snake_case__ ) ) _lowerCAmelCase : Optional[int] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
444
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } lowerCAmelCase : str = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = GPTaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) _lowerCAmelCase : str = kwargs.pop('add_bos_token' , snake_case__ ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : str = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : Dict = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Any = add_prefix_space def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: _lowerCAmelCase : str = input_ids[-self.model_max_length :] return input_ids
444
1
from ...processing_utils import ProcessorMixin class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Any = 'WhisperFeatureExtractor' UpperCamelCase_ : List[str] = 'WhisperTokenizer' def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ) -> int: """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = self.feature_extractor __lowercase = False def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : int=True ) -> int: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase__ , language=lowerCamelCase__ , no_timestamps=lowerCamelCase__ ) def __call__( self : Optional[Any] , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : str ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = kwargs.pop('''audio''' , lowerCamelCase__ ) __lowercase = kwargs.pop('''sampling_rate''' , lowerCamelCase__ ) __lowercase = kwargs.pop('''text''' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __lowercase = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: __lowercase = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __lowercase = encodings['''input_ids'''] return inputs def UpperCAmelCase_ ( self : Dict , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Any , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : List[str] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict="np" ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCamelCase__ , return_tensors=lowerCamelCase__ )
362
import math def _A( ) -> None: '''simple docstring''' __lowercase = input('''Enter message: ''' ) __lowercase = int(input(F'Enter key [2-{len(UpperCamelCase__ ) - 1}]: ' ) ) __lowercase = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): __lowercase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def _A( UpperCamelCase__ : int , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = [''''''] * key for col in range(UpperCamelCase__ ): __lowercase = col while pointer < len(UpperCamelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(UpperCamelCase__ ) def _A( UpperCamelCase__ : int , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = math.ceil(len(UpperCamelCase__ ) / key ) __lowercase = key __lowercase = (num_cols * num_rows) - len(UpperCamelCase__ ) __lowercase = [''''''] * num_cols __lowercase = 0 __lowercase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __lowercase = 0 row += 1 return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
362
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( __snake_case : float , __snake_case : int ) -> float: __A : int = u for i in range(1 , __snake_case ): __A : Optional[int] = temp * (u - i) return temp def _lowerCAmelCase ( ) -> None: __A : Dict = int(input('enter the numbers of values: ' ) ) __A : list[list[float]] = [] for _ in range(__snake_case ): y.append([] ) for i in range(__snake_case ): for j in range(__snake_case ): y[i].append(__snake_case ) __A : int = 0 print('enter the values of parameters in a list: ' ) __A : List[str] = list(map(__snake_case , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__snake_case ): __A : Tuple = float(input() ) __A : Tuple = int(input('enter the value to interpolate: ' ) ) __A : Dict = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __snake_case ): for j in range(n - i ): __A : Dict = y[j + 1][i - 1] - y[j][i - 1] __A : List[Any] = y[0][0] for i in range(1 , __snake_case ): summ += (ucal(__snake_case , __snake_case ) * y[0][i]) / math.factorial(__snake_case ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import argparse import datetime def lowercase__ ( lowerCAmelCase : str ) -> str: """simple docstring""" UpperCAmelCase = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCAmelCase ) < 11: raise ValueError('Must be 10 characters long' ) # Get month UpperCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) UpperCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day UpperCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator UpperCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation UpperCAmelCase = datetime.date(int(lowerCAmelCase ) , int(lowerCAmelCase ) , int(lowerCAmelCase ) ) # Start math if m <= 2: UpperCAmelCase = y - 1 UpperCAmelCase = m + 12 # maths var UpperCAmelCase = int(str(lowerCAmelCase )[:2] ) UpperCAmelCase = int(str(lowerCAmelCase )[2:] ) UpperCAmelCase = int(2.6 * m - 5.39 ) UpperCAmelCase = int(c / 4 ) UpperCAmelCase = int(k / 4 ) UpperCAmelCase = int(d + k ) UpperCAmelCase = int(t + u + v + x ) UpperCAmelCase = int(z - (2 * c) ) UpperCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response UpperCAmelCase = F"Your date {date_input}, is a {days[str(lowerCAmelCase )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() zeller(args.date_input)
183
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Tuple=1.0 , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None ) -> Dict: """simple docstring""" if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=4_0_0 , lowercase_=2_0_0_0 , lowercase_=2_0_4_8 , lowercase_=1_2_8 , lowercase_=1 , lowercase_=5_1_2 , lowercase_=3_0 , lowercase_=4_4_1_0_0 , ) -> str: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = spectrogram_length UpperCAmelCase = feature_size UpperCAmelCase = num_audio_channels UpperCAmelCase = hop_length UpperCAmelCase = chunk_length UpperCAmelCase = sampling_rate def a_ ( self ) -> str: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a_ ( self , lowercase_=False , lowercase_=False ) -> Optional[Any]: def _flatten(lowercase_ ): return list(itertools.chain(*lowercase_ ) ) if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = TvltFeatureExtractor def a_ ( self ) -> Optional[int]: UpperCAmelCase = TvltFeatureExtractionTester(self ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowercase_ , 'feature_size' ) ) self.assertTrue(hasattr(lowercase_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowercase_ , 'hop_length' ) ) self.assertTrue(hasattr(lowercase_ , 'chunk_length' ) ) self.assertTrue(hasattr(lowercase_ , 'sampling_rate' ) ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) UpperCAmelCase = self.feature_extraction_class.from_pretrained(lowercase_ ) UpperCAmelCase = feat_extract_first.to_dict() UpperCAmelCase = feat_extract_second.to_dict() UpperCAmelCase = dict_first.pop('mel_filters' ) UpperCAmelCase = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> str: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) UpperCAmelCase = self.feature_extraction_class.from_json_file(lowercase_ ) UpperCAmelCase = feat_extract_first.to_dict() UpperCAmelCase = feat_extract_second.to_dict() UpperCAmelCase = dict_first.pop('mel_filters' ) UpperCAmelCase = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> int: # Initialize feature_extractor UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCAmelCase = feature_extractor( lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(lowercase_ ) UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a_ ( self , lowercase_ ) -> Optional[Any]: UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCAmelCase = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a_ ( self ) -> Tuple: UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = TvltFeatureExtractor() UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) UpperCAmelCase = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase_ , atol=1E-4 ) )
183
1
from __future__ import annotations def lowercase ( __A : int ) -> list[int]: '''simple docstring''' snake_case : Dict = 2 snake_case : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A ) if n > 1: factors.append(__A ) return factors if __name__ == "__main__": import doctest doctest.testmod()
36
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : str = Rectangle(height=0.2_5 , width=0.2_5 ) _lowerCAmelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Any = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[str] = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : Union[str, Any] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Dict = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : str = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : List[str] = [] _lowerCAmelCase : str = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) _lowerCAmelCase : str = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) _lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : List[Any] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Optional[Any] = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) _lowerCAmelCase : Dict = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) _lowerCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : int = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : List[str] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) _lowerCAmelCase : List[str] = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _lowerCAmelCase : int = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : str = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : str = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : str = Text("""Disk""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : Any = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) _lowerCAmelCase : Union[str, Any] = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
213
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase_ : int = "scheduler_config.json" class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = 1 __lowerCAmelCase : str = 2 __lowerCAmelCase : Any = 3 __lowerCAmelCase : Tuple = 4 __lowerCAmelCase : Any = 5 __lowerCAmelCase : int = 6 __lowerCAmelCase : int = 7 __lowerCAmelCase : Union[str, Any] = 8 __lowerCAmelCase : Union[str, Any] = 9 __lowerCAmelCase : Union[str, Any] = 10 __lowerCAmelCase : Any = 11 __lowerCAmelCase : int = 12 __lowerCAmelCase : str = 13 __lowerCAmelCase : Optional[int] = 14 @dataclass class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : torch.FloatTensor class a : '''simple docstring''' __lowerCAmelCase : Optional[Any] = SCHEDULER_CONFIG_NAME __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Union[str, Any] = True @classmethod def __UpperCamelCase ( cls , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=False , **lowerCamelCase_ , ) -> List[str]: _a : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase_ , subfolder=lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , return_commit_hash=lowerCamelCase_ , **lowerCamelCase_ , ) return cls.from_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = False , **lowerCamelCase_ ) -> str: self.save_config(save_directory=lowerCamelCase_ , push_to_hub=lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCamelCase ( self ) -> Union[str, Any]: return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> Any: _a : List[Any] = list(set([cls.__name__] + cls._compatibles ) ) _a : List[Any] = importlib.import_module(__name__.split('.' )[0] ) _a : Tuple = [ getattr(lowerCamelCase_ , lowerCamelCase_ ) for c in compatible_classes_str if hasattr(lowerCamelCase_ , lowerCamelCase_ ) ] return compatible_classes
717
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def UpperCAmelCase_ ( A=None , A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=A ) @dataclass class a : '''simple docstring''' __lowerCAmelCase : str = field( metadata={"""help""": """The csv file to plot."""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) __lowerCAmelCase : Optional[List[str]] = list_field( default=snake_case__ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def UpperCAmelCase_ ( A ): '''simple docstring''' try: int(A ) return True except ValueError: return False def UpperCAmelCase_ ( A ): '''simple docstring''' try: float(A ) return True except ValueError: return False class a : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Any: _a : Any = args _a : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _a : Optional[int] = csv.DictReader(lowerCamelCase_ ) for row in reader: _a : List[str] = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _a : List[Any] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _a : Any = float(row['result'] ) def __UpperCamelCase ( self ) -> Any: _a , _a : Optional[Any] = plt.subplots() _a : Any = 'Time usage' if self.args.is_time else 'Memory usage' _a : List[str] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _a : Tuple = sorted(set(self.result_dict[model_name]['bsz'] ) ) _a : str = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _a : Union[str, Any] = self.result_dict[model_name]['result'] ((_a) , (_a)) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _a : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _a : List[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase_ , ) else: _a : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_a) , (_a)) : int = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _a : Union[str, Any] = np.asarray(lowerCamelCase_ , lowerCamelCase_ )[: len(lowerCamelCase_ )] plt.scatter( lowerCamelCase_ , lowerCamelCase_ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(lowerCamelCase_ , lowerCamelCase_ , '--' ) title_str += F''' {label_model_name} vs.''' _a : Optional[int] = title_str[:-4] _a : Optional[Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase_ ) plt.xlabel(lowerCamelCase_ ) plt.ylabel(lowerCamelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def UpperCAmelCase_ ( ): '''simple docstring''' _a : Tuple = HfArgumentParser(A ) _a : Union[str, Any] = parser.parse_args_into_dataclasses()[0] _a : Any = Plot(args=A ) plot.plot() if __name__ == "__main__": main()
424
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : Optional[Any] , __magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = 13 lowerCAmelCase__ = 7 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = 99 lowerCAmelCase__ = 32 lowerCAmelCase__ = 2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 37 lowerCAmelCase__ = "gelu" lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 512 lowerCAmelCase__ = 16 lowerCAmelCase__ = 2 lowerCAmelCase__ = 0.02 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 lowerCAmelCase__ = None def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModel(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = TFDistilBertForMaskedLM(config=__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertForQuestionAnswering(config=__magic_name__ ) lowerCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFDistilBertForSequenceClassification(__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFDistilBertForMultipleChoice(__magic_name__ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFDistilBertForTokenClassification(__magic_name__ ) lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ((lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__)) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case__ :Dict = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case__ :List[str] = False snake_case__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , dim=37 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase__ = TFDistilBertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class A ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ = model(__magic_name__ )[0] lowerCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __magic_name__ ) lowerCAmelCase__ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-4 )
48
lowerCamelCase : List[Any] = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) lowerCamelCase : Union[str, Any] = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): __lowerCAmelCase = from_type.lower().strip("s" ) __lowerCAmelCase = to_type.lower().strip("s" ) __lowerCAmelCase = UNIT_SYMBOL.get(__snake_case , __snake_case ) __lowerCAmelCase = UNIT_SYMBOL.get(__snake_case , __snake_case ) if from_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(__snake_case )}""" ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: __lowerCAmelCase = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(__snake_case )}""" ) raise ValueError(__snake_case ) __lowerCAmelCase = METRIC_CONVERSION[from_sanitized] __lowerCAmelCase = METRIC_CONVERSION[to_sanitized] __lowerCAmelCase = 1 if from_exponent > to_exponent: __lowerCAmelCase = from_exponent - to_exponent else: __lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(10 , __snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
367
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : str = logging.get_logger(__name__) def a_ ( lowerCamelCase ): UpperCAmelCase__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) UpperCAmelCase__ = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , A_ ) if matches: UpperCAmelCase__ = float(matches[1] ) UpperCAmelCase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase__ = 1_0_0_1 UpperCAmelCase__ = 'imagenet-1k-id2label.json' UpperCAmelCase__ = 'huggingface/label-files' UpperCAmelCase__ = json.load(open(hf_hub_download(A_ , A_ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(A_ ) + 1: v for k, v in idalabel.items()} UpperCAmelCase__ = 'background' UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def a_ ( ): UpperCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): UpperCAmelCase__ = get_mobilenet_va_config(A_ ) # Load 🤗 model UpperCAmelCase__ = MobileNetVaForImageClassification(A_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A_ , A_ , A_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase__ = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 3_2} , ) UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase__ = model(**A_ ) UpperCAmelCase__ = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCAmelCase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if push_to_hub: print('Pushing to the hub...' ) UpperCAmelCase__ = 'google/' + model_name image_processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": lowerCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
710
"""simple docstring""" lowerCAmelCase__ : Tuple = range(2, 20 + 1) lowerCAmelCase__ : Optional[Any] = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase__ : dict[int, dict[int, list[list[int]]]] = {} def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) UpperCAmelCase__ = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 UpperCAmelCase__ = n - i UpperCAmelCase__ = memo.get(lowerCamelCase ) if sub_memo is not None: UpperCAmelCase__ = sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over UpperCAmelCase__ = -1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ = _k break if max_jump >= 0: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ = diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): UpperCAmelCase__ , UpperCAmelCase__ = divmod(lowerCamelCase , 1_0 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: UpperCAmelCase__ = [] else: UpperCAmelCase__ = {c: []} UpperCAmelCase__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ , UpperCAmelCase__ = next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ , UpperCAmelCase__ = compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped UpperCAmelCase__ = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ = 0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ = i UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ = ds_c + ds_b diff += addend UpperCAmelCase__ = 0 for j in range(lowerCamelCase ): UpperCAmelCase__ = a_i[j] + addend UpperCAmelCase__ , UpperCAmelCase__ = divmod(lowerCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): UpperCAmelCase__ = digits[j] + addend if s >= 1_0: UpperCAmelCase__ , UpperCAmelCase__ = divmod(lowerCamelCase , 1_0 ) UpperCAmelCase__ = addend // 1_0 + quotient else: UpperCAmelCase__ = s UpperCAmelCase__ = addend // 1_0 if addend == 0: break while addend > 0: UpperCAmelCase__ , UpperCAmelCase__ = divmod(lowerCamelCase , 1_0 ) digits.append(lowerCamelCase ) def a_ ( lowerCamelCase = 1_0**1_5 ): UpperCAmelCase__ = [1] UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 while True: UpperCAmelCase__ , UpperCAmelCase__ = next_term(lowerCamelCase , 2_0 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ = 0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
632
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = XLMRobertaTokenizer UpperCamelCase : Dict = XLMRobertaTokenizerFast UpperCamelCase : str = True UpperCamelCase : List[Any] = True def __A ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = """<pad>""" lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 10_02 ) def __A ( self ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = XLMRobertaTokenizer(A , keep_accents=A ) lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __A ( self ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def __A ( self ) -> Dict: '''simple docstring''' return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) lowerCamelCase = XLMRobertaTokenizer(f.name , keep_accents=A ) lowerCamelCase = pickle.dumps(A ) pickle.loads(A ) def __A ( self ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = """I was born in 92000, and this is falsé.""" lowerCamelCase = tokenizer.tokenize(A ) lowerCamelCase = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase = tokenizer.encode(A , add_special_tokens=A ) lowerCamelCase = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = tokenizer.encode(A ) lowerCamelCase = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = """Hello World!""" lowerCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
457
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 1 , A = None , A = 50 , A = "pil" , A = True , **A , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowerCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) lowerCamelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase = self.unet(A , A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase = self.scheduler.step(A , A , A ).prev_sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A ), "This is a local test"
457
1
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _UpperCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
703
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
494
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase: """simple docstring""" a : Optional[int] =XGLMConfig a : str ={} a : Any ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_4 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=0.0_2 , ): UpperCamelCase_: Dict = parent UpperCamelCase_: str = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Optional[Any] = use_input_mask UpperCamelCase_: Any = use_labels UpperCamelCase_: List[Any] = vocab_size UpperCamelCase_: Optional[Any] = d_model UpperCamelCase_: List[str] = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: List[str] = ffn_dim UpperCamelCase_: str = activation_function UpperCamelCase_: Union[str, Any] = activation_dropout UpperCamelCase_: str = attention_dropout UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: str = None UpperCamelCase_: List[Any] = 0 UpperCamelCase_: str = 2 UpperCamelCase_: Tuple = 1 def _a ( self ): return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def _a ( self ): UpperCamelCase_: List[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase_: Dict = None if self.use_input_mask: UpperCamelCase_: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Optional[int] = self.get_config() UpperCamelCase_: Union[str, Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowerCamelCase , ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): List[str] = config_and_inputs UpperCamelCase_: Any = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a : int =(TFXGLMForCausalLM,) if is_tf_available() else () a : str =( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) a : Optional[int] =False a : Any =False a : Optional[int] =False def _a ( self ): UpperCamelCase_: Dict = TFXGLMModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase , n_embd=3_7 ) def _a ( self ): self.config_tester.run_common_tests() @slow def _a ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Union[str, Any] = TFXGLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def _a ( self ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self , _lowerCamelCase=True ): UpperCamelCase_: Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: int = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase_: List[Any] = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase_: int = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: str = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase_: str = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase_: int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase_: str = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase , seed=[7, 0] ) UpperCamelCase_: Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Dict = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: List[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: List[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: Optional[int] = 'left' # use different length sentences to test batching UpperCamelCase_: str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase_: List[str] = tokenizer(_lowerCamelCase , return_tensors='tf' , padding=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inputs['input_ids'] UpperCamelCase_: Optional[Any] = model.generate(input_ids=_lowerCamelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase_: Dict = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase_: int = model.generate(input_ids=_lowerCamelCase , max_new_tokens=1_2 ) UpperCamelCase_: Tuple = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase_: str = model.generate(input_ids=_lowerCamelCase , max_new_tokens=1_2 ) UpperCamelCase_: Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: int = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Dict = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [non_padded_sentence, padded_sentence] )
57
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings( A , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class UpperCamelCase_ ( A ): """simple docstring""" def __A ( self : Any , _lowerCamelCase : GenericTensor ) -> np.ndarray: if self.framework == "tf": __magic_name__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __magic_name__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCamelCase ) else: raise ValueError("Unsupported framework" ) return masked_index def __A ( self : str , _lowerCamelCase : GenericTensor ) -> np.ndarray: __magic_name__ = self.get_masked_index(_lowerCamelCase ) __magic_name__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def __A ( self : int , _lowerCamelCase : GenericTensor ) -> Any: if isinstance(_lowerCamelCase , _lowerCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCamelCase ) def __A ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Any=None , **_lowerCamelCase : List[str] ) -> Dict[str, GenericTensor]: if return_tensors is None: __magic_name__ = self.framework __magic_name__ = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) self.ensure_exactly_one_mask_token(_lowerCamelCase ) return model_inputs def __A ( self : List[str] , _lowerCamelCase : int ) -> List[Any]: __magic_name__ = self.model(**_lowerCamelCase ) __magic_name__ = model_inputs["input_ids"] return model_outputs def __A ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : Dict=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __magic_name__ = target_ids.shape[0] __magic_name__ = model_outputs["input_ids"][0] __magic_name__ = model_outputs["logits"] if self.framework == "tf": __magic_name__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __magic_name__ = outputs.numpy() __magic_name__ = outputs[0, masked_index, :] __magic_name__ = stable_softmax(_lowerCamelCase , axis=-1 ) if target_ids is not None: __magic_name__ = tf.gather_nd(tf.squeeze(_lowerCamelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) __magic_name__ = tf.expand_dims(_lowerCamelCase , 0 ) __magic_name__ = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) __magic_name__ , __magic_name__ = topk.values.numpy(), topk.indices.numpy() else: __magic_name__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __magic_name__ = outputs[0, masked_index, :] __magic_name__ = logits.softmax(dim=-1 ) if target_ids is not None: __magic_name__ = probs[..., target_ids] __magic_name__ , __magic_name__ = probs.topk(_lowerCamelCase ) __magic_name__ = [] __magic_name__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __magic_name__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __magic_name__ = input_ids.numpy().copy() if target_ids is not None: __magic_name__ = target_ids[p].tolist() __magic_name__ = p # Filter padding out: __magic_name__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __magic_name__ = self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __magic_name__ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(_lowerCamelCase ) result.append(_lowerCamelCase ) if single_mask: return result[0] return result def __A ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any]=None ) -> List[str]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __magic_name__ = [targets] try: __magic_name__ = self.tokenizer.get_vocab() except Exception: __magic_name__ = {} __magic_name__ = [] for target in targets: __magic_name__ = vocab.get(_lowerCamelCase , _lowerCamelCase ) if id_ is None: __magic_name__ = self.tokenizer( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , max_length=1 , truncation=_lowerCamelCase , )["input_ids"] if len(_lowerCamelCase ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' "We cannot replace it with anything meaningful, ignoring it" ) continue __magic_name__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __magic_name__ = list(set(_lowerCamelCase ) ) if len(_lowerCamelCase ) == 0: raise ValueError("At least one target must be provided when passed." ) __magic_name__ = np.array(_lowerCamelCase ) return target_ids def __A ( self : Optional[Any] , _lowerCamelCase : Any=None , _lowerCamelCase : int=None ) -> Tuple: __magic_name__ = {} if targets is not None: __magic_name__ = self.get_target_ids(_lowerCamelCase , _lowerCamelCase ) __magic_name__ = target_ids if top_k is not None: __magic_name__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : int , _lowerCamelCase : Any , *_lowerCamelCase : str , **_lowerCamelCase : int ) -> Optional[int]: __magic_name__ = super().__call__(_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs
664
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _snake_case ( A_ : Tuple ): """simple docstring""" a_ , a_ : Dict = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A_ ): for j in range(A_ ): a_ : Dict = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __snake_case: Optional[Any] = imread("image_data/lena.jpg", 1) # convert to its negative __snake_case: Any = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
460
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __snake_case: Dict = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): '''simple docstring''' super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) a_ : Tuple = eval_examples a_ : Optional[Any] = post_process_function a_ : List[str] = quant_trainer_args a_ : List[str] = 1_28 # default number of calibration samples def _lowerCAmelCase ( self , lowerCAmelCase_=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a_ : str = calib_dataset if calib_dataset is not None else self.calib_dataset a_ : Dict = self._remove_unused_columns(lowerCAmelCase_ , description="""Calibration""" ) return DataLoader( lowerCAmelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase_ , ) def _lowerCAmelCase ( self , lowerCAmelCase_=None ): '''simple docstring''' a_ : Union[str, Any] = self.train_dataset if calib_dataset is None else calib_dataset a_ : int = self.get_calib_dataloader(lowerCAmelCase_ ) a_ : Dict = self.model quant_trainer.configure_model(lowerCAmelCase_ , self.quant_trainer_args , calib=lowerCAmelCase_ ) model.eval() quant_trainer.enable_calibration(lowerCAmelCase_ ) logger.info("""***** Running calibration *****""" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(lowerCAmelCase_ ): # Prediction step a_ , a_ , a_ : Optional[int] = self.prediction_step(lowerCAmelCase_ , lowerCAmelCase_ , prediction_loss_only=lowerCAmelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase_ , self.quant_trainer_args ) a_ : Optional[int] = model def _lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_ = "eval" ): '''simple docstring''' a_ : str = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(lowerCAmelCase_ ) a_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : List[str] = self.compute_metrics a_ : Tuple = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ : List[str] = eval_loop( lowerCAmelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase_ , ) finally: a_ : int = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a_ : Optional[Any] = self.post_process_function(lowerCAmelCase_ , lowerCAmelCase_ , output.predictions ) a_ : Tuple = self.compute_metrics(lowerCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): a_ : Optional[int] = metrics.pop(lowerCAmelCase_ ) self.log(lowerCAmelCase_ ) else: a_ : Any = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase_ ) return metrics def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_ = "test" ): '''simple docstring''' a_ : List[Any] = self.get_test_dataloader(lowerCAmelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. a_ : Any = self.compute_metrics a_ : Dict = None a_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ : Dict = eval_loop( lowerCAmelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase_ , ) finally: a_ : int = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a_ : Tuple = self.post_process_function(lowerCAmelCase_ , lowerCAmelCase_ , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(lowerCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): a_ : Tuple = metrics.pop(lowerCAmelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_="./" ): '''simple docstring''' a_ : Any = self.eval_dataset a_ : Tuple = self.get_eval_dataloader(lowerCAmelCase_ ) a_ : List[str] = next(iter(lowerCAmelCase_ ) ) # saving device - to make it consistent a_ : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a_ : Optional[int] = tuple(v.to(lowerCAmelCase_ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a_ : List[str] = True a_ : str = self.model.to(lowerCAmelCase_ ) model.eval() model.float() a_ : Optional[int] = model.module if hasattr(lowerCAmelCase_ , """module""" ) else model quant_trainer.configure_model(lowerCAmelCase_ , self.quant_trainer_args ) a_ : Union[str, Any] = os.path.join(lowerCAmelCase_ , """model.onnx""" ) logger.info(f'''exporting model to {output_model_file}''' ) a_ : Dict = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , export_params=lowerCAmelCase_ , opset_version=13 , do_constant_folding=lowerCAmelCase_ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCAmelCase_ , ) logger.info("""onnx export finished""" )
460
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "audio-spectrogram-transformer" def __init__( self : List[Any] ,lowercase_ : int=7_6_8 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : Tuple=1_2 ,lowercase_ : Union[str, Any]=3_0_7_2 ,lowercase_ : Tuple="gelu" ,lowercase_ : Optional[Any]=0.0 ,lowercase_ : List[Any]=0.0 ,lowercase_ : Optional[int]=0.02 ,lowercase_ : str=1E-12 ,lowercase_ : Tuple=1_6 ,lowercase_ : Optional[Any]=True ,lowercase_ : Dict=1_0 ,lowercase_ : int=1_0 ,lowercase_ : Any=1_0_2_4 ,lowercase_ : str=1_2_8 ,**lowercase_ : List[str] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : List[str] = patch_size lowerCAmelCase__ : Tuple = qkv_bias lowerCAmelCase__ : Dict = frequency_stride lowerCAmelCase__ : List[str] = time_stride lowerCAmelCase__ : str = max_length lowerCAmelCase__ : str = num_mel_bins
450
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __UpperCamelCase : Any = None __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __UpperCamelCase : Any = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } __UpperCamelCase : Union[str, Any] = '''▁''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self : Union[str, Any] ,lowercase_ : List[str]=None ,lowercase_ : Union[str, Any]=None ,lowercase_ : str=True ,lowercase_ : Optional[Any]=True ,lowercase_ : str=False ,lowercase_ : Tuple="[CLS]" ,lowercase_ : Optional[int]="[SEP]" ,lowercase_ : Optional[Any]="<unk>" ,lowercase_ : List[Any]="[SEP]" ,lowercase_ : Optional[int]="<pad>" ,lowercase_ : List[Any]="[CLS]" ,lowercase_ : Optional[int]="[MASK]" ,**lowercase_ : Optional[int] ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : Optional[Any] = ( AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ,normalized=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else mask_token ) super().__init__( lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,remove_space=lowercase_ ,keep_accents=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : List[Any] = do_lower_case lowerCAmelCase__ : str = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : Dict = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def __lowerCAmelCase ( self : Dict ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : List[Any] = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file ,lowercase_ ) return (out_vocab_file,)
450
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'gptsan-japanese' lowerCamelCase = [ 'past_key_values', ] lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str],lowercase_ : str=3_6_0_0_0,lowercase_ : Any=1_2_8_0,lowercase_ : int=1_0_2_4,lowercase_ : str=8_1_9_2,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Optional[int]=1_2_8,lowercase_ : Optional[Any]=1_0,lowercase_ : int=0,lowercase_ : int=1_6,lowercase_ : Any=1_6,lowercase_ : Optional[Any]=1_2_8,lowercase_ : Any=0.0,lowercase_ : Any=1E-5,lowercase_ : Tuple=False,lowercase_ : Dict=0.0,lowercase_ : Union[str, Any]="float32",lowercase_ : Union[str, Any]=False,lowercase_ : List[Any]=False,lowercase_ : Union[str, Any]=False,lowercase_ : str=0.002,lowercase_ : Optional[Any]=False,lowercase_ : str=True,lowercase_ : Dict=3_5_9_9_8,lowercase_ : Any=3_5_9_9_5,lowercase_ : Union[str, Any]=3_5_9_9_9,**lowercase_ : Optional[Any],)-> Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = d_ff A__ = d_ext A__ = d_spout A__ = num_switch_layers A__ = num_ext_layers A__ = num_switch_layers + num_ext_layers A__ = num_heads A__ = num_experts A__ = expert_capacity A__ = dropout_rate A__ = layer_norm_epsilon A__ = router_bias A__ = router_jitter_noise A__ = router_dtype A__ = router_ignore_padding_tokens A__ = output_hidden_states A__ = output_attentions A__ = initializer_factor A__ = output_router_logits A__ = use_cache super().__init__( separator_token_id=lowercase_,pad_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_,)
586
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ReformerTokenizer lowerCamelCase = ReformerTokenizerFast lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<unk>' ) self.assertEqual(vocab_keys[1],'<s>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(lowercase_ ),1_0_0_0 ) def snake_case__ ( self : Any )-> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : str,lowercase_ : int=1_5 )-> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) @cached_property def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' A__ = 'Hello World!' A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @slow def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' A__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A__ = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A__ = ' '.join(lowercase_ ) A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['input_ids'].shape A__ = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
586
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _UpperCamelCase ( __UpperCamelCase = 1_00_00_00 ,__UpperCamelCase = 10 ) -> int: lowerCamelCase_ = defaultdict(__a ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: lowerCamelCase_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__a ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
42
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCAmelCase_ : int = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
512
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self : Optional[int] ,a__ : Optional[Any] ,a__ : Union[str, Any]=13 ,a__ : Any=30 ,a__ : List[str]=2 ,a__ : str=3 ,a__ : Optional[int]=True ,a__ : Optional[Any]=True ,a__ : Any=32 ,a__ : str=5 ,a__ : str=4 ,a__ : str=37 ,a__ : Union[str, Any]="gelu" ,a__ : Tuple=0.1 ,a__ : Tuple=0.1 ,a__ : Union[str, Any]=10 ,a__ : Optional[int]=0.02 ,a__ : Tuple=3 ,a__ : Optional[int]=None ,a__ : Optional[Any]=2 ,) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Any = parent _lowerCAmelCase:Optional[int] = batch_size _lowerCAmelCase:str = image_size _lowerCAmelCase:Any = patch_size _lowerCAmelCase:Tuple = num_channels _lowerCAmelCase:Dict = is_training _lowerCAmelCase:int = use_labels _lowerCAmelCase:Optional[Any] = hidden_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:Tuple = num_attention_heads _lowerCAmelCase:int = intermediate_size _lowerCAmelCase:Tuple = hidden_act _lowerCAmelCase:Dict = hidden_dropout_prob _lowerCAmelCase:Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase:List[Any] = type_sequence_label_size _lowerCAmelCase:Dict = initializer_range _lowerCAmelCase:Tuple = scope _lowerCAmelCase:Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCAmelCase:int = (image_size // patch_size) ** 2 _lowerCAmelCase:Optional[Any] = num_patches + 2 def __UpperCamelCase ( self : Dict) -> Any: """simple docstring""" _lowerCAmelCase:int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase:str = None if self.use_labels: _lowerCAmelCase:Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size) _lowerCAmelCase:Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=a__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __UpperCamelCase ( self : Union[str, Any] ,a__ : Any ,a__ : Tuple ,a__ : Optional[int]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = DeiTModel(config=a__) model.to(a__) model.eval() _lowerCAmelCase:List[Any] = model(a__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Tuple ,a__ : Optional[Any] ,a__ : int ,a__ : str) -> Tuple: """simple docstring""" _lowerCAmelCase:str = DeiTForMaskedImageModeling(config=a__) model.to(a__) model.eval() _lowerCAmelCase:int = model(a__) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _lowerCAmelCase:Dict = 1 _lowerCAmelCase:Optional[Any] = DeiTForMaskedImageModeling(a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase:Tuple = model(a__) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size)) def __UpperCamelCase ( self : Optional[int] ,a__ : Any ,a__ : Any ,a__ : str) -> Dict: """simple docstring""" _lowerCAmelCase:Any = self.type_sequence_label_size _lowerCAmelCase:List[str] = DeiTForImageClassification(a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[int] = model(a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase:Any = 1 _lowerCAmelCase:Tuple = DeiTForImageClassification(a__) model.to(a__) model.eval() _lowerCAmelCase:Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase:Dict = model(a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) def __UpperCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" _lowerCAmelCase:Any = self.prepare_config_and_inputs() ( _lowerCAmelCase ):Union[str, Any] = config_and_inputs _lowerCAmelCase:str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def __UpperCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Optional[Any] = DeiTModelTester(self) _lowerCAmelCase:Optional[Any] = ConfigTester(self ,config_class=a__ ,has_text_modality=a__ ,hidden_size=37) def __UpperCamelCase ( self : Dict) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''') def __UpperCamelCase ( self : int) -> Any: """simple docstring""" pass def __UpperCamelCase ( self : str) -> List[Any]: """simple docstring""" _lowerCAmelCase:Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase:Optional[int] = model_class(a__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) _lowerCAmelCase:Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ ,nn.Linear)) def __UpperCamelCase ( self : Optional[Any]) -> int: """simple docstring""" _lowerCAmelCase:Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase:Optional[int] = model_class(a__) _lowerCAmelCase:List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase:List[Any] = [*signature.parameters.keys()] _lowerCAmelCase:List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,a__) def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def __UpperCamelCase ( self : str) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__) def __UpperCamelCase ( self : List[Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__) def __UpperCamelCase ( self : Any ,a__ : Union[str, Any] ,a__ : Optional[Any] ,a__ : int=False) -> List[str]: """simple docstring""" _lowerCAmelCase:List[str] = super()._prepare_for_class(a__ ,a__ ,return_labels=a__) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self : Dict) -> Any: """simple docstring""" if not self.model_tester.is_training: return _lowerCAmelCase:int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:Tuple = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a__) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowerCAmelCase:Tuple = model_class(a__) model.to(a__) model.train() _lowerCAmelCase:Tuple = self._prepare_for_class(a__ ,a__ ,return_labels=a__) _lowerCAmelCase:Optional[int] = model(**a__).loss loss.backward() def __UpperCamelCase ( self : Any) -> List[str]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase:Dict = False _lowerCAmelCase:Any = True for model_class in self.all_model_classes: if model_class in get_values(a__) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowerCAmelCase:Union[str, Any] = model_class(a__) model.gradient_checkpointing_enable() model.to(a__) model.train() _lowerCAmelCase:Tuple = self._prepare_for_class(a__ ,a__ ,return_labels=a__) _lowerCAmelCase:Dict = model(**a__).loss loss.backward() def __UpperCamelCase ( self : List[Any]) -> str: """simple docstring""" _lowerCAmelCase:Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:Any = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a__), *get_values(a__), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): _lowerCAmelCase:Tuple = problem_type['''title'''] _lowerCAmelCase:int = problem_type['''num_labels'''] _lowerCAmelCase:str = model_class(a__) model.to(a__) model.train() _lowerCAmelCase:List[Any] = self._prepare_for_class(a__ ,a__ ,return_labels=a__) if problem_type["num_labels"] > 1: _lowerCAmelCase:Tuple = inputs['''labels'''].unsqueeze(1).repeat(1 ,problem_type['''num_labels''']) _lowerCAmelCase:Tuple = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a__) as warning_list: _lowerCAmelCase:List[Any] = model(**a__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def __UpperCamelCase ( self : Union[str, Any]) -> int: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:Union[str, Any] = DeiTModel.from_pretrained(a__) self.assertIsNotNone(a__) def UpperCAmelCase ( ): _lowerCAmelCase:Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''') if is_vision_available() else None ) @slow def __UpperCamelCase ( self : int) -> int: """simple docstring""" _lowerCAmelCase:Tuple = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''').to( a__) _lowerCAmelCase:Optional[Any] = self.default_image_processor _lowerCAmelCase:Union[str, Any] = prepare_img() _lowerCAmelCase:Optional[int] = image_processor(images=a__ ,return_tensors='''pt''').to(a__) # forward pass with torch.no_grad(): _lowerCAmelCase:Dict = model(**a__) # verify the logits _lowerCAmelCase:Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape ,a__) _lowerCAmelCase:List[str] = torch.tensor([-1.0266, 0.1912, -1.2861]).to(a__) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a__ ,atol=1E-4)) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self : str) -> List[Any]: """simple docstring""" _lowerCAmelCase:int = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' ,torch_dtype=torch.floataa ,device_map='''auto''') _lowerCAmelCase:Union[str, Any] = self.default_image_processor _lowerCAmelCase:Any = prepare_img() _lowerCAmelCase:Optional[Any] = image_processor(images=a__ ,return_tensors='''pt''') _lowerCAmelCase:List[str] = inputs.pixel_values.to(a__) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowerCAmelCase:Optional[int] = model(a__)
700
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class a__ ( UpperCamelCase_ ): def __init__( self : int ,*a__ : Optional[Any] ,**a__ : Union[str, Any]) -> Tuple: """simple docstring""" super().__init__(*a__ ,**a__) requires_backends(self ,'''vision''') self.check_model_type(a__) def __call__( self : str ,a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**a__ : List[str]) -> Optional[int]: """simple docstring""" return super().__call__(a__ ,**a__) def __UpperCamelCase ( self : Union[str, Any] ,**a__ : List[Any]) -> Any: """simple docstring""" return {}, {}, {} def __UpperCamelCase ( self : Tuple ,a__ : Optional[int]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:List[str] = load_image(a__) _lowerCAmelCase:int = image.size _lowerCAmelCase:int = self.image_processor(images=a__ ,return_tensors=self.framework) return model_inputs def __UpperCamelCase ( self : Dict ,a__ : List[str]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Any = self.model(**a__) return model_outputs def __UpperCamelCase ( self : List[Any] ,a__ : Dict) -> Any: """simple docstring""" _lowerCAmelCase:Optional[int] = model_outputs.predicted_depth _lowerCAmelCase:Union[str, Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=a__) _lowerCAmelCase:List[str] = prediction.squeeze().cpu().numpy() _lowerCAmelCase:Any = (output * 255 / np.max(a__)).astype('''uint8''') _lowerCAmelCase:Dict = Image.fromarray(a__) _lowerCAmelCase:Tuple = {} _lowerCAmelCase:Optional[int] = predicted_depth _lowerCAmelCase:str = depth return output_dict
439
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=1_3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : str=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Any=0.9 , lowerCAmelCase_ : Union[str, Any]=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = tubelet_size __lowerCAmelCase = num_frames __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = mask_ratio __lowerCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowerCAmelCase = int(mask_ratio * self.seq_length ) def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[Any] ) -> List[str]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ) -> Any: __lowerCAmelCase = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> int: __lowerCAmelCase = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase = torch.ones((self.num_masks,) ) __lowerCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowerCAmelCase = mask.expand(self.batch_size , -1 ).bool() __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches __lowerCAmelCase = mask.sum().item() __lowerCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a_ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = VideoMAEModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=False ) -> Any: __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase = torch.ones((self.model_tester.num_masks,) ) __lowerCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowerCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() __lowerCAmelCase = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> str: pass def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def lowercase ( self : Any ) -> Tuple: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Dict: if not self.has_attentions: pass else: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowerCAmelCase = len(lowerCAmelCase_ ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self : List[Any] ) -> str: def check_hidden_states_output(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> Optional[Any]: pass def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) __lowerCAmelCase = np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase ( self : str ) -> int: __lowerCAmelCase = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask __lowerCAmelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __lowerCAmelCase = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowerCAmelCase = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowerCAmelCase = torch.tensor([0.51_42] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor(torch.tensor([0.64_69] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
53
'''simple docstring''' import operator def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : bool = False , __lowerCAmelCase : list | None = None ): lowerCamelCase__ = operator.lt if reverse else operator.gt lowerCamelCase__ = solution or [] if not arr: return solution lowerCamelCase__ = [arr.pop(0 )] for i, item in enumerate(__lowerCAmelCase ): if _operator(__lowerCAmelCase , sublist[-1] ): sublist.append(__lowerCAmelCase ) arr.pop(__lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(__lowerCAmelCase ) else: while sublist: lowerCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(__lowerCAmelCase ): if not _operator(__lowerCAmelCase , __lowerCAmelCase ): solution.insert(__lowerCAmelCase , __lowerCAmelCase ) break else: solution.append(__lowerCAmelCase ) strand_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Any = VQModel _snake_case : List[Any] = 'sample' @property def A ( self : List[str] , A_ : str=(32, 32) )-> int: __UpperCamelCase = 4 __UpperCamelCase = 3 __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) return {"sample": image} @property def A ( self : str )-> Dict: return (3, 32, 32) @property def A ( self : str )-> str: return (3, 32, 32) def A ( self : Optional[Any] )-> List[Any]: __UpperCamelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } __UpperCamelCase = self.dummy_input return init_dict, inputs_dict def A ( self : Union[str, Any] )-> Dict: pass def A ( self : Optional[Any] )-> str: pass def A ( self : int )-> Dict: __UpperCamelCase , __UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(A_ ) __UpperCamelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A ( self : List[Any] )-> Union[str, Any]: __UpperCamelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(A_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __UpperCamelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __UpperCamelCase = image.to(A_ ) with torch.no_grad(): __UpperCamelCase = model(A_ ).sample __UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCamelCase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) )
228
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
228
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __magic_name__ = logging.getLogger(__name__) __magic_name__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __magic_name__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : lowercase_ : Union[str, Any] = field( default=__snake_case , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) lowercase_ : Tuple = field( default=__snake_case , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__snake_case )} , ) lowercase_ : List[str] = field( default=__snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[Any] = field( default=__snake_case , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase_ : Union[str, Any] = field( default=__snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _lowerCAmelCase : lowercase_ : List[str] = field( default=__snake_case , metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase_ : str = field( default=__snake_case , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) lowercase_ : Dict = field( default=__snake_case , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowercase_ : Dict = field( default=__snake_case , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) lowercase_ : List[Any] = field( default=__snake_case , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) lowercase_ : Union[str, Any] = field( default=__snake_case , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) lowercase_ : Dict = field( default=__snake_case , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) lowercase_ : Optional[int] = field(default=__snake_case , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) lowercase_ : Optional[Any] = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowercase_ : Tuple = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) lowercase_ : Optional[Any] = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) lowercase_ : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) lowercase_ : Optional[int] = field( default=__snake_case , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): """simple docstring""" def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE_ , ) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowerCamelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) _UpperCAmelCase = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE_ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: _UpperCAmelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCAmelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCAmelCase = ( get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCAmelCase = ( get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , evaluate=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCAmelCase = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCAmelCase = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE_ , mlm_probability=data_args.mlm_probability ) else: _UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , prediction_loss_only=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _UpperCAmelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output["eval_loss"] ) _UpperCAmelCase = {"perplexity": perplexity} _UpperCAmelCase = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE_ ) return results def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
657
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertIsInstance(__magic_name__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__magic_name__ ) , 0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) # Check that tokenizer_type ≠ model_type UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , config=__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase_ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__magic_name__ , """vocab.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""bert""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__magic_name__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__magic_name__ , """merges.txt""" ) ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , tokenizer_type="""gpt2""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with pytest.raises(__magic_name__ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __magic_name__ ) else: self.assertEqual(tokenizer.do_lower_case , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase_ ( self : Dict ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __magic_name__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCamelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TOKENIZER_MAPPING.values() UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : Any ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__magic_name__ ) , __magic_name__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __magic_name__ ) @require_tokenizers def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__magic_name__ ) UpperCamelCase = """Hello, world. How are you?""" UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCamelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__magic_name__ ) UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__magic_name__ ) , __magic_name__ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = get_tokenizer_config("""bert-base-cased""" ) UpperCamelCase = config.pop("""_commit_hash""" , __magic_name__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__magic_name__ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase = get_tokenizer_config(__magic_name__ ) self.assertDictEqual(__magic_name__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = get_tokenizer_config(__magic_name__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) UpperCamelCase = CustomTokenizer.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) # Can register in two steps AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __magic_name__ , slow_tokenizer_class=__magic_name__ , fast_tokenizer_class=__magic_name__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = BertTokenizerFast.from_pretrained(__magic_name__ ) bert_tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , use_fast=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__magic_name__ ): UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__magic_name__ ) UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" class UpperCAmelCase ( __snake_case ): lowercase = False class UpperCAmelCase ( __snake_case ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register("""custom""" , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) AutoTokenizer.register(__magic_name__ , fast_tokenizer_class=__magic_name__ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( __magic_name__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoTokenizer.from_pretrained(__magic_name__ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
386
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case : Optional[int] = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = size if size is not None else {"height": 224, "width": 224} __lowerCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} __lowerCAmelCase : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name="crop_size") __lowerCAmelCase : Union[str, Any] = do_resize __lowerCAmelCase : List[Any] = do_rescale __lowerCAmelCase : Any = do_normalize __lowerCAmelCase : Optional[Any] = do_center_crop __lowerCAmelCase : str = crop_size __lowerCAmelCase : List[str] = size __lowerCAmelCase : List[Any] = resample __lowerCAmelCase : Tuple = rescale_factor __lowerCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE) if "shortest_edge" in size: __lowerCAmelCase : List[Any] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=_SCREAMING_SNAKE_CASE) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __lowerCAmelCase : Optional[int] = (size["height"], size["width"]) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""") return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: float , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: int) -> np.ndarray: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: int , ) -> np.ndarray: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[float] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: Union[str, ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: Any , ) -> BatchFeature: """simple docstring""" __lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = resample if resample is not None else self.resample __lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std __lowerCAmelCase : Optional[int] = size if size is not None else self.size __lowerCAmelCase : Any = get_size_dict(_SCREAMING_SNAKE_CASE) if not is_batched(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = [images] if not valid_images(_SCREAMING_SNAKE_CASE): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. __lowerCAmelCase : Tuple = [to_numpy_array(_SCREAMING_SNAKE_CASE) for image in images] if do_resize: __lowerCAmelCase : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE) for image in images] if do_center_crop: __lowerCAmelCase : int = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE) for image in images] if do_rescale: __lowerCAmelCase : Dict = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE) for image in images] if do_normalize: __lowerCAmelCase : str = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : int = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE)
615
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Any=0) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = np.random.RandomState(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.get_dummy_inputs() __lowerCAmelCase : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : List[str] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = self.get_dummy_inputs() __lowerCAmelCase : str = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : str = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.get_dummy_inputs() __lowerCAmelCase : Tuple = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : Any = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = self.get_dummy_inputs() __lowerCAmelCase : Tuple = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : Tuple = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() __lowerCAmelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : List[Any] = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") __lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = self.get_dummy_inputs() __lowerCAmelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE).images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCAmelCase : Optional[Any] = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self: Any) -> str: """simple docstring""" __lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.get_dummy_inputs() __lowerCAmelCase : List[str] = 3 * [inputs["prompt"]] # forward __lowerCAmelCase : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] __lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() __lowerCAmelCase : Union[str, Any] = 3 * [inputs.pop("prompt")] __lowerCAmelCase : Union[str, Any] = pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , ) __lowerCAmelCase : Dict = text_inputs["input_ids"] __lowerCAmelCase : str = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] __lowerCAmelCase : Union[str, Any] = prompt_embeds # forward __lowerCAmelCase : Tuple = pipe(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" __lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = self.get_dummy_inputs() __lowerCAmelCase : Optional[int] = 3 * ["this is a negative prompt"] __lowerCAmelCase : Union[str, Any] = negative_prompt __lowerCAmelCase : Union[str, Any] = 3 * [inputs["prompt"]] # forward __lowerCAmelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] __lowerCAmelCase : Any = self.get_dummy_inputs() __lowerCAmelCase : List[Any] = 3 * [inputs.pop("prompt")] __lowerCAmelCase : Dict = [] for p in [prompt, negative_prompt]: __lowerCAmelCase : Optional[Any] = pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , ) __lowerCAmelCase : Any = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) __lowerCAmelCase , __lowerCAmelCase : List[str] = embeds # forward __lowerCAmelCase : int = pipe(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: List[str]) -> int: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = ort.SessionOptions() __lowerCAmelCase : List[str] = False return options def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger" np.random.seed(0) __lowerCAmelCase : str = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np") __lowerCAmelCase : Union[str, Any] = output.images __lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : Dict = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self: str) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx") __lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = "open neural network exchange" __lowerCAmelCase : Union[str, Any] = np.random.RandomState(0) __lowerCAmelCase : List[str] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type="np") __lowerCAmelCase : Tuple = output.images __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : Optional[Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> str: """simple docstring""" __lowerCAmelCase : Tuple = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx") __lowerCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = "open neural network exchange" __lowerCAmelCase : Any = np.random.RandomState(0) __lowerCAmelCase : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type="np") __lowerCAmelCase : Optional[Any] = output.images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase : List[Any] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = 0 def test_callback_fn(_SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: np.ndarray) -> None: __lowerCAmelCase : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowerCAmelCase : Optional[int] = latents[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowerCAmelCase : Tuple = latents[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 __lowerCAmelCase : Dict = False __lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = "Andromeda galaxy in a bottle" __lowerCAmelCase : Any = np.random.RandomState(0) pipe( prompt=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _SCREAMING_SNAKE_CASE ( self: str) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __lowerCAmelCase : Optional[Any] = pipe("example prompt" , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCAmelCase : Optional[Any] = pipe("example prompt" , num_inference_steps=2).images[0] assert image is not None
615
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class snake_case_ : '''simple docstring''' def __init__( self, A_, ) -> Dict: UpperCAmelCase__ =parent UpperCAmelCase__ =13 UpperCAmelCase__ =7 UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =99 UpperCAmelCase__ =32 UpperCAmelCase__ =2 UpperCAmelCase__ =4 UpperCAmelCase__ =37 UpperCAmelCase__ ="gelu" UpperCAmelCase__ =0.1 UpperCAmelCase__ =0.1 UpperCAmelCase__ =512 UpperCAmelCase__ =16 UpperCAmelCase__ =2 UpperCAmelCase__ =0.02 UpperCAmelCase__ =3 UpperCAmelCase__ =4 UpperCAmelCase__ =None def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase__ =None if self.use_input_mask: UpperCAmelCase__ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ =None UpperCAmelCase__ =None UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase__ =ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase__ =EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> Optional[Any]: ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) =self.prepare_config_and_inputs() UpperCAmelCase__ =True UpperCAmelCase__ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =TFEsmModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =[input_ids, input_mask] UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[Any]: UpperCAmelCase__ =True UpperCAmelCase__ =TFEsmModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ ={ "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =[input_ids, input_mask] UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE ) # Also check the case where encoder outputs are not passed UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_ ) -> int: UpperCAmelCase__ =TFEsmForMaskedLM(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =self.num_labels UpperCAmelCase__ =TFEsmForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) =config_and_inputs UpperCAmelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case_ ( a, a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =TFEsmModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=_SCREAMING_SNAKE_CASE, hidden_size=37 ) def __UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =TFEsmModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip("Protein models do not support embedding resizing." ) def __UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip("Protein models do not support embedding resizing." ) def __UpperCAmelCase ( self ) -> Dict: pass def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(_SCREAMING_SNAKE_CASE ) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCAmelCase__ =model.get_bias() assert isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) for k, v in name.items(): assert isinstance(_SCREAMING_SNAKE_CASE, tf.Variable ) else: UpperCAmelCase__ =model.get_output_embeddings() assert x is None UpperCAmelCase__ =model.get_bias() assert name is None @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase__ =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase__ =[1, 6, 33] self.assertEqual(list(output.numpy().shape ), _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase__ =tf.constant( [ [ [8.92_15_18, -10.58_9814, -6.4_67_13_07], [-6.3_96_71_56, -13.91_1377, -1.1_21_19_15], [-7.78_12_47, -13.95_1557, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2 ) ) @slow def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase__ =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase__ =model(_SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. UpperCAmelCase__ =tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
625
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __magic_name__ ( _UpperCamelCase ): def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" return 0.0 def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 5_1_2 _lowerCAmelCase = [1] + [0] * (size - 1) _lowerCAmelCase = [filter_type.process(__lowerCamelCase ) for item in inputs] _lowerCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase = np.abs(np.fft.fft(__lowerCamelCase ) ) _lowerCAmelCase = 2_0 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4, samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _lowerCAmelCase = get_bounds(__lowerCamelCase, __lowerCamelCase ) plt.ylim(max([-8_0, bounds[0]] ), min([8_0, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(__lowerCamelCase ) plt.show() def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 5_1_2 _lowerCAmelCase = [1] + [0] * (size - 1) _lowerCAmelCase = [filter_type.process(__lowerCamelCase ) for item in inputs] _lowerCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4, samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(__lowerCamelCase, -2 * pi ) ) plt.show()
309
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=1_0 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__="divided_space_time" , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = num_frames _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = attention_type _lowerCAmelCase = initializer_range _lowerCAmelCase = scope _lowerCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowerCAmelCase = self.num_labels return config def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) # verify the logits shape _lowerCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase : int = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase : Dict = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = False UpperCamelCase : Tuple = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerModelTester(self ) _lowerCAmelCase = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: _lowerCAmelCase = self.model_tester.seq_length _lowerCAmelCase = self.model_tester.num_frames _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowerCAmelCase = len(__magic_name__ ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) _lowerCAmelCase = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) _lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) _lowerCAmelCase = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_video() _lowerCAmelCase = image_processor(video[:8] , return_tensors='pt' ).to(__magic_name__ ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ ) # verify the logits _lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
309
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __UpperCAmelCase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_A ): '''simple docstring''' _snake_case : List[str] = '''maskformer''' _snake_case : Union[str, Any] = {'''hidden_size''': '''mask_feature_size'''} _snake_case : Dict = ['''resnet''', '''swin'''] _snake_case : List[Any] = ['''detr'''] def __init__( self , _UpperCamelCase = 2_5_6 , _UpperCamelCase = 2_5_6 , _UpperCamelCase = 0.1 , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0.02 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 20.0 , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase_ : Dict = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ : List[Any] = backbone_config.pop('model_type' ) UpperCAmelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase_ : Dict = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase_ : Optional[int] = ( decoder_config.pop('model_type' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported )}" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ : Tuple = CONFIG_MAPPING[decoder_type] UpperCAmelCase_ : List[str] = config_class.from_dict(UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = backbone_config UpperCAmelCase_ : Tuple = decoder_config # main feature dimension for the model UpperCAmelCase_ : Optional[int] = fpn_feature_size UpperCAmelCase_ : int = mask_feature_size # initializer UpperCAmelCase_ : int = init_std UpperCAmelCase_ : int = init_xavier_std # Hungarian matcher && loss UpperCAmelCase_ : str = cross_entropy_weight UpperCAmelCase_ : Optional[int] = dice_weight UpperCAmelCase_ : str = mask_weight UpperCAmelCase_ : Union[str, Any] = use_auxiliary_loss UpperCAmelCase_ : Any = no_object_weight UpperCAmelCase_ : Optional[int] = output_auxiliary_logits UpperCAmelCase_ : Optional[int] = self.decoder_config.encoder_attention_heads UpperCAmelCase_ : int = self.decoder_config.num_hidden_layers super().__init__(**UpperCamelCase__ ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> List[str]: return cls( backbone_config=UpperCamelCase__ , decoder_config=UpperCamelCase__ , **UpperCamelCase__ , ) def __UpperCAmelCase ( self ) -> Dict[str, any]: UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.backbone_config.to_dict() UpperCAmelCase_ : int = self.decoder_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output
406
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
660
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCamelCase ( _lowercase ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self ) -> List[Any]: raise NotImplementedError()
148
from __future__ import annotations def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern a__ , a__ = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ = failure[j - 1] continue i += 1 return False def __a ( __UpperCAmelCase ): a__ = [0] a__ = 0 a__ = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) a_ : Tuple = 'abc1abc12' a_ : Optional[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a_ : Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a_ : Any = 'ABABX' a_ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) a_ : Union[str, Any] = 'AAAB' a_ : int = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) a_ : Tuple = 'abcdabcy' a_ : Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) a_ : Dict = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
148
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowercase: List[Any] = trt.Logger(trt.Logger.WARNING) _lowercase: Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowercase: int = logging.getLogger(__name__) _lowercase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_8_4, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_2_8, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=2_0, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=3_0, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=4_2, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowercase: Union[str, Any] = parser.parse_args() if args.tokenizer_name: _lowercase: str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowercase: List[Any] = args.per_device_eval_batch_size _lowercase: Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowercase: Optional[Any] = True _lowercase: Optional[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowercase: List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: _lowercase: List[str] = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowercase: Union[str, Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowercase: Dict = [network.get_input(i) for i in range(network.num_inputs)] _lowercase: Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowercase: Optional[int] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowercase: Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowercase: List[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): _lowerCAmelCase = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _lowerCAmelCase = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _lowerCAmelCase = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case ) # start time _lowerCAmelCase = time.time() # Run inference context.execute_async( bindings=[int(snake_case ) for d_inp in d_inputs] + [int(snake_case ), int(snake_case )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case , snake_case , snake_case ) cuda.memcpy_dtoh_async(snake_case , snake_case , snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _lowerCAmelCase = time.time() _lowerCAmelCase = end_time - start_time _lowerCAmelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowercase: Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase: List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowercase: Optional[int] = raw_datasets['''validation'''].column_names _lowercase: str = '''question''' if '''question''' in column_names else column_names[0] _lowercase: Dict = '''context''' if '''context''' in column_names else column_names[1] _lowercase: Any = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowercase: Tuple = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowercase: Optional[Any] = min(args.max_seq_length, tokenizer.model_max_length) def _lowerCamelCase ( snake_case ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _lowerCAmelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowerCAmelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=snake_case , stride=args.doc_stride , return_overflowing_tokens=snake_case , return_offsets_mapping=snake_case , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowerCAmelCase = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowerCAmelCase = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowerCAmelCase = tokenized_examples.sequence_ids(snake_case ) _lowerCAmelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowerCAmelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowerCAmelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples _lowercase: Any = raw_datasets['''validation'''] # Validation Feature Creation _lowercase: str = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowercase: Tuple = default_data_collator _lowercase: List[str] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowercase: List[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. _lowerCAmelCase = postprocess_qa_predictions( examples=snake_case , features=snake_case , predictions=snake_case , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowerCAmelCase = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: _lowerCAmelCase = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] _lowerCAmelCase = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case , label_ids=snake_case ) _lowercase: Optional[int] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowerCamelCase ( snake_case ): return trt.volume(engine.get_binding_shape(snake_case ) ) * engine.get_binding_dtype(snake_case ).itemsize # Allocate device memory for inputs and outputs. _lowercase: Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowercase: List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowercase: Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowercase: Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) _lowercase: Dict = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowercase: Dict = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") _lowercase: Dict = 0.0 _lowercase: Dict = 0 _lowercase: Dict = timeit.default_timer() _lowercase: Optional[Any] = None for step, batch in enumerate(eval_dataloader): _lowercase , _lowercase: str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowercase , _lowercase: Any = outputs _lowercase: Optional[Any] = torch.tensor(start_logits) _lowercase: Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowercase: Dict = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) _lowercase: List[Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) _lowercase: Optional[int] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowercase: Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: _lowercase: List[str] = nested_truncate(all_preds, len(eval_dataset)) _lowercase: List[Any] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_0_0_0 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_0_0_0)) logger.info('''Total Number of Inference = %d''', niter) _lowercase: int = post_processing_function(eval_examples, eval_dataset, all_preds) _lowercase: Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
192
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Dict , lowercase__ : Dict , lowercase__ : Optional[Any]=13 , lowercase__ : Dict=7 , lowercase__ : Dict=True , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=False , lowercase__ : Any=True , lowercase__ : Union[str, Any]=99 , lowercase__ : Optional[int]=32 , lowercase__ : Any=5 , lowercase__ : Any=4 , lowercase__ : List[str]=64 , lowercase__ : Any="gelu" , lowercase__ : Optional[Any]=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Dict=5_12 , lowercase__ : List[str]=16 , lowercase__ : Union[str, Any]=2 , lowercase__ : str=0.0_2 , lowercase__ : Optional[int]=3 , lowercase__ : Union[str, Any]=4 , lowercase__ : Union[str, Any]=None , lowercase__ : Optional[int]=2 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=2 , lowercase__ : Optional[int]=2 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=1 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = q_groups _lowerCAmelCase = k_groups _lowerCAmelCase = v_groups _lowerCAmelCase = post_attention_groups _lowerCAmelCase = intermediate_groups _lowerCAmelCase = output_groups def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : int ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Dict , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Tuple ): _lowerCAmelCase = SqueezeBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ): _lowerCAmelCase = SqueezeBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : int ): _lowerCAmelCase = SqueezeBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Tuple ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[int] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = SqueezeBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = SqueezeBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ =( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =True UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = SqueezeBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = SqueezeBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _lowerCAmelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-4 ) )
192
1
"""simple docstring""" from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
538
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Dict=13 , _snake_case : Optional[Any]=7 , _snake_case : Union[str, Any]=False , _snake_case : Any=True , _snake_case : int=False , _snake_case : int=True , _snake_case : Tuple=33 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.1 , _snake_case : Dict=0.1 , _snake_case : Tuple=512 , _snake_case : Any=16 , _snake_case : Union[str, Any]=2 , _snake_case : List[str]=0.02 , _snake_case : Optional[Any]=3 , _snake_case : int=4 , _snake_case : List[str]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Tuple ) -> Any: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : str , _snake_case : int , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = EsmModel(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : int ) -> int: SCREAMING_SNAKE_CASE__ = EsmForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Dict , _snake_case : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = EsmForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = False a = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a = () a = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) a = True def lowerCAmelCase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = EsmModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def lowerCAmelCase_ ( self : str ) -> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowerCAmelCase_ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*_snake_case ) def lowerCAmelCase_ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def lowerCAmelCase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def lowerCAmelCase_ ( self : Tuple ) -> List[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ = create_position_ids_from_input_ids(_snake_case , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case ) ) ) def lowerCAmelCase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ = embeddings.create_position_ids_from_inputs_embeds(_snake_case ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase_ ( self : List[str] ) -> int: pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase_ ( self : Any ) -> Tuple: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: pass @require_torch class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Dict ) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(_snake_case )[0] SCREAMING_SNAKE_CASE__ = 33 SCREAMING_SNAKE_CASE__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _snake_case ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ) -> Any: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ = model(_snake_case )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
538
1
def a__ ( lowercase__ = 1_0_0_0_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =limit + 1 UpperCAmelCase_ =[0] * limit for first_term in range(1 , lowercase__ ): for n in range(lowercase__ , lowercase__ , lowercase__ ): UpperCAmelCase_ =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ =sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
"""simple docstring""" def A ( _A = 600_851_475_143 ): """simple docstring""" try: snake_case_ :Dict = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ :Dict = 2 snake_case_ :Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ :List[Any] = i while n % i == 0: snake_case_ :str = n // i i += 1 return int(_A ) if __name__ == "__main__": print(F'''{solution() = }''')
584
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A: Optional[int] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Union[str, Any] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Dict = ["""CLIPFeatureExtractor"""] _A: List[str] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: List[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Optional[Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: List[Any] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _A: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
617
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A: List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Union[str, Any] = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _A: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
617
1
"""simple docstring""" import numpy as np from PIL import Image def snake_case ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: lowerCamelCase : str = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCamelCase : Optional[int] = 0 lowerCamelCase : List[str] = 0 lowerCamelCase : Optional[Any] = 0 lowerCamelCase : int = 0 # compute the shape of the output matrix lowerCamelCase : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase : str = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase : str = 0 lowerCamelCase : int = 0 return updated_arr def snake_case ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: lowerCamelCase : Tuple = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCamelCase : str = 0 lowerCamelCase : Dict = 0 lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCamelCase : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Union[str, Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __lowerCamelCase :List[Any] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
222
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self: Union[str, Any] )-> List[str]: lowerCamelCase : Optional[int] = {} def a__ ( self: Any , __a: int , __a: List[Any] , __a: Optional[int]=1 )-> Optional[Any]: if self.graph.get(__a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase : Tuple = [[w, v]] if not self.graph.get(__a ): lowerCamelCase : Optional[Any] = [] def a__ ( self: str )-> str: return list(self.graph ) def a__ ( self: Any , __a: int , __a: Any )-> int: if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) def a__ ( self: Optional[int] , __a: str=-2 , __a: Optional[Any]=-1 )-> int: if s == d: return [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : str = [] if s == -2: lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowerCamelCase : int = stack[len(__a ) - 1] else: lowerCamelCase : Dict = ss # check if se have reached the starting point if len(__a ) == 0: return visited def a__ ( self: str , __a: str=-1 )-> Optional[Any]: if c == -1: lowerCamelCase : List[str] = floor(random() * 10_000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(__a , __a , 1 ) def a__ ( self: Any , __a: int=-2 )-> List[str]: lowerCamelCase : List[Any] = deque() lowerCamelCase : List[str] = [] if s == -2: lowerCamelCase : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowerCamelCase : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ ( self: Tuple , __a: Union[str, Any] )-> Union[str, Any]: lowerCamelCase : Optional[int] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a__ ( self: Optional[Any] , __a: Any )-> Optional[int]: return len(self.graph[u] ) def a__ ( self: Optional[int] , __a: Tuple=-2 )-> List[Any]: lowerCamelCase : Any = [] lowerCamelCase : Optional[Any] = [] if s == -2: lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Tuple = s lowerCamelCase : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__a ) != 0: lowerCamelCase : Dict = stack[len(__a ) - 1] else: lowerCamelCase : Tuple = ss # check if se have reached the starting point if len(__a ) == 0: return sorted_nodes def a__ ( self: Dict )-> Tuple: lowerCamelCase : Any = [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : List[str] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Union[str, Any] = -2 lowerCamelCase : Optional[int] = [] lowerCamelCase : Optional[int] = s lowerCamelCase : str = False lowerCamelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : List[Any] = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : Optional[int] = True if len(__a ) != 0: lowerCamelCase : Tuple = stack[len(__a ) - 1] else: lowerCamelCase : List[str] = False indirect_parents.append(__a ) lowerCamelCase : Any = s lowerCamelCase : int = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def a__ ( self: Any )-> int: lowerCamelCase : str = [] lowerCamelCase : Any = [] lowerCamelCase : List[Any] = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Any = -2 lowerCamelCase : Optional[int] = [] lowerCamelCase : Tuple = s lowerCamelCase : Tuple = False lowerCamelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : str = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : List[Any] = True if len(__a ) != 0: lowerCamelCase : List[str] = stack[len(__a ) - 1] else: lowerCamelCase : str = False indirect_parents.append(__a ) lowerCamelCase : Any = s lowerCamelCase : List[str] = ss # check if se have reached the starting point if len(__a ) == 0: return False def a__ ( self: Optional[int] , __a: Tuple=-2 , __a: List[Any]=-1 )-> Optional[Any]: lowerCamelCase : Union[str, Any] = time() self.dfs(__a , __a ) lowerCamelCase : Tuple = time() return end - begin def a__ ( self: List[str] , __a: Optional[Any]=-2 )-> List[Any]: lowerCamelCase : str = time() self.bfs(__a ) lowerCamelCase : Tuple = time() return end - begin class A__ : """simple docstring""" def __init__( self: Any )-> Tuple: lowerCamelCase : List[Any] = {} def a__ ( self: Tuple , __a: Any , __a: int , __a: List[Any]=1 )-> Union[str, Any]: # check if the u exists if self.graph.get(__a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase : Any = [[w, v]] # add the other way if self.graph.get(__a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase : Dict = [[w, u]] def a__ ( self: Tuple , __a: List[str] , __a: List[str] )-> Any: if self.graph.get(__a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__a ) # the other way round if self.graph.get(__a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__a ) def a__ ( self: Any , __a: str=-2 , __a: str=-1 )-> Tuple: if s == d: return [] lowerCamelCase : Dict = [] lowerCamelCase : List[Any] = [] if s == -2: lowerCamelCase : Tuple = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__a ) != 0: lowerCamelCase : List[str] = stack[len(__a ) - 1] else: lowerCamelCase : Union[str, Any] = ss # check if se have reached the starting point if len(__a ) == 0: return visited def a__ ( self: Any , __a: Tuple=-1 )-> List[Any]: if c == -1: lowerCamelCase : Any = floor(random() * 10_000 ) + 10 for i in range(__a ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__a , __a , 1 ) def a__ ( self: Tuple , __a: int=-2 )-> str: lowerCamelCase : Dict = deque() lowerCamelCase : int = [] if s == -2: lowerCamelCase : str = list(self.graph )[0] d.append(__a ) visited.append(__a ) while d: lowerCamelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ ( self: str , __a: str )-> Any: return len(self.graph[u] ) def a__ ( self: Any )-> List[str]: lowerCamelCase : int = [] lowerCamelCase : Tuple = [] lowerCamelCase : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : List[str] = -2 lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[Any] = s lowerCamelCase : List[Any] = False lowerCamelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : Any = len(__a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : Any = True if len(__a ) != 0: lowerCamelCase : Tuple = stack[len(__a ) - 1] else: lowerCamelCase : Dict = False indirect_parents.append(__a ) lowerCamelCase : str = s lowerCamelCase : Any = ss # check if se have reached the starting point if len(__a ) == 0: return list(__a ) def a__ ( self: Any )-> Union[str, Any]: lowerCamelCase : str = [] lowerCamelCase : str = [] lowerCamelCase : str = list(self.graph )[0] stack.append(__a ) visited.append(__a ) lowerCamelCase : List[str] = -2 lowerCamelCase : List[str] = [] lowerCamelCase : Optional[int] = s lowerCamelCase : Tuple = False lowerCamelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase : Tuple = len(__a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase : str = True if len(__a ) != 0: lowerCamelCase : Optional[int] = stack[len(__a ) - 1] else: lowerCamelCase : Tuple = False indirect_parents.append(__a ) lowerCamelCase : List[str] = s lowerCamelCase : List[Any] = ss # check if se have reached the starting point if len(__a ) == 0: return False def a__ ( self: Tuple )-> Optional[int]: return list(self.graph ) def a__ ( self: Optional[Any] , __a: Dict=-2 , __a: Optional[Any]=-1 )-> Optional[int]: lowerCamelCase : List[str] = time() self.dfs(__a , __a ) lowerCamelCase : Optional[int] = time() return end - begin def a__ ( self: Union[str, Any] , __a: Optional[Any]=-2 )-> Any: lowerCamelCase : Tuple = time() self.bfs(__a ) lowerCamelCase : Optional[int] = time() return end - begin
222
1
"""simple docstring""" lowercase__ : List[str] = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowercase__ : str = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __lowercase ( _a , _a , _a ): snake_case_ : List[str] = start # add current to visited visited.append(lowerCamelCase__ ) snake_case_ : Optional[int] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case_ : int = topological_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # if all neighbors visited add current to sort sort.append(lowerCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): for vertice in vertices: if vertice not in visited: snake_case_ : Tuple = topological_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # return sort return sort if __name__ == "__main__": lowercase__ : Any = topological_sort('''a''', [], []) print(sort)
715
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( lowerCAmelCase__): def _snake_case ( self : int ): snake_case_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_heads''' ) ) class _UpperCAmelCase : def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=64 , lowercase_ : Any=3 , lowercase_ : Any=[16, 48, 96] , lowercase_ : List[Any]=[1, 3, 6] , lowercase_ : Union[str, Any]=[1, 2, 10] , lowercase_ : Optional[Any]=[7, 3, 3] , lowercase_ : Union[str, Any]=[4, 2, 2] , lowercase_ : Tuple=[2, 1, 1] , lowercase_ : List[str]=[2, 2, 2] , lowercase_ : Union[str, Any]=[False, False, True] , lowercase_ : Optional[int]=[0.0, 0.0, 0.0] , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[Any]=2 , ): snake_case_ : List[Any] = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : Tuple = patch_sizes snake_case_ : List[Any] = patch_stride snake_case_ : Dict = patch_padding snake_case_ : Any = is_training snake_case_ : Any = use_labels snake_case_ : str = num_labels snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : int = num_heads snake_case_ : List[str] = stride_kv snake_case_ : Any = depth snake_case_ : Dict = cls_token snake_case_ : Dict = attention_drop_rate snake_case_ : int = initializer_range snake_case_ : Tuple = layer_norm_eps def _snake_case ( self : Dict ): snake_case_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : str = None if self.use_labels: # create a random int32 tensor of given shape snake_case_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Dict = self.get_config() return config, pixel_values, labels def _snake_case ( self : int ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _snake_case ( self : int , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): snake_case_ : Tuple = TFCvtModel(config=lowercase_ ) snake_case_ : Tuple = model(lowercase_ , training=lowercase_ ) snake_case_ : int = (self.image_size, self.image_size) snake_case_, snake_case_ : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _snake_case ( self : Dict , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] ): snake_case_ : int = self.num_labels snake_case_ : Any = TFCvtForImageClassification(lowercase_ ) snake_case_ : List[Any] = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Any ): snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ : List[str] = config_and_inputs snake_case_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Optional[int] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _lowerCAmelCase : str = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : str = False _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : int = False _lowerCAmelCase : int = False def _snake_case ( self : int ): snake_case_ : Optional[int] = TFCvtModelTester(self ) snake_case_ : str = TFCvtConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self : int ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def _snake_case ( self : Any ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def _snake_case ( self : str ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def _snake_case ( self : Tuple ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _snake_case ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowercase_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def _snake_case ( self : int ): snake_case_, snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = model_class(lowercase_ ) snake_case_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self : List[str] ): def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str ): snake_case_ : Any = model_class(lowercase_ ) snake_case_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ : Tuple = outputs.hidden_states snake_case_ : str = len(self.model_tester.depth ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_, snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self : str ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _snake_case ( self : Optional[Any] ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : int = TFCvtModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __lowercase ( ): snake_case_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase): @cached_property def _snake_case ( self : List[Any] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Tuple ): snake_case_ : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case_ : Any = self.default_image_processor snake_case_ : Union[str, Any] = prepare_img() snake_case_ : int = image_processor(images=lowercase_ , return_tensors='''tf''' ) # forward pass snake_case_ : Tuple = model(**lowercase_ ) # verify the logits snake_case_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ : Tuple = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4 ) )
485
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : str = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } a__ : List[str] = { 'allenai/led-base-16384': 1_6_3_8_4, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = LEDTokenizer __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> str: super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __UpperCamelCase = getattr(lowercase , pre_tok_state.pop("""type""" ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**lowercase ) __UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase = """post_processor""" __UpperCamelCase = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state["""sep"""] ) if "cls" in state: __UpperCamelCase = tuple(state["""cls"""] ) __UpperCamelCase = False if state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get("""trim_offsets""" , lowercase ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(lowercase , state.pop("""type""" ) ) __UpperCamelCase = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self , lowercase ) -> Dict: __UpperCamelCase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value __UpperCamelCase = value def __lowerCamelCase ( self , *lowercase , **lowercase ) -> BatchEncoding: __UpperCamelCase = kwargs.get("""is_split_into_words""" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase , **lowercase ) def __lowerCamelCase ( self , *lowercase , **lowercase ) -> BatchEncoding: __UpperCamelCase = kwargs.get("""is_split_into_words""" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def __lowerCamelCase ( self , lowercase , lowercase=None ) -> List[str]: __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self , lowercase , lowercase = None , lowercase = PaddingStrategy.DO_NOT_PAD , lowercase = None , lowercase = None , ) -> dict: __UpperCamelCase = super()._pad( encoded_inputs=lowercase , max_length=lowercase , padding_strategy=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , ) # Load from model defaults if return_attention_mask is None: __UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowercase ) if needs_to_be_padded: __UpperCamelCase = len(lowercase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
601
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''torch''', '''torchsde'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(cls , ["""torch""", """torchsde"""] )
601
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__A ) , 'Tatoeba directory does not exist.' ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=a ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=a ) assert mmeta["long_pair"] == "heb-eng"
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
193
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = len(snake_case__ ) _UpperCamelCase = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _UpperCamelCase = y_points[i] for i in range(2, snake_case__ ): for j in range(snake_case__, snake_case__ ): _UpperCamelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
19
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__=0.01 , a__=10_00 ) -> List[Any]: '''simple docstring''' __snake_case :int = p_stop __snake_case :List[Any] = max_length def __iter__( self ) -> Optional[int]: '''simple docstring''' __snake_case :str = 0 __snake_case :Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 __snake_case :str = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): '''simple docstring''' def __lowercase ( self , a__ , a__ , a__=False , a__=True ) -> List[Any]: '''simple docstring''' __snake_case :Optional[Any] = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] __snake_case :Union[str, Any] = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. __snake_case :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) __snake_case :Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case :Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case :int = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=a__ ) __snake_case :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case :Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) __snake_case :int = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case :List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=a__ ) __snake_case :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=a__ ) __snake_case :Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. __snake_case :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) __snake_case :Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) __snake_case :List[str] = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case :List[str] = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowercase ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> List[str]: '''simple docstring''' random.seed(a__ ) __snake_case :Optional[int] = list(a__ ) __snake_case :Union[str, Any] = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] __snake_case :Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) __snake_case :Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case :str = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) __snake_case :int = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = 42 __snake_case :Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset __snake_case :Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :str = BatchSampler(range(16 ) , batch_size=4 , drop_last=a__ ) __snake_case :Optional[int] = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case :Dict = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowercase ( self ) -> Any: '''simple docstring''' Accelerator() __snake_case :Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
455
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->List[str]: '''simple docstring''' def decorator(_lowercase : Optional[int] ): a : Tuple = getattr(lowercase__ , "handle_key" , [] ) handle += [key] setattr(lowercase__ , "handle_key" , lowercase__ ) return func return decorator def _SCREAMING_SNAKE_CASE ( *_lowercase : Dict ) ->List[str]: '''simple docstring''' def decorator(_lowercase : Optional[Any] ): a : int = getattr(lowercase__ , "handle_key" , [] ) handle += keys setattr(lowercase__ , "handle_key" , lowercase__ ) return func return decorator class __UpperCamelCase ( __a ): def __new__( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Tuple = super().__new__(cls , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , "key_handler" ): setattr(lowerCAmelCase_ , "key_handler" , {} ) setattr(lowerCAmelCase_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): a : Optional[Any] = getattr(lowerCAmelCase_ , "handle_key" , [] ) for key in handled_keys: a : int = value return new_cls @staticmethod def __a ( cls ) -> Optional[int]: a : Tuple = get_character() if char != KEYMAP["undefined"]: a : Optional[Any] = ord(lowerCAmelCase_ ) a : int = cls.key_handler.get(lowerCAmelCase_ ) if handler: a : List[str] = char return handler(cls ) else: return None def _SCREAMING_SNAKE_CASE ( cls : Any ) ->Union[str, Any]: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
718
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a : Tuple = None a : Any = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } a : str = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } a : Union[str, Any] = '''▁''' class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] =VOCAB_FILES_NAMES lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] =AlbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a : Optional[int] = ( AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ , normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token ) super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : Dict = do_lower_case a : Any = remove_space a : Optional[Any] = keep_accents a : List[str] = vocab_file a : Optional[Any] = False if not self.vocab_file else True def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.sep_token_id] a : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.sep_token_id] a : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
31
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def A_ ( snake_case__ = 1_00_00_00 , snake_case__ = 10 ) -> int: _UpperCamelCase :defaultdict = defaultdict(snake_case__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase :Tuple = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _UpperCamelCase :Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(snake_case__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
355
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } _UpperCamelCase :Union[str, Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) _UpperCamelCase :Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) _UpperCamelCase :List[str] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :str = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :str = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Optional[int] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Union[str, Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCamelCase :List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :List[str] = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :List[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :str = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :str = np.random.randn(3 , 4 ) _UpperCamelCase :int = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Tuple = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
355
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[str] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase : Tuple ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCAmelCase : Any ={"facebook/blenderbot-3B": 128} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] _snake_case = BlenderbotTokenizer def __init__( self : str , _UpperCamelCase : Any=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[Any]="replace" , _UpperCamelCase : int="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Dict="</s>" , _UpperCamelCase : Any="<s>" , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : Dict="<pad>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : List[str]=False , _UpperCamelCase : Union[str, Any]=True , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: """simple docstring""" super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , __UpperCamelCase) != add_prefix_space: _lowerCamelCase : Tuple = getattr(__UpperCamelCase , pre_tok_state.pop("""type""")) _lowerCamelCase : Tuple = add_prefix_space _lowerCamelCase : str = pre_tok_class(**__UpperCamelCase) _lowerCamelCase : str = add_prefix_space _lowerCamelCase : List[Any] = """post_processor""" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : int = tuple(state["""sep"""]) if "cls" in state: _lowerCamelCase : str = tuple(state["""cls"""]) _lowerCamelCase : Any = False if state.get("""add_prefix_space""" , __UpperCamelCase) != add_prefix_space: _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : int = True if state.get("""trim_offsets""" , __UpperCamelCase) != trim_offsets: _lowerCamelCase : int = trim_offsets _lowerCamelCase : Union[str, Any] = True if changes_to_apply: _lowerCamelCase : List[str] = getattr(__UpperCamelCase , state.pop("""type""")) _lowerCamelCase : Union[str, Any] = component_class(**__UpperCamelCase) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase) if isinstance(__UpperCamelCase , __UpperCamelCase) else value _lowerCamelCase : int = value def _SCREAMING_SNAKE_CASE ( self : Tuple , *_UpperCamelCase : Dict , **_UpperCamelCase : Optional[int]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , __UpperCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , *_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any]) ->Tuple: """simple docstring""" _lowerCamelCase : str = kwargs.get("""is_split_into_words""" , __UpperCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase) return tuple(__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->int: """simple docstring""" _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->Optional[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : "Conversation") ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase) _lowerCamelCase : Dict = """ """.join(__UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.encode(__UpperCamelCase) if len(__UpperCamelCase) > self.model_max_length: _lowerCamelCase : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""") return input_ids
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ =None def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , ): """simple docstring""" import pyspark def generate_fn(): snake_case__ : Optional[Any] =df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: snake_case__ : Optional[Any] =df_with_partition_id.select('''*''' ).where(F'''part_id = {partition_id}''' ).drop('''part_id''' ) snake_case__ : List[str] =partition_df.collect() snake_case__ : Dict =0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _lowerCAmelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] =df snake_case__ : Dict =partition_order or range(self.df.rdd.getNumPartitions() ) snake_case__ : str =_generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> List[Any]: """simple docstring""" yield from self.generate_examples_fn() def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" snake_case__ : int =list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase_ ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict =self.split_shard_indices_by_worker(lowerCamelCase_ , lowerCamelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase_ ) @property def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" return len(self.partition_order ) class _lowerCAmelCase ( datasets.DatasetBuilder ): """simple docstring""" lowerCAmelCase__ =SparkConfig def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" import pyspark snake_case__ : Optional[int] =pyspark.sql.SparkSession.builder.getOrCreate() snake_case__ : Tuple =df snake_case__ : List[str] =working_dir super().__init__( cache_dir=lowerCamelCase_ , config_name=str(self.df.semanticHash() ) , **lowerCamelCase_ , ) def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" def create_cache_and_write_probe(__SCREAMING_SNAKE_CASE ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCamelCase_ ) snake_case__ : Optional[int] =os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case__ : List[str] =( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" import pyspark def get_arrow_batch_size(__SCREAMING_SNAKE_CASE ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) snake_case__ : List[Any] =self.df.count() snake_case__ : List[str] =df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case__ : Optional[int] =( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case__ : str =approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case__ : int =min(lowerCamelCase_ , int(approx_total_size / max_shard_size ) ) snake_case__ : Optional[int] =self.df.repartition(lowerCamelCase_ ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" import pyspark snake_case__ : List[Any] =ParquetWriter if file_format == '''parquet''' else ArrowWriter snake_case__ : str =os.path.join(self._working_dir , os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath snake_case__ : Dict =file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case__ : Any =self.config.features snake_case__ : str =self._writer_batch_size snake_case__ : Optional[int] =self._fs.storage_options def write_arrow(__SCREAMING_SNAKE_CASE ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case__ : Union[str, Any] =pyspark.TaskContext().taskAttemptId() snake_case__ : Optional[int] =next(lowerCamelCase_ , lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) snake_case__ : Optional[int] =0 snake_case__ : List[Any] =writer_class( features=lowerCamelCase_ , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=lowerCamelCase_ , storage_options=lowerCamelCase_ , embed_local_files=lowerCamelCase_ , ) snake_case__ : Optional[Any] =pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case__, snake_case__ : Any =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 snake_case__ : List[str] =writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=lowerCamelCase_ , storage_options=lowerCamelCase_ , embed_local_files=lowerCamelCase_ , ) snake_case__ : Optional[int] =pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: snake_case__, snake_case__ : int =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): snake_case__ : List[Any] =os.path.join(os.path.dirname(lowerCamelCase_ ) , os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_ , lowerCamelCase_ ) snake_case__ : int =( self.df.mapInArrow(lowerCamelCase_ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "arrow" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" self._validate_cache_dir() snake_case__ : int =convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) snake_case__ : Optional[int] =not is_remote_filesystem(self._fs ) snake_case__ : Tuple =os.path.join if is_local else posixpath.join snake_case__ : Any ='''-TTTTT-SSSSS-of-NNNNN''' snake_case__ : Tuple =f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' snake_case__ : str =path_join(self._output_dir , lowerCamelCase_ ) snake_case__ : Union[str, Any] =0 snake_case__ : List[Any] =0 snake_case__ : int =0 snake_case__ : List[str] =[] snake_case__ : Optional[int] =[] for task_id, content in self._prepare_split_single(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : Union[str, Any] =content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) snake_case__ : str =total_num_examples snake_case__ : Optional[Any] =total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: snake_case__ : Optional[Any] =all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case__ : Optional[Any] =self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): rename( lowerCamelCase_ , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) snake_case__ : str =[] snake_case__ : int =0 for i in range(len(lowerCamelCase_ ) ): snake_case__, snake_case__ : Any =task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_ , len(lowerCamelCase_ ) ).map(lambda __SCREAMING_SNAKE_CASE : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern snake_case__ : int =0 snake_case__ : Any =task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(lowerCamelCase_ , '''''' ) , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" return SparkExamplesIterable(self.df )
381
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Dict ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
537
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=2 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=36 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=6 ,__UpperCAmelCase=6 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=1000 ,) -> Tuple: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = text_seq_length lowerCAmelCase__ : str = is_training lowerCAmelCase__ : List[str] = use_input_mask lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Any = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Dict = type_vocab_size lowerCAmelCase__ : Optional[int] = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : int = coordinate_size lowerCAmelCase__ : Any = shape_size lowerCAmelCase__ : str = num_labels lowerCAmelCase__ : Tuple = num_choices lowerCAmelCase__ : Dict = scope lowerCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase__ : Optional[Any] = text_seq_length lowerCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 lowerCAmelCase__ : Union[str, Any] = self.text_seq_length + self.image_seq_length def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase__ : Tuple = bbox[i, j, 3] lowerCAmelCase__ : List[Any] = bbox[i, j, 1] lowerCAmelCase__ : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase__ : int = bbox[i, j, 2] lowerCAmelCase__ : Optional[int] = bbox[i, j, 0] lowerCAmelCase__ : Optional[int] = t lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_input_mask: lowerCAmelCase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) lowerCAmelCase__ : int = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Any = LayoutLMvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # text + image lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,pixel_values=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : int = model(__UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model(__UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase__ : Tuple = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase__ : str = model(pixel_values=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : int = LayoutLMvaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : Any = LayoutLMvaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Tuple = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = LayoutLMvaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : int = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,start_positions=__UpperCAmelCase ,end_positions=__UpperCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : List[Any] = config_and_inputs lowerCAmelCase__ : Optional[int] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = False __lowercase : List[Any] = False __lowercase : Tuple = False __lowercase : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : Union[str, Any] = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = LayoutLMvaModelTester(self ) lowerCAmelCase__ : Tuple = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: lowerCAmelCase__ : Union[str, Any] = copy.deepcopy(__UpperCAmelCase ) if model_class in get_values(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(__UpperCAmelCase ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__UpperCAmelCase ): lowerCAmelCase__ : Any = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCAmelCase ) elif model_class in get_values(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCAmelCase ) elif model_class in [ *get_values(__UpperCAmelCase ), ]: lowerCAmelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCAmelCase ) elif model_class in [ *get_values(__UpperCAmelCase ), ]: lowerCAmelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=__UpperCAmelCase ,) return inputs_dict def UpperCAmelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = LayoutLMvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> List[str]: return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : str = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values.to(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = torch.tensor([[1, 2]] ) lowerCAmelCase__ : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase__ : List[Any] = model( input_ids=input_ids.to(__UpperCAmelCase ) ,bbox=bbox.to(__UpperCAmelCase ) ,pixel_values=pixel_values.to(__UpperCAmelCase ) ,) # verify the logits lowerCAmelCase__ : Optional[Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCAmelCase = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase : int = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def snake_case_ ( lowerCAmelCase_ : List[str]=None ): if subparsers is not None: __lowercase : List[str] = subparsers.add_parser("""tpu-config""" , description=_description ) else: __lowercase : Optional[Any] = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments __lowercase : List[str] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=lowerCAmelCase_ , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=lowerCAmelCase_ , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) __lowercase : Optional[Any] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=lowerCAmelCase_ , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Optional[Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowercase : Tuple = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase : Tuple = defaults.command_file if not args.command and defaults.commands is not None: __lowercase : List[Any] = defaults.commands if not args.tpu_name: __lowercase : Tuple = defaults.tpu_name if not args.tpu_zone: __lowercase : Dict = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase : str = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": __lowercase : Union[str, Any] = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase_ ): __lowercase : Optional[int] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: __lowercase : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase_ ): __lowercase : Optional[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase : List[Any] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase : Optional[Any] = """; """.join(lowerCAmelCase_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase : str = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(lowerCAmelCase_ )}" ) return subprocess.run(lowerCAmelCase_ ) print("""Successfully setup pod.""" ) def snake_case_ ( ): __lowercase : Tuple = tpu_command_parser() __lowercase : str = parser.parse_args() tpu_command_launcher(lowerCAmelCase_ )
149
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCamelCase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default=__a , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__a )} , ) _A : Optional[str] = field( default=__a , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _A : bool = field( default=__a , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default=__a , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _A : Optional[str] = field(default=__a , metadata={'''help''': '''The input training data file (a text file).'''} ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) _A : Optional[str] = field( default=__a , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) _A : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _A : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _A : Optional[int] = field( default=__a , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) _A : Optional[int] = field( default=__a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _A : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _A : bool = field( default=__a , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" if self.train_file is not None: __lowercase : List[str] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowercase : int = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: __lowercase : List[str] = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowercase : Tuple = {c: dataset[c] for c in dataset.column_names} __lowercase : List[str] = refs return Dataset.from_dict(lowerCAmelCase_ ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase : Optional[int] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowercase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) __lowercase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: __lowercase : Optional[int] = {} if data_args.train_file is not None: __lowercase : List[Any] = data_args.train_file if data_args.validation_file is not None: __lowercase : Optional[Any] = data_args.validation_file __lowercase : Dict = data_args.train_file.split(""".""" )[-1] if extension == "txt": __lowercase : Tuple = """text""" __lowercase : str = load_dataset(lowerCAmelCase_ , data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase : str = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase : List[str] = AutoConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowercase : int = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: __lowercase : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) __lowercase : List[str] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowercase : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowercase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __lowercase : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowercase : List[str] = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowercase : Optional[Any] = datasets["""train"""].column_names else: __lowercase : Dict = datasets["""validation"""].column_names __lowercase : Tuple = """text""" if """text""" in column_names else column_names[0] __lowercase : List[str] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : Optional[int] ): # Remove empty lines __lowercase : Dict = [line for line in examples["""text"""] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=data_args.max_seq_length ) __lowercase : List[str] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowercase : str = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowercase : Dict = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowercase : Union[str, Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowercase : Dict = False # Data collator # This one will take care of randomly masking the tokens. __lowercase : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase : Any = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowercase : List[str] = model_args.model_name_or_path else: __lowercase : List[Any] = None __lowercase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowercase : Optional[Any] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation __lowercase : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase : List[Any] = trainer.evaluate() __lowercase : Any = math.exp(eval_output["""eval_loss"""] ) __lowercase : Any = perplexity __lowercase : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def snake_case_ ( lowerCAmelCase_ : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
149
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = CTRLTokenizer __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : List[Any] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] _a : Union[str, Any] = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[str] = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] _a : Optional[Any] = {"unk_token": "<unk>"} _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : str ,**_a : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : int ,_a : Any ): '''simple docstring''' _a : Optional[Any] = "adapt react readapt apt" _a : List[Any] = "adapt react readapt apt" return input_text, output_text def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[int] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : List[Any] = "adapt react readapt apt" _a : Tuple = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() _a : Optional[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : int = tokens + [tokenizer.unk_token] _a : Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a )
704
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowerCAmelCase = [8, 5, 9, 7] __lowerCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ,_a : list[int] ,_a : list[list[int]] ,_a : list[list[int]] ,): '''simple docstring''' _a : Dict = claim_vector _a : List[str] = allocated_resources_table _a : List[Any] = maximum_claim_table def __lowercase ( self : Tuple ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self : Tuple ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self : int ): '''simple docstring''' return {self.__need().index(_a ): i for i in self.__need()} def __lowercase ( self : Optional[Any] ,**_a : Dict ): '''simple docstring''' _a : Optional[int] = self.__need() _a : str = self.__allocated_resources_table _a : int = self.__available_resources() _a : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _a : List[str] = False for each_need in need_list: _a : List[str] = True for index, need in enumerate(_a ): if need > available_resources[index]: _a : Dict = False break if execution: _a : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : int = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack _a : Optional[int] = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowercase ( self : Tuple ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : Tuple , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 2_55 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Optional[int] , ) -> None: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =size if size is not None else {'''shortest_edge''': 2_56} SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : Dict =do_resize SCREAMING_SNAKE_CASE__ : int =size SCREAMING_SNAKE_CASE__ : Any =resample SCREAMING_SNAKE_CASE__ : str =do_center_crop SCREAMING_SNAKE_CASE__ : List[Any] =crop_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =do_rescale SCREAMING_SNAKE_CASE__ : Dict =rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] =do_normalize SCREAMING_SNAKE_CASE__ : int =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Dict =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : int =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : List[str] , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : Tuple , ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Tuple =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Tuple =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Any =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : List[Any] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Tuple =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : List[Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Tuple =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[int] =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Optional[int] =[to_numpy_array(__lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : str =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Optional[int] =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : List[str] =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Dict ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def __magic_name__ ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : List[Tuple] = None ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[Any] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple =[] for idx in range(len(__lowercase ) ): SCREAMING_SNAKE_CASE__ : List[str] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) SCREAMING_SNAKE_CASE__ : str =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Dict =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : str =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
296
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaPriorPipeline snake_case_ = ["""prompt"""] snake_case_ = ["""prompt""", """negative_prompt"""] snake_case_ = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : Optional[Any] ) -> Any: return 32 @property def __magic_name__ ( self : int ) -> Dict: return 32 @property def __magic_name__ ( self : Tuple ) -> Optional[int]: return self.time_input_dim @property def __magic_name__ ( self : str ) -> Any: return self.time_input_dim * 4 @property def __magic_name__ ( self : Optional[Any] ) -> str: return 1_00 @property def __magic_name__ ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __magic_name__ ( self : int ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__lowercase ) @property def __magic_name__ ( self : Optional[Any] ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple ={ '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } SCREAMING_SNAKE_CASE__ : List[Any] =PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 SCREAMING_SNAKE_CASE__ : Optional[Any] =nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __magic_name__ ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =CLIPVisionModelWithProjection(__lowercase ) return model @property def __magic_name__ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any =self.dummy_prior SCREAMING_SNAKE_CASE__ : str =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Any =self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : Optional[int] =self.dummy_tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] =UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=__lowercase , clip_sample_range=10.0 , ) SCREAMING_SNAKE_CASE__ : str ={ '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __magic_name__ ( self : Dict , __lowercase : Dict , __lowercase : Any=0 ) -> int: if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Tuple =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] ={ '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : str ='''cpu''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : int =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.image_embeds SCREAMING_SNAKE_CASE__ : Optional[int] =pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] SCREAMING_SNAKE_CASE__ : Any =image[0, -10:] SCREAMING_SNAKE_CASE__ : Optional[int] =image_from_tuple[0, -10:] assert image.shape == (1, 32) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Dict =True SCREAMING_SNAKE_CASE__ : List[Any] =False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def __magic_name__ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ : List[Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Tuple =False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
296
1
import argparse import os import re SCREAMING_SNAKE_CASE__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r'''\[([^\]]+)\]''') def A ( __UpperCamelCase ) -> str: A__ = _re_indent.search(__UpperCamelCase ) return "" if search is None else search.groups()[0] def A ( __UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None ) -> List[str]: A__ = 0 A__ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__UpperCamelCase ): index += 1 A__ = ['\n'.join(lines[:index] )] else: A__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ = [lines[index]] index += 1 while index < len(__UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(__UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__UpperCamelCase ) ) if index < len(__UpperCamelCase ) - 1: A__ = [lines[index + 1]] index += 1 else: A__ = [] else: blocks.append('\n'.join(__UpperCamelCase ) ) A__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__UpperCamelCase ) > 0: blocks.append('\n'.join(__UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__UpperCamelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def A ( __UpperCamelCase ) -> str: def _inner(__UpperCamelCase ): return key(__UpperCamelCase ).lower().replace('_' , '' ) return _inner def A ( __UpperCamelCase , __UpperCamelCase=None ) -> Tuple: # If no key is provided, we use a noop. def noop(__UpperCamelCase ): return x if key is None: A__ = noop # Constants are all uppercase, they go first. A__ = [obj for obj in objects if key(__UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ = [obj for obj in objects if key(__UpperCamelCase )[0].isupper() and not key(__UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. A__ = [obj for obj in objects if not key(__UpperCamelCase )[0].isupper()] A__ = ignore_underscore(__UpperCamelCase ) return sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) + sorted(__UpperCamelCase , key=__UpperCamelCase ) def A ( __UpperCamelCase ) -> str: # This inner function sort imports between [ ]. def _replace(__UpperCamelCase ): A__ = match.groups()[0] if "," not in imports: return f'''[{imports}]''' A__ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) + "]" A__ = import_statement.split('\n' ) if len(__UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ = 2 if lines[1].strip() == '[' else 1 A__ = [(i, _re_strip_line.search(__UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ = sort_objects(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] ) A__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ = _re_bracket_content.sub(_replace , lines[1] ) else: A__ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ = keys[:-1] A__ = get_indent(lines[1] ) + ', '.join([f'''"{k}"''' for k in sort_objects(__UpperCamelCase )] ) return "\n".join(__UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line A__ = _re_bracket_content.sub(_replace , __UpperCamelCase ) return import_statement def A ( __UpperCamelCase , __UpperCamelCase=True ) -> List[str]: with open(__UpperCamelCase , 'r' ) as f: A__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ = split_code_in_indented_blocks( __UpperCamelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ = main_blocks[block_idx] A__ = block.split('\n' ) # Get to the start of the imports. A__ = 0 while line_idx < len(__UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ = len(__UpperCamelCase ) else: line_idx += 1 if line_idx >= len(__UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. A__ = '\n'.join(block_lines[line_idx:-1] ) A__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ = split_code_in_indented_blocks(__UpperCamelCase , indent_level=__UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend A__ = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ = [(pattern.search(__UpperCamelCase ).groups()[0] if pattern.search(__UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ = [(i, key) for i, key in enumerate(__UpperCamelCase ) if key is not None] A__ = [x[0] for x in sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ = 0 A__ = [] for i in range(len(__UpperCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. A__ = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__UpperCamelCase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(__UpperCamelCase , 'w' ) as f: f.write('\n'.join(__UpperCamelCase ) ) def A ( __UpperCamelCase=True ) -> Union[str, Any]: A__ = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: A__ = sort_imports(os.path.join(__UpperCamelCase , '__init__.py' ) , check_only=__UpperCamelCase ) if result: A__ = [os.path.join(__UpperCamelCase , '__init__.py' )] if len(__UpperCamelCase ) > 0: raise ValueError(f'''Would overwrite {len(__UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
52
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Any , _snake_case : Optional[int]=13 , _snake_case : Optional[Any]=64 , _snake_case : List[str]=2 , _snake_case : Any=3 , _snake_case : Union[str, Any]=True , _snake_case : Dict=True , _snake_case : int=32 , _snake_case : int=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : Tuple="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[str]=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Dict=[1, 16, 4, 4] , _snake_case : Dict=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A__ = (self.image_size // 32) ** 2 A__ = num_patches + 1 def _a ( self : Any ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : Tuple ): """simple docstring""" A__ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_snake_case , ) def _a ( self : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = ViTHybridModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[str] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = self.type_sequence_label_size A__ = ViTHybridForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Dict ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ : str = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) A__ : Union[str, Any] = False A__ : Any = False A__ : Union[str, Any] = False def _a ( self : Dict ): """simple docstring""" A__ = ViTHybridModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self : int ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def _a ( self : List[str] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def _a ( self : Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: A__ = model_class(config=_snake_case ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _a ( self : int ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTHybridModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> Union[str, Any]: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Tuple ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _snake_case ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): A__ = model(**_snake_case ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow @require_accelerate def _a ( self : List[Any] ): """simple docstring""" A__ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) A__ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = model(**_snake_case ) A__ = outputs.logits # model predicts one of the 1000 ImageNet classes A__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
52
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :Any=0 ): """simple docstring""" lowerCamelCase__ : int =floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase_ ) ) lowerCamelCase__ : Optional[Any] =torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Any =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : int =self.get_dummy_inputs() lowerCamelCase__ : Any =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : List[str] =image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Any =np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Dict =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase__ : Union[str, Any] =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] =self.get_dummy_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : str =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple =np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : int =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase__ : Optional[int] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.get_dummy_inputs() lowerCamelCase__ : List[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Dict =np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : str =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase__ : List[str] =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Tuple =self.get_dummy_inputs() lowerCamelCase__ : List[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple =np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : str =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase__ : str =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : int =self.get_dummy_inputs() lowerCamelCase__ : Optional[Any] =pipe(**lowerCamelCase_ ).images lowerCamelCase__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Dict =np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self :Any ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : List[Any] =ort.SessionOptions() lowerCamelCase__ : Any =False return options def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : List[str] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCamelCase__ : List[str] =init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCamelCase__ : List[str] =OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Tuple ='A fantasy landscape, trending on artstation' lowerCamelCase__ : Optional[int] =torch.manual_seed(0 ) lowerCamelCase__ : int =pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type='np' , ) lowerCamelCase__ : Optional[Any] =output.images lowerCamelCase__ : Dict =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase__ : int =np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCamelCase__ : Optional[int] =init_image.resize((128, 128) ) lowerCamelCase__ : Tuple =LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) lowerCamelCase__ : Optional[Any] =OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] ='A fantasy landscape, trending on artstation' lowerCamelCase__ : List[str] =torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase_ , output_type='np' , ) lowerCamelCase__ : List[str] =output.images lowerCamelCase__ : List[Any] =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase__ : List[str] =np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
174
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowerCAmelCase_ ( snake_case_ : str ) ->str: return "".join(sorted(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ : str ) ->list[str]: return word_by_signature[signature(snake_case_ )] lowerCAmelCase = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
174
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __UpperCAmelCase = logging.get_logger(__name__) class lowercase__( __UpperCAmelCase ): '''simple docstring''' snake_case__ = "mask2former" snake_case__ = ["swin"] snake_case__ = {"hidden_size": "hidden_dim"} def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 2_56 , __SCREAMING_SNAKE_CASE = 2_56 , __SCREAMING_SNAKE_CASE = 2_56 , __SCREAMING_SNAKE_CASE = 10_24 , __SCREAMING_SNAKE_CASE = "relu" , __SCREAMING_SNAKE_CASE = 6 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 8 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 20_48 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 2_55 , __SCREAMING_SNAKE_CASE = 1_00 , __SCREAMING_SNAKE_CASE = 0.1 , __SCREAMING_SNAKE_CASE = 2.0 , __SCREAMING_SNAKE_CASE = 5.0 , __SCREAMING_SNAKE_CASE = 5.0 , __SCREAMING_SNAKE_CASE = 1_25_44 , __SCREAMING_SNAKE_CASE = 3.0 , __SCREAMING_SNAKE_CASE = 0.75 , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.") UpperCamelCase__ : Union[str, Any] =CONFIG_MAPPING["swin"]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowerCamelCase , _lowerCamelCase): UpperCamelCase__ : Optional[int] =backbone_config.pop("model_type") UpperCamelCase__ : int =CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Optional[Any] =config_class.from_dict(_lowerCamelCase) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported)}''') UpperCamelCase__ : Any =backbone_config UpperCamelCase__ : int =feature_size UpperCamelCase__ : int =mask_feature_size UpperCamelCase__ : Union[str, Any] =hidden_dim UpperCamelCase__ : Tuple =encoder_feedforward_dim UpperCamelCase__ : str =activation_function UpperCamelCase__ : Tuple =encoder_layers UpperCamelCase__ : Dict =decoder_layers UpperCamelCase__ : Dict =num_attention_heads UpperCamelCase__ : List[str] =dropout UpperCamelCase__ : Optional[Any] =dim_feedforward UpperCamelCase__ : Union[str, Any] =pre_norm UpperCamelCase__ : str =enforce_input_projection UpperCamelCase__ : List[Any] =common_stride UpperCamelCase__ : List[Any] =ignore_value UpperCamelCase__ : str =num_queries UpperCamelCase__ : List[Any] =no_object_weight UpperCamelCase__ : Optional[int] =class_weight UpperCamelCase__ : Optional[int] =mask_weight UpperCamelCase__ : str =dice_weight UpperCamelCase__ : List[Any] =train_num_points UpperCamelCase__ : List[str] =oversample_ratio UpperCamelCase__ : Dict =importance_sample_ratio UpperCamelCase__ : Tuple =init_std UpperCamelCase__ : List[Any] =init_xavier_std UpperCamelCase__ : Optional[Any] =use_auxiliary_loss UpperCamelCase__ : Any =feature_strides UpperCamelCase__ : Union[str, Any] =output_auxiliary_logits UpperCamelCase__ : Tuple =decoder_layers super().__init__(**_lowerCamelCase) @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" return cls( backbone_config=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] =copy.deepcopy(self.__dict__) UpperCamelCase__ : Dict =self.backbone_config.to_dict() UpperCamelCase__ : Dict =self.__class__.model_type return output
701
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCamelCase__ : Tuple =initial_learning_rate UpperCamelCase__ : List[str] =warmup_steps UpperCamelCase__ : List[Any] =power UpperCamelCase__ : Optional[Any] =decay_schedule_fn UpperCamelCase__ : List[str] =name def __call__( self , __SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ : Optional[Any] =tf.cast(__SCREAMING_SNAKE_CASE , tf.floataa) UpperCamelCase__ : Tuple =tf.cast(self.warmup_steps , tf.floataa) UpperCamelCase__ : Optional[int] =global_step_float / warmup_steps_float UpperCamelCase__ : List[Any] =self.initial_learning_rate * tf.math.pow(__SCREAMING_SNAKE_CASE , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( A_ : float , A_ : int , A_ : int , A_ : float = 0.0 , A_ : float = 0.9 , A_ : float = 0.999 , A_ : float = 1E-8 , A_ : Optional[float] = None , A_ : Optional[float] = None , A_ : float = 0.0 , A_ : float = 1.0 , A_ : Optional[List[str]] = None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A_ , ) if num_warmup_steps: UpperCamelCase__ : Dict =WarmUp( initial_learning_rate=A_ , decay_schedule_fn=A_ , warmup_steps=A_ , ) if weight_decay_rate > 0.0: UpperCamelCase__ : Union[str, Any] =AdamWeightDecay( learning_rate=A_ , weight_decay_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=A_ , ) else: UpperCamelCase__ : List[Any] =tf.keras.optimizers.Adam( learning_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 0.0_01 , __SCREAMING_SNAKE_CASE = 0.9 , __SCREAMING_SNAKE_CASE = 0.9_99 , __SCREAMING_SNAKE_CASE = 1E-7 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "AdamWeightDecay" , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =weight_decay_rate UpperCamelCase__ : Dict =include_in_weight_decay UpperCamelCase__ : int =exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] ={"WarmUp": WarmUp} return super(__SCREAMING_SNAKE_CASE , cls).from_config(__SCREAMING_SNAKE_CASE , custom_objects=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self)._prepare_local(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" UpperCamelCase__ : List[str] =self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[str] =list(zip(*__SCREAMING_SNAKE_CASE)) return super(__SCREAMING_SNAKE_CASE , self).apply_gradients(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , name=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ : Optional[int] =apply_state or {} UpperCamelCase__ : Optional[Any] =apply_state.get((var_device, var_dtype)) if coefficients is None: UpperCamelCase__ : Any =self._fallback_apply_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[Any] =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_dense(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Dict: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Any =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_sparse(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any =super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return False return True class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self) -> int: """simple docstring""" UpperCamelCase__ : str =[] UpperCamelCase__ : List[str] =None @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if self._accum_steps is None: UpperCamelCase__ : Any =tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" if not self._gradients: UpperCamelCase__ : Any =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__SCREAMING_SNAKE_CASE) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__SCREAMING_SNAKE_CASE) != len(self._gradients): raise ValueError(F'''Expected {len(self._gradients)} gradients, but got {len(__SCREAMING_SNAKE_CASE)}''') for accum_gradient, gradient in zip(self._gradients , __SCREAMING_SNAKE_CASE): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__SCREAMING_SNAKE_CASE) self._accum_steps.assign_add(1) def UpperCAmelCase ( self) -> Tuple: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__SCREAMING_SNAKE_CASE))
582
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ : int =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) self.check_model_type(a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , **a__ ): _lowerCamelCase , _lowerCamelCase = {}, {} if padding is not None: _lowerCamelCase = padding if truncation is not None: _lowerCamelCase = truncation if top_k is not None: _lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a__ , a__ = None , **a__ ): if isinstance(a__ , (Image.Image, str) ) and isinstance(a__ , a__ ): _lowerCamelCase = {'image': image, 'question': question} else: _lowerCamelCase = image _lowerCamelCase = super().__call__(a__ , **a__ ) return results def snake_case_ ( self , a__ , a__=False , a__=False ): _lowerCamelCase = load_image(inputs['image'] ) _lowerCamelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a__ , truncation=a__ ) _lowerCamelCase = self.image_processor(images=a__ , return_tensors=self.framework ) model_inputs.update(a__ ) return model_inputs def snake_case_ ( self , a__ ): _lowerCamelCase = self.model(**a__ ) return model_outputs def snake_case_ ( self , a__ , a__=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase = model_outputs.logits.sigmoid()[0] _lowerCamelCase , _lowerCamelCase = probs.topk(a__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCamelCase = scores.tolist() _lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
650
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig A_ : Dict =[ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring A_ : Dict ="""UperNetConfig""" class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ = 0 , a__ = False , a__ = 1 , ): super().__init__() _lowerCamelCase = nn.Convad( in_channels=a__ , out_channels=a__ , kernel_size=a__ , padding=a__ , bias=a__ , dilation=a__ , ) _lowerCamelCase = nn.BatchNormad(a__ ) _lowerCamelCase = nn.ReLU() def snake_case_ ( self , a__ ): _lowerCamelCase = self.conv(a__ ) _lowerCamelCase = self.batch_norm(a__ ) _lowerCamelCase = self.activation(a__ ) return output class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ ): super().__init__() _lowerCamelCase = [ nn.AdaptiveAvgPoolad(a__ ), UperNetConvModule(a__ , a__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(a__ ) , a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = input for layer in self.layers: _lowerCamelCase = layer(a__ ) return hidden_state class __a ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() _lowerCamelCase = pool_scales _lowerCamelCase = align_corners _lowerCamelCase = in_channels _lowerCamelCase = channels _lowerCamelCase = [] for i, pool_scale in enumerate(a__ ): _lowerCamelCase = UperNetPyramidPoolingBlock(pool_scale=a__ , in_channels=a__ , channels=a__ ) self.blocks.append(a__ ) self.add_module(str(a__ ) , a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = [] for ppm in self.blocks: _lowerCamelCase = ppm(a__ ) _lowerCamelCase = nn.functional.interpolate( a__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(a__ ) return ppm_outs class __a ( nn.Module ): def __init__( self , a__ , a__ ): super().__init__() _lowerCamelCase = config _lowerCamelCase = config.pool_scales # e.g. (1, 2, 3, 6) _lowerCamelCase = in_channels _lowerCamelCase = config.hidden_size _lowerCamelCase = False _lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _lowerCamelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _lowerCamelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _lowerCamelCase = nn.ModuleList() _lowerCamelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _lowerCamelCase = UperNetConvModule(a__ , self.channels , kernel_size=1 ) _lowerCamelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(a__ ) self.fpn_convs.append(a__ ) _lowerCamelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case_ ( self ): self.apply(self._init_weights ) def snake_case_ ( self , a__ ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , a__ ): _lowerCamelCase = inputs[-1] _lowerCamelCase = [x] psp_outs.extend(self.psp_modules(a__ ) ) _lowerCamelCase = torch.cat(a__ , dim=1 ) _lowerCamelCase = self.bottleneck(a__ ) return output def snake_case_ ( self , a__ ): # build laterals _lowerCamelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(a__ ) ) # build top-down path _lowerCamelCase = len(a__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase = laterals[i - 1].shape[2:] _lowerCamelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=a__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs _lowerCamelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) _lowerCamelCase = torch.cat(a__ , dim=1 ) _lowerCamelCase = self.fpn_bottleneck(a__ ) _lowerCamelCase = self.classifier(a__ ) return output class __a ( nn.Module ): def __init__( self , a__ , a__ = 2 , a__ = 3 , a__ = 1 ): super().__init__() _lowerCamelCase = config _lowerCamelCase = config.auxiliary_in_channels _lowerCamelCase = config.auxiliary_channels _lowerCamelCase = config.auxiliary_num_convs _lowerCamelCase = config.auxiliary_concat_input _lowerCamelCase = in_index _lowerCamelCase = (kernel_size // 2) * dilation _lowerCamelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=a__ , padding=a__ , dilation=a__ ) ) if self.num_convs == 0: _lowerCamelCase = nn.Identity() else: _lowerCamelCase = nn.Sequential(*a__ ) if self.concat_input: _lowerCamelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=a__ , padding=kernel_size // 2 ) _lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case_ ( self ): self.apply(self._init_weights ) def snake_case_ ( self , a__ ): if isinstance(a__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , a__ ): # just take the relevant feature maps _lowerCamelCase = encoder_hidden_states[self.in_index] _lowerCamelCase = self.convs(a__ ) if self.concat_input: _lowerCamelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _lowerCamelCase = self.classifier(a__ ) return output class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple = UperNetConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = "pixel_values" SCREAMING_SNAKE_CASE__ : str = True def snake_case_ ( self , a__ ): if isinstance(a__ , a__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case_ ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case_ ( self , a__ , a__=False ): if isinstance(a__ , a__ ): _lowerCamelCase = value A_ : Union[str, Any] =R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A_ : int =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , lowerCAmelCase__ , ) class __a ( lowerCAmelCase__ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCamelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _lowerCamelCase = UperNetHead(a__ , in_channels=self.backbone.channels ) _lowerCamelCase = UperNetFCNHead(a__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , ): _lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions _lowerCamelCase = self.backbone.forward_with_filtered_kwargs( a__ , output_hidden_states=a__ , output_attentions=a__ ) _lowerCamelCase = outputs.feature_maps _lowerCamelCase = self.decode_head(a__ ) _lowerCamelCase = nn.functional.interpolate(a__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=a__ ) _lowerCamelCase = None if self.auxiliary_head is not None: _lowerCamelCase = self.auxiliary_head(a__ ) _lowerCamelCase = nn.functional.interpolate( a__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=a__ ) _lowerCamelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss _lowerCamelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _lowerCamelCase = loss_fct(a__ , a__ ) _lowerCamelCase = loss_fct(a__ , a__ ) _lowerCamelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _lowerCamelCase = (logits,) + outputs[1:] else: _lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=a__ , logits=a__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
650
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''laion/clap-htsat-unfused''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def UpperCamelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_feature_extractor() _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_feature_extractor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=_A , feature_extractor=_A ) _SCREAMING_SNAKE_CASE =floats_list((3, 1_0_0_0) ) _SCREAMING_SNAKE_CASE =feature_extractor(_A , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(audios=_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_feature_extractor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=_A , feature_extractor=_A ) _SCREAMING_SNAKE_CASE ='''This is a test string''' _SCREAMING_SNAKE_CASE =processor(text=_A ) _SCREAMING_SNAKE_CASE =tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_feature_extractor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=_A , feature_extractor=_A ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_A ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_feature_extractor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
165
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = "owlvit_text_model" def __init__( self , _A=4_9_4_0_8 , _A=5_1_2 , _A=2_0_4_8 , _A=1_2 , _A=8 , _A=1_6 , _A="quick_gelu" , _A=1E-5 , _A=0.0 , _A=0.02 , _A=1.0 , _A=0 , _A=4_9_4_0_6 , _A=4_9_4_0_7 , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _SCREAMING_SNAKE_CASE =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Tuple = "owlvit_vision_model" def __init__( self , _A=7_6_8 , _A=3_0_7_2 , _A=1_2 , _A=1_2 , _A=3 , _A=7_6_8 , _A=3_2 , _A="quick_gelu" , _A=1E-5 , _A=0.0 , _A=0.02 , _A=1.0 , **_A , ): '''simple docstring''' super().__init__(**_A ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _SCREAMING_SNAKE_CASE =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Optional[int] = "owlvit" lowercase : List[Any] = True def __init__( self , _A=None , _A=None , _A=5_1_2 , _A=2.6592 , _A=True , **_A , ): '''simple docstring''' super().__init__(**_A ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _SCREAMING_SNAKE_CASE =OwlViTTextConfig(**_A ) _SCREAMING_SNAKE_CASE =OwlViTVisionConfig(**_A ) _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =logit_scale_init_value _SCREAMING_SNAKE_CASE =return_dict _SCREAMING_SNAKE_CASE =1.0 @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) @classmethod def UpperCamelCase_ ( cls , _A , _A , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =text_config _SCREAMING_SNAKE_CASE =vision_config return cls.from_dict(_A , **_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1E-4 def UpperCamelCase_ ( self , _A , _A = -1 , _A = -1 , _A = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super().generate_dummy_inputs( processor.tokenizer , batch_size=_A , seq_length=_A , framework=_A ) _SCREAMING_SNAKE_CASE =super().generate_dummy_inputs( processor.image_processor , batch_size=_A , framework=_A ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_4
165
1
import qiskit def A__ ( lowerCamelCase , lowerCamelCase ) -> qiskit.result.counts.Counts: UpperCamelCase_: int = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCamelCase_: Union[str, Any] = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase_: List[Any] = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase_ : Dict = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
548
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for node in graph ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: visited.add(_SCREAMING_SNAKE_CASE ) rec_stk.add(_SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
235
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase__ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') UpperCamelCase__ = ( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('utf-8').split() ) UpperCamelCase__ = '|'.join(sys.argv[1:]) UpperCamelCase__ = re.compile(rf'^({joined_dirs}).*?\.py$') UpperCamelCase__ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
254
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowercase , lowercase , lowercase ): UpperCamelCase : Any = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 50_257 , UpperCamelCase_ = 1_024 , UpperCamelCase_ = 768 , UpperCamelCase_ = 12 , UpperCamelCase_ = 12 , UpperCamelCase_ = None , UpperCamelCase_ = "gelu_new" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 1E-5 , UpperCamelCase_ = 0.02 , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = False , ): super().__init__() UpperCAmelCase__ : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) UpperCAmelCase__ : Dict = prefix_inner_dim UpperCAmelCase__ : List[Any] = prefix_hidden_dim UpperCAmelCase__ : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Any = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Union[str, Any] = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) UpperCAmelCase__ : List[str] = GPTaLMHeadModel(UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[Any] = self.transformer.transformer.wte(UpperCamelCase_ ) UpperCAmelCase__ : str = self.encode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = self.decode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCAmelCase__ : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCAmelCase__ : List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCAmelCase__ : List[str] = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = torch.split(UpperCamelCase_ , 1 , dim=0 ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = [] for feature in features: UpperCAmelCase__ : List[str] = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ : int = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase__ : Optional[int] = torch.stack(UpperCamelCase_ ) UpperCAmelCase__ : Any = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = 5 , UpperCamelCase_ = 67 , UpperCamelCase_ = 1.0 , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[int] = eos_token_id UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : List[str] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) UpperCAmelCase__ : str = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase__ : List[Any] = input_embeds else: UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): UpperCAmelCase__ : Tuple = self.transformer(inputs_embeds=UpperCamelCase_ ) UpperCAmelCase__ : Dict = outputs.logits UpperCAmelCase__ : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : int = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = logits.topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase__ : Dict = next_tokens else: UpperCAmelCase__ : Optional[int] = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) UpperCAmelCase__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCAmelCase__ : str = -float(np.inf ) UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : int = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[int] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : str = seq_lengths[next_tokens_source] UpperCAmelCase__ : str = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : Optional[Any] = next_tokens.unsqueeze(1 ) UpperCAmelCase__ : List[str] = tokens[next_tokens_source] UpperCAmelCase__ : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) UpperCAmelCase__ : Any = generated[next_tokens_source] UpperCAmelCase__ : Tuple = scores_sum_average * seq_lengths UpperCAmelCase__ : Tuple = is_stopped[next_tokens_source] UpperCAmelCase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCAmelCase__ : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) UpperCAmelCase__ : List[Any] = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Dict = scores / seq_lengths UpperCAmelCase__ : Optional[Any] = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : Dict = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(UpperCamelCase_ , dim=0 ) UpperCAmelCase__ : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
254
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Tuple = int(np.ceil((x_end - xa) / step_size ) ) A__ : List[str] = np.zeros((n + 1,) ) A__ : int = ya A__ : Optional[Any] = xa for k in range(lowerCAmelCase ): A__ : Optional[int] = y[k] + step_size * ode_func(lowerCAmelCase , y[k] ) A__ : Tuple = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase , y[k] ) + ode_func(x + step_size , lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Tuple = 'gpt_neo' _UpperCamelCase : Optional[Any] = ['past_key_values'] _UpperCamelCase : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , snake_case_=50_257 , snake_case_=2_048 , snake_case_=2_048 , snake_case_=24 , snake_case_=[[["global", "local"], 12]] , snake_case_=16 , snake_case_=None , snake_case_=256 , snake_case_="gelu_new" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=50_256 , snake_case_=50_256 , **snake_case_ , ): '''simple docstring''' A__ : int = vocab_size A__ : Optional[Any] = max_position_embeddings A__ : int = hidden_size A__ : List[Any] = num_layers A__ : Any = num_heads A__ : List[str] = intermediate_size A__ : Dict = window_size A__ : Optional[int] = activation_function A__ : Optional[int] = resid_dropout A__ : List[str] = embed_dropout A__ : str = attention_dropout A__ : List[str] = classifier_dropout A__ : str = layer_norm_epsilon A__ : str = initializer_range A__ : Any = use_cache A__ : List[str] = bos_token_id A__ : Any = eos_token_id A__ : Optional[Any] = attention_types A__ : List[Any] = self.expand_attention_types_params(snake_case_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ ): '''simple docstring''' A__ : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): import torch A__ : Union[str, Any] = input.size() A__ : str = len(lowerCAmelCase ) A__ : Union[str, Any] = shape[dimension] A__ : Dict = torch.arange(0 , lowerCAmelCase , lowerCAmelCase ) A__ : Dict = torch.div(sizedim - size , lowerCAmelCase , rounding_mode="""floor""" ) + 1 A__ : str = torch.arange(lowerCAmelCase ) + low_indices[:min_length][:, None] A__ : str = [slice(lowerCAmelCase )] * rank A__ : Optional[Any] = indices A__ : Tuple = input[s] A__ : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase ): import torch A__ : Optional[Any] = torch.arange(1 , lowerCAmelCase ) A__ : int = torch.remainder(lowerCAmelCase , lowerCAmelCase ) A__ : str = remainders == 0 A__ : Tuple = candidates[divisor_indices] A__ : Any = torch.max(lowerCAmelCase ) return largest_divisor, torch.div(lowerCAmelCase , lowerCAmelCase , rounding_mode="""floor""" ) class __UpperCAmelCase (__A ): '''simple docstring''' @property def lowerCamelCase ( self ): '''simple docstring''' A__ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) A__ : str = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return self._config.num_heads def lowerCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): '''simple docstring''' A__ : Optional[int] = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : Any = seqlen + 2 A__ : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : List[Any] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] A__ : Tuple = common_inputs["""attention_mask"""] if self.use_past: A__ : List[Any] = ordered_inputs["""attention_mask"""].dtype A__ : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return 13
363
1
from datetime import datetime as dt import os from github import Github a_ = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def a__ ( ): __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] ,key=lambda _UpperCamelCase : i.created_at ,reverse=_UpperCamelCase ) __lowerCamelCase = comments[0] if len(_UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
622
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = RoFormerTokenizer lowerCAmelCase__ = RoFormerTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''永和服装饰品有限公司,今天天气非常好''' __lowerCamelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_tokenizer() __lowerCamelCase ,__lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase ,__lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass
622
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _lowerCamelCase = """CIDAS/clipseg-rd64-refined""" _lowerCamelCase = """image_segmenter""" _lowerCamelCase = CLIPSegForImageSegmentation _lowerCamelCase = ["""image""", """text"""] _lowerCamelCase = ["""image"""] def __init__( self , *__A , **__A ): requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def snake_case_ ( self , __A , __A ): return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def snake_case_ ( self , __A ): with torch.no_grad(): __a = self.model(**__A ).logits return logits def snake_case_ ( self , __A ): __a = outputs.cpu().detach().numpy() __a = 0 __a = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
99
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase: Tuple =logging.get_logger(__name__) lowerCAmelCase: int =[ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __snake_case ( __A ) -> Dict: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase : Any = k.replace(__A ,__A ) if k.startswith("""encoder""" ): lowercase : List[str] = k.replace(""".attn""" ,""".self_attn""" ) lowercase : Union[str, Any] = k.replace("""norm1""" ,"""self_attn_layer_norm""" ) lowercase : List[Any] = k.replace("""norm2""" ,"""final_layer_norm""" ) elif k.startswith("""decoder""" ): lowercase : Union[str, Any] = k.replace("""norm1""" ,"""self_attn_layer_norm""" ) lowercase : Tuple = k.replace("""norm2""" ,"""encoder_attn_layer_norm""" ) lowercase : Dict = k.replace("""norm3""" ,"""final_layer_norm""" ) return k def __snake_case ( __A ) -> Dict: lowercase : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowercase : Union[str, Any] = sd.pop(__A ) lowercase : Optional[int] = k.replace("""layernorm_embedding""" ,"""layer_norm""" ) assert new_k not in sd lowercase : List[Any] = v lowerCAmelCase: Union[str, Any] =["START"] @torch.no_grad() def __snake_case ( __A ,__A ,__A ) -> int: lowercase : Union[str, Any] = torch.load(__A ,map_location="""cpu""" ) lowercase : Optional[Any] = model["""model"""] lowercase : Union[str, Any] = BlenderbotConfig.from_json_file(__A ) lowercase : Optional[Any] = BlenderbotForConditionalGeneration(__A ) lowercase : List[str] = m.model.state_dict().keys() lowercase : Optional[Any] = [] lowercase : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase : str = rename_state_dict_key(__A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__A ) m.model.load_state_dict(__A ,strict=__A ) m.half() m.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase: Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) lowerCAmelCase: str =parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
607
0
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
429
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _a ( UpperCamelCase__ ): _lowercase : bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _lowercase : Optional[Union[str, Path, GenerationConfig]] = field( default=UpperCamelCase__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = v.to_dict() return d
429
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def snake_case_ ( A_ : int, A_ : str, A_ : LevitConfig, A_ : Path, A_ : bool = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": _lowerCamelCase : int = timm.create_model('''levit_128s''', pretrained=A_ ) else: _lowerCamelCase : Tuple = timm.create_model('''levit_128''', pretrained=A_ ) if hidden_sizes == 1_92: _lowerCamelCase : List[str] = timm.create_model('''levit_192''', pretrained=A_ ) if hidden_sizes == 2_56: _lowerCamelCase : Union[str, Any] = timm.create_model('''levit_256''', pretrained=A_ ) if hidden_sizes == 3_84: _lowerCamelCase : Union[str, Any] = timm.create_model('''levit_384''', pretrained=A_ ) from_model.eval() _lowerCamelCase : Any = LevitForImageClassificationWithTeacher(A_ ).eval() _lowerCamelCase : int = OrderedDict() _lowerCamelCase : Any = from_model.state_dict() _lowerCamelCase : List[str] = list(from_model.state_dict().keys() ) _lowerCamelCase : List[str] = list(our_model.state_dict().keys() ) print(len(A_ ), len(A_ ) ) for i in range(len(A_ ) ): _lowerCamelCase : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(A_ ) _lowerCamelCase : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) _lowerCamelCase : Union[str, Any] = from_model(A_ ) _lowerCamelCase : Optional[Any] = our_model(A_ ).logits assert torch.allclose(A_, A_ ), "The model logits don't match the original one." _lowerCamelCase : int = name print(A_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowerCamelCase : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def snake_case_ ( A_ : Path, A_ : str = None, A_ : bool = True ): '''simple docstring''' _lowerCamelCase : Dict = '''imagenet-1k-id2label.json''' _lowerCamelCase : Dict = 10_00 _lowerCamelCase : Union[str, Any] = (1, num_labels) _lowerCamelCase : Tuple = '''huggingface/label-files''' _lowerCamelCase : Any = num_labels _lowerCamelCase : List[Any] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : List[str] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCamelCase : int = partial(A_, num_labels=A_, idalabel=A_, labelaid=A_ ) _lowerCamelCase : Optional[int] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } _lowerCamelCase : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], A_, names_to_config[model_name], A_, A_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], A_, A_, A_, A_ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
83
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Optional[int] = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''image_processor''', '''tokenizer'''] A = '''ViltImageProcessor''' A = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = self.image_processor def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): __lowerCamelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel_values + pixel_mask __lowerCamelCase = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) encoding.update(UpperCAmelCase ) return encoding def lowerCamelCase_ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase_ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def lowerCamelCase_ ( self ): __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase , ) return self.image_processor
571
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( __lowerCamelCase ): return x + 2 class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> Any: __snake_case : Optional[Any] = "x = 3" __snake_case : Any = {} __snake_case : Optional[int] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3} ) __snake_case : str = "x = y" __snake_case : List[Any] = {"y": 5} __snake_case : Any = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 5, "y": 5} ) def __snake_case ( self : Any ) -> List[str]: __snake_case : int = "y = add_two(x)" __snake_case : Any = {"x": 3} __snake_case : str = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case : str = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result is None assert "tried to execute add_two" in out.out def __snake_case ( self : Dict ) -> str: __snake_case : str = "x = 3" __snake_case : List[Any] = {} __snake_case : List[Any] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3} ) def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}" __snake_case : Tuple = {"x": 3} __snake_case : List[Any] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(lowerCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __snake_case ( self : Optional[int] ) -> int: __snake_case : int = "x = 3\ny = 5" __snake_case : Optional[int] = {} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : List[Any] = "text = f'This is x: {x}.'" __snake_case : List[Any] = {"x": 3} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase , {"x": 3, "text": "This is x: 3."} ) def __snake_case ( self : Any ) -> Dict: __snake_case : List[str] = "if x <= 3:\n y = 2\nelse:\n y = 5" __snake_case : Tuple = {"x": 3} __snake_case : int = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 2} ) __snake_case : str = {"x": 8} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 8, "y": 5} ) def __snake_case ( self : int ) -> int: __snake_case : Tuple = "test_list = [x, add_two(x)]" __snake_case : List[str] = {"x": 3} __snake_case : Any = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) self.assertListEqual(lowerCamelCase , [3, 5] ) self.assertDictEqual(lowerCamelCase , {"x": 3, "test_list": [3, 5]} ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : Optional[int] = "y = x" __snake_case : Any = {"x": 3} __snake_case : Union[str, Any] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 3} ) def __snake_case ( self : Any ) -> Any: __snake_case : Optional[Any] = "test_list = [x, add_two(x)]\ntest_list[1]" __snake_case : str = {"x": 3} __snake_case : Optional[int] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "test_list": [3, 5]} ) __snake_case : str = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __snake_case : Optional[Any] = {"x": 3} __snake_case : Union[str, Any] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = "x = 0\nfor i in range(3):\n x = i" __snake_case : Union[str, Any] = {} __snake_case : Any = evaluate(lowerCamelCase , {"range": range} , state=lowerCamelCase ) assert result == 2 self.assertDictEqual(lowerCamelCase , {"x": 2, "i": 2} )
81
import numpy as np def A__ ( snake_case_ : str , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: List[Any]= int(np.ceil((x_end - xa) / h ) ) SCREAMING_SNAKE_CASE__: Any= np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE__: int= ya SCREAMING_SNAKE_CASE__: Tuple= xa for k in range(snake_case_ ): SCREAMING_SNAKE_CASE__: Any= f(snake_case_ , y[k] ) SCREAMING_SNAKE_CASE__: Optional[int]= f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE__: Tuple= f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE__: List[str]= f(x + h , y[k] + h * ka ) SCREAMING_SNAKE_CASE__: Tuple= y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
64
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __snake_case = logging.get_logger(__name__) def a ( __a=None , __a=None ) -> Any: '''simple docstring''' return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase : """simple docstring""" _a = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) _a = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) _a = list_field( default=[8, 32, 1_28, 5_12] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) _a = field( default=A__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) _a = field( default=A__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) _a = field( default=A__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) _a = field(default=A__ , metadata={'help': 'Use FP16 to accelerate inference.'} ) _a = field(default=A__ , metadata={'help': 'Benchmark training of model'} ) _a = field(default=A__ , metadata={'help': 'Verbose memory tracing'} ) _a = field( default=A__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) _a = field( default=A__ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) _a = field(default=A__ , metadata={'help': 'Trace memory line by line'} ) _a = field(default=A__ , metadata={'help': 'Save result to a CSV file'} ) _a = field(default=A__ , metadata={'help': 'Save all print statements in a log file'} ) _a = field(default=A__ , metadata={'help': 'Whether to print environment information'} ) _a = field( default=A__ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) _a = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) _a = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) _a = field( default=f'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) _a = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) _a = field( default=f'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , ) _a = field( default=f'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) _a = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) _a = field( default=A__ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def lowerCAmelCase__ ( self ): '''simple docstring''' warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
280
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def a ( __a ) -> Optional[int]: '''simple docstring''' random.seed(__a ) np.random.seed(__a ) torch.manual_seed(__a ) torch.cuda.manual_seed_all(__a ) # ^^ safe to call this function even if cuda is not available class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = 0.9999 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 0 , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = 2 / 3 , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if isinstance(UpperCamelCase_ , torch.nn.Module ): UpperCamelCase__ :Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) UpperCamelCase__ :Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase__ :str = True if kwargs.get('''max_value''' , UpperCamelCase_ ) is not None: UpperCamelCase__ :List[str] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) UpperCamelCase__ :int = kwargs['''max_value'''] if kwargs.get('''min_value''' , UpperCamelCase_ ) is not None: UpperCamelCase__ :Union[str, Any] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) UpperCamelCase__ :Any = kwargs['''min_value'''] UpperCamelCase__ :Optional[int] = list(UpperCamelCase_ ) UpperCamelCase__ :Tuple = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , UpperCamelCase_ ) is not None: UpperCamelCase__ :str = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) self.to(device=kwargs['''device'''] ) UpperCamelCase__ :Union[str, Any] = None UpperCamelCase__ :List[Any] = decay UpperCamelCase__ :List[str] = min_decay UpperCamelCase__ :Optional[int] = update_after_step UpperCamelCase__ :int = use_ema_warmup UpperCamelCase__ :Any = inv_gamma UpperCamelCase__ :Union[str, Any] = power UpperCamelCase__ :Union[str, Any] = 0 UpperCamelCase__ :Dict = None # set in `step()` UpperCamelCase__ :List[Any] = model_cls UpperCamelCase__ :Optional[Any] = model_config @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Tuple = model_cls.load_config(UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ ) UpperCamelCase__ :List[str] = model_cls.from_pretrained(UpperCamelCase_ ) UpperCamelCase__ :str = cls(model.parameters() , model_cls=UpperCamelCase_ , model_config=model.config ) ema_model.load_state_dict(UpperCamelCase_ ) return ema_model def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) UpperCamelCase__ :Optional[Any] = self.model_cls.from_config(self.model_config ) UpperCamelCase__ :Optional[int] = self.state_dict() state_dict.pop('''shadow_params''' , UpperCamelCase_ ) model.register_to_config(**UpperCamelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase__ :Dict = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase__ :int = (1 + step) / (10 + step) UpperCamelCase__ :Any = min(UpperCamelCase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase__ :Dict = max(UpperCamelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , torch.nn.Module ): UpperCamelCase__ :Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) UpperCamelCase__ :str = parameters.parameters() UpperCamelCase__ :Dict = list(UpperCamelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase__ :Any = self.get_decay(self.optimization_step ) UpperCamelCase__ :Tuple = decay UpperCamelCase__ :List[Any] = 1 - decay UpperCamelCase__ :Optional[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase__ :Dict = deepspeed.zero.GatheredParameters(UpperCamelCase_ , modifier_rank=UpperCamelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = list(UpperCamelCase_ ) for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase__ ( self , UpperCamelCase_=None , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = [ p.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if p.is_floating_point() else p.to(device=UpperCamelCase_ ) for p in self.shadow_params ] def lowerCAmelCase__ ( self ): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , UpperCamelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase__ :Optional[Any] = None def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = copy.deepcopy(UpperCamelCase_ ) UpperCamelCase__ :Dict = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) UpperCamelCase__ :Union[str, Any] = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , UpperCamelCase_ ): raise ValueError('''Invalid min_decay''' ) UpperCamelCase__ :Union[str, Any] = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , UpperCamelCase_ ): raise ValueError('''Invalid optimization_step''' ) UpperCamelCase__ :List[Any] = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , UpperCamelCase_ ): raise ValueError('''Invalid update_after_step''' ) UpperCamelCase__ :List[str] = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , UpperCamelCase_ ): raise ValueError('''Invalid use_ema_warmup''' ) UpperCamelCase__ :Optional[int] = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) UpperCamelCase__ :str = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) UpperCamelCase__ :Tuple = state_dict.get('''shadow_params''' , UpperCamelCase_ ) if shadow_params is not None: UpperCamelCase__ :Dict = shadow_params if not isinstance(self.shadow_params , UpperCamelCase_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(UpperCamelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
280
1