code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __UpperCamelCase = logging.getLogger(__name__) def _a ( ) -> Dict: """simple docstring""" __snake_case : Tuple = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) __snake_case : Optional[int] = parser.parse_args() return args def _a ( _lowerCamelCase ) -> int: """simple docstring""" def fn(_lowerCamelCase ): return tokenizer(examples["""text"""] ) return fn def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Dict = [] for i in range(len(tokenized_data["""input_ids"""] ) ): __snake_case : Optional[int] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } __snake_case : List[str] = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) __snake_case : Optional[int] = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) __snake_case : Optional[Any] = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __snake_case : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) __snake_case : Union[str, Any] = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __snake_case : List[str] = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: __snake_case : str = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __snake_case : Optional[int] = tokenize_function(SCREAMING_SNAKE_CASE__ ) __snake_case : List[str] = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_lowerCamelCase ): # Concatenate all texts. __snake_case : Dict = {k: sum(examples[k] , [] ) for k in examples.keys()} __snake_case : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __snake_case : int = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __snake_case : Any = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result __snake_case : Tuple = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) __snake_case : str = 0 __snake_case : Tuple = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): __snake_case : List[str] = grouped_dataset[shard : shard + args.shard_size] __snake_case : Optional[int] = len(dataset_snapshot["""input_ids"""] ) __snake_case : Any = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) __snake_case : Dict = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __snake_case : str = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase = parse_args() main(args)
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import warnings from .generation import TFGenerationMixin class __lowercase ( lowerCamelCase__ ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , lowerCamelCase__ , )
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = current_set.copy() for row_index, row in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = row[0] for column_index, column in enumerate(lowerCamelCase_ ): if magnitude == 0: SCREAMING_SNAKE_CASE : Tuple = column continue SCREAMING_SNAKE_CASE : Optional[int] = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE : Any = current_set[0] SCREAMING_SNAKE_CASE : Any = [first_row] SCREAMING_SNAKE_CASE : int = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase_ ) continue for column_index in range(len(lowerCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE : List[Any] = final_set[0] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE : Optional[int] = simplify(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = resultant return final_set def __lowerCAmelCase ( a_ ) -> Any: '''simple docstring''' if len(lowerCamelCase_ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) + 1 if any(len(lowerCamelCase_ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowerCamelCase_ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowerCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE : Dict = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE : int = data_set.copy() SCREAMING_SNAKE_CASE : Optional[int] = [] for row_index, row in enumerate(lowerCamelCase_ ): if 0 not in row: SCREAMING_SNAKE_CASE : str = data_set.pop(lowerCamelCase_ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_set.copy() SCREAMING_SNAKE_CASE : Tuple = simplify(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = simplified[::-1] SCREAMING_SNAKE_CASE : Dict = [] for row in simplified: SCREAMING_SNAKE_CASE : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE : List[Any] = row.copy()[: len(lowerCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase_ ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE : Dict = temp_row[1::] SCREAMING_SNAKE_CASE : Dict = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [] for item in solutions: final.append(float(round(lowerCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase :Any = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
251
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A__ : Tuple = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(lowerCamelCase_ ) , version.parse(lowerCamelCase_ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def a ( lowerCamelCase_ , lowerCamelCase_ = None ): '''simple docstring''' lowercase__ = F"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCamelCase_ ): lowercase__ , lowercase__ , lowercase__ = requirement, None, None else: lowercase__ = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCamelCase_ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F""" got {requirement}""" ) lowercase__ , lowercase__ = match[0] lowercase__ = want_full.split(''',''' ) # there could be multiple requirements lowercase__ = {} for w in want_range: lowercase__ = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCamelCase_ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F""" but got {requirement}""" ) lowercase__ , lowercase__ = match[0] lowercase__ = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowercase__ = '''.'''.join([str(lowerCamelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return # check if any version is installed try: lowercase__ = importlib.metadata.version(lowerCamelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCamelCase_ , lowerCamelCase_ )
183
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase (a_ :int) -> int: lowercase :Optional[int] = prime_factors(a_) if is_square_free(a_): return -1 if len(a_) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
475
"""simple docstring""" UpperCAmelCase = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase (a_ :int) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_)) def lowerCamelCase () -> int: return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(a_)) if __name__ == "__main__": print(solution())
475
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( snake_case_ , unittest.TestCase ): UpperCamelCase :Union[str, Any] = WavaVecaPhonemeCTCTokenizer UpperCamelCase :List[str] = False def _snake_case (self ): super().setUp() lowerCamelCase__ : Optional[int] = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(""" """ ) lowerCamelCase__ : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCamelCase__ : Dict = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} lowerCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) def _snake_case (self , __magic_name__ , __magic_name__=False , __magic_name__=20 , __magic_name__=5 ): lowerCamelCase__ : int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__magic_name__ )) for i in range(len(__magic_name__ ) )] lowerCamelCase__ : List[Any] = list(filter(lambda __magic_name__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__magic_name__ ) , __magic_name__ ) ) if max_length is not None and len(__magic_name__ ) > max_length: lowerCamelCase__ : List[str] = toks[:max_length] if min_length is not None and len(__magic_name__ ) < min_length and len(__magic_name__ ) > 0: while len(__magic_name__ ) < min_length: lowerCamelCase__ : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : List[Any] = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : str = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) if " " not in output_txt and len(__magic_name__ ) > 1: lowerCamelCase__ : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__magic_name__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__magic_name__ ) ) if with_prefix_space: lowerCamelCase__ : Union[str, Any] = " " + output_txt lowerCamelCase__ : Any = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) return output_txt, output_ids def _snake_case (self , **__magic_name__ ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) lowerCamelCase__ : Optional[Any] = tokenizer("""m xxx ɪ""" , do_phonemize=__magic_name__ ).input_ids self.assertEqual(__magic_name__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) lowerCamelCase__ : List[Any] = tokenizer("""m aaa ɪ ccc""" , do_phonemize=__magic_name__ ).input_ids self.assertEqual(__magic_name__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCamelCase__ : Optional[Any] = tokenizer("""maɪ c""" , do_phonemize=__magic_name__ ).input_ids self.assertEqual(__magic_name__ , [3, 200] ) # mai should be <unk> (=3) def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCamelCase__ : List[Any] = "Hello how are you" lowerCamelCase__ : Any = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) self.assertEqual(__magic_name__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def _snake_case (self ): lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCamelCase__ : int = "Hello how are you" lowerCamelCase__ : Optional[Any] = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(__magic_name__ ).input_ids , tokenizer(__magic_name__ , do_phonemize=__magic_name__ ).input_ids ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCamelCase__ : str = "Hello how are you" lowerCamelCase__ : Any = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) lowerCamelCase__ : Tuple = tokenizer.decode(tokenizer(__magic_name__ ).input_ids ) self.assertEqual(__magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : List[str] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCamelCase__ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCamelCase__ : Union[str, Any] = tokenizer.decode(sample_ids[0] ) lowerCamelCase__ : int = tokenizer.batch_decode(__magic_name__ ) self.assertEqual(__magic_name__ , batch_tokens[0] ) self.assertEqual(__magic_name__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCamelCase__ : Any = "Hello how are you" lowerCamelCase__ : Optional[int] = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) self.assertEqual(__magic_name__ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCamelCase__ : Optional[Any] = "Hello how are you" lowerCamelCase__ : Union[str, Any] = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(__magic_name__ ).input_ids , tokenizer(__magic_name__ , do_phonemize=__magic_name__ ).input_ids ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off lowerCamelCase__ : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCamelCase__ : Optional[int] = tokenizer.decode(sample_ids[0] ) lowerCamelCase__ : List[Any] = tokenizer.batch_decode(__magic_name__ ) self.assertEqual(__magic_name__ , batch_tokens[0] ) self.assertEqual(__magic_name__ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter lowerCamelCase__ : int = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__magic_name__ ) lowerCamelCase__ : Any = tokenizer.batch_decode(__magic_name__ , filter_word_delimiter_token=__magic_name__ ) self.assertEqual(__magic_name__ , batch_tokens[0] ) self.assertEqual(__magic_name__ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCamelCase__ : Any = "Hello how are you" lowerCamelCase__ : Optional[Any] = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) lowerCamelCase__ : int = tokenizer.decode(tokenizer(__magic_name__ ).input_ids , filter_word_delimiter_token=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCamelCase__ : str = "Hello how are you" lowerCamelCase__ : Optional[Any] = tokenizer.phonemize(__magic_name__ , phonemizer_lang="""en-us""" ) lowerCamelCase__ : Dict = tokenizer.decode(tokenizer(__magic_name__ ).input_ids , filter_word_delimiter_token=__magic_name__ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=__magic_name__ ) lowerCamelCase__ : Optional[int] = "Hello how are you" lowerCamelCase__ : List[Any] = tokenizer(__magic_name__ , phonemizer_lang="""en-us""" ).input_ids lowerCamelCase__ : Tuple = tokenizer(__magic_name__ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(__magic_name__ , __magic_name__ ) lowerCamelCase__ : str = tokenizer.decode(__magic_name__ ) lowerCamelCase__ : Dict = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(__magic_name__ , """ɛ l o h aʊ a ʁ j u""" ) def _snake_case (self ): lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCamelCase__ : Union[str, Any] = "Hello how Are you" lowerCamelCase__ : Optional[int] = "hello how are you" lowerCamelCase__ : Dict = tokenizer(__magic_name__ ).input_ids lowerCamelCase__ : Any = tokenizer(__magic_name__ ).input_ids self.assertEqual(__magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off lowerCamelCase__ : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(__magic_name__ ) self.assertEqual(__magic_name__ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def _snake_case (__magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = [d[key] for d in offsets] return retrieved_list def _snake_case (self ): lowerCamelCase__ : int = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCamelCase__ : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCamelCase__ : List[str] = tokenizer.decode(__magic_name__ , output_char_offsets=__magic_name__ , filter_word_delimiter_token=__magic_name__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(__magic_name__ , __magic_name__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(__magic_name__ , __magic_name__ ): self.assertTrue(isinstance(__magic_name__ , __magic_name__ ) ) self.assertTrue(isinstance(outputs_list[0] , __magic_name__ ) ) # transform list to ModelOutput lowerCamelCase__ : Tuple = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(__magic_name__ , __magic_name__ ): if isinstance(__magic_name__ , __magic_name__ ): [recursive_check(__magic_name__ , __magic_name__ ) for la, la in zip(__magic_name__ , __magic_name__ )] self.assertEqual(__magic_name__ , __magic_name__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off lowerCamelCase__ : Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCamelCase__ : List[str] = tokenizer.batch_decode(__magic_name__ , output_char_offsets=__magic_name__ ) lowerCamelCase__ : List[str] = [tokenizer.decode(__magic_name__ , output_char_offsets=__magic_name__ ) for ids in sample_ids] check_list_tuples_equal(__magic_name__ , __magic_name__ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def _snake_case (self ): pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def _snake_case (self ): pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def _snake_case (self ): pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def _snake_case (self ): pass def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase__ : Any = tokenizer.vocab_size lowerCamelCase__ : Dict = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCamelCase__ : List[str] = ["aaaaa bbbbbb", "cccccccccdddddddd"] lowerCamelCase__ : Union[str, Any] = tokenizer.add_tokens(__magic_name__ ) lowerCamelCase__ : Any = tokenizer.vocab_size lowerCamelCase__ : Dict = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) ) lowerCamelCase__ : Any = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCamelCase__ : str = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} lowerCamelCase__ : Union[str, Any] = tokenizer.add_special_tokens(__magic_name__ ) lowerCamelCase__ : str = tokenizer.vocab_size lowerCamelCase__ : Any = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) ) lowerCamelCase__ : str = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _snake_case (self ): pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _snake_case (self ): pass def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = self.get_tokenizers(fast=__magic_name__ , do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase__ : List[Any] = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] lowerCamelCase__ : Optional[Any] = tokenizer.convert_tokens_to_string(__magic_name__ ) self.assertIsInstance(output["""text"""] , __magic_name__ )
157
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = parent lowercase__ : str = batch_size lowercase__ : Dict = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : List[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : str = initializer_range lowercase__ : int = num_labels lowercase__ : Optional[Any] = num_choices lowercase__ : Optional[Any] = scope def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_input_mask: lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Tuple = None if self.use_token_type_ids: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : str = None lowercase__ : List[str] = None lowercase__ : List[Any] = None if self.use_labels: lowercase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> Dict: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=lowerCamelCase , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" lowercase__ : List[Any] = OpenLlamaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : str = model(lowerCamelCase , attention_mask=lowerCamelCase ) lowercase__ : List[str] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[str]: """simple docstring""" lowercase__ : Tuple = True lowercase__ : Optional[int] = OpenLlamaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) lowercase__ : Optional[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) lowercase__ : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: """simple docstring""" lowercase__ : Tuple = OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = True lowercase__ : str = True lowercase__ : List[str] = OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass lowercase__ : List[str] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) lowercase__ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] lowercase__ : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice lowercase__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Any = config_and_inputs lowercase__ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) a : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () a : Optional[Any] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple = False a : Any = False def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = OpenLlamaModelTester(self ) lowercase__ : Dict = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __a ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : List[str] = type self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = 3 lowercase__ : Union[str, Any] = input_dict["input_ids"] lowercase__ : int = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : Optional[Any] = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Any = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : Tuple = "single_label_classification" lowercase__ : Optional[Any] = input_dict["input_ids"] lowercase__ : List[str] = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : List[Any] = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : str = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = 3 lowercase__ : Dict = "multi_label_classification" lowercase__ : Optional[int] = input_dict["input_ids"] lowercase__ : int = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : List[str] = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Optional[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def __a ( self ) -> Optional[int]: """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def __a ( self , lowerCamelCase ) -> Any: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = ids_tensor([1, 10] , config.vocab_size ) lowercase__ : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Union[str, Any] = OpenLlamaModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() lowercase__ : str = original_model(lowerCamelCase ).last_hidden_state lowercase__ : Union[str, Any] = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Union[str, Any] = {"type": scaling_type, "factor": 10.0} lowercase__ : Dict = OpenLlamaModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() lowercase__ : Any = scaled_model(lowerCamelCase ).last_hidden_state lowercase__ : int = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) )
397
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): """simple docstring""" __snake_case : List[str] = "unispeech" def __init__( self :List[str] , __lowercase :Dict=32 , __lowercase :List[str]=768 , __lowercase :str=12 , __lowercase :int=12 , __lowercase :int=3072 , __lowercase :Any="gelu" , __lowercase :List[Any]=0.1 , __lowercase :List[Any]=0.1 , __lowercase :Optional[int]=0.1 , __lowercase :str=0.0 , __lowercase :int=0.0 , __lowercase :Dict=0.1 , __lowercase :int=0.1 , __lowercase :List[str]=0.02 , __lowercase :Tuple=1e-5 , __lowercase :Optional[int]="group" , __lowercase :List[str]="gelu" , __lowercase :Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , __lowercase :Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowercase :List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase :int=False , __lowercase :Union[str, Any]=128 , __lowercase :List[Any]=16 , __lowercase :List[str]=False , __lowercase :List[Any]=True , __lowercase :List[Any]=0.05 , __lowercase :Dict=10 , __lowercase :Union[str, Any]=2 , __lowercase :List[Any]=0.0 , __lowercase :Tuple=10 , __lowercase :Optional[Any]=0 , __lowercase :str=320 , __lowercase :Dict=2 , __lowercase :int=0.1 , __lowercase :Optional[int]=100 , __lowercase :Optional[Any]=256 , __lowercase :Any=256 , __lowercase :Any=0.1 , __lowercase :str="mean" , __lowercase :Optional[Any]=False , __lowercase :Tuple=False , __lowercase :str=256 , __lowercase :List[str]=80 , __lowercase :Tuple=0 , __lowercase :Optional[Any]=1 , __lowercase :Optional[Any]=2 , __lowercase :str=0.5 , **__lowercase :Union[str, Any] , ): super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase : Any =hidden_size __lowerCamelCase : Any =feat_extract_norm __lowerCamelCase : Optional[int] =feat_extract_activation __lowerCamelCase : Tuple =list(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] =list(lowerCamelCase__ ) __lowerCamelCase : Tuple =list(lowerCamelCase__ ) __lowerCamelCase : List[str] =conv_bias __lowerCamelCase : int =num_conv_pos_embeddings __lowerCamelCase : Dict =num_conv_pos_embedding_groups __lowerCamelCase : Union[str, Any] =len(self.conv_dim ) __lowerCamelCase : Optional[int] =num_hidden_layers __lowerCamelCase : Tuple =intermediate_size __lowerCamelCase : List[Any] =hidden_act __lowerCamelCase : Optional[int] =num_attention_heads __lowerCamelCase : Dict =hidden_dropout __lowerCamelCase : List[str] =attention_dropout __lowerCamelCase : int =activation_dropout __lowerCamelCase : Union[str, Any] =feat_proj_dropout __lowerCamelCase : List[Any] =final_dropout __lowerCamelCase : List[str] =layerdrop __lowerCamelCase : Union[str, Any] =layer_norm_eps __lowerCamelCase : Tuple =initializer_range __lowerCamelCase : int =num_ctc_classes __lowerCamelCase : Tuple =vocab_size __lowerCamelCase : List[str] =do_stable_layer_norm __lowerCamelCase : Optional[Any] =use_weighted_layer_sum __lowerCamelCase : Dict =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase : List[str] =apply_spec_augment __lowerCamelCase : int =mask_time_prob __lowerCamelCase : Union[str, Any] =mask_time_length __lowerCamelCase : str =mask_time_min_masks __lowerCamelCase : Dict =mask_feature_prob __lowerCamelCase : Any =mask_feature_length __lowerCamelCase : Union[str, Any] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase : List[str] =num_codevectors_per_group __lowerCamelCase : str =num_codevector_groups __lowerCamelCase : Optional[Any] =contrastive_logits_temperature __lowerCamelCase : Union[str, Any] =feat_quantizer_dropout __lowerCamelCase : Any =num_negatives __lowerCamelCase : str =codevector_dim __lowerCamelCase : List[str] =proj_codevector_dim __lowerCamelCase : Dict =diversity_loss_weight # ctc loss __lowerCamelCase : Optional[int] =ctc_loss_reduction __lowerCamelCase : Tuple =ctc_zero_infinity # pretraining loss __lowerCamelCase : List[str] =replace_prob @property def __lowercase ( self :str ): return functools.reduce(operator.mul , self.conv_stride , 1 )
718
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[str] , *__lowercase :int , **__lowercase :Any ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
363
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['MaskFormerFeatureExtractor'] UpperCamelCase = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCamelCase = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
61
__magic_name__ : str = 8.314_4598 def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> float: """simple docstring""" if temperature < 0: raise Exception('Temperature cannot be less than 0 K') if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol') else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __magic_name__ : List[Any] = 300 __magic_name__ : Union[str, Any] = 28 __magic_name__ : str = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
280
0
"""simple docstring""" def _A ( __lowercase = 100_0000 ): """simple docstring""" lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = {1: 1} for inputa in range(2 , __lowercase ): lowerCamelCase__ = 0 lowerCamelCase__ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase__ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase__ = counter if counter > pre_counter: lowerCamelCase__ = inputa lowerCamelCase__ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
258
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : Distribution , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[str]=0 ): lowerCamelCase__ = 1.0 if scale is None else scale lowerCamelCase__ = 0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE_ )] ) @property def __UpperCAmelCase ( self : Dict ): return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self : List[str] ): return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self : int ): return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = args_dim lowerCamelCase__ = nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for dim in args_dim.values()] ) lowerCamelCase__ = domain_map def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = [proj(SCREAMING_SNAKE_CASE_ ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): super().__init__() lowerCamelCase__ = function def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] ): return self.function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ : snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int = 1 ): lowerCamelCase__ = dim lowerCamelCase__ = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE_ ) , 1 ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , ): lowerCamelCase__ = self._base_distribution(SCREAMING_SNAKE_CASE_ ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE_ , loc=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self : Optional[int] ): return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self : List[Any] ): return len(self.event_shape ) @property def __UpperCAmelCase ( self : Union[str, Any] ): return 0.0 def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): return ParameterProjection( in_features=SCREAMING_SNAKE_CASE_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : torch.Tensor ): raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ : torch.Tensor ): return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE_ ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"df": 1, "loc": 1, "scale": 1} snake_case = StudentT @classmethod def __UpperCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase__ = 2.0 + cls.squareplus(SCREAMING_SNAKE_CASE_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"loc": 1, "scale": 1} snake_case = Normal @classmethod def __UpperCAmelCase ( cls : Tuple , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"total_count": 1, "logits": 1} snake_case = NegativeBinomial @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) , 1 ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None ): lowerCamelCase__ , lowerCamelCase__ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
258
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Dict ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = 0 def UpperCAmelCase ( self : Optional[int] ) -> Any: __UpperCAmelCase : str = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__lowercase , __lowercase ) def UpperCAmelCase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[Any] = Path(__lowercase ) / """preprocessor_config.json""" __UpperCAmelCase : Dict = Path(__lowercase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__lowercase , """w""" ) ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def UpperCAmelCase ( self : Any ) -> Any: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = Path(__lowercase ) / """preprocessor_config.json""" __UpperCAmelCase : Tuple = Path(__lowercase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__lowercase , """w""" ) ) __UpperCAmelCase : str = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCAmelCase : Union[str, Any] = Path(__lowercase ) / """preprocessor_config.json""" __UpperCAmelCase : Optional[Any] = Path(__lowercase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__lowercase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(__lowercase ).to_dict() config_dict.pop("""image_processor_type""" ) __UpperCAmelCase : List[Any] = CLIPImageProcessor(**__lowercase ) # save in new folder model_config.save_pretrained(__lowercase ) config.save_pretrained(__lowercase ) __UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained(__lowercase ) # make sure private variable is not incorrectly saved __UpperCAmelCase : List[str] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__lowercase , __lowercase ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = Path(__lowercase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__lowercase , """w""" ) , ) __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: with self.assertRaisesRegex( __lowercase , """clip-base is not a local folder and is not a valid model identifier""" ): __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: with self.assertRaisesRegex( __lowercase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained(__lowercase , revision="""aaaaaa""" ) def UpperCAmelCase ( self : Dict ) -> Any: with self.assertRaisesRegex( __lowercase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __UpperCAmelCase : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase ( self : Optional[int] ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__lowercase ) __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: try: AutoConfig.register("""custom""" , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoImageProcessor.register(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : int = Path(__lowercase ) / """preprocessor_config.json""" __UpperCAmelCase : Any = Path(__lowercase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__lowercase , """w""" ) ) __UpperCAmelCase : List[Any] = CustomImageProcessor.from_pretrained(__lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self : Optional[Any] ) -> str: class a ( lowercase__ ): """simple docstring""" a : Any = True try: AutoConfig.register("""custom""" , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # If remote code is not set, the default is to use local __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__lowercase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
63
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart __lowercase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } __lowercase = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCamelCase :Tuple = bs[:] __UpperCamelCase :int = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __UpperCamelCase :List[Any] = [chr(SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = set() __UpperCamelCase :List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase :Optional[Any] = char return pairs class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = ["""input_ids""", """attention_mask"""] def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> int: __UpperCamelCase :Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else bos_token __UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else eos_token __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else sep_token __UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else cls_token __UpperCamelCase :Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else unk_token __UpperCamelCase :Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase :int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''') as vocab_handle: __UpperCamelCase :List[str] = json.load(__lowercase) __UpperCamelCase :List[Any] = {v: k for k, v in self.encoder.items()} __UpperCamelCase :Union[str, Any] = errors # how to handle errors in decoding __UpperCamelCase :Tuple = bytes_to_unicode() __UpperCamelCase :Tuple = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''') as merges_handle: __UpperCamelCase :Optional[int] = merges_handle.read().split('''\n''')[1:-1] __UpperCamelCase :Any = [tuple(merge.split()) for merge in bpe_merges] __UpperCamelCase :List[Any] = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :Union[str, Any] = {} __UpperCamelCase :str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase :List[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property def UpperCamelCase__ ( self) -> str: return len(self.encoder) def UpperCamelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCamelCase__ ( self , __lowercase) -> str: if token in self.cache: return self.cache[token] __UpperCamelCase :Tuple = tuple(__lowercase) __UpperCamelCase :Optional[int] = get_pairs(__lowercase) if not pairs: return token while True: __UpperCamelCase :Tuple = min(__lowercase , key=lambda __lowercase: self.bpe_ranks.get(__lowercase , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase :Optional[int] = bigram __UpperCamelCase :Tuple = [] __UpperCamelCase :Dict = 0 while i < len(__lowercase): try: __UpperCamelCase :Dict = word.index(__lowercase , __lowercase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __UpperCamelCase :Union[str, Any] = j if word[i] == first and i < len(__lowercase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCamelCase :Tuple = tuple(__lowercase) __UpperCamelCase :List[Any] = new_word if len(__lowercase) == 1: break else: __UpperCamelCase :Optional[int] = get_pairs(__lowercase) __UpperCamelCase :Any = ''' '''.join(__lowercase) __UpperCamelCase :Dict = word return word def UpperCamelCase__ ( self , __lowercase) -> Any: __UpperCamelCase :Optional[Any] = [] for token in re.findall(self.pat , __lowercase): __UpperCamelCase :List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase).split(''' ''')) return bpe_tokens def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: return self.encoder.get(__lowercase , self.encoder.get(self.unk_token)) def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: return self.decoder.get(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = ''''''.join(__lowercase) __UpperCamelCase :Tuple = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :Any = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Dict = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(__lowercase , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase) + '''\n''') __UpperCamelCase :int = 0 with open(__lowercase , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''') __UpperCamelCase :Optional[int] = token_index writer.write(''' '''.join(__lowercase) + '''\n''') index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase :Optional[Any] = [self.cls_token_id] __UpperCamelCase :str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase) if token_ids_a is None: return [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1, 1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :Optional[int] = [self.sep_token_id] __UpperCamelCase :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase__ ( self , __lowercase , __lowercase=False , **__lowercase) -> Any: __UpperCamelCase :List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(__lowercase) > 0 and not text[0].isspace()): __UpperCamelCase :Optional[Any] = ''' ''' + text return (text, kwargs)
167
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Dict ={ '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =[ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
631
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _A : int =get_tests_dir('''fixtures/test_sentencepiece.model''') _A : Tuple ={'''target_lang''': '''fi''', '''source_lang''': '''en'''} _A : int ='''>>zh<<''' _A : Dict ='''Helsinki-NLP/''' if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Optional[int] ='''tf''' else: _A : Dict ='''jax''' @require_sentencepiece class _lowercase ( _lowercase , unittest.TestCase ): a = MarianTokenizer a = False a = True def lowerCamelCase_ ( self: List[str] ): super().setUp() lowerCamelCase__ : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCamelCase__ : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) lowerCamelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] , **UpperCamelCase__: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] ): return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = """</s>""" lowerCamelCase__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def lowerCamelCase_ ( self: int ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[Any] = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowerCamelCase__ : Optional[int] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) lowerCamelCase__ : List[str] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Tuple = [x.name for x in Path(UpperCamelCase__ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase_ ( self: List[str] ): # fmt: off lowerCamelCase__ : int = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) lowerCamelCase__ : str = """Tämä on testi""" lowerCamelCase__ : Any = """This is a test""" lowerCamelCase__ : int = [76, 7, 2_047, 2] lowerCamelCase__ : List[str] = [69, 12, 11, 940, 2] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
631
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _lowercase : Optional[Any] =["bert-base-uncased", "bert-base-cased"] _lowercase : Dict ="hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class snake_case__ (tf.keras.Model ): """simple docstring""" def __init__( self , __lowercase ) -> Any: """simple docstring""" super().__init__() a__ : int = tokenizer a__ : int = AutoConfig.from_pretrained(__lowercase ) a__ : str = TFAutoModel.from_config(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : Optional[int] = self.tokenizer(__lowercase ) a__ : Dict = self.bert(**__lowercase ) return out["pooler_output"] @require_tf @require_tensorflow_text class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" super().setUp() a__ : Dict = [ BertTokenizer.from_pretrained(__lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false a__ : Any = [TFBertTokenizer.from_pretrained(__lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__lowercase , use_fast_bert_tokenizer=__lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a__ : Any = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] a__ : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): a__ : Optional[int] = tokenizer(__lowercase , return_tensors="""tf""" , padding="""longest""" ) a__ : Any = tf_tokenizer(__lowercase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : str = tf_tokenizer(self.paired_sentences ) a__ : int = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : Dict = tf.function(__lowercase ) for test_inputs in (self.test_sentences, self.paired_sentences): a__ : Optional[int] = tf.constant(__lowercase ) a__ : Union[str, Any] = compiled_tokenizer(__lowercase ) a__ : str = tf_tokenizer(__lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : List[Any] = ModelToSave(tokenizer=__lowercase ) a__ : str = tf.convert_to_tensor(self.test_sentences ) a__ : Any = model(__lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a__ : List[Any] = Path(__lowercase ) / """saved.model""" model.save(__lowercase ) a__ : List[Any] = tf.keras.models.load_model(__lowercase ) a__ : Optional[Any] = loaded_model(__lowercase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
136
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : int) -> Any: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowerCAmelCase_ ( _lowercase : Any , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[int]=True) -> str: """simple docstring""" model.train() a__ : Optional[Any] = model(_lowercase) a__ : Optional[int] = F.mse_loss(_lowercase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowercase) def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Any=False) -> Optional[int]: """simple docstring""" set_seed(42) a__ : Any = RegressionModel() a__ : int = deepcopy(_lowercase) a__ : Dict = RegressionDataset(length=80) a__ : Union[str, Any] = DataLoader(_lowercase , batch_size=16) model.to(accelerator.device) if sched: a__ : Optional[int] = AdamW(params=model.parameters() , lr=1e-3) a__ : Optional[int] = AdamW(params=ddp_model.parameters() , lr=1e-3) a__ : Tuple = LambdaLR(_lowercase , lr_lambda=lambda _lowercase: epoch**0.65) a__ : Tuple = LambdaLR(_lowercase , lr_lambda=lambda _lowercase: epoch**0.65) # Make a copy of `model` if sched: a__ , a__ , a__ , a__ : Optional[Any] = accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase) else: a__ , a__ : Optional[Any] = accelerator.prepare(_lowercase , _lowercase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( _lowercase : List[str]) -> int: """simple docstring""" # Test when on a single CPU or GPU that the context manager does nothing a__ , a__ , a__ : int = get_training_setup(_lowercase) # Use a single batch a__ , a__ : Union[str, Any] = next(iter(_lowercase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model a__ , a__ : List[Any] = accelerator.gather((ddp_input, ddp_target)) a__ , a__ : Optional[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowercase): step_model(_lowercase , _lowercase , _lowercase , _lowercase) else: # Sync grads step_model(_lowercase , _lowercase , _lowercase , _lowercase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) a__ : Union[str, Any] = ddp_input[torch.randperm(len(_lowercase))] def lowerCAmelCase_ ( _lowercase : List[Any]) -> List[str]: """simple docstring""" # Test on distributed setup that context manager behaves properly a__ , a__ , a__ : Optional[Any] = get_training_setup(_lowercase) # Use a single batch a__ , a__ : Optional[Any] = next(iter(_lowercase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model a__ , a__ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target)) a__ , a__ : str = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowercase): step_model(_lowercase , _lowercase , _lowercase , _lowercase) else: # Sync grads step_model(_lowercase , _lowercase , _lowercase , _lowercase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) a__ : List[Any] = ddp_input[torch.randperm(len(_lowercase))] def lowerCAmelCase_ ( _lowercase : int=False , _lowercase : Any=False) -> List[str]: """simple docstring""" a__ : List[Any] = Accelerator( split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2) # Test that context manager behaves properly a__ , a__ , a__ : Dict = get_training_setup(_lowercase) for iteration, batch in enumerate(_lowercase): a__ , a__ : int = batch.values() # Gather the distributed inputs and targs for the base model a__ , a__ : Tuple = accelerator.gather((ddp_input, ddp_target)) a__ , a__ : Optional[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowercase): step_model(_lowercase , _lowercase , _lowercase , _lowercase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowercase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) a__ : str = ddp_input[torch.randperm(len(_lowercase))] GradientState._reset_state() def lowerCAmelCase_ ( _lowercase : Dict=False , _lowercase : Union[str, Any]=False) -> Optional[Any]: """simple docstring""" a__ : int = Accelerator( split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2) # Test that context manager behaves properly a__ , a__ , a__ , a__ , a__ , a__ , a__ : Optional[int] = get_training_setup(_lowercase , _lowercase) for iteration, batch in enumerate(_lowercase): a__ , a__ : str = batch.values() # Gather the distributed inputs and targs for the base model a__ , a__ : List[str] = accelerator.gather((ddp_input, ddp_target)) a__ , a__ : Optional[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowercase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowercase): step_model(_lowercase , _lowercase , _lowercase , _lowercase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' a__ : Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowercase)) if accelerator.num_processes > 1: check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowerCAmelCase_ ( ) -> Any: """simple docstring""" a__ : int = Accelerator() a__ : List[Any] = RegressionDataset(length=80) a__ : Dict = DataLoader(_lowercase , batch_size=16) a__ : Dict = RegressionDataset(length=96) a__ : Optional[int] = DataLoader(_lowercase , batch_size=16) a__ , a__ : Optional[int] = accelerator.prepare(_lowercase , _lowercase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowercase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowercase) if iteration < len(_lowercase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowercase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowercase) if batch_num < len(_lowercase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> Any: """simple docstring""" a__ : Optional[Any] = Accelerator() a__ : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""") test_noop_sync(_lowercase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""") test_distributed_sync(_lowercase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowercase , _lowercase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Dict) -> int: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
136
1
from math import pow, sqrt def a ( *SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values ) return result def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = BioGptTokenizer UpperCamelCase_ = False def lowerCAmelCase__ ( self) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase__ : Optional[Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase)))) UpperCamelCase__ : Optional[Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(UpperCamelCase)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(UpperCamelCase)) def lowerCAmelCase__ ( self , UpperCamelCase) -> Optional[int]: UpperCamelCase__ : str = 'lower newer' UpperCamelCase__ : Optional[Any] = 'lower newer' return input_text, output_text def lowerCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase__ : Tuple = BioGptTokenizer(self.vocab_file , self.merges_file) UpperCamelCase__ : str = 'lower' UpperCamelCase__ : Union[str, Any] = ['low', 'er</w>'] UpperCamelCase__ : int = tokenizer.tokenize(UpperCamelCase) self.assertListEqual(UpperCamelCase , UpperCamelCase) UpperCamelCase__ : int = tokens + ['<unk>'] UpperCamelCase__ : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase) , UpperCamelCase) @slow def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ : Any = BioGptTokenizer.from_pretrained('microsoft/biogpt') UpperCamelCase__ : Dict = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase) UpperCamelCase__ : Tuple = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase) UpperCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase) UpperCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
410
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase__ : int = imread(r'''digital_image_processing/image_data/lena_small.jpg''') UpperCAmelCase__ : Any = cvtColor(img, COLOR_BGR2GRAY) def _lowercase ( ) -> Any: UpperCamelCase__ : Optional[int] = cn.convert_to_negative(__SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def _lowercase ( ) -> Tuple: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(__SCREAMING_SNAKE_CASE , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _lowercase ( ) -> str: UpperCamelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowercase ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCamelCase__ : List[str] = canny.canny(__SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def _lowercase ( ) -> Dict: assert gg.gaussian_filter(__SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def _lowercase ( ) -> Optional[int]: # laplace diagonals UpperCamelCase__ : Optional[int] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCamelCase__ : Tuple = conv.img_convolve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) assert res.any() def _lowercase ( ) -> List[str]: assert med.median_filter(__SCREAMING_SNAKE_CASE , 3 ).any() def _lowercase ( ) -> List[str]: UpperCamelCase__ , UpperCamelCase__ : int = sob.sobel_filter(__SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def _lowercase ( ) -> Optional[Any]: UpperCamelCase__ : str = sp.make_sepia(__SCREAMING_SNAKE_CASE , 20 ) assert sepia.all() def _lowercase ( __SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" ) -> Any: UpperCamelCase__ : int = bs.Burkes(imread(__SCREAMING_SNAKE_CASE , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowercase ( __SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[Any]: UpperCamelCase__ : Union[str, Any] = rs.NearestNeighbour(imread(__SCREAMING_SNAKE_CASE , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowercase ( ) -> List[str]: UpperCamelCase__ : Optional[Any] = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. UpperCamelCase__ : List[str] = imread(__SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = image[x_coordinate][y_coordinate] UpperCamelCase__ : str = lbp.get_neighbors_pixel( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCamelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCamelCase__ : Any = lbp.local_binary_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert lbp_image.any()
410
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
714
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def __A ( a_ : List[str] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCAmelCase = parser.parse_args() lowerCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
551
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase_ ( unittest.TestCase , UpperCamelCase__ ): def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_tool("""text-to-speech""" ) self.tool.setup() def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool("""hey""" ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool("""hey""" ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
6
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False , )-> str: """simple docstring""" super().__init__() UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) UpperCamelCase = TaConfig( vocab_size=UpperCAmelCase_ , d_model=UpperCAmelCase_ , num_heads=UpperCAmelCase_ , d_kv=UpperCAmelCase_ , d_ff=UpperCAmelCase_ , dropout_rate=UpperCAmelCase_ , feed_forward_proj=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(UpperCAmelCase_ ): UpperCamelCase = TaBlock(UpperCAmelCase_ ) self.encoders.append(UpperCAmelCase_ ) UpperCamelCase = TaLayerNorm(UpperCAmelCase_ ) UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str )-> List[Any]: """simple docstring""" UpperCamelCase = self.token_embedder(UpperCAmelCase_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(UpperCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase_ ) UpperCamelCase = self.dropout_pre(UpperCAmelCase_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ ) for lyr in self.encoders: UpperCamelCase = lyr(UpperCAmelCase_ , UpperCAmelCase_ )[0] UpperCamelCase = self.layer_norm(UpperCAmelCase_ ) return self.dropout_post(UpperCAmelCase_ ), encoder_inputs_mask
554
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=18 , __SCREAMING_SNAKE_CASE : Union[str, Any]=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=400 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=None , ) -> List[Any]: a_ : List[Any] = size if size is not None else {'''height''': 20, '''width''': 20} a_ : Optional[int] = parent a_ : List[str] = batch_size a_ : List[str] = num_channels a_ : str = image_size a_ : Any = min_resolution a_ : Dict = max_resolution a_ : List[str] = size a_ : str = do_normalize a_ : Optional[Any] = do_convert_rgb a_ : Any = [512, 1024, 2048, 4096] a_ : Dict = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: a_ : Tuple = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' a_ : List[str] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = PixaStructImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() a_ : Tuple = self.image_processing_class(**self.image_processor_dict ) a_ : int = 2048 a_ : Tuple = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # Initialize image_processor a_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : int = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : List[Any] = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # Initialize image_processor a_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 a_ : Any = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__SCREAMING_SNAKE_CASE ): a_ : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches a_ : str = '''Hello''' a_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : str = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: # Initialize image_processor a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Union[str, Any] = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # Initialize image_processor a_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : Any = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Tuple = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) a_ : Tuple = 3 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # Initialize image_processor a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a_ : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a_ : Dict = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
702
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
0
import os from collections import deque import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[int] , a : Optional[Any]="" , a : str="train" )-> int: """simple docstring""" assert os.path.isdir(a ) lowercase__ = [] lowercase__ = os.listdir(a ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowercase__ = os.path.join(a , a ) if not os.path.isfile(a ): continue self.documents.append(a ) def __len__( self : Dict )-> Optional[Any]: """simple docstring""" return len(self.documents ) def __getitem__( self : Union[str, Any] , a : Dict )-> str: """simple docstring""" lowercase__ = self.documents[idx] lowercase__ = document_path.split('/' )[-1] with open(a , encoding='utf-8' ) as source: lowercase__ = source.read() lowercase__ , lowercase__ = process_story(a ) return document_name, story_lines, summary_lines def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = list(filter(lambda _SCREAMING_SNAKE_CASE : len(_SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it lowercase__ = [_add_missing_period(_SCREAMING_SNAKE_CASE ) for line in nonempty_lines] # gather article lines lowercase__ = [] lowercase__ = deque(_SCREAMING_SNAKE_CASE ) while True: try: lowercase__ = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_SCREAMING_SNAKE_CASE ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowercase__ = list(filter(lambda _SCREAMING_SNAKE_CASE : not t.startswith('@highlight' ) , _SCREAMING_SNAKE_CASE ) ) return story_lines, summary_lines def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: if len(_SCREAMING_SNAKE_CASE ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_SCREAMING_SNAKE_CASE )) ) return sequence def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = torch.ones_like(_SCREAMING_SNAKE_CASE ) lowercase__ = sequence == pad_token_id lowercase__ = 0 return mask def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in story_lines] lowercase__ = [token for sentence in story_lines_token_ids for token in sentence] lowercase__ = [tokenizer.encode(_SCREAMING_SNAKE_CASE ) for line in summary_lines] lowercase__ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = [] for sequence in batch: lowercase__ = -1 lowercase__ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_SCREAMING_SNAKE_CASE ) return torch.tensor(_SCREAMING_SNAKE_CASE )
235
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowercase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowercase__ = Image.open(_SCREAMING_SNAKE_CASE ) return im.convert('RGB' ) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) _UpperCamelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase )} , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _UpperCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _UpperCamelCase : str = field(default=UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = torch.stack([example['pixel_values'] for example in examples] ) lowercase__ = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __UpperCamelCase () -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ = {} if data_args.train_dir is not None: lowercase__ = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: lowercase__ = os.path.join(data_args.validation_dir , '**' ) lowercase__ = load_dataset( 'imagefolder' , data_files=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = dataset['train'].train_test_split(data_args.train_val_split ) lowercase__ = split['train'] lowercase__ = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ = dataset['train'].features['labels'].names lowercase__ , lowercase__ = {}, {} for i, label in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = str(_SCREAMING_SNAKE_CASE ) lowercase__ = label # Load the accuracy metric from the datasets package lowercase__ = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['shortest_edge'] else: lowercase__ = (image_processor.size['height'], image_processor.size['width']) lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase__ = Compose( [ RandomResizedCrop(_SCREAMING_SNAKE_CASE ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), normalize, ] ) def train_transforms(_SCREAMING_SNAKE_CASE ): lowercase__ = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(_SCREAMING_SNAKE_CASE ): lowercase__ = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowercase__ = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowercase__ = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Initalize our trainer lowercase__ = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('eval' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
235
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''data2vec-audio''' def __init__( self :Dict , __UpperCamelCase :Optional[int]=32 , __UpperCamelCase :int=7_68 , __UpperCamelCase :Tuple=12 , __UpperCamelCase :Any=12 , __UpperCamelCase :Tuple=30_72 , __UpperCamelCase :int="gelu" , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Optional[int]=0.1 , __UpperCamelCase :Any=0.1 , __UpperCamelCase :Tuple=0.0 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :Any=1e-5 , __UpperCamelCase :str="gelu" , __UpperCamelCase :int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase :Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase :str=False , __UpperCamelCase :Union[str, Any]=16 , __UpperCamelCase :Union[str, Any]=19 , __UpperCamelCase :Union[str, Any]=5 , __UpperCamelCase :str=0.05 , __UpperCamelCase :Union[str, Any]=10 , __UpperCamelCase :Any=2 , __UpperCamelCase :Dict=0.0 , __UpperCamelCase :Dict=10 , __UpperCamelCase :Tuple=0 , __UpperCamelCase :Dict="sum" , __UpperCamelCase :int=False , __UpperCamelCase :Dict=False , __UpperCamelCase :Tuple=2_56 , __UpperCamelCase :Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase :Union[str, Any]=(5, 3, 3, 1, 1) , __UpperCamelCase :Dict=(1, 2, 3, 1, 1) , __UpperCamelCase :Tuple=5_12 , __UpperCamelCase :List[Any]=0 , __UpperCamelCase :List[str]=1 , __UpperCamelCase :str=2 , __UpperCamelCase :Any=False , __UpperCamelCase :Any=3 , __UpperCamelCase :Dict=2 , __UpperCamelCase :str=3 , __UpperCamelCase :List[Any]=None , **__UpperCamelCase :List[Any] , ): super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) A = hidden_size A = feat_extract_activation A = list(__UpperCamelCase ) A = list(__UpperCamelCase ) A = list(__UpperCamelCase ) A = conv_bias A = num_conv_pos_embeddings A = num_conv_pos_embedding_groups A = conv_pos_kernel_size A = len(self.conv_dim ) A = num_hidden_layers A = intermediate_size A = hidden_act A = num_attention_heads A = hidden_dropout A = attention_dropout A = activation_dropout A = feat_proj_dropout A = final_dropout A = layerdrop A = layer_norm_eps A = initializer_range A = vocab_size A = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A = mask_time_prob A = mask_time_length A = mask_time_min_masks A = mask_feature_prob A = mask_feature_length A = mask_feature_min_masks # ctc loss A = ctc_loss_reduction A = ctc_zero_infinity # adapter A = add_adapter A = adapter_kernel_size A = adapter_stride A = num_adapter_layers A = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A = list(__UpperCamelCase ) A = list(__UpperCamelCase ) A = list(__UpperCamelCase ) A = xvector_output_dim @property def lowerCamelCase ( self :Any ): return math.prod(self.conv_stride )
524
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def A__ ( UpperCamelCase , UpperCamelCase ): A = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def A__ ( UpperCamelCase , UpperCamelCase ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) A = in_proj_weight[ : encoder_config.hidden_size, : ] A = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A = in_proj_weight[ -encoder_config.hidden_size :, : ] def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = dct.pop(UpperCamelCase ) A = val def A__ ( UpperCamelCase ): if "handwritten" in checkpoint_url: A = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def A__ ( UpperCamelCase , UpperCamelCase ): A = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase ) A = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A = 768 elif "large" in checkpoint_url: # use ViT-large encoder A = 1_024 A = 4_096 A = 24 A = 16 A = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A = False A = "relu" A = 1_024 A = True A = False A = False # load HuggingFace model A = ViTModel(UpperCamelCase , add_pooling_layer=UpperCamelCase ) A = TrOCRForCausalLM(UpperCamelCase ) A = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys A = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" , check_hash=UpperCamelCase )["model"] A = create_rename_keys(UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A = state_dict.pop(UpperCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A = val else: A = val # load state dict model.load_state_dict(UpperCamelCase ) # Check outputs on an image A = ViTImageProcessor(size=encoder_config.image_size ) A = RobertaTokenizer.from_pretrained("roberta-large" ) A = TrOCRProcessor(UpperCamelCase , UpperCamelCase ) A = processor(images=prepare_img(UpperCamelCase ) , return_tensors="pt" ).pixel_values # verify logits A = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A = model(pixel_values=UpperCamelCase , decoder_input_ids=UpperCamelCase ) A = outputs.logits A = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: A = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _snake_case : Any = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
524
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = LayoutLMTokenizer __lowerCamelCase : int = LayoutLMTokenizerFast __lowerCamelCase : Tuple = True __lowerCamelCase : Optional[Any] = True def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() A__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a_ ( self : int , **__lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : str , __lowerCAmelCase : int ) -> Dict: """simple docstring""" A__ = """UNwant\u00E9d,running""" A__ = """unwanted, running""" return input_text, output_text def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" pass
247
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''microsoft/speecht5_tts''' a__ =( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) a__ ='''text_reader''' a__ =SpeechTaProcessor a__ =SpeechTaForTextToSpeech a__ =SpeechTaHifiGan a__ =['''text'''] a__ =['''audio'''] def __lowerCAmelCase ( self ) -> Tuple: if self.post_processor is None: _UpperCAmelCase : Dict = '''microsoft/speecht5_hifigan''' super().setup() def __lowerCAmelCase ( self , A , A=None ) -> Optional[int]: _UpperCAmelCase : List[Any] = self.pre_processor(text=A , return_tensors='''pt''' , truncation=A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _UpperCAmelCase : List[str] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _UpperCAmelCase : Optional[Any] = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCAmelCase ( self , A ) -> List[Any]: with torch.no_grad(): return self.model.generate_speech(**A ) def __lowerCAmelCase ( self , A ) -> List[Any]: with torch.no_grad(): return self.post_processor(A ).cpu().detach()
506
"""simple docstring""" from string import ascii_uppercase _lowerCAmelCase :str = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) _UpperCAmelCase : Optional[int] = '''''' _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Dict = 0 while div != 1: _UpperCAmelCase , _UpperCAmelCase : List[str] = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: _UpperCAmelCase : Optional[int] = ALPHABET_VALUES[str(UpperCamelCase__ )] else: _UpperCAmelCase : Any = str(UpperCamelCase__ ) new_value += actual_value _UpperCAmelCase : Tuple = num // base _UpperCAmelCase : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
506
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> List[Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase_ : Optional[int] = k.replace(UpperCamelCase ,UpperCamelCase ) if k.startswith('encoder' ): UpperCAmelCase_ : Dict = k.replace('.attn' ,'.self_attn' ) UpperCAmelCase_ : int = k.replace('norm1' ,'self_attn_layer_norm' ) UpperCAmelCase_ : int = k.replace('norm2' ,'final_layer_norm' ) elif k.startswith('decoder' ): UpperCAmelCase_ : Union[str, Any] = k.replace('norm1' ,'self_attn_layer_norm' ) UpperCAmelCase_ : int = k.replace('norm2' ,'encoder_attn_layer_norm' ) UpperCAmelCase_ : List[str] = k.replace('norm3' ,'final_layer_norm' ) return k def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: UpperCAmelCase_ : Optional[int] = sd.pop(UpperCamelCase ) UpperCAmelCase_ : List[Any] = k.replace('layernorm_embedding' ,'layer_norm' ) assert new_k not in sd UpperCAmelCase_ : Any = v lowerCAmelCase__ = ["START"] @torch.no_grad() def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: UpperCAmelCase_ : str = torch.load(UpperCamelCase ,map_location='cpu' ) UpperCAmelCase_ : Tuple = model['model'] UpperCAmelCase_ : Union[str, Any] = BlenderbotConfig.from_json_file(UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = BlenderbotForConditionalGeneration(UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = m.model.state_dict().keys() UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase_ : Union[str, Any] = rename_state_dict_key(UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase_ : List[str] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase ) m.model.load_state_dict(UpperCamelCase ,strict=UpperCamelCase ) m.half() m.save_pretrained(UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
471
'''simple docstring''' import math class lowercase : def __init__( self , _snake_case=0) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 UpperCAmelCase_ : Tuple = n UpperCAmelCase_ : Optional[Any] = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # adjacency matrix for weight UpperCAmelCase_ : Tuple = [ [math.inf for j in range(0 , _snake_case)] for i in range(0 , _snake_case) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = w def _snake_case ( self) -> str: for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): UpperCAmelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def _snake_case ( self , _snake_case , _snake_case) -> str: return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
471
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def A ( UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = AlbertConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = AlbertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
48
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase__ : Dict = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase__ : str = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() lowercase__ : List[Any] = '''|'''.join(sys.argv[1:]) lowercase__ : Tuple = re.compile(Rf'^({joined_dirs}).*?\.py$') lowercase__ : Tuple = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
312
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __UpperCamelCase ( _A : int ) ->Optional[Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase_ =k.replace(_A , _A ) if k.startswith("""encoder""" ): lowerCamelCase_ =k.replace(""".attn""" , """.self_attn""" ) lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowerCamelCase_ =k.replace("""norm1""" , """self_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowerCamelCase_ =k.replace("""norm3""" , """final_layer_norm""" ) return k def __UpperCamelCase ( _A : Optional[int] ) ->int: """simple docstring""" lowerCamelCase_ =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowerCamelCase_ =sd.pop(_A ) lowerCamelCase_ =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowerCamelCase_ =v __A : Optional[int] = ['START'] @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : int , _A : Optional[Any] ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =torch.load(_A , map_location="""cpu""" ) lowerCamelCase_ =model["""model"""] lowerCamelCase_ =BlenderbotConfig.from_json_file(_A ) lowerCamelCase_ =BlenderbotForConditionalGeneration(_A ) lowerCamelCase_ =m.model.state_dict().keys() lowerCamelCase_ =[] lowerCamelCase_ ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase_ =rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase_ =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A : Dict = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
702
from collections import deque from math import floor from random import random from time import time class _SCREAMING_SNAKE_CASE : def __init__( self )-> List[str]: lowerCamelCase_ ={} def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 )-> List[Any]: if self.graph.get(_SCREAMING_SNAKE_CASE ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase_ =[[w, v]] if not self.graph.get(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =[] def _snake_case ( self )-> str: return list(self.graph ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: if self.graph.get(_SCREAMING_SNAKE_CASE ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )-> Optional[Any]: if s == d: return [] lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_SCREAMING_SNAKE_CASE ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE=-1 )-> Optional[int]: if c == -1: lowerCamelCase_ =floor(random() * 1_0000 ) + 10 for i in range(_SCREAMING_SNAKE_CASE ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase_ =floor(random() * c ) + 1 if n != i: self.add_pair(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )-> Any: lowerCamelCase_ =deque() lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] d.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) while d: lowerCamelCase_ =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: return len(self.graph[u] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )-> Union[str, Any]: lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s lowerCamelCase_ =[] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return sorted_nodes def _snake_case ( self )-> str: lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =False indirect_parents.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return list(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =False indirect_parents.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return False def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )-> List[str]: lowerCamelCase_ =time() self.dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =time() return end - begin def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )-> List[str]: lowerCamelCase_ =time() self.bfs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =time() return end - begin class _SCREAMING_SNAKE_CASE : def __init__( self )-> Optional[Any]: lowerCamelCase_ ={} def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 )-> List[str]: # check if the u exists if self.graph.get(_SCREAMING_SNAKE_CASE ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase_ =[[w, v]] # add the other way if self.graph.get(_SCREAMING_SNAKE_CASE ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase_ =[[w, u]] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: if self.graph.get(_SCREAMING_SNAKE_CASE ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_SCREAMING_SNAKE_CASE ) # the other way round if self.graph.get(_SCREAMING_SNAKE_CASE ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )-> int: if s == d: return [] lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_SCREAMING_SNAKE_CASE ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE=-1 )-> Optional[int]: if c == -1: lowerCamelCase_ =floor(random() * 1_0000 ) + 10 for i in range(_SCREAMING_SNAKE_CASE ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase_ =floor(random() * c ) + 1 if n != i: self.add_pair(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )-> List[str]: lowerCamelCase_ =deque() lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] d.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) while d: lowerCamelCase_ =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return len(self.graph[u] ) def _snake_case ( self )-> Any: lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =False indirect_parents.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return list(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(_SCREAMING_SNAKE_CASE ) visited.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(_SCREAMING_SNAKE_CASE ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(_SCREAMING_SNAKE_CASE ) != 0: lowerCamelCase_ =stack[len(_SCREAMING_SNAKE_CASE ) - 1] else: lowerCamelCase_ =False indirect_parents.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(_SCREAMING_SNAKE_CASE ) == 0: return False def _snake_case ( self )-> Optional[Any]: return list(self.graph ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 , _SCREAMING_SNAKE_CASE=-1 )-> str: lowerCamelCase_ =time() self.dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =time() return end - begin def _snake_case ( self , _SCREAMING_SNAKE_CASE=-2 )-> Dict: lowerCamelCase_ =time() self.bfs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =time() return end - begin
75
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _a ( ): """simple docstring""" lowercase__ = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=SCREAMING_SNAKE_CASE ) lowercase__ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE ) # Let's go lowercase__ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , '''func''' ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Optional[Any] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def a_ ( __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCAmelCase , output_all_encodings=__lowerCAmelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCAmelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase__ = _load_vocab(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , cls=__lowerCAmelCase ) lowerCAmelCase__ = nlp.model.BERTModel( __lowerCAmelCase , len(__lowerCAmelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCAmelCase , use_token_type_embed=__lowerCAmelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCAmelCase , use_decoder=__lowerCAmelCase , ) original_bort.load_parameters(__lowerCAmelCase , cast_dtype=__lowerCAmelCase , ignore_extra=__lowerCAmelCase ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCAmelCase ), } lowerCAmelCase__ = BertConfig.from_dict(__lowerCAmelCase ) lowerCAmelCase__ = BertForMaskedLM(__lowerCAmelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCAmelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase__ = tokenizer.encode_plus(__lowerCAmelCase )['''input_ids'''] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=__lowerCAmelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCAmelCase ) lowerCAmelCase__ = BertModel.from_pretrained(__lowerCAmelCase ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(__lowerCAmelCase , return_tensors='''pt''' ) lowerCAmelCase__ = hf_bort_model(**__lowerCAmelCase )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCAmelCase ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __magic_name__ : int = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
615
0
"""simple docstring""" import math def a__ ( __lowercase , __lowercase ) -> float: if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
621
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
621
1
'''simple docstring''' import re def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(__UpperCamelCase , __UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
566
'''simple docstring''' def lowercase__ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ): '''simple docstring''' __lowercase = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
1
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Optional[int] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Any = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers'''])
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
"""simple docstring""" import re import string import numpy as np import datasets UpperCamelCase__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' UpperCamelCase__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' UpperCamelCase__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Any) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence'''), '''references''': datasets.Value('''string''' ,id='''sequence'''), }) ,reference_urls=[] ,) def __UpperCamelCase ( self : Dict ,a__ : Optional[Any] ,a__ : Dict ,a__ : List[str]=None ,a__ : List[Any]=False ,a__ : Tuple=False ,a__ : str=False ,) -> List[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase:List[Any] = np.array([re.sub(a__ ,'''''' ,a__) for x in predictions]) _lowerCAmelCase:Optional[Any] = np.array([re.sub(a__ ,'''''' ,a__) for x in references]) else: _lowerCAmelCase:Optional[Any] = np.asarray(a__) _lowerCAmelCase:Union[str, Any] = np.asarray(a__) if ignore_case: _lowerCAmelCase:List[str] = np.char.lower(a__) _lowerCAmelCase:Any = np.char.lower(a__) if ignore_punctuation: _lowerCAmelCase:Dict = string.punctuation.maketrans('''''' ,'''''' ,string.punctuation) _lowerCAmelCase:int = np.char.translate(a__ ,table=a__) _lowerCAmelCase:Union[str, Any] = np.char.translate(a__ ,table=a__) if ignore_numbers: _lowerCAmelCase:List[Any] = string.digits.maketrans('''''' ,'''''' ,string.digits) _lowerCAmelCase:Any = np.char.translate(a__ ,table=a__) _lowerCAmelCase:Union[str, Any] = np.char.translate(a__ ,table=a__) _lowerCAmelCase:str = predictions == references return {"exact_match": np.mean(a__) * 100}
227
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase ( snake_case : Optional[Any] , snake_case : Optional[int] ): assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase ( snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple ): _lowerCAmelCase:List[str] = tmp_path / '''cache''' _lowerCAmelCase:str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase:List[Any] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_sql_dataset(snake_case , snake_case ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase ( snake_case : List[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Tuple ): _lowerCAmelCase:Union[str, Any] = tmp_path / '''cache''' _lowerCAmelCase:Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowerCAmelCase:List[Any] = features.copy() if features else default_expected_features _lowerCAmelCase:Dict = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=snake_case , cache_dir=snake_case ).read() _check_sql_dataset(snake_case , snake_case ) def UpperCAmelCase ( snake_case : List[str] ): with contextlib.closing(sqlitea.connect(snake_case ) ) as con: _lowerCAmelCase:Tuple = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ): _lowerCAmelCase:Dict = tmp_path / '''cache''' _lowerCAmelCase:Optional[int] = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _lowerCAmelCase:int = iter_sql_file(snake_case ) _lowerCAmelCase:Any = iter_sql_file(snake_case ) for rowa, rowa in zip(snake_case , snake_case ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] ): _lowerCAmelCase:Dict = tmp_path / '''cache''' _lowerCAmelCase:Any = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _lowerCAmelCase:List[str] = iter_sql_file(snake_case ) _lowerCAmelCase:Tuple = iter_sql_file(snake_case ) for rowa, rowa in zip(snake_case , snake_case ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( snake_case : Dict , snake_case : Tuple , snake_case : Optional[int] ): _lowerCAmelCase:List[str] = tmp_path / '''cache''' _lowerCAmelCase:List[str] = os.path.join(snake_case , '''tmp.sql''' ) _lowerCAmelCase:Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case ).read() with pytest.raises(snake_case ): SqlDatasetWriter(snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
227
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : List[str] = val def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase : int = value else: UpperCAmelCase : Dict = value return new_state_dict def lowercase ( __magic_name__ , __magic_name__=False ): '''simple docstring''' UpperCAmelCase : List[str] = "" if is_panoptic: UpperCAmelCase : Tuple = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : int = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase : Optional[Any] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Optional[int] = in_proj_weight[:256, :] UpperCAmelCase : Dict = in_proj_bias[:256] UpperCAmelCase : Optional[Any] = in_proj_weight[256:512, :] UpperCAmelCase : Optional[int] = in_proj_bias[256:512] UpperCAmelCase : Any = in_proj_weight[-256:, :] UpperCAmelCase : List[str] = in_proj_bias[-256:] def lowercase ( ): '''simple docstring''' UpperCAmelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[str] = "resnet101" if "dc5" in model_name: UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : List[Any] = "panoptic" in model_name if is_panoptic: UpperCAmelCase : str = 250 else: UpperCAmelCase : int = 91 UpperCAmelCase : Optional[Any] = "huggingface/label-files" UpperCAmelCase : Optional[int] = "coco-detection-id2label.json" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : int = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : str = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase : Union[str, Any] = ConditionalDetrImageProcessor(format=__magic_name__ ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : str = image_processor(images=__magic_name__ , return_tensors="pt" ) UpperCAmelCase : str = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub UpperCAmelCase : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" , __magic_name__ , pretrained=__magic_name__ ).eval() UpperCAmelCase : Union[str, Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : int = "conditional_detr." + src rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase : Union[str, Any] = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ , is_panoptic=__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : List[Any] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase : int = state_dict.pop(__magic_name__ ) UpperCAmelCase : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : List[Any] = state_dict.pop(__magic_name__ ) UpperCAmelCase : Union[str, Any] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase : List[str] = state_dict.pop(__magic_name__ ) UpperCAmelCase : Tuple = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase : Optional[Any] = state_dict.pop(__magic_name__ ) UpperCAmelCase : Dict = val # finally, create HuggingFace model and load state dict UpperCAmelCase : Optional[Any] = ConditionalDetrForSegmentation(__magic_name__ ) if is_panoptic else ConditionalDetrForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() model.push_to_hub(repo_id=__magic_name__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase : Optional[Any] = conditional_detr(__magic_name__ ) UpperCAmelCase : Union[str, Any] = model(__magic_name__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) a : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
609
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
609
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _snake_case = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = SavedModel() lowercase__ = [] with open(os.path.join(__magic_name__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: lowercase__ = json.load(__magic_name__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) lowercase__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase__ = sorted(__magic_name__ ) lowercase__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ , sep="\n" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) _snake_case = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
655
from __future__ import annotations class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :List[Any]=None ): '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self :Dict ): '''simple docstring''' lowercase__ = [] lowercase__ = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase__ = temp.next return "->".join(_lowercase ) def _A ( __magic_name__ ): if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ = lowercase__ = Node(elements_list[0] ) for i in range(1 , len(__magic_name__ ) ): lowercase__ = Node(elements_list[i] ) lowercase__ = current.next return head def _A ( __magic_name__ ): if head_node is not None and isinstance(__magic_name__ , __magic_name__ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): from doctest import testmod testmod() lowercase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(__magic_name__ ) print("Elements in Reverse:" ) print_reverse(__magic_name__ ) if __name__ == "__main__": main()
655
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _a : Tuple = parser.parse_args() if args.model_type == "bert": _a : List[Any] = BertForMaskedLM.from_pretrained(args.model_name) _a : List[str] = 'bert' else: raise ValueError('args.model_type should be "bert".') _a : Optional[Any] = model.state_dict() _a : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: _a : Optional[int] = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: _a : int = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] _a : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a : Dict = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] _a : List[Any] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] _a : Optional[int] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] _a : List[str] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] _a : Optional[int] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] _a : Optional[int] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] _a : int = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] _a : Tuple = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 _a : str = state_dict['cls.predictions.decoder.weight'] _a : Dict = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: _a : List[Any] = state_dict[f"cls.predictions.transform.dense.{w}"] _a : List[Any] = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
715
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class a_ : def __init__( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]=13 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : List[Any]=24 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Optional[int]=37 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Optional[Any]=2 , ): """simple docstring""" snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : str = patch_size snake_case : Union[str, Any] = max_length snake_case : str = num_mel_bins snake_case : Any = is_training snake_case : Union[str, Any] = use_labels snake_case : Tuple = hidden_size snake_case : Dict = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Any = intermediate_size snake_case : List[Any] = hidden_act snake_case : str = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : str = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : str = scope snake_case : int = frequency_stride snake_case : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 snake_case : Any = (self.max_length - self.patch_size) // self.time_stride + 1 snake_case : Union[str, Any] = frequency_out_dimension * time_out_dimension snake_case : Union[str, Any] = num_patches + 2 def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) snake_case : str = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[str] = self.get_config() return config, input_values, labels def lowerCAmelCase( self : Any ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ): """simple docstring""" snake_case : str = ASTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case : Any = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : int = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : int = config_and_inputs snake_case : Tuple = {'''input_values''': input_values} return config, inputs_dict @require_torch class a_ ( a , a , unittest.TestCase ): A__ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) A__ : int = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Dict = False A__ : int = False A__ : Optional[int] = False def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Optional[int] = ASTModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def lowerCAmelCase( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def lowerCAmelCase( self : Tuple ): """simple docstring""" pass def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[Any] = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Any = model_class(UpperCAmelCase__ ) snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : List[str] = ['''input_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @slow def lowerCAmelCase( self : List[str] ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = ASTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ) -> Dict: """simple docstring""" snake_case : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) snake_case , snake_case : int = torchaudio.load(__magic_name__ ) return audio, sampling_rate @require_torch @require_torchaudio class a_ ( unittest.TestCase ): @cached_property def lowerCAmelCase( self : Any ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : List[str] = self.default_feature_extractor snake_case : str = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(UpperCAmelCase__ ) snake_case : str = self.default_feature_extractor snake_case , snake_case : int = prepare_audio() snake_case : Optional[int] = audio.squeeze().numpy() snake_case : Optional[Any] = feature_extractor(UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): snake_case : Union[str, Any] = model(**UpperCAmelCase__ ) # verify the logits snake_case : Any = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) snake_case : str = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) )
84
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
527
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Union[str, Any]=18 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : Any=4_00 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} SCREAMING_SNAKE_CASE : List[Any] = do_thumbnail SCREAMING_SNAKE_CASE : Union[str, Any] = do_align_axis SCREAMING_SNAKE_CASE : Tuple = do_pad SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std def __lowercase ( self : Union[str, Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : Any = DonutImageProcessor if is_vision_available() else None def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DonutImageProcessingTester(self ) @property def __lowercase ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def __lowercase ( self : int ): """simple docstring""" pass @is_flaky() def __lowercase ( self : int ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowercase ( self : Union[str, Any] ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : int = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowercase ( self : List[Any] ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
527
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCamelCase : Optional[int] = 3 def __snake_case (__UpperCAmelCase ): """simple docstring""" print('''Generating primitive root of p''' ) while True: lowerCamelCase_ : Dict = random.randrange(3 , __UpperCAmelCase ) if pow(__UpperCAmelCase , 2 , __UpperCAmelCase ) == 1: continue if pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) == 1: continue return g def __snake_case (__UpperCAmelCase ): """simple docstring""" print('''Generating prime p...''' ) lowerCamelCase_ : str = rabin_miller.generate_large_prime(__UpperCAmelCase ) # select large prime number. lowerCamelCase_ : Optional[Any] = primitive_root(__UpperCAmelCase ) # one primitive root on modulo p. lowerCamelCase_ : Tuple = random.randrange(3 , __UpperCAmelCase ) # private_key -> have to be greater than 2 for safety. lowerCamelCase_ : Tuple = cryptomath.find_mod_inverse(pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = (key_size, e_a, e_a, p) lowerCamelCase_ : Optional[Any] = (key_size, d) return public_key, private_key def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = generate_key(__UpperCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def __snake_case (): """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
418
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Tuple ) -> None: """simple docstring""" warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
418
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a , __a : List[str] = analyze_text(snake_case__ ) __a : Dict = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __a : Dict = sum(single_char_strings.values() ) # one length string __a : Any = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __a : Dict = single_char_strings[ch] __a : Optional[int] = my_str / all_sum my_fir_sum += prob * math.loga(snake_case__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __a : List[Any] = sum(two_char_strings.values() ) __a : Any = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __a : int = cha + cha if sequence in two_char_strings: __a : List[Any] = two_char_strings[sequence] __a : Optional[Any] = int(snake_case__ ) / all_sum my_sec_sum += prob * math.loga(snake_case__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : int = Counter() # type: ignore __a : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(snake_case__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase (): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
476
import math def UpperCamelCase_( snake_case__: float , snake_case__: float ) -> float: if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def UpperCamelCase_( snake_case__: float , snake_case__: float ) -> float: if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
146
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = """▁""" _SCREAMING_SNAKE_CASE = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _SCREAMING_SNAKE_CASE = {"""vinai/bartpho-syllable""": 1_024} class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Union[str, Any]="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : List[Any]="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : List[str]="<unk>" , snake_case_ : Optional[Any]="<pad>" , snake_case_ : List[str]="<mask>" , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __snake_case = vocab_file __snake_case = monolingual_vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __snake_case = {} __snake_case = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(snake_case_ ) not in self.fairseq_tokens_to_ids: __snake_case = cnt cnt += 1 with open(snake_case_ , "r" , encoding="utf-8" ) as f: for line in f.readlines(): __snake_case = line.strip().split()[0] __snake_case = len(self.fairseq_tokens_to_ids ) if str(snake_case_ ) not in self.fairseq_tokens_to_ids: __snake_case = len(self.fairseq_tokens_to_ids ) __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): __snake_case = self.__dict__.copy() __snake_case = None __snake_case = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , snake_case_ : Tuple ): __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase ( self : int ): return len(self.fairseq_ids_to_tokens ) def lowerCAmelCase ( self : Any ): __snake_case = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Optional[int] , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCAmelCase ( self : Dict , snake_case_ : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCAmelCase ( self : List[str] , snake_case_ : str ): return self.fairseq_ids_to_tokens[index] def lowerCAmelCase ( self : Optional[Any] , snake_case_ : Any ): __snake_case = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def lowerCAmelCase ( self : Any , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( snake_case_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , snake_case_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(snake_case_ , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(snake_case_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
614
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : torch.FloatTensor class __magic_name__ ( lowercase__ , lowercase__ ): _SCREAMING_SNAKE_CASE : Optional[int] = 1 @register_to_config def __init__( self : List[Any] , snake_case_ : int = 2000 , snake_case_ : float = 0.15 , snake_case_ : float = 0.01 , snake_case_ : float = 1348.0 , snake_case_ : float = 1e-5 , snake_case_ : int = 1 , ): # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None ): return sample def lowerCAmelCase ( self : Any , snake_case_ : int , snake_case_ : float = None , snake_case_ : Union[str, torch.device] = None ): __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , snake_case_ , snake_case_ , device=snake_case_ ) def lowerCAmelCase ( self : Dict , snake_case_ : int , snake_case_ : float = None , snake_case_ : float = None , snake_case_ : float = None ): __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case_ , snake_case_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(snake_case_ ) , math.log(snake_case_ ) , snake_case_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCAmelCase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Dict ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowerCAmelCase ( self : Dict , snake_case_ : torch.FloatTensor , snake_case_ : int , snake_case_ : torch.FloatTensor , snake_case_ : Optional[torch.Generator] = None , snake_case_ : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(snake_case_ , snake_case_ ).to(sample.device ) __snake_case = torch.zeros_like(snake_case_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case_ , prev_sample_mean=snake_case_ ) def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : Optional[torch.Generator] = None , snake_case_ : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def lowerCAmelCase ( self : Dict , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self : Tuple ): return self.config.num_train_timesteps
614
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _lowerCAmelCase ( ): '''simple docstring''' A_ : Optional[Any] = torch.nn.Linear(2 ,4 ) A_ : Optional[Any] = torch.optim.AdamW(model.parameters() ,lr=1.0 ) A_ : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_lowerCAmelCase ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) A_ : Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) A_ : List[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCamelCase ): @require_cuda def _lowerCamelCase ( self ): A_ : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a__ ): A_ : Tuple = Accelerator(cpu=a__ ) def _lowerCamelCase ( self ): A_ : Optional[int] = Accelerator() A_ : Optional[Any] = GradientState() assert state.num_steps == 1 A_ : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True A_ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCamelCase ( self ): A_ : List[str] = Accelerator() A_ , A_ , A_ , A_ , A_ : str = create_components() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : int = accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCamelCase ( self ): A_ : int = Accelerator() A_ , A_ , A_ , A_ , A_ : Optional[Any] = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCamelCase ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a__ , **a__ ): pass with patch("""torch.cuda.set_device""" , a__ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): A_ : Tuple = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def _lowerCamelCase ( self ): A_ : Dict = Accelerator() A_ , A_ , A_ , A_ , A_ : str = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) A_ : List[Any] = get_signature(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) def _lowerCamelCase ( self ): A_ : Dict = Accelerator() A_ , A_ , A_ , A_ , A_ : Tuple = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) A_ : List[Any] = get_signature(a__ ) # saving hook def save_config(a__ , a__ , a__ ): A_ : Union[str, Any] = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(a__ , """data.json""" ) , """w""" ) as f: json.dump(a__ , a__ ) # loading hook def load_config(a__ , a__ ): with open(os.path.join(a__ , """data.json""" ) , """r""" ) as f: A_ : List[str] = json.load(a__ ) A_ : Any = config["""class_name"""] A_ : Dict = accelerator.register_save_state_pre_hook(a__ ) A_ : Optional[Any] = accelerator.register_load_state_pre_hook(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # random class name to verify correct one is loaded A_ : Tuple = """random""" # make sure loaded weights match with hooks accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks removed load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # random class name to verify correct one is loaded A_ : str = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCamelCase ( self ): A_ : List[Any] = Accelerator() A_ , A_ , A_ , A_ , A_ : Any = create_components() A_ : Any = None # This should work A_ , A_ , A_ , A_ , A_ , A_ : str = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertTrue(dummy_obj is None ) def _lowerCamelCase ( self ): A_ : Dict = Accelerator() A_ , A_ , A_ , A_ , A_ : List[Any] = create_components() A_ : Dict = [1, 2, 3] # This should work A_ , A_ , A_ , A_ , A_ , A_ : Union[str, Any] = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(a__ , """_is_accelerate_prepared""" , a__ ) , a__ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def _lowerCamelCase ( self ): from transformers import AutoModelForCausalLM A_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map={"""""": 0} , ) A_ : List[str] = Accelerator() # This should work A_ : List[Any] = accelerator.prepare(a__ ) @slow @require_bnb def _lowerCamelCase ( self ): from transformers import AutoModelForCausalLM A_ : Tuple = Accelerator() with init_empty_weights(): A_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() A_ : Tuple = infer_auto_device_map(a__ ) A_ : Dict = """cpu""" A_ : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=a__ , load_in_abit=a__ , llm_inta_enable_fpaa_cpu_offload=a__ ) # This should not work and get value error with self.assertRaises(a__ ): A_ : Union[str, Any] = accelerator.prepare(a__ ) @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ): from transformers import AutoModelForCausalLM A_ : List[Any] = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): A_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() A_ : Dict = infer_auto_device_map(a__ ) A_ : Optional[Any] = 1 A_ : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) A_ : Any = Accelerator() # This should not work and get value error with self.assertRaises(a__ ): A_ : Optional[Any] = accelerator.prepare(a__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): A_ : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) A_ : Any = infer_auto_device_map(a__ ) A_ : int = 1 A_ : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=a__ , device_map=a__ , ) A_ : List[Any] = Accelerator() # This should work A_ : Union[str, Any] = accelerator.prepare(a__ ) @require_cuda def _lowerCamelCase ( self ): A_ : Tuple = torch.nn.Linear(10 , 10 ) A_ : str = torch.optim.SGD(model.parameters() , lr=0.01 ) A_ : Dict = Accelerator(cpu=a__ ) A_ : Tuple = accelerator.prepare(a__ )
569
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCAmelCase = """true""" def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=1_6 ): '''simple docstring''' set_seed(4_2 ) A_ : List[Any] = RegressionModel() A_ : int = deepcopy(_lowerCAmelCase ) A_ : Union[str, Any] = RegressionDataset(length=_lowerCAmelCase ) A_ : Union[str, Any] = DataLoader(_lowerCAmelCase ,batch_size=_lowerCAmelCase ) model.to(accelerator.device ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return model, ddp_model, dataloader def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) A_ : Tuple = load_dataset("""glue""" ,"""mrpc""" ,split="""validation""" ) def tokenize_function(_lowerCAmelCase ): A_ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ) return outputs with accelerator.main_process_first(): A_ : List[Any] = dataset.map( _lowerCAmelCase ,batched=_lowerCAmelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) A_ : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_lowerCAmelCase ): if use_longest: return tokenizer.pad(_lowerCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" ) return DataLoader(_lowerCAmelCase ,shuffle=_lowerCAmelCase ,collate_fn=_lowerCAmelCase ,batch_size=1_6 ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : int = Accelerator(dispatch_batches=_lowerCAmelCase ,split_batches=_lowerCAmelCase ) A_ : List[Any] = get_dataloader(_lowerCAmelCase ,not dispatch_batches ) A_ : Any = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" ,return_dict=_lowerCAmelCase ) A_ , A_ : int = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = [] for batch in dataloader: A_ , A_ : List[str] = batch.values() with torch.no_grad(): A_ : Tuple = model(_lowerCAmelCase ) A_ , A_ : List[str] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ : int = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCAmelCase ) targs.append(_lowerCAmelCase ) A_ , A_ : Optional[int] = torch.cat(_lowerCAmelCase ), torch.cat(_lowerCAmelCase ) return logits, targs def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=8_2 ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=1_6 ): '''simple docstring''' A_ , A_ , A_ : Union[str, Any] = get_basic_setup(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) A_ , A_ : Union[str, Any] = generate_predictions(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) assert ( len(_lowerCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCAmelCase )}""" def _lowerCAmelCase ( _lowerCAmelCase = False ,_lowerCAmelCase = False ): '''simple docstring''' A_ : Any = evaluate.load("""glue""" ,"""mrpc""" ) A_ , A_ : Optional[Any] = get_mrpc_setup(_lowerCAmelCase ,_lowerCAmelCase ) # First do baseline A_ , A_ , A_ : Any = setup["""no"""] model.to(_lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(_lowerCAmelCase ) with torch.inference_mode(): A_ : List[str] = model(**_lowerCAmelCase ) A_ : int = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCAmelCase ,references=batch["""labels"""] ) A_ : List[str] = metric.compute() # Then do distributed A_ , A_ , A_ : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): A_ : Optional[Any] = model(**_lowerCAmelCase ) A_ : Any = outputs.logits.argmax(dim=-1 ) A_ : int = batch["""labels"""] A_ , A_ : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCAmelCase ,references=_lowerCAmelCase ) A_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _lowerCAmelCase ( ): '''simple docstring''' A_ : str = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_lowerCAmelCase ,_lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ : Optional[int] = Accelerator(split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_lowerCAmelCase ,9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) A_ : Union[str, Any] = Accelerator() test_torch_metrics(_lowerCAmelCase ,5_1_2 ) accelerator.state._reset_state() def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
569
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = 13 UpperCAmelCase__ : Union[str, Any] = 7 UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Union[str, Any] = 99 UpperCAmelCase__ : Any = 3_84 UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 37 UpperCAmelCase__ : Union[str, Any] = "gelu" UpperCAmelCase__ : Dict = 0.1 UpperCAmelCase__ : Optional[int] = 0.1 UpperCAmelCase__ : Optional[int] = 5_12 UpperCAmelCase__ : List[str] = 16 UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : List[str] = 0.02 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : str = 1_28 UpperCAmelCase__ : List[str] = 2 UpperCAmelCase__ : List[str] = 9 UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Any = None def lowerCAmelCase__ ( self )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : str = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Dict = TFConvBertModel(config=__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase__ : str = [input_ids, input_mask] UpperCAmelCase__ : str = model(__UpperCamelCase ) UpperCAmelCase__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Dict = TFConvBertForMaskedLM(config=__UpperCamelCase ) UpperCAmelCase__ : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : Tuple = TFConvBertForSequenceClassification(config=__UpperCamelCase ) UpperCAmelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_choices UpperCAmelCase__ : str = TFConvBertForMultipleChoice(config=__UpperCamelCase ) UpperCAmelCase__ : Any = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : List[str] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : List[Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Dict = TFConvBertForTokenClassification(config=__UpperCamelCase ) UpperCAmelCase__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: '''simple docstring''' UpperCAmelCase__ : int = TFConvBertForQuestionAnswering(config=__UpperCamelCase ) UpperCAmelCase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Dict = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFConvBertModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowerCAmelCase__ ( self )-> Dict: '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = True if hasattr(__UpperCamelCase , "use_cache" ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : Any = getattr(self.model_tester , "key_length" , __UpperCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class(__UpperCamelCase ) UpperCAmelCase__ : str = len(model(__UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase , saved_model=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = os.path.join(__UpperCamelCase , "saved_model" , "1" ) UpperCAmelCase__ : int = tf.keras.models.load_model(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = model(__UpperCamelCase ) if self.is_encoder_decoder: UpperCAmelCase__ : Optional[int] = outputs["encoder_hidden_states"] UpperCAmelCase__ : Tuple = outputs["encoder_attentions"] else: UpperCAmelCase__ : List[Any] = outputs["hidden_states"] UpperCAmelCase__ : Union[str, Any] = outputs["attentions"] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : Union[str, Any] = getattr(self.model_tester , "key_length" , __UpperCamelCase ) UpperCAmelCase__ : Any = getattr(self.model_tester , "key_length" , __UpperCamelCase ) def check_decoder_attentions_output(__UpperCamelCase ): UpperCAmelCase__ : str = len(__UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[int] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[Any] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Dict = model_class(__UpperCamelCase ) UpperCAmelCase__ : Any = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : int = model(__UpperCamelCase )[0] UpperCAmelCase__ : Any = [1, 6, 7_68] self.assertEqual(output.shape , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__ ( a__ , a__ = True , a__ = math.inf , a__ = -math.inf , a__ = math.inf , a__ = -math.inf , a__ = False , a__ = 100 , a__ = 0.01 , a__ = 1 , ) ->Any: '''simple docstring''' _UpperCamelCase = False _UpperCamelCase = search_prob _UpperCamelCase = start_temperate _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = None while not search_end: _UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCamelCase = current_state scores.append(a__ ) iterations += 1 _UpperCamelCase = None _UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCamelCase = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor _UpperCamelCase = neighbors.pop(a__ ) _UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCamelCase = picked_neighbor else: _UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCamelCase = picked_neighbor _UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCamelCase = True else: _UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__ ( a__ , a__ ) ->Any: '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) lowerCamelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def lowerCAmelCase__ ( a__ , a__ ) ->str: '''simple docstring''' return (3 * x**2) - (6 * y) lowerCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"{local_min.score()}" ) lowerCamelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCamelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"{local_min.score()}" )
547
from __future__ import annotations def lowerCAmelCase__ ( a__ , a__ ) ->bool: '''simple docstring''' _UpperCamelCase = get_failure_array(a__ ) # 2) Step through text searching for pattern _UpperCamelCase , _UpperCamelCase = 0, 0 # index into text, pattern while i < len(a__ ): if pattern[j] == text[i]: if j == (len(a__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCamelCase = failure[j - 1] continue i += 1 return False def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [0] _UpperCamelCase = 0 _UpperCamelCase = 1 while j < len(a__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCamelCase = failure[i - 1] continue j += 1 failure.append(a__ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase__ = '''abc1abc12''' lowerCamelCase__ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase__ = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase__ = '''ABABX''' lowerCamelCase__ = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase__ = '''AAAB''' lowerCamelCase__ = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase__ = '''abcdabcy''' lowerCamelCase__ = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase__ = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
547
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : Dict = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=8 ): """simple docstring""" _lowerCamelCase : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any],__A : UNetaDConditionModel,__A : DDPMScheduler,__A : VQModel,): super().__init__() self.register_modules( unet=__lowerCAmelCase,scheduler=__lowerCAmelCase,movq=__lowerCAmelCase,) _lowerCamelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase_ ( self : str,__A : Optional[Any],__A : Optional[Any],__A : List[str],__A : Optional[Any],__A : Tuple,__A : Dict ): if latents is None: _lowerCamelCase : Union[str, Any] = randn_tensor(__lowerCAmelCase,generator=__lowerCAmelCase,device=__lowerCAmelCase,dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : List[Any] = latents.to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : Any,__A : Any=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : Dict = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase,__lowerCAmelCase ) def lowerCamelCase_ ( self : Dict,__A : Any=0 ): if is_accelerate_available() and is_accelerate_version(">=","0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu",silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase , _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase,__lowerCAmelCase,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase_ ( self : List[Any] ): if not hasattr(self.unet,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : List[str],__A : Union[torch.FloatTensor, List[torch.FloatTensor]],__A : Union[torch.FloatTensor, List[torch.FloatTensor]],__A : int = 5_1_2,__A : int = 5_1_2,__A : int = 1_0_0,__A : float = 4.0,__A : int = 1,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : Optional[str] = "pil",__A : bool = True,): _lowerCamelCase : Dict = self._execution_device _lowerCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(__lowerCAmelCase,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = torch.cat(__lowerCAmelCase,dim=0 ) _lowerCamelCase : int = image_embeds.shape[0] * num_images_per_prompt if isinstance(__lowerCAmelCase,__lowerCAmelCase ): _lowerCamelCase : List[Any] = torch.cat(__lowerCAmelCase,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase,dim=0 ) _lowerCamelCase : Any = negative_image_embeds.repeat_interleave(__lowerCAmelCase,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds],dim=0 ).to(dtype=self.unet.dtype,device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase,device=__lowerCAmelCase ) _lowerCamelCase : List[str] = self.scheduler.timesteps _lowerCamelCase : Dict = self.unet.config.in_channels _lowerCamelCase , _lowerCamelCase : List[str] = downscale_height_and_width(__lowerCAmelCase,__lowerCAmelCase,self.movq_scale_factor ) # create initial latent _lowerCamelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width),image_embeds.dtype,__lowerCAmelCase,__lowerCAmelCase,__lowerCAmelCase,self.scheduler,) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Optional[int] = {"image_embeds": image_embeds} _lowerCamelCase : int = self.unet( sample=__lowerCAmelCase,timestep=__lowerCAmelCase,encoder_hidden_states=__lowerCAmelCase,added_cond_kwargs=__lowerCAmelCase,return_dict=__lowerCAmelCase,)[0] if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1],dim=1 ) _lowerCamelCase , _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase , _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text],dim=1 ) if not ( hasattr(self.scheduler.config,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1],dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( __lowerCAmelCase,__lowerCAmelCase,__lowerCAmelCase,generator=__lowerCAmelCase,)[0] # post-processing _lowerCamelCase : Any = self.movq.decode(__lowerCAmelCase,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _lowerCamelCase : int = image * 0.5 + 0.5 _lowerCamelCase : List[str] = image.clamp(0,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0,2,3,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : Optional[Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :Tuple = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Union[str, Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
251
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self : Dict , a : Optional[Any]=2_048 , a : Union[str, Any]=1 , a : str=[16, 16] , a : Optional[int]=128 , a : str=44_100 , a : List[str]=86 , a : int=2_048 , a : Tuple=0.0 , **a : int , )-> Any: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ).T def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.array )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = True , a : Optional[int] = None , a : bool = False , a : bool = False , **a : Union[str, Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(a ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(a ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ = {'audio_values': padded_audio_features} lowercase__ = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
235
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Optional[int]=3 , __magic_name__ : str=18 , __magic_name__ : Dict=30 , __magic_name__ : List[str]=400 , __magic_name__ : Tuple=True , __magic_name__ : List[Any]=None , __magic_name__ : Any=True , ) -> List[str]: lowerCamelCase_ : Optional[Any] = size if size is not None else {"height": 18, "width": 18} lowerCamelCase_ : Any = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Optional[int] = image_size lowerCamelCase_ : List[Any] = min_resolution lowerCamelCase_ : Tuple = max_resolution lowerCamelCase_ : Optional[Any] = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : str = do_normalize def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase = ImageGPTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ : Dict = ImageGPTImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "clusters" ) ) self.assertTrue(hasattr(__magic_name__ , "do_resize" ) ) self.assertTrue(hasattr(__magic_name__ , "size" ) ) self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: lowerCamelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase_ : Dict = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , obj[key] ) ) else: self.assertEqual(obj[key] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : int = os.path.join(__magic_name__ , "image_processor.json" ) image_processor_first.to_json_file(__magic_name__ ) lowerCamelCase_ : Optional[Any] = self.image_processing_class.from_json_file(__magic_name__ ).to_dict() lowerCamelCase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: lowerCamelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__magic_name__ ) lowerCamelCase_ : Optional[int] = self.image_processing_class.from_pretrained(__magic_name__ ).to_dict() lowerCamelCase_ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__magic_name__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __magic_name__ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: pass def __a ( ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) lowerCamelCase_ : int = Image.open(dataset[4]["file"] ) lowerCamelCase_ : List[str] = Image.open(dataset[5]["file"] ) lowerCamelCase_ : List[Any] = [imagea, imagea] return images @require_vision @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: lowerCamelCase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowerCamelCase_ : Optional[int] = prepare_images() # test non-batched lowerCamelCase_ : str = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowerCamelCase_ : Dict = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , __magic_name__ ) # test batched lowerCamelCase_ : Dict = image_processing(__magic_name__ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowerCamelCase_ : List[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __magic_name__ )
705
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __a ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = [False] * len(__UpperCAmelCase ) lowerCamelCase_ : Dict = [-1] * len(__UpperCAmelCase ) def dfs(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ): lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : int = c for u in graph[v]: if not visited[u]: dfs(__UpperCAmelCase , 1 - c ) for i in range(len(__UpperCAmelCase ) ): if not visited[i]: dfs(__UpperCAmelCase , 0 ) for i in range(len(__UpperCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case_ : Tuple = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
253
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __UpperCAmelCase =object() # For specifying empty leaf dict `{}` __UpperCAmelCase =object() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): __lowerCamelCase = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: def replace(UpperCamelCase__ , UpperCamelCase__ ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def __lowerCAmelCase ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCAmelCase ( UpperCamelCase__ ) -> int: __lowerCamelCase = _get_partition_rules() __lowerCamelCase = _replacement_rules(UpperCamelCase__ ) __lowerCamelCase = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} __lowerCamelCase = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
546
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "open-llama" def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=10_00_00 , __lowerCamelCase : List[str]=40_96 , __lowerCamelCase : Any=1_10_08 , __lowerCamelCase : str=32 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Dict="silu" , __lowerCamelCase : List[Any]=20_48 , __lowerCamelCase : str=0.02 , __lowerCamelCase : List[str]=1e-6 , __lowerCamelCase : Dict=True , __lowerCamelCase : str=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Optional[Any] , ) -> Optional[Any]: A : Optional[int] = vocab_size A : Optional[Any] = max_position_embeddings A : Tuple = hidden_size A : List[Any] = intermediate_size A : Tuple = num_hidden_layers A : Any = num_attention_heads A : Optional[int] = hidden_act A : List[str] = initializer_range A : int = rms_norm_eps A : List[str] = use_cache A : Any = kwargs.pop( "use_memorry_efficient_attention" , __lowerCamelCase ) A : str = hidden_dropout_prob A : Any = attention_dropout_prob A : Tuple = use_stable_embedding A : Optional[int] = shared_input_output_embedding A : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) A : Any = self.rope_scaling.get("type" , __lowerCamelCase ) A : Union[str, Any] = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
17
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( _lowerCamelCase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A : List[Any] = torch.load(hf_hub_download(repo_id=_lowerCamelCase , filename="pytorch_model.bin" ) ) A : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A : int = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A : Any = tensor_value A : Optional[int] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowerCamelCase , config=_lowerCamelCase , state_dict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) # convert tokenizer A : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
17
1
from __future__ import annotations from collections import deque class __lowercase : def __init__( self , lowercase_) -> str: __snake_case = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []}) for keyword in keywords: self.add_keyword(lowercase_) self.set_fail_transitions() def _a ( self , lowercase_ , lowercase_) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _a ( self , lowercase_) -> None: __snake_case = 0 for character in keyword: __snake_case = self.find_next_state(lowercase_ , lowercase_) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) __snake_case = len(self.adlist) - 1 else: __snake_case = next_state self.adlist[current_state]["output"].append(lowercase_) def _a ( self) -> None: __snake_case = deque() for node in self.adlist[0]["next_states"]: q.append(lowercase_) __snake_case = 0 while q: __snake_case = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowercase_) __snake_case = self.adlist[r]['fail_state'] while ( self.find_next_state(lowercase_ , self.adlist[child]['value']) is None and state != 0 ): __snake_case = self.adlist[state]['fail_state'] __snake_case = self.find_next_state( lowercase_ , self.adlist[child]['value']) if self.adlist[child]["fail_state"] is None: __snake_case = 0 __snake_case = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def _a ( self , lowercase_) -> dict[str, list[int]]: __snake_case = {} # returns a dict with keywords and list of its occurrences __snake_case = 0 for i in range(len(lowercase_)): while ( self.find_next_state(lowercase_ , string[i]) is None and current_state != 0 ): __snake_case = self.adlist[current_state]['fail_state'] __snake_case = self.find_next_state(lowercase_ , string[i]) if next_state is None: __snake_case = 0 else: __snake_case = next_state for key in self.adlist[current_state]["output"]: if key not in result: __snake_case = [] result[key].append(i - len(lowercase_) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
313
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A_ ( _UpperCAmelCase ): """simple docstring""" lowercase : torch.FloatTensor class A_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 3 , __UpperCAmelCase = 32 , __UpperCAmelCase = 2_56 , __UpperCAmelCase = 32 , __UpperCAmelCase = None , __UpperCAmelCase = 0.1_8215 , __UpperCAmelCase = "group" , ) -> Any: super().__init__() # pass init params to Encoder a : Optional[int] = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) a : Union[str, Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels a : Tuple = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) a : Optional[Any] = VectorQuantizer(__UpperCAmelCase , __UpperCAmelCase , beta=0.25 , remap=__UpperCAmelCase , sane_index_shape=__UpperCAmelCase ) a : int = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) # pass init params to Decoder a : Any = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , norm_type=__UpperCAmelCase , ) @apply_forward_hook def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = True ) -> VQEncoderOutput: a : Dict = self.encoder(__UpperCAmelCase ) a : int = self.quant_conv(__UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCAmelCase ) @apply_forward_hook def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: a , a , a : List[Any] = self.quantize(__UpperCAmelCase ) else: a : List[str] = h a : str = self.post_quant_conv(__UpperCAmelCase ) a : Any = self.decoder(__UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: a : Any = sample a : Any = self.encode(__UpperCAmelCase ).latents a : List[Any] = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
509
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( _UpperCAmelCase ): """simple docstring""" lowercase : str = ["image_processor", "tokenizer"] lowercase : Union[str, Any] = "FlavaImageProcessor" lowercase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Tuple: a : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) a : Any = kwargs.pop('feature_extractor' ) a : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) a : Optional[Any] = self.image_processor def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: a : Tuple = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if images is not None: a : Tuple = self.image_processor( __UpperCAmelCase , return_image_mask=__UpperCAmelCase , return_codebook_pixels=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if text is not None and images is not None: encoding.update(__UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def lowercase_ ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase_ ( self ) -> str: a : str = self.tokenizer.model_input_names a : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase_ ( self ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def lowercase_ ( self ) -> Any: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
509
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase ) else: lowerCamelCase__ = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase ) for i, tensor in enumerate(__lowerCAmelCase ): if padding_side == "right": if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = tensor[:sequence_length] else: lowerCamelCase__ = tensor[:sequence_length] else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = tensor[:sequence_length] else: lowerCamelCase__ = tensor[:sequence_length] return out_tensor.tolist() def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = ord(__lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCamelCase__ = unicodedata.category(__lowerCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase_ ( self ,_lowerCAmelCase ): import torch lowerCamelCase__ = """label""" if """label""" in features[0].keys() else """labels""" lowerCamelCase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCamelCase__ = self.tokenizer.pad( _lowerCAmelCase ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" if labels is None else None ,) if labels is None: return batch lowerCamelCase__ = torch.tensor(batch["""entity_ids"""] ).shape[1] lowerCamelCase__ = self.tokenizer.padding_side if padding_side == "right": lowerCamelCase__ = [ list(_lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) for label in labels ] else: lowerCamelCase__ = [ [self.label_pad_token_id] * (sequence_length - len(_lowerCAmelCase )) + list(_lowerCAmelCase ) for label in labels ] lowerCamelCase__ = [feature["""ner_tags"""] for feature in features] lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,-1 ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = [feature["""original_entity_spans"""] for feature in features] lowerCamelCase__ = padding_tensor(_lowerCAmelCase ,(-1, -1) ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {k: torch.tensor(_lowerCAmelCase ,dtype=torch.intaa ) for k, v in batch.items()} return batch
50
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Tuple = '''\ Text data. Second line of data.''' _lowerCAmelCase : str = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : List[str] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Tuple = input_paths[compression_format] _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Any = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: _lowerCamelCase : List[Any] = f.read() with open(_lowerCamelCase ) as f: _lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : str = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : List[Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) _lowerCamelCase : Dict = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path _lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path _lowerCamelCase : List[Any] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( ) -> int: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
46
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def _lowerCAmelCase ( __magic_name__ : Tuple , __magic_name__ : tuple , __magic_name__ : Path , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str]=False , ) -> Optional[int]: output_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , use_external_data_format=__magic_name__ , enable_onnx_checker=__magic_name__ , opset_version=__magic_name__ , ) else: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , opset_version=__magic_name__ , ) @torch.no_grad() def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> List[str]: lowercase : Optional[Any] =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase : Tuple ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase : Tuple ='''cpu''' lowercase : Dict =Path(__magic_name__ ) # VAE DECODER lowercase : List[Any] =AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowercase : Any =vae_decoder.config.latent_channels # forward only through the decoder part lowercase : Dict =vae_decoder.decode onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , 25 , 25 ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__magic_name__ , ) del vae_decoder if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCamelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
88
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ) -> List[Any]: lowercase : Tuple =HfArgumentParser(__magic_name__ ) lowercase : Union[str, Any] =parser.parse_args_into_dataclasses()[0] lowercase : Any =TensorFlowBenchmark(args=__magic_name__ ) try: lowercase : List[Any] =parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase : List[Any] ='''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowercase : Any =''' '''.join(str(__magic_name__ ).split(''' ''' )[:-1] ) lowercase : Optional[Any] ='''''' lowercase : List[str] =eval(str(__magic_name__ ).split(''' ''' )[-1] ) lowercase : Optional[Any] =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase : int =full_error_msg + begin_error_msg + str(__magic_name__ ) raise ValueError(__magic_name__ ) benchmark.run() if __name__ == "__main__": main()
88
1
'''simple docstring''' def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase : List[str] = _modexpt(__magic_name__ , exponent // 2 , __magic_name__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__magic_name__ , exponent - 1 , __magic_name__ )) % modulo_value def lowercase ( __magic_name__ = 1777 , __magic_name__ = 1855 , __magic_name__ = 8 ): '''simple docstring''' UpperCAmelCase : Dict = base for _ in range(1 , __magic_name__ ): UpperCAmelCase : Any = _modexpt(__magic_name__ , __magic_name__ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
679
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowercase ( __magic_name__="" ): '''simple docstring''' UpperCAmelCase : Dict = tempfile.mkdtemp() return os.path.join(__magic_name__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : int = AgentAudio(snake_case ) UpperCAmelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase , UpperCAmelCase : str = sf.read(snake_case ) self.assertTrue(torch.allclose(snake_case , torch.tensor(snake_case ) , atol=1e-4 ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : Any = get_new_path(suffix=".wav" ) sf.write(snake_case , snake_case , 1_6_0_0_0 ) UpperCAmelCase : Optional[Any] = AgentAudio(snake_case ) self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) UpperCAmelCase : Tuple = AgentImage(snake_case ) UpperCAmelCase : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Any = Image.open(snake_case ) UpperCAmelCase : List[str] = AgentImage(snake_case ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Dict = Image.open(snake_case ) UpperCAmelCase : int = AgentImage(snake_case ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = "Hey!" UpperCAmelCase : Tuple = AgentText(snake_case ) self.assertEqual(snake_case , agent_type.to_string() ) self.assertEqual(snake_case , agent_type.to_raw() ) self.assertEqual(snake_case , snake_case )
679
1
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
716
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = (IPNDMScheduler,) _snake_case = (('''num_inference_steps''', 50),) def snake_case ( self , **SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase : Optional[int] = {'num_train_timesteps': 10_00} config.update(**SCREAMING_SNAKE_CASE ) return config def snake_case ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: __lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) __lowerCAmelCase : List[Any] = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.dummy_sample __lowerCAmelCase : Any = 0.1 * sample __lowerCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : List[str] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals __lowerCAmelCase : Any = dummy_past_residuals[:] if time_step is None: __lowerCAmelCase : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[:] __lowerCAmelCase : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Union[str, Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase : int = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : int = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self ) -> Optional[Any]: pass def snake_case ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: __lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) __lowerCAmelCase : Union[str, Any] = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self.dummy_sample __lowerCAmelCase : Optional[int] = 0.1 * sample __lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Tuple = self.get_scheduler_config() __lowerCAmelCase : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase : int = dummy_past_residuals[:] if time_step is None: __lowerCAmelCase : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[:] __lowerCAmelCase : int = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase : List[str] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : int = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , **SCREAMING_SNAKE_CASE ) -> Tuple: __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : List[str] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = 10 __lowerCAmelCase : Any = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Any = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def snake_case ( self ) -> Any: __lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) __lowerCAmelCase : Optional[int] = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : str = scheduler_class(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.dummy_sample __lowerCAmelCase : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , 'set_timesteps' ): __lowerCAmelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[:] __lowerCAmelCase : Dict = scheduler.timesteps[5] __lowerCAmelCase : str = scheduler.timesteps[6] __lowerCAmelCase : Tuple = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : List[str] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCAmelCase : Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ) -> int: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE , time_step=SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = self.full_loop() __lowerCAmelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
123
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowercase__ : int = 5 lowercase__ : List[str] = 1_0 @require_sentencepiece @require_tokenizers class lowercase_ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Tuple = SpeechaTextTokenizer UpperCAmelCase_ : Any = False UpperCAmelCase_ : List[str] = True def SCREAMING_SNAKE_CASE_ ( self ) ->Any: super().setUp() lowerCAmelCase = sp.SentencePieceProcessor() spm_model.Load(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__SCREAMING_SNAKE_CASE ) )] lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase = Path(self.tmpdirname ) save_json(__SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = '''<pad>''' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1001 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: # fmt: off lowerCAmelCase = {'''input_ids''': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class lowercase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str = """valhalla/s2t_mustc_multilinguial_medium""" UpperCAmelCase_ : Optional[Any] = """C'est trop cool""" UpperCAmelCase_ : Optional[Any] = """Esto es genial""" @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) ->Dict: lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: self.assertEqual(self.tokenizer.vocab_size , 10000 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) lowerCAmelCase = [ES_CODE, 4, 1601, 47, 7647, 2] lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = '''fr''' lowerCAmelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __SCREAMING_SNAKE_CASE ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
312
import os lowercase__ : List[str] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(snake_case__ ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: lowerCAmelCase = '''''' lowerCAmelCase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowerCAmelCase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowerCAmelCase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def SCREAMING_SNAKE_CASE_ ( snake_case__ = "/p089_roman.txt" ) -> int: lowerCAmelCase = 0 with open(os.path.dirname(snake_case__ ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(snake_case__ ) lowerCAmelCase = generate_roman_numerals(snake_case__ ) savings += len(snake_case__ ) - len(snake_case__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
312
1
import random def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): __a : List[str] = a[left_index] __a : Optional[int] = left_index + 1 for j in range(left_index + 1 , lowerCamelCase_ ): if a[j] < pivot: __a , __a : Dict = a[i], a[j] i += 1 __a , __a : str = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): if left < right: __a : int = random.randint(lowerCamelCase_ , right - 1 ) __a , __a : Tuple = ( a[left], a[pivot], ) # switches the pivot with the left most bound __a : List[str] = partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) quick_sort_random( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase_ , pivot_index + 1 , lowerCamelCase_ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase__ ( ): __a : List[Any] = input('Enter numbers separated by a comma:\n' ).strip() __a : List[str] = [int(lowerCamelCase_ ) for item in user_input.split(',' )] quick_sort_random(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) ) print(lowerCamelCase_ ) if __name__ == "__main__": main()
705
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE__ = 12_8022 SCREAMING_SNAKE_CASE__ = 12_8028 @require_sentencepiece class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = MaMaaaTokenizer __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() __a : Dict = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __a : str = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : Any = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __a : List[Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Dict = '</s>' __a : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : List[str] = self.get_tokenizer() __a : Optional[int] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Dict = self.get_tokenizer() __a : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2, 3, 4, 5, 6] , ) __a : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) __a : Optional[int] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'This is a test' ) @slow def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Tuple = {'input_ids': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase( unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''facebook/m2m100_418M''' __SCREAMING_SNAKE_CASE : List[Any] = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] __SCREAMING_SNAKE_CASE : Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off __SCREAMING_SNAKE_CASE : Optional[int] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' __a : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) __a : Optional[int] = 1 return cls def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Dict = self.tokenizer.get_vocab() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Union[str, Any] = 'en' __a : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids ) # fmt: off __a : Any = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __a : List[str] = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __a : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Tuple = MaMaaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(new_tok.lang_token_to_id , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Dict = 'en' __a : int = 'fr' __a : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : str = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __a : Optional[Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Optional[Any] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __a : Optional[Any] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Optional[Any] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __a : Optional[int] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { # en_XX, A, test, EOS 'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 1_2_8_0_0_6, } , )
577
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __magic_name__ : def __init__( self , _lowercase , _lowercase = 13 , _lowercase = 64 , _lowercase = 2 , _lowercase = 3 , _lowercase = 3 , _lowercase = True , _lowercase = True , _lowercase = 128 , _lowercase=[16, 32, 64, 128] , _lowercase = 7 , _lowercase = 4 , _lowercase = 37 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 10 , _lowercase = 0.02 , _lowercase = 2 , _lowercase = 1 , _lowercase = 128 , _lowercase = [2, 2, 2, 2] , _lowercase = 2 , _lowercase = 2 , )-> int: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = encoder_stride UpperCamelCase_ = num_attention_outputs UpperCamelCase_ = embed_dim UpperCamelCase_ = embed_dim + 1 UpperCamelCase_ = resolution UpperCamelCase_ = depths UpperCamelCase_ = hidden_sizes UpperCamelCase_ = dim UpperCamelCase_ = mlp_expansion_ratio def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> List[str]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> int: UpperCamelCase_ = TFEfficientFormerModel(config=_lowercase ) UpperCamelCase_ = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = self.type_sequence_label_size UpperCamelCase_ = TFEfficientFormerForImageClassification(_lowercase ) UpperCamelCase_ = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_ = 1 UpperCamelCase_ = TFEfficientFormerForImageClassification(_lowercase ) UpperCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[int] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCamelCase_ :Union[str, Any] = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCamelCase_ :Optional[int] = False UpperCamelCase_ :Optional[int] = False UpperCamelCase_ :str = False UpperCamelCase_ :List[Any] = False UpperCamelCase_ :str = False def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = TFEfficientFormerModelTester(self ) UpperCamelCase_ = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def UpperCAmelCase_ ( self )-> str: pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) if hasattr(self.model_tester , "encoder_seq_length" ): UpperCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: UpperCamelCase_ = seq_length * self.model_tester.chunk_length else: UpperCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: UpperCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(_lowercase , (list, tuple) ) self.assertEqual(len(_lowercase ) , _lowercase ) UpperCamelCase_ = getattr(self.model_tester , "seq_length" , _lowercase ) UpperCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , _lowercase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase=False )-> int: UpperCamelCase_ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def UpperCAmelCase_ ( self )-> int: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = TFEfficientFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True UpperCamelCase_ = getattr(self.model_tester , "seq_length" , _lowercase ) UpperCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , _lowercase ) UpperCamelCase_ = getattr(self.model_tester , "key_length" , _lowercase ) UpperCamelCase_ = getattr(self.model_tester , "chunk_length" , _lowercase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): UpperCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = True UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase_ = True UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCAmelCase_ ( self )-> Optional[int]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase_ = model_class(_lowercase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowercase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase_ = model(_lowercase ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase( )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self )-> int: return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_lowercase , return_tensors="tf" ) # forward pass UpperCamelCase_ = model(**_lowercase , training=_lowercase ) # verify the logits UpperCamelCase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) UpperCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_lowercase , return_tensors="tf" ) # forward pass UpperCamelCase_ = model(**_lowercase , training=_lowercase ) # verify the logits UpperCamelCase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) UpperCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) )
628
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE :List[str] = logging.get_logger("""transformers.models.encodec""") SCREAMING_SNAKE_CASE :Tuple = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } SCREAMING_SNAKE_CASE :List[str] = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } SCREAMING_SNAKE_CASE :Union[str, Any] = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } SCREAMING_SNAKE_CASE :Optional[Any] = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } SCREAMING_SNAKE_CASE :Optional[int] = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } SCREAMING_SNAKE_CASE :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE :int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE :Dict = [] SCREAMING_SNAKE_CASE :int = [] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: """simple docstring""" for attribute in key.split("." ): UpperCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value elif weight_type == "running_mean": UpperCamelCase_ = value elif weight_type == "running_var": UpperCamelCase_ = value elif weight_type == "num_batches_tracked": UpperCamelCase_ = value elif weight_type == "weight_ih_l0": UpperCamelCase_ = value elif weight_type == "weight_hh_l0": UpperCamelCase_ = value elif weight_type == "bias_ih_l0": UpperCamelCase_ = value elif weight_type == "bias_hh_l0": UpperCamelCase_ = value elif weight_type == "weight_ih_l1": UpperCamelCase_ = value elif weight_type == "weight_hh_l1": UpperCamelCase_ = value elif weight_type == "bias_ih_l1": UpperCamelCase_ = value elif weight_type == "bias_hh_l1": UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase_ , UpperCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" UpperCamelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase_ = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase_ = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info(f"{name} was ignored" ) continue UpperCamelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase_ , UpperCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: UpperCamelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] UpperCamelCase_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCamelCase_ = "weight_g" elif "weight_v" in name: UpperCamelCase_ = "weight_v" elif "weight_ih_l0" in name: UpperCamelCase_ = "weight_ih_l0" elif "weight_hh_l0" in name: UpperCamelCase_ = "weight_hh_l0" elif "bias_ih_l0" in name: UpperCamelCase_ = "bias_ih_l0" elif "bias_hh_l0" in name: UpperCamelCase_ = "bias_hh_l0" elif "weight_ih_l1" in name: UpperCamelCase_ = "weight_ih_l1" elif "weight_hh_l1" in name: UpperCamelCase_ = "weight_hh_l1" elif "bias_ih_l1" in name: UpperCamelCase_ = "bias_ih_l1" elif "bias_hh_l1" in name: UpperCamelCase_ = "bias_hh_l1" elif "bias" in name: UpperCamelCase_ = "bias" elif "weight" in name: UpperCamelCase_ = "weight" elif "running_mean" in name: UpperCamelCase_ = "running_mean" elif "running_var" in name: UpperCamelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCamelCase_ = "num_batches_tracked" else: UpperCamelCase_ = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Union[str, Any]: """simple docstring""" if config_path is not None: UpperCamelCase_ = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase_ = [8, 5, 4, 4] UpperCamelCase_ = [2.2] UpperCamelCase_ = 6_4 UpperCamelCase_ = 3_2_0_0_0 UpperCamelCase_ = 2_0_4_8 UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False elif model_name == "encodec_48khz": UpperCamelCase_ = [8, 5, 4, 2] UpperCamelCase_ = [3.0, 6.0, 12.0, 24.0] UpperCamelCase_ = 4_8_0_0_0 UpperCamelCase_ = 2 UpperCamelCase_ = False UpperCamelCase_ = "time_group_norm" UpperCamelCase_ = True UpperCamelCase_ = 1.0 UpperCamelCase_ = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) UpperCamelCase_ = EncodecModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = torch.load(SCREAMING_SNAKE_CASE_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase_ = original_checkpoint["best_state"] recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE_ ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
628
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case( __A , unittest.TestCase ): _A = KandinskyVaaInpaintPipeline _A = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A = False @property def A ( self ): '''simple docstring''' return 32 @property def A ( self ): '''simple docstring''' return 32 @property def A ( self ): '''simple docstring''' return self.time_input_dim @property def A ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self ): '''simple docstring''' return 100 @property def A ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**A_ ) return model @property def A ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=A_ , ) _SCREAMING_SNAKE_CASE = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self , A_ , A_=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(A_ ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE = torch.manual_seed(A_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=A_ ).manual_seed(A_ ) _SCREAMING_SNAKE_CASE = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''cpu''' _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A_ ) _SCREAMING_SNAKE_CASE = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(A_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def A ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) _SCREAMING_SNAKE_CASE = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = '''a hat''' _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ )
707
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A__ ( UpperCamelCase__ ): '''simple docstring''' return x + 2 class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3} ) _SCREAMING_SNAKE_CASE = '''x = y''' _SCREAMING_SNAKE_CASE = {'''y''': 5} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 5, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''y = add_two(x)''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result is None assert "tried to execute add_two" in out.out def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(A_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3\ny = 5''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''text = f\'This is x: {x}.\'''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A_ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''if x <= 3:\n y = 2\nelse:\n y = 5''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 2} ) _SCREAMING_SNAKE_CASE = {'''x''': 8} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 8, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_list = [x, add_two(x)]''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) self.assertListEqual(A_ , [3, 5] ) self.assertDictEqual(A_ , {'''x''': 3, '''test_list''': [3, 5]} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''y = x''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 3} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_list = [x, add_two(x)]\ntest_list[1]''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''test_list''': [3, 5]} ) _SCREAMING_SNAKE_CASE = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 0\nfor i in range(3):\n x = i''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''range''': range} , state=A_ ) assert result == 2 self.assertDictEqual(A_ , {'''x''': 2, '''i''': 2} )
168
0
'''simple docstring''' def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> bool: if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' ,[ SplitDict(), SplitDict({'train': SplitInfo(name='train' ,num_bytes=1337 ,num_examples=42 ,dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' ,num_bytes=1337 ,num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] ,) def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> List[str]: A_ = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) A_ = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump A_ = None # the split name of split_dict takes over the name of the split info object A_ = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' ,[SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE_ ), SplitInfo(dataset_name='my_dataset' )] ) def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files A_ = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
366
1
from collections import deque def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = len(lowercase_ ) snake_case_ : str = deque() snake_case_ : str = [False for _ in range(lowercase_ )] snake_case_ : List[Any] = [-1 for _ in range(lowercase_ )] snake_case_ : Any = index_of[:] def strong_connect(__a , __a , __a ): snake_case_ : List[Any] = index # the number when this node is seen snake_case_ : List[str] = index # lowest rank node reachable from here index += 1 stack.append(lowercase_ ) snake_case_ : int = True for w in g[v]: if index_of[w] == -1: snake_case_ : int = strong_connect(lowercase_ , lowercase_ , lowercase_ ) snake_case_ : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case_ : Any = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case_ : str = [] snake_case_ : Dict = stack.pop() snake_case_ : Dict = False component.append(lowercase_ ) while w != v: snake_case_ : List[str] = stack.pop() snake_case_ : Tuple = False component.append(lowercase_ ) components.append(lowercase_ ) return index snake_case_ : Tuple = [] for v in range(lowercase_ ): if index_of[v] == -1: strong_connect(lowercase_ , 0 , lowercase_ ) return components def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[Any] = [[] for _ in range(lowercase_ )] for u, v in edges: g[u].append(lowercase_ ) return g if __name__ == "__main__": # Test _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = [0, 0, 1, 2, 3, 3, 4, 4, 6] _SCREAMING_SNAKE_CASE = [1, 3, 2, 0, 1, 4, 5, 6, 5] _SCREAMING_SNAKE_CASE = [(u, v) for u, v in zip(source, target)] _SCREAMING_SNAKE_CASE = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
707
from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: float __magic_name__: TreeNode | None = None __magic_name__: TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( __a ): # Validation def is_valid_tree(__a ) -> bool: if node is None: return True if not isinstance(__a , __a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( __a , __a , __a ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __a ) ) return is_binary_search_tree_recursive_check(__a , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
534
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : str = 0 while b > 0: if b & 1: UpperCamelCase__ : Tuple = ((res % c) + (a % c)) % c a += a b >>= 1 return res
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
from math import factorial def _A ( lowerCAmelCase_ : int = 20 ): """simple docstring""" lowerCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase__ = n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
61
import argparse from collections import defaultdict def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[Any]: """simple docstring""" lowercase = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(UpperCAmelCase, '''r''' ) as f: lowercase = f.readlines() lowercase = f'class {class_name}(' lowercase = f'{4 * " "}def {test_name}(' lowercase = f'{8 * " "}{correct_line.split()[0]}' lowercase = f'{16 * " "}{correct_line.split()[0]}' lowercase = False lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = 0 lowercase = [] for line in lines: if line.startswith(UpperCAmelCase ): lowercase = True elif in_class and line.startswith(UpperCAmelCase ): lowercase = True elif in_class and in_func and (line.startswith(UpperCAmelCase ) or line.startswith(UpperCAmelCase )): lowercase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowercase = True if in_class and in_func and in_line: if ")" not in line: continue else: lowercase = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) lowercase = lowercase = lowercase = lowercase = False else: new_lines.append(UpperCAmelCase ) with open(UpperCAmelCase, '''w''' ) as f: for line in new_lines: f.write(UpperCAmelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=None )-> str: """simple docstring""" if fail is not None: with open(UpperCAmelCase, '''r''' ) as f: lowercase = {l.strip() for l in f.readlines()} else: lowercase = None with open(UpperCAmelCase, '''r''' ) as f: lowercase = f.readlines() lowercase = defaultdict(UpperCAmelCase ) for line in correct_lines: lowercase ,lowercase ,lowercase ,lowercase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) A_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
604
0
"""simple docstring""" def a_ ( lowerCamelCase ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('Input value must be an \'int\' type' ) UpperCAmelCase__ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
632
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) a = parser.parse_args() a = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
109
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = """umt5""" __lowerCAmelCase = ["""past_key_values"""] def __init__( self , snake_case_=25_0112 , snake_case_=512 , snake_case_=64 , snake_case_=1024 , snake_case_=8 , snake_case_=None , snake_case_=6 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1e-6 , snake_case_=1.0 , snake_case_="gated-gelu" , snake_case_=True , snake_case_=True , snake_case_="T5Tokenizer" , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=0 , **snake_case_ , ): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case_ , tokenizer_class=snake_case_ , tie_word_embeddings=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , ) __UpperCAmelCase: Dict = vocab_size __UpperCAmelCase: Tuple = d_model __UpperCAmelCase: Any = d_kv __UpperCAmelCase: Any = d_ff __UpperCAmelCase: Any = num_layers __UpperCAmelCase: int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase: List[str] = num_heads __UpperCAmelCase: Tuple = relative_attention_num_buckets __UpperCAmelCase: Union[str, Any] = relative_attention_max_distance __UpperCAmelCase: Union[str, Any] = dropout_rate __UpperCAmelCase: Tuple = layer_norm_epsilon __UpperCAmelCase: Union[str, Any] = initializer_factor __UpperCAmelCase: List[str] = feed_forward_proj __UpperCAmelCase: List[str] = use_cache __UpperCAmelCase: Optional[Any] = self.feed_forward_proj.split("""-""" ) __UpperCAmelCase: Optional[Any] = act_info[-1] __UpperCAmelCase: List[Any] = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": __UpperCAmelCase: str = """gelu_new""" @property def lowercase_ ( self ): '''simple docstring''' return self.d_model @property def lowercase_ ( self ): '''simple docstring''' return self.num_heads @property def lowercase_ ( self ): '''simple docstring''' return self.num_layers class a ( __lowerCAmelCase ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __UpperCAmelCase: str = """past_encoder_sequence + sequence""" __UpperCAmelCase: Dict = {0: """batch"""} __UpperCAmelCase: int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __UpperCAmelCase: List[str] = {0: """batch""", 1: """decoder_sequence"""} __UpperCAmelCase: Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowercase_ ( self ): '''simple docstring''' return 13 @property def lowercase_ ( self ): '''simple docstring''' return 5e-4
523
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case : Tuple = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case : Dict = logging.getLogger() def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase__ = parser.parse_args() return args.f def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any="eval" ) -> str: """simple docstring""" lowerCAmelCase__ = os.path.join(lowerCAmelCase__ , F"{split}_results.json" ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: return json.load(lowerCAmelCase__ ) raise ValueError(F"can't find {path}" ) __snake_case : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_flax_glue.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_clm_flax.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertLess(result['eval_perplexity'] , 1_00 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_summarization_flax.main() lowerCAmelCase__ = get_results(_UpperCAmelCase , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_mlm_flax.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_ta_mlm_flax.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_flax_ner.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_qa.main() lowerCAmelCase__ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Tuple = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ["""GLPNFeatureExtractor"""] __snake_case : Optional[Any] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
0
from math import factorial, pi def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 3_0 ) -> float: if not isinstance(A_, (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(A_, A_ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) A__ : List[str] =float(A_ ) A__ : str =theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(A_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 3_0 ) -> float: if not isinstance(A_, (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(A_, A_ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) A__ : Optional[int] =float(A_ ) A__ : List[str] =theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
416
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def A__ ( A_ ) -> Any: return EnvironmentCommand() def A__ ( A_ ) -> Optional[int]: return EnvironmentCommand(args.accelerate_config_file ) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" @staticmethod def snake_case ( __A : ArgumentParser ): """simple docstring""" _lowercase = parser.add_parser("env" ) download_parser.set_defaults(func=__A ) download_parser.add_argument( "--accelerate-config_file" , default=__A , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=__A ) def __init__( self : Dict , __A : Tuple , *__A : Optional[int] ): """simple docstring""" _lowercase = accelerate_config_file def snake_case ( self : str ): """simple docstring""" _lowercase = "not installed" if is_safetensors_available(): import safetensors _lowercase = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors _lowercase = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _lowercase = "not installed" _lowercase = _lowercase = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowercase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__A ): _lowercase = load_config_from_file(self._accelerate_config_file ).to_dict() _lowercase = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__A , __A ) else f"""\t{accelerate_config}""" ) _lowercase = "not installed" _lowercase = "NA" if is_torch_available(): import torch _lowercase = torch.__version__ _lowercase = torch.cuda.is_available() _lowercase = "not installed" _lowercase = "NA" if is_tf_available(): import tensorflow as tf _lowercase = tf.__version__ try: # deprecated in v2.1 _lowercase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowercase = bool(tf.config.list_physical_devices("GPU" ) ) _lowercase = "not installed" _lowercase = "not installed" _lowercase = "not installed" _lowercase = "NA" if is_flax_available(): import flax import jax import jaxlib _lowercase = flax.__version__ _lowercase = jax.__version__ _lowercase = jaxlib.__version__ _lowercase = jax.lib.xla_bridge.get_backend().platform _lowercase = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f"""{safetensors_version}""", "Accelerate version": f"""{accelerate_version}""", "Accelerate config": f"""{accelerate_config_str}""", "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""", "Jax version": f"""{jax_version}""", "JaxLib version": f"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__A ) ) return info @staticmethod def snake_case ( __A : Union[str, Any] ): """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
497
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : str = logging.get_logger(__name__) def lowerCAmelCase( __lowerCamelCase ): __a = DPTConfig() if "large" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 __a = [5, 11, 17, 23] __a = [256, 512, 1024, 1024] __a = (1, 384, 384) if "ade" in checkpoint_url: __a = True __a = 150 __a = 'huggingface/label-files' __a = 'ade20k-id2label.json' __a = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) __a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase( __lowerCamelCase ): __a = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __a = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __a = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __a = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: __a = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __a = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __a = name.replace('proj' , 'projection' ) if "blocks" in name: __a = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __a = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: __a = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __a = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __a = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __a = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __a = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __a = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __a = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __a = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __a = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __a = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __a = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __a = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __a = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __a = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __a = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __a = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __a = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __a = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __a = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __a = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __a = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __a = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __a = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __a = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __a = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __a = name.replace('pretrained' , 'dpt' ) if "bn" in name: __a = name.replace('bn' , 'batch_norm' ) if "head" in name: __a = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __a = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __a = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __a = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[: config.hidden_size, :] __a = in_proj_bias[: config.hidden_size] __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = in_proj_bias[-config.hidden_size :] def lowerCAmelCase( ): __a = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a , __a = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL __a = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __a = state_dict.pop(__lowerCamelCase ) __a = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model __a = DPTForSemanticSegmentation(__lowerCamelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image __a = 480 if 'ade' in checkpoint_url else 384 __a = DPTImageProcessor(size=__lowerCamelCase ) __a = prepare_img() __a = image_processor(__lowerCamelCase , return_tensors='pt' ) # forward pass __a = model(**__lowerCamelCase ).logits if 'ade' in checkpoint_url else model(**__lowerCamelCase ).predicted_depth # Assert logits __a = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: __a = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCamelCase ) ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__lowerCamelCase , ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCamelCase_ : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
246
def lowerCAmelCase( __lowerCamelCase ): __a = len(__lowerCamelCase ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(__lowerCamelCase )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(__lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
246
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a_ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a_ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = create_model( "HTSAT-tiny" , "roberta" , _a , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_a , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Optional[Any] = r".*sequential.(\d+).*" SCREAMING_SNAKE_CASE : int = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE : Any = key.replace(_a , _a) if re.match(_a , _a): # replace sequential layers with list SCREAMING_SNAKE_CASE : Optional[int] = re.match(_a , _a).group(1) SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_a)//3}.linear.") elif re.match(_a , _a): SCREAMING_SNAKE_CASE : str = int(re.match(_a , _a).group(1)) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE : List[str] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}.") if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE : Optional[Any] = value SCREAMING_SNAKE_CASE : Dict = mixed_qkv.size(0) // 3 SCREAMING_SNAKE_CASE : Dict = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE : str = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE : Dict = query_layer SCREAMING_SNAKE_CASE : str = key_layer SCREAMING_SNAKE_CASE : List[str] = value_layer else: SCREAMING_SNAKE_CASE : Any = value return model_state_dict def lowerCamelCase__ ( _a , _a , _a , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = init_clap(_a , enable_fusion=_a) clap_model.eval() SCREAMING_SNAKE_CASE : Optional[int] = clap_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = rename_state_dict(_a) SCREAMING_SNAKE_CASE : Any = ClapConfig() SCREAMING_SNAKE_CASE : Tuple = enable_fusion SCREAMING_SNAKE_CASE : str = ClapModel(_a) # ignore the spectrogram embedding layer model.load_state_dict(_a , strict=_a) model.save_pretrained(_a) transformers_config.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
25
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase (a_ ): snake_case_ = (PNDMScheduler,) snake_case_ = (("""num_inference_steps""", 50),) def __UpperCAmelCase ( self , **__UpperCamelCase )-> int: __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__UpperCamelCase ) return config def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Optional[int]: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self )-> Dict: pass def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Dict: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self , **__UpperCamelCase )-> Tuple: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = 1_0 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self )-> List[str]: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __UpperCAmelCase ( self )-> int: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __UpperCAmelCase ( self )-> List[Any]: for t in [1, 5, 1_0]: self.check_over_forward(time_step=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> int: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample def __UpperCAmelCase ( self )-> Dict: with self.assertRaises(__UpperCamelCase ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __UpperCAmelCase ( self )-> Any: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __UpperCAmelCase ( self )-> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
367
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _a ( __lowerCamelCase ): def __init__( self : int , lowercase : Any ): '''simple docstring''' UpperCAmelCase = data def __iter__( self : Optional[int] ): '''simple docstring''' for element in self.data: yield element def snake_case_ (_a : List[str]=True ): UpperCAmelCase = Accelerator(even_batches=__a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def snake_case_ (_a : Accelerator , _a : int , _a : int , _a : bool = False ): if iterable: UpperCAmelCase = DummyIterableDataset(torch.as_tensor(range(__a ) ) ) else: UpperCAmelCase = TensorDataset(torch.as_tensor(range(__a ) ) ) UpperCAmelCase = DataLoader(__a , batch_size=__a ) UpperCAmelCase = accelerator.prepare(__a ) return dl def snake_case_ (_a : Accelerator , _a : int , _a : int , _a : List[int] , _a : List[int] , ): UpperCAmelCase = create_dataloader(accelerator=__a , dataset_size=__a , batch_size=__a ) UpperCAmelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def snake_case_ (): UpperCAmelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def snake_case_ (): UpperCAmelCase = create_accelerator(even_batches=__a ) verify_dataloader_batch_sizes( __a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def snake_case_ (): UpperCAmelCase = create_accelerator(even_batches=__a ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(__a ) UpperCAmelCase = create_dataloader(__a , dataset_size=3 , batch_size=1 ) UpperCAmelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__a ): UpperCAmelCase = ddp_model(batch[0].float() ) UpperCAmelCase = output.sum() loss.backward() batch_idxs.append(__a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def snake_case_ (_a : List[Any] ): with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __a ) assert "only supported for multi-GPU" in str(w[-1].message ) def snake_case_ (): UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = create_accelerator(even_batches=__a ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(__a ) UpperCAmelCase = create_dataloader(__a , dataset_size=3 , batch_size=1 ) UpperCAmelCase = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): UpperCAmelCase = train_dl.batch_sampler.even_batches UpperCAmelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def snake_case_ (): UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = create_accelerator(even_batches=__a ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) UpperCAmelCase = create_dataloader(__a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): UpperCAmelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def snake_case_ (): UpperCAmelCase = create_accelerator() UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(__a ) create_dataloader(__a , dataset_size=3 , batch_size=1 , iterable=__a ) with warnings.catch_warnings(record=__a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__a ): pass assert issubclass(w[-1].category , __a ) assert "only supported for map-style datasets" in str(w[-1].message ) def snake_case_ (): UpperCAmelCase = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) UpperCAmelCase = accelerator.state.distributed_type UpperCAmelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__a ) UpperCAmelCase = original_state if __name__ == "__main__": main()
720
'''simple docstring''' from __future__ import annotations import math class _a : def __init__( self : Dict , lowercase : int ): '''simple docstring''' UpperCAmelCase = size # approximate the overall size of segment tree with given value UpperCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase = [0 for i in range(0 , 4 * size )] UpperCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A ( self : List[str] , lowercase : int ): '''simple docstring''' return idx * 2 def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' return idx * 2 + 1 def A ( self : Dict , lowercase : int , lowercase : int , lowercase : int , lowercase : list[int] ): '''simple docstring''' if left_element == right_element: UpperCAmelCase = a[left_element - 1] else: UpperCAmelCase = (left_element + right_element) // 2 self.build(self.left(lowercase ) , lowercase , lowercase , lowercase ) self.build(self.right(lowercase ) , mid + 1 , lowercase , lowercase ) UpperCAmelCase = max( self.segment_tree[self.left(lowercase )] , self.segment_tree[self.right(lowercase )] ) def A ( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = False if left_element != right_element: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = self.lazy[idx] UpperCAmelCase = True UpperCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase = val if left_element != right_element: UpperCAmelCase = val UpperCAmelCase = val UpperCAmelCase = True UpperCAmelCase = True return True UpperCAmelCase = (left_element + right_element) // 2 self.update(self.left(lowercase ) , lowercase , lowercase , lowercase , lowercase , lowercase ) self.update(self.right(lowercase ) , mid + 1 , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = max( self.segment_tree[self.left(lowercase )] , self.segment_tree[self.right(lowercase )] ) return True def A ( self : Any , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = False if left_element != right_element: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = self.lazy[idx] UpperCAmelCase = True UpperCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase = (left_element + right_element) // 2 UpperCAmelCase = self.query(self.left(lowercase ) , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = self.query(self.right(lowercase ) , mid + 1 , lowercase , lowercase , lowercase ) return max(lowercase , lowercase ) def __str__( self : Any ): '''simple docstring''' return str([self.query(1 , 1 , self.size , lowercase , lowercase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": A =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] A =15 A =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
358
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None = None UpperCamelCase_ : Node | None = None def _A( ) -> Node | None: '''simple docstring''' __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def _A( UpperCamelCase__ : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A( UpperCamelCase__ : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A( UpperCamelCase__ : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A( UpperCamelCase__ : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A( UpperCamelCase__ : Node | None ) -> Sequence[Node | None]: '''simple docstring''' __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> Sequence[Node | None]: '''simple docstring''' __lowercase = [] def populate_output(UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def _A( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> Sequence[Node | None]: '''simple docstring''' __lowercase = [] def populate_output(UpperCamelCase__ : Node | None , UpperCamelCase__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def _A( UpperCamelCase__ : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(UpperCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) ) __lowercase = 0 return output def _A( ) -> None: # Main function for testing. '''simple docstring''' __lowercase = make_tree() print(F'In-order Traversal: {inorder(UpperCamelCase__ )}' ) print(F'Pre-order Traversal: {preorder(UpperCamelCase__ )}' ) print(F'Post-order Traversal: {postorder(UpperCamelCase__ )}' , '''\n''' ) print(F'Height of Tree: {height(UpperCamelCase__ )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(UpperCamelCase__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(UpperCamelCase__ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
import unittest from knapsack import knapsack as k class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(lowerCamelCase__ ) self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 0 ) __lowercase = [60] __lowercase = [10] __lowercase = len(lowerCamelCase__ ) self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 0 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(lowerCamelCase__ ) self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 5 ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = 50 __lowercase = [60, 100, 120] __lowercase = [10, 20, 30] __lowercase = len(lowerCamelCase__ ) self.assertEqual(k.knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
332
1
"""simple docstring""" def UpperCAmelCase ( ): _lowerCAmelCase:Union[str, Any] = 0 for i in range(1 , 1001 ): total += i**i return str(__A )[-10:] if __name__ == "__main__": print(solution())
701
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ): _lowerCAmelCase:Optional[int] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=snake_case , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=snake_case , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=snake_case ) return parser.parse_args() def UpperCAmelCase ( ): _lowerCAmelCase:int = parse_args() # Import training_script as a module. _lowerCAmelCase:Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase:Optional[int] = script_fpath.stem _lowerCAmelCase:Any = importlib.import_module(snake_case ) # Patch sys.argv _lowerCAmelCase:Dict = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
439
0
"""simple docstring""" import math def lowercase__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. SCREAMING_SNAKE_CASE_ = '''Enter the base and the power separated by a comma: ''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = map(int, input(prompt).split(''',''')) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. SCREAMING_SNAKE_CASE_ = res(xa, ya) SCREAMING_SNAKE_CASE_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
373
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] SCREAMING_SNAKE_CASE_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): UpperCAmelCase = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: UpperCAmelCase = arr[j] break result.append(lowerCAmelCase ) return result def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = [] for i, outer in enumerate(lowerCAmelCase ): UpperCAmelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase = inner break result.append(lowerCAmelCase ) return result def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = [] UpperCAmelCase = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) SCREAMING_SNAKE_CASE_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
373
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'roberta-prelayernorm' def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__="absolute", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
706
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'roberta-prelayernorm' def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__="absolute", UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
325
0
"""simple docstring""" import numpy as np class lowercase: '''simple docstring''' def __init__( self: Any ): '''simple docstring''' _snake_case : Tuple = (0, 0) _snake_case : Any = None _snake_case : str = 0 _snake_case : int = 0 _snake_case : int = 0 def __eq__( self: Union[str, Any], a_: Dict ): '''simple docstring''' return self.position == cell.position def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' print(self.position ) class lowercase: '''simple docstring''' def __init__( self: Optional[int], a_: Optional[int]=(5, 5) ): '''simple docstring''' _snake_case : int = np.zeros(a_ ) _snake_case : Tuple = world_size[0] _snake_case : Optional[Any] = world_size[1] def UpperCamelCase_ ( self: Any ): '''simple docstring''' print(self.w ) def UpperCamelCase_ ( self: Dict, a_: Dict ): '''simple docstring''' _snake_case : Optional[int] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _snake_case : List[Any] = cell.position[0] _snake_case : Union[str, Any] = cell.position[1] _snake_case : Union[str, Any] = [] for n in neughbour_cord: _snake_case : Union[str, Any] = current_x + n[0] _snake_case : Optional[int] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _snake_case : List[Any] = Cell() _snake_case : int = (x, y) _snake_case : List[str] = cell neighbours.append(a_ ) return neighbours def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case : List[str] = [] _open.append(snake_case__ ) while _open: _snake_case : Optional[Any] = np.argmin([n.f for n in _open] ) _snake_case : Optional[int] = _open[min_f] _closed.append(_open.pop(snake_case__ ) ) if current == goal: break for n in world.get_neigbours(snake_case__ ): for c in _closed: if c == n: continue _snake_case : Optional[int] = current.g + 1 _snake_case , _snake_case : Tuple = n.position _snake_case , _snake_case : Union[str, Any] = goal.position _snake_case : List[str] = (ya - ya) ** 2 + (xa - xa) ** 2 _snake_case : Tuple = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case__ ) _snake_case : Tuple = [] while current.parent is not None: path.append(current.position ) _snake_case : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'''path from {start.position} to {goal.position}''') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
609
"""simple docstring""" import argparse from collections import defaultdict def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str ): """simple docstring""" _snake_case : Dict = F"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(snake_case__ , """r""" ) as f: _snake_case : Optional[Any] = f.readlines() _snake_case : Tuple = F"class {class_name}(" _snake_case : Tuple = F"{4 * ' '}def {test_name}(" _snake_case : Optional[int] = F"{8 * ' '}{correct_line.split()[0]}" _snake_case : Union[str, Any] = F"{16 * ' '}{correct_line.split()[0]}" _snake_case : Optional[int] = False _snake_case : Optional[int] = False _snake_case : Optional[Any] = False _snake_case : Optional[Any] = False _snake_case : List[Any] = 0 _snake_case : List[Any] = 0 _snake_case : List[str] = [] for line in lines: if line.startswith(snake_case__ ): _snake_case : Union[str, Any] = True elif in_class and line.startswith(snake_case__ ): _snake_case : str = True elif in_class and in_func and (line.startswith(snake_case__ ) or line.startswith(snake_case__ )): _snake_case : Optional[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case : Optional[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case : str = True if in_class and in_func and in_line and insert_line: new_lines.append(F"{spaces * ' '}{correct_line}" ) _snake_case : int = False else: new_lines.append(snake_case__ ) with open(snake_case__ , """w""" ) as f: for line in new_lines: f.write(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Any=None ): """simple docstring""" if fail is not None: with open(snake_case__ , """r""" ) as f: _snake_case : List[Any] = {l.strip() for l in f.readlines()} else: _snake_case : Union[str, Any] = None with open(snake_case__ , """r""" ) as f: _snake_case : Union[str, Any] = f.readlines() _snake_case : List[Any] = defaultdict(snake_case__ ) for line in correct_lines: _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) A_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
609
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: Any = """xlm-prophetnet""" a_: Any = ["""past_key_values"""] a_: List[str] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Tuple , lowerCamelCase_ : Optional[float] = 0.1 , lowerCamelCase_ : Optional[Union[str, Callable]] = "gelu" , lowerCamelCase_ : Optional[int] = 3_0522 , lowerCamelCase_ : Optional[int] = 1024 , lowerCamelCase_ : Optional[int] = 4096 , lowerCamelCase_ : Optional[int] = 12 , lowerCamelCase_ : Optional[int] = 16 , lowerCamelCase_ : Optional[int] = 4096 , lowerCamelCase_ : Optional[int] = 12 , lowerCamelCase_ : Optional[int] = 16 , lowerCamelCase_ : Optional[float] = 0.1 , lowerCamelCase_ : Optional[float] = 0.1 , lowerCamelCase_ : Optional[int] = 512 , lowerCamelCase_ : Optional[float] = 0.02 , lowerCamelCase_ : Optional[bool] = True , lowerCamelCase_ : Optional[bool] = True , lowerCamelCase_ : Optional[int] = 0 , lowerCamelCase_ : Optional[int] = 2 , lowerCamelCase_ : Optional[int] = 32 , lowerCamelCase_ : Optional[int] = 128 , lowerCamelCase_ : Optional[bool] = False , lowerCamelCase_ : Optional[float] = 0.0 , lowerCamelCase_ : Optional[bool] = True , lowerCamelCase_ : Optional[int] = 0 , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : Optional[int] = 2 , **lowerCamelCase_ : Tuple , ): _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =encoder_ffn_dim _lowerCAmelCase =num_encoder_layers _lowerCAmelCase =num_encoder_attention_heads _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =num_decoder_layers _lowerCAmelCase =num_decoder_attention_heads _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =init_std # Normal(0, this parameter) _lowerCAmelCase =activation_function # parameters for xlmprophetnet _lowerCAmelCase =ngram _lowerCAmelCase =num_buckets _lowerCAmelCase =relative_max_distance _lowerCAmelCase =disable_ngram_loss _lowerCAmelCase =eps # 3 Types of Dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation_dropout _lowerCAmelCase =dropout _lowerCAmelCase =use_cache super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def lowerCAmelCase__ ( self : Optional[int] ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Dict ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
719
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =BlipImageProcessor() _lowerCAmelCase =BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) _lowerCAmelCase =BlipProcessor(lowerCamelCase_ , lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict , **lowerCamelCase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).tokenizer def lowerCAmelCase__ ( self : Union[str, Any] , **lowerCamelCase_ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def lowerCAmelCase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase =[Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase =self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _lowerCAmelCase =BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =image_processor(lowerCamelCase_ , return_tensors="""np""" ) _lowerCAmelCase =processor(images=lowerCamelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =processor(text=lowerCamelCase_ ) _lowerCAmelCase =tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase =processor.batch_decode(lowerCamelCase_ ) _lowerCAmelCase =tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
149
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __A : def __init__(self : str , __a : Any , __a : str=13 , __a : List[str]=2 , __a : Any=24 , __a : Any=16 , __a : List[str]=True , __a : Tuple=True , __a : Any=32 , __a : str=5 , __a : Optional[int]=4 , __a : List[Any]=37 , __a : Optional[Any]="gelu" , __a : str=0.1 , __a : Tuple=0.1 , __a : Tuple=10 , __a : Any=0.02 , __a : Any=None , __a : Union[str, Any]=2 , __a : Tuple=2 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = max_length UpperCAmelCase_ = num_mel_bins UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = frequency_stride UpperCAmelCase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase_ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase_ = frequency_out_dimension * time_out_dimension UpperCAmelCase_ = num_patches + 2 def _lowercase (self : List[str] ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, input_values, labels def _lowercase (self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase (self : str , __a : Any , __a : str , __a : str ): UpperCAmelCase_ = ASTModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_values": input_values} return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) a__ : int = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) a__ : int = False a__ : Union[str, Any] = False a__ : List[str] = False a__ : Any = False def _lowercase (self : Optional[Any] , __a : str , __a : List[Any] , __a : Optional[Any] , __a : str , __a : str ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ASTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _lowercase (self : List[str] ): pass def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def _lowercase (self : Dict ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["input_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def _lowercase (self : List[str] ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ASTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) UpperCAmelCase_ , UpperCAmelCase_ = torchaudio.load(snake_case_ ) return audio, sampling_rate @require_torch @require_torchaudio class __A ( unittest.TestCase ): @cached_property def _lowercase (self : str ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(__a ) UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ , UpperCAmelCase_ = prepare_audio() UpperCAmelCase_ = audio.squeeze().numpy() UpperCAmelCase_ = feature_extractor(__a , sampling_rate=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__a ) # verify the logits UpperCAmelCase_ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase_ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
78
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( snake_case_ : ndarray ) -> float: '''simple docstring''' return np.dot(snake_case_ , snake_case_ ) class __A : def __init__(self : int , *, __a : float = np.inf , __a : str = "linear" , __a : float = 0.0 , ): UpperCAmelCase_ = regularization UpperCAmelCase_ = gamma if kernel == "linear": UpperCAmelCase_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCAmelCase_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase_ = f"""Unknown kernel: {kernel}""" raise ValueError(__a ) def _lowercase (self : Optional[int] , __a : ndarray , __a : ndarray ): return np.dot(__a , __a ) def _lowercase (self : Optional[int] , __a : ndarray , __a : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowercase (self : str , __a : list[ndarray] , __a : ndarray ): UpperCAmelCase_ = observations UpperCAmelCase_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase_) , ) = np.shape(__a ) def to_minimize(__a : ndarray ) -> float: UpperCAmelCase_ = 0 ((UpperCAmelCase_) , ) = np.shape(__a ) for i in range(__a ): for j in range(__a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__a ) UpperCAmelCase_ = LinearConstraint(__a , 0 , 0 ) UpperCAmelCase_ = Bounds(0 , self.regularization ) UpperCAmelCase_ = minimize( __a , np.ones(__a ) , bounds=__a , constraints=[ly_contraint] ).x UpperCAmelCase_ = l_star # calculating mean offset of separation plane to points UpperCAmelCase_ = 0 for i in range(__a ): for j in range(__a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCAmelCase_ = s / n def _lowercase (self : Optional[int] , __a : ndarray ): UpperCAmelCase_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
78
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = [] UpperCAmelCase : List[Any] = [] for i in range(self.num_layers ): UpperCAmelCase : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase : Union[str, Any] = FlaxResnetBlockaD( in_channels=snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case ) UpperCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case ) UpperCAmelCase : Optional[Any] = resnets UpperCAmelCase : List[str] = attentions if self.add_downsample: UpperCAmelCase : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case , snake_case , snake_case , snake_case=True ): '''simple docstring''' UpperCAmelCase : int = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCAmelCase : Union[str, Any] = resnet(snake_case , snake_case , deterministic=snake_case ) UpperCAmelCase : Union[str, Any] = attn(snake_case , snake_case , deterministic=snake_case ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase : List[Any] = self.downsamplers_a(snake_case ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [] for i in range(self.num_layers ): UpperCAmelCase : Optional[int] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase : str = FlaxResnetBlockaD( in_channels=snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case ) UpperCAmelCase : List[str] = resnets if self.add_downsample: UpperCAmelCase : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case , snake_case , snake_case=True ): '''simple docstring''' UpperCAmelCase : Any = () for resnet in self.resnets: UpperCAmelCase : Optional[Any] = resnet(snake_case , snake_case , deterministic=snake_case ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase : Any = self.downsamplers_a(snake_case ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case ) UpperCAmelCase : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case ) UpperCAmelCase : Union[str, Any] = resnets UpperCAmelCase : Optional[int] = attentions if self.add_upsample: UpperCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case , snake_case , snake_case , snake_case , snake_case=True ): '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCAmelCase : Any = res_hidden_states_tuple[-1] UpperCAmelCase : List[Any] = res_hidden_states_tuple[:-1] UpperCAmelCase : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase : List[Any] = resnet(snake_case , snake_case , deterministic=snake_case ) UpperCAmelCase : int = attn(snake_case , snake_case , deterministic=snake_case ) if self.add_upsample: UpperCAmelCase : List[Any] = self.upsamplers_a(snake_case ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [] for i in range(self.num_layers ): UpperCAmelCase : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase : Tuple = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case ) UpperCAmelCase : Dict = resnets if self.add_upsample: UpperCAmelCase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case , snake_case , snake_case , snake_case=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states UpperCAmelCase : int = res_hidden_states_tuple[-1] UpperCAmelCase : Optional[int] = res_hidden_states_tuple[:-1] UpperCAmelCase : int = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase : List[Any] = resnet(snake_case , snake_case , deterministic=snake_case ) if self.add_upsample: UpperCAmelCase : Dict = self.upsamplers_a(snake_case ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCAmelCase : str = [] for _ in range(self.num_layers ): UpperCAmelCase : Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case ) UpperCAmelCase : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case ) UpperCAmelCase : List[str] = resnets UpperCAmelCase : Tuple = attentions def __call__( self , snake_case , snake_case , snake_case , snake_case=True ): '''simple docstring''' UpperCAmelCase : str = self.resnets[0](snake_case , snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCAmelCase : str = attn(snake_case , snake_case , deterministic=snake_case ) UpperCAmelCase : List[str] = resnet(snake_case , snake_case , deterministic=snake_case ) return hidden_states
609
'''simple docstring''' import os from datetime import datetime as dt from github import Github a : str = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase ( ): '''simple docstring''' UpperCAmelCase : Tuple = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase : int = g.get_repo("huggingface/diffusers" ) UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase : str = sorted(issue.get_comments() , key=lambda __magic_name__ : i.created_at , reverse=__magic_name__ ) UpperCAmelCase : Union[str, Any] = comments[0] if len(__magic_name__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
609
1
'''simple docstring''' import os import sys _SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _SCREAMING_SNAKE_CASE = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModel.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
18
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __lowerCamelCase = 0 for ch in input_str: __lowerCamelCase = ord(UpperCamelCase__ ) __lowerCamelCase = pow(2 , UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
469
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A__ = logging.get_logger(__name__) A__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _lowercase ( a_ : str ) -> Tuple: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __magic_name__ = model_type_to_module_name(a_ ) __magic_name__ = importlib.import_module(F'.{module_name}' ,'transformers.models' ) try: return getattr(a_ ,a_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a_ ,'__name__' ,a_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __magic_name__ = importlib.import_module('transformers' ) if hasattr(a_ ,a_ ): return getattr(a_ ,a_ ) return None def _lowercase ( a_ : Union[str, os.PathLike] ,a_ : Optional[Union[str, os.PathLike]] = None ,a_ : bool = False ,a_ : bool = False ,a_ : Optional[Dict[str, str]] = None ,a_ : Optional[Union[bool, str]] = None ,a_ : Optional[str] = None ,a_ : bool = False ,**a_ : Tuple ,) -> List[str]: '''simple docstring''' __magic_name__ = get_file_from_repo( a_ ,a_ ,cache_dir=a_ ,force_download=a_ ,resume_download=a_ ,proxies=a_ ,use_auth_token=a_ ,revision=a_ ,local_files_only=a_ ,) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(a_ ,encoding='utf-8' ) as reader: return json.load(a_ ) class __UpperCamelCase : def __init__( self: int ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( cls: str , __UpperCamelCase: int , **__UpperCamelCase: List[str] ): '''simple docstring''' __magic_name__ = kwargs.pop('config' , __UpperCamelCase ) __magic_name__ = kwargs.pop('trust_remote_code' , __UpperCamelCase ) __magic_name__ = True __magic_name__, __magic_name__ = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCamelCase , **__UpperCamelCase ) __magic_name__ = config_dict.get('feature_extractor_type' , __UpperCamelCase ) __magic_name__ = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __magic_name__ = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # It could be in `config.feature_extractor_type`` __magic_name__ = getattr(__UpperCamelCase , 'feature_extractor_type' , __UpperCamelCase ) if hasattr(__UpperCamelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: __magic_name__ = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: __magic_name__ = feature_extractor_class_from_name(__UpperCamelCase ) __magic_name__ = feature_extractor_auto_map is not None __magic_name__ = feature_extractor_class is not None or type(__UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING __magic_name__ = resolve_trust_remote_code( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if has_remote_code and trust_remote_code: __magic_name__ = get_class_from_dynamic_module( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) __magic_name__ = kwargs.pop('code_revision' , __UpperCamelCase ) if os.path.isdir(__UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: __magic_name__ = FEATURE_EXTRACTOR_MAPPING[type(__UpperCamelCase )] return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCamelCase: int , __UpperCamelCase: Optional[Any] ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(__UpperCamelCase , __UpperCamelCase )
184
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowercase ( a_ : str ,a_ : str ,a_ : str ,a_ : Path ,a_ : str = None ,a_ : str = None ,a_ : str = None ,) -> Tuple: '''simple docstring''' if config_name_or_path is None: __magic_name__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __magic_name__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ = question_encoder_name_or_path __magic_name__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __magic_name__ = RagConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = gen_config __magic_name__ = question_encoder_config __magic_name__ = model_class.from_pretrained_question_encoder_generator( a_ ,a_ ,config=a_ ) rag_model.save_pretrained(a_ ) # Sanity check. model_class.from_pretrained(a_ ) # Save tokenizers. __magic_name__ = AutoTokenizer.from_pretrained(a_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __magic_name__ = AutoTokenizer.from_pretrained(a_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A__ = parser.parse_args() A__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
184
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
35
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants a = 3_0_0 # TEMPERATURE (unit = K) def lowercase (snake_case__ : float , snake_case__ : float , snake_case__ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
169
0
'''simple docstring''' import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _A ( A__ ): """simple docstring""" re.sub('''<n>''' , '''''' , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
624
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase__ = ['''gpt2'''] lowerCAmelCase__ = '''gpt2''' if is_tf_available(): class lowercase_ (tf.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : Tuple ): super().__init__() __lowercase = tokenizer __lowercase = AutoConfig.from_pretrained(lowercase__ ) __lowercase = TFGPTaLMHeadModel.from_config(lowercase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='''text''' ),) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ): __lowercase = self.tokenizer(lowercase__ ) __lowercase = tokenized['''input_ids'''].to_tensor() __lowercase = tf.cast(input_ids_dense > 0 ,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowercase = self.model(input_ids=lowercase__ ,attention_mask=lowercase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setUp() __lowercase = [GPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowercase = [TFGPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowercase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowercase = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowercase = tokenizer([test_inputs] ,return_tensors='''tf''' ) __lowercase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowercase = python_outputs[key].numpy() __lowercase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase__ ,tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for tf_tokenizer in self.tf_tokenizers: __lowercase = tf.function(lowercase__ ) for test_inputs in self.test_sentences: __lowercase = tf.constant(lowercase__ ) __lowercase = compiled_tokenizer(lowercase__ ) __lowercase = tf_tokenizer(lowercase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): for tf_tokenizer in self.tf_tokenizers: __lowercase = ModelToSave(tokenizer=lowercase__ ) __lowercase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase = model.serving(lowercase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowercase = Path(lowercase__ ) / '''saved.model''' tf.saved_model.save(lowercase__ ,lowercase__ ,signatures={'''serving_default''': model.serving} ) __lowercase = tf.saved_model.load(lowercase__ ) __lowercase = loaded_model.signatures['''serving_default'''](lowercase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for tf_tokenizer in self.tf_tokenizers: __lowercase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase = tf_tokenizer(lowercase__ ) # Build model with some sample inputs __lowercase = tf_tokenizer.get_config() __lowercase = TFGPTaTokenizer.from_config(lowercase__ ) __lowercase = model_from_config(lowercase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowercase = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowercase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase = tf_tokenizer(lowercase__ ,max_length=lowercase__ ) __lowercase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
624
1
def UpperCAmelCase_ ( snake_case__ ) -> tuple[int, int]: """simple docstring""" try: lowerCAmelCase__ = float(snake_case__ ) except ValueError: raise ValueError('Please enter a valid number' ) lowerCAmelCase__ = decimal - int(snake_case__ ) if fractional_part == 0: return int(snake_case__ ), 1 else: lowerCAmelCase__ = len(str(snake_case__ ).split('.' )[1] ) lowerCAmelCase__ = int(decimal * (10**number_of_frac_digits) ) lowerCAmelCase__ = 10**number_of_frac_digits lowerCAmelCase__ , lowerCAmelCase__ = denominator, numerator while True: lowerCAmelCase__ = dividend % divisor if remainder == 0: break lowerCAmelCase__ , lowerCAmelCase__ = divisor, remainder lowerCAmelCase__ , lowerCAmelCase__ = numerator / divisor, denominator / divisor return int(snake_case__ ), int(snake_case__ ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(8_9.0) = }""") print(f"""{decimal_to_fraction('67') = }""") print(f"""{decimal_to_fraction('45.0') = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction('6.25') = }""") print(f"""{decimal_to_fraction('78td') = }""")
193
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __snake_case : def __init__( self ,a_ ,a_ = 13 ,a_ = 64 ,a_ = 2 ,a_ = 3 ,a_ = 3 ,a_ = True ,a_ = True ,a_ = 128 ,a_=[16, 32, 64, 128] ,a_ = 7 ,a_ = 4 ,a_ = 37 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 10 ,a_ = 0.02 ,a_ = 2 ,a_ = 1 ,a_ = 128 ,a_ = [2, 2, 2, 2] ,a_ = 2 ,a_ = 2 ,): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = encoder_stride lowerCAmelCase__ = num_attention_outputs lowerCAmelCase__ = embed_dim lowerCAmelCase__ = embed_dim + 1 lowerCAmelCase__ = resolution lowerCAmelCase__ = depths lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = dim lowerCAmelCase__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=a_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = TFEfficientFormerModel(config=a_ ) lowerCAmelCase__ = model(a_ ,training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = TFEfficientFormerForImageClassification(a_ ) lowerCAmelCase__ = model(a_ ,labels=a_ ,training=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = TFEfficientFormerForImageClassification(a_ ) lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFEfficientFormerModelTester(self ) lowerCAmelCase__ = ConfigTester( self ,config_class=a_ ,has_text_modality=a_ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" def check_hidden_states_output(a_ ,a_ ,a_ ): lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a_ ) ,a_ ) if hasattr(self.model_tester ,'encoder_seq_length' ): lowerCAmelCase__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,'chunk_length' ) and self.model_tester.chunk_length > 1: lowerCAmelCase__ = seq_length * self.model_tester.chunk_length else: lowerCAmelCase__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: lowerCAmelCase__ = outputs.decoder_hidden_states self.asseretIsInstance(a_ ,(list, tuple) ) self.assertEqual(len(a_ ) ,a_ ) lowerCAmelCase__ = getattr(self.model_tester ,'seq_length' ,a_ ) lowerCAmelCase__ = getattr(self.model_tester ,'decoder_seq_length' ,a_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(a_ ,a_ ,a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(a_ ,a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_=False ): """simple docstring""" lowerCAmelCase__ = super()._prepare_for_class(a_ ,a_ ,return_labels=a_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFEfficientFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True lowerCAmelCase__ = getattr(self.model_tester ,'seq_length' ,a_ ) lowerCAmelCase__ = getattr(self.model_tester ,'encoder_seq_length' ,a_ ) lowerCAmelCase__ = getattr(self.model_tester ,'key_length' ,a_ ) lowerCAmelCase__ = getattr(self.model_tester ,'chunk_length' ,a_ ) if chunk_length is not None and hasattr(self.model_tester ,'num_hashes' ): lowerCAmelCase__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase__ = model_class(a_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase__ = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=a_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase__ = model(a_ ) self.assertTrue(outputs_dict is not None ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=a_ ,return_tensors='tf' ) # forward pass lowerCAmelCase__ = model(**a_ ,training=a_ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,a_ ) lowerCAmelCase__ = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=a_ ,return_tensors='tf' ) # forward pass lowerCAmelCase__ = model(**a_ ,training=a_ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,a_ ) lowerCAmelCase__ = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) )
193
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase_ : Any = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __lowercase( __snake_case : Any=True ) -> str: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCamelCase ) ) class _lowerCamelCase (lowerCamelCase ): lowercase__ = None lowercase__ = None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): with TemporaryDirectory() as tmp_dir: __snake_case = dataset_module_factory(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ) __snake_case = import_main_class(dataset_module.module_path , dataset=SCREAMING_SNAKE_CASE_ ) __snake_case = builder_cls( cache_dir=SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ , hash=dataset_module.hash , ) __snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=SCREAMING_SNAKE_CASE_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) __snake_case = cached_path(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ) self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) @pytest.mark.integration def __lowercase( __snake_case : Optional[Any] ) -> Optional[int]: __snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' __snake_case = dataset_module_factory('wikipedia' ,cache_dir=__snake_case ) __snake_case = import_main_class(dataset_module.module_path ) __snake_case = builder_cls( cache_dir=__snake_case ,config_name='20220301.frr' ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __snake_case = None builder_instance.download_and_prepare() __snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def __lowercase( __snake_case : Union[str, Any] ) -> List[Any]: __snake_case = dataset_module_factory('wikipedia' ,cache_dir=__snake_case ) __snake_case = import_main_class(dataset_module.module_path ,dataset=__snake_case ) __snake_case = builder_cls( cache_dir=__snake_case ,config_name='20220301.frr' ,hash=dataset_module.hash ,) __snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(__snake_case ,__snake_case ) assert "train" in ds assert isinstance(ds['train'] ,__snake_case ) assert next(iter(ds['train'] ) )
711
lowerCamelCase_ : List[str] = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) lowerCamelCase_ : List[str] = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __lowercase( __snake_case : float ,__snake_case : str ,__snake_case : str ) -> float: __snake_case = from_type.lower().strip('s' ) __snake_case = to_type.lower().strip('s' ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) if from_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) __snake_case = METRIC_CONVERSION[from_sanitized] __snake_case = METRIC_CONVERSION[to_sanitized] __snake_case = 1 if from_exponent > to_exponent: __snake_case = from_exponent - to_exponent else: __snake_case = -(to_exponent - from_exponent) return value * pow(10 ,__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
345
0
"""simple docstring""" def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square(snake_case__ : int , snake_case__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase = update_area_of_max_square(snake_case__ , col + 1 ) lowerCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase = update_area_of_max_square(row + 1 , snake_case__ ) if mat[row][col]: lowerCAmelCase = 1 + min([right, diagonal, down] ) lowerCAmelCase = max(largest_square_area[0] , snake_case__ ) return sub_problem_sol else: return 0 lowerCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase = update_area_of_max_square_using_dp_array(snake_case__ , col + 1 , snake_case__ ) lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case__ ) lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , snake_case__ , snake_case__ ) if mat[row][col]: lowerCAmelCase = 1 + min([right, diagonal, down] ) lowerCAmelCase = max(largest_square_area[0] , snake_case__ ) lowerCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase = [0] lowerCAmelCase = [[-1] * cols for _ in range(snake_case__ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case__ ) return largest_square_area[0] def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: '''simple docstring''' lowerCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase = dp_array[row][col + 1] lowerCAmelCase = dp_array[row + 1][col + 1] lowerCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase = 1 + min(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase = max(dp_array[row][col] , snake_case__ ) else: lowerCAmelCase = 0 return largest_square_area def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: '''simple docstring''' lowerCAmelCase = [0] * (cols + 1) lowerCAmelCase = [0] * (cols + 1) lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase = current_row[col + 1] lowerCAmelCase = next_row[col + 1] lowerCAmelCase = next_row[col] if mat[row][col] == 1: lowerCAmelCase = 1 + min(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase = max(current_row[col] , snake_case__ ) else: lowerCAmelCase = 0 lowerCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
169
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = GPTSwaTokenizer _a = False _a = True _a = False def __lowercase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Tuple ): lowerCAmelCase = """This is a test""" lowerCAmelCase = """This is a test""" return input_text, output_text def __lowercase ( self : List[Any] ): lowerCAmelCase = """<s>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : Any ): lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase ) , 2000 ) def __lowercase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [465, 287, 265, 631, 842] ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __lowercase ( self : int ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCAmelCase = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(lowerCAmelCase ) , lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(lowerCAmelCase ) , lowerCAmelCase ) @slow def __lowercase ( self : Any ): lowerCAmelCase = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCAmelCase = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCAmelCase , )
169
1
# Lint as: python3 import itertools import os import re A : str = re.compile(r'([A-Z]+)([A-Z][a-z])') A : List[str] = re.compile(r'([a-z\d])([A-Z])') A : str = re.compile(r'(?<!_)_(?!_)') A : Dict = re.compile(r'(_{2,})') A : Optional[int] = r'^\w+(\.\w+)*$' A : Optional[int] = r'<>:/\|?*' def _lowerCAmelCase ( _lowerCAmelCase ) -> List[str]: '''simple docstring''' __snake_case = _uppercase_uppercase_re.sub(r"\1_\2" , _lowerCAmelCase ) __snake_case = _lowercase_uppercase_re.sub(r"\1_\2" , _lowerCAmelCase ) return name.lower() def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' __snake_case = _single_underscore_re.split(_lowerCAmelCase ) __snake_case = [_multiple_underscores_re.split(_lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCAmelCase ) if n != "" ) def _lowerCAmelCase ( _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , _lowerCAmelCase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(_lowerCAmelCase )}-{split}''' def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' __snake_case = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' __snake_case = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) return F'''{filepath}*''' def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __snake_case = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) __snake_case = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if shard_lengths: __snake_case = len(_lowerCAmelCase ) __snake_case = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_lowerCAmelCase )] if filetype_suffix: __snake_case = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: __snake_case = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
473
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A : Any = logging.get_logger(__name__) class UpperCamelCase( _a ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ) -> None: '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
473
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Tuple = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :int = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :List[Any] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :int = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Any = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Any = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
93
"""simple docstring""" import re def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Optional[Any] = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" try: lowerCAmelCase__ :Any = split_input(_SCREAMING_SNAKE_CASE ) if upper: lowerCAmelCase__ :str = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase__ :int = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_simple_case(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" try: lowerCAmelCase__ :str = to_simple_case(_SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '_' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '-' ) if __name__ == "__main__": __import__("""doctest""").testmod()
93
1
"""simple docstring""" _UpperCamelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
704
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } UpperCamelCase = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } UpperCamelCase = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Dict = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_INIT_CONFIGURATION A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = ElectraTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> str: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get("strip_accents" , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): A__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop("type" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) A__ = do_lower_case def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> List[str]: A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: A__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
104
0
def A ( _lowercase = 100 ): SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : str = n + 1 # maximum limit for a in range(2 , _lowercase ): for b in range(2 , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = a**b # calculates the current power collect_powers.add(_lowercase ) # adds the result to the set return len(_lowercase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
34
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """layoutlmv3""" def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any]=5_0265 , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Tuple=3072 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Optional[Any]=1E-5 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : int=0 , UpperCamelCase__ : str=2 , UpperCamelCase__ : List[str]=1024 , UpperCamelCase__ : str=128 , UpperCamelCase__ : str=128 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[int]=32 , UpperCamelCase__ : Any=128 , UpperCamelCase__ : Optional[Any]=64 , UpperCamelCase__ : Dict=256 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Dict=224 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Any=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__( vocab_size=UpperCamelCase__ , hidden_size=UpperCamelCase__ , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , intermediate_size=UpperCamelCase__ , hidden_act=UpperCamelCase__ , hidden_dropout_prob=UpperCamelCase__ , attention_probs_dropout_prob=UpperCamelCase__ , max_position_embeddings=UpperCamelCase__ , type_vocab_size=UpperCamelCase__ , initializer_range=UpperCamelCase__ , layer_norm_eps=UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = max_ad_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = coordinate_size SCREAMING_SNAKE_CASE : List[str] = shape_size SCREAMING_SNAKE_CASE : Optional[int] = has_relative_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_pos_bins SCREAMING_SNAKE_CASE : str = max_rel_pos SCREAMING_SNAKE_CASE : Any = has_spatial_attention_bias SCREAMING_SNAKE_CASE : Union[str, Any] = rel_ad_pos_bins SCREAMING_SNAKE_CASE : Union[str, Any] = max_rel_ad_pos SCREAMING_SNAKE_CASE : Union[str, Any] = text_embed SCREAMING_SNAKE_CASE : List[str] = visual_embed SCREAMING_SNAKE_CASE : Optional[Any] = input_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = version.parse("""1.12""") @property def __A ( self : str ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __A ( self : int ): '''simple docstring''' return 1E-5 @property def __A ( self : Union[str, Any] ): '''simple docstring''' return 12 def __A ( self : Optional[Any] , UpperCamelCase__ : "ProcessorMixin" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional["TensorType"] = None , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 40 , UpperCamelCase__ : int = 40 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , UpperCamelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : List[Any] = processor.tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE : Any = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = dict( processor( UpperCamelCase__ , text=UpperCamelCase__ , boxes=UpperCamelCase__ , return_tensors=UpperCamelCase__ , ) ) return inputs
34
1
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __snake_case = 1 for n in range(m + 1 ): for k in range(1 , _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ : List[str] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: UpperCAmelCase_ : Union[str, Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = DebertaTokenizer snake_case_ = True snake_case_ = DebertaTokenizerFast def lowerCAmelCase ( self : Any )-> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] snake_case = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case = {"""unk_token""": """[UNK]"""} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowerCAmelCase ( self : Optional[Any] , **__snake_case : Union[str, Any] )-> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase ( self : Any , __snake_case : int )-> Any: snake_case = """lower newer""" snake_case = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : str )-> Any: snake_case = self.get_tokenizer() snake_case = """lower newer""" snake_case = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokens + [tokenizer.unk_token] snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = self.get_tokenizer() snake_case = tokenizer("""Hello""" , """World""" ) snake_case = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , __snake_case ) @slow def lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case = tokenizer.encode("""sequence builders""" , add_special_tokens=__snake_case ) snake_case = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__snake_case ) snake_case = tokenizer.encode( """sequence builders""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) snake_case = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) snake_case = tokenizer.build_inputs_with_special_tokens(__snake_case ) snake_case = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : Any )-> Union[str, Any]: snake_case = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] snake_case = tokenizer(__snake_case , padding=__snake_case ) snake_case = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding["""input_ids"""]] # fmt: off snake_case = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
369
0
import numpy as np def __magic_name__ ( lowercase_ ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
414
from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """WhisperFeatureExtractor""" lowercase = """WhisperTokenizer""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.feature_extractor UpperCamelCase = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Any: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE , language=SCREAMING_SNAKE_CASE , no_timestamps=SCREAMING_SNAKE_CASE ) def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("audio" , SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("sampling_rate" , SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("text" , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = args[0] UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCamelCase = self.feature_extractor(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None: UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase = encodings["input_ids"] return inputs def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="np" ) -> int: """simple docstring""" return self.tokenizer.get_prompt_ids(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE )
414
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
628
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" UpperCamelCase_ = SwinvaConfig() UpperCamelCase_ = swinva_name.split("_" ) UpperCamelCase_ = name_split[1] if "to" in name_split[3]: UpperCamelCase_ = int(name_split[3][-3:] ) else: UpperCamelCase_ = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase_ = int(name_split[2][-2:] ) else: UpperCamelCase_ = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase_ = 9_6 UpperCamelCase_ = (2, 2, 6, 2) UpperCamelCase_ = (3, 6, 1_2, 2_4) elif model_size == "small": UpperCamelCase_ = 9_6 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (3, 6, 1_2, 2_4) elif model_size == "base": UpperCamelCase_ = 1_2_8 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (4, 8, 1_6, 3_2) else: UpperCamelCase_ = 1_9_2 UpperCamelCase_ = (2, 2, 1_8, 2) UpperCamelCase_ = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: UpperCamelCase_ = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase_ = 2_1_8_4_1 UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = "imagenet-22k-id2label.json" UpperCamelCase_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} else: UpperCamelCase_ = 1_0_0_0 UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = "imagenet-1k-id2label.json" UpperCamelCase_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} UpperCamelCase_ = img_size UpperCamelCase_ = num_classes UpperCamelCase_ = embed_dim UpperCamelCase_ = depths UpperCamelCase_ = num_heads UpperCamelCase_ = window_size return config def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCamelCase_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: UpperCamelCase_ = "encoder." + name if "attn.proj" in name: UpperCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: UpperCamelCase_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: UpperCamelCase_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: UpperCamelCase_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: UpperCamelCase_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": UpperCamelCase_ = "layernorm.weight" if name == "norm.bias": UpperCamelCase_ = "layernorm.bias" if "head" in name: UpperCamelCase_ = name.replace("head" , "classifier" ) else: UpperCamelCase_ = "swinv2." + name return name def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase_ = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase_ = key.split("." ) UpperCamelCase_ = int(key_split[1] ) UpperCamelCase_ = int(key_split[3] ) UpperCamelCase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase_ = val[:dim, :] UpperCamelCase_ = val[dim : dim * 2, :] UpperCamelCase_ = val[-dim:, :] else: UpperCamelCase_ = val[:dim] UpperCamelCase_ = val[ dim : dim * 2 ] UpperCamelCase_ = val[-dim:] else: UpperCamelCase_ = val return orig_state_dict def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" UpperCamelCase_ = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() UpperCamelCase_ = get_swinva_config(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase_ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase_ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) UpperCamelCase_ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) UpperCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) UpperCamelCase_ = timm_model(inputs["pixel_values"] ) UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
628
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ : Dict = getLogger(__name__) def _lowercase ( UpperCamelCase__ : List[Any], UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : int = 8, UpperCamelCase__ : int = 1024, UpperCamelCase__ : List[Any]="val", UpperCamelCase__ : int=None, UpperCamelCase__ : str=False, UpperCamelCase__ : int="summarization", UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : List[Any]=1, UpperCamelCase__ : Dict = None, UpperCamelCase__ : Optional[int]="", **UpperCamelCase__ : str, ): __A : Dict = str(UpperCamelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl', rank=UpperCamelCase__ ) __A : Union[str, Any] = Path(UpperCamelCase__ ) __A : Optional[int] = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(UpperCamelCase__ ) __A : Dict = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).cuda() if fpaa: __A : Optional[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCamelCase__, UpperCamelCase__ ) # update config with task specific params __A : Any = generate_kwargs.pop('num_beams', model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __A : int = num_return_sequences __A : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: __A : Union[str, Any] = tokenizer.model_max_length if prefix is None: __A : List[Any] = prefix or getattr(model.config, 'prefix', '' ) or '' __A : Tuple = SeqaSeqDataset( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, max_target_length=1024, type_path=UpperCamelCase__, n_obs=UpperCamelCase__, prefix=UpperCamelCase__, **UpperCamelCase__, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __A : Any = ds.make_sortish_sampler(UpperCamelCase__, distributed=UpperCamelCase__, add_extra_examples=UpperCamelCase__, shuffle=UpperCamelCase__ ) __A : Union[str, Any] = DataLoader(UpperCamelCase__, sampler=UpperCamelCase__, batch_size=UpperCamelCase__, collate_fn=ds.collate_fn ) __A : Tuple = [] for batch in tqdm(UpperCamelCase__ ): __A : Any = model.generate( input_ids=batch['input_ids'].to(model.device ), attention_mask=batch['attention_mask'].to(model.device ), num_return_sequences=UpperCamelCase__, num_beams=UpperCamelCase__, **UpperCamelCase__, ) __A : Dict = tokenizer.batch_decode(UpperCamelCase__, skip_special_tokens=UpperCamelCase__, clean_up_tokenization_spaces=UpperCamelCase__ ) __A : List[str] = batch['ids'] if num_return_sequences > 1: __A : str = chunks(UpperCamelCase__, UpperCamelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCamelCase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(UpperCamelCase__, UpperCamelCase__ ) return results, sampler.num_replicas def _lowercase ( ): __A : Optional[Any] = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir', type=UpperCamelCase__, help='like cnn_dm/test.source' ) parser.add_argument( '--model_name', type=UpperCamelCase__, help='like facebook/bart-large-cnn,t5-base, etc.', default='sshleifer/distilbart-xsum-12-3', ) parser.add_argument('--save_dir', type=UpperCamelCase__, help='where to save', default='tmp_gen' ) parser.add_argument('--max_source_length', type=UpperCamelCase__, default=UpperCamelCase__ ) parser.add_argument( '--type_path', type=UpperCamelCase__, default='test', help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task', type=UpperCamelCase__, default='summarization', help='used for task_specific_params + metrics' ) parser.add_argument('--bs', type=UpperCamelCase__, default=8, required=UpperCamelCase__, help='batch size' ) parser.add_argument( '--local_rank', type=UpperCamelCase__, default=-1, required=UpperCamelCase__, help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__, help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences', type=UpperCamelCase__, default=1, required=UpperCamelCase__, help='How many sequences to return' ) parser.add_argument( '--sync_timeout', type=UpperCamelCase__, default=600, required=UpperCamelCase__, help='How long should master process wait for other processes to finish.', ) parser.add_argument('--src_lang', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__ ) parser.add_argument('--tgt_lang', type=UpperCamelCase__, default=UpperCamelCase__, required=UpperCamelCase__ ) parser.add_argument( '--prefix', type=UpperCamelCase__, required=UpperCamelCase__, default=UpperCamelCase__, help='will be added to the begininng of src examples' ) parser.add_argument('--fp16', action='store_true' ) parser.add_argument('--debug', action='store_true' ) __A : int = time.time() __A ,__A : int = parser.parse_known_args() __A : List[str] = parse_numeric_n_bool_cl_kwargs(UpperCamelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) __A : List[str] = Path(args.save_dir + '_tmp' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) # this handles locking. __A : Optional[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __A : List[str] = {} if args.src_lang is not None: __A : Dict = args.src_lang if args.tgt_lang is not None: __A : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCamelCase__ ) __A ,__A : List[Any] = eval_data_dir( args.data_dir, UpperCamelCase__, args.model_name, type_path=args.type_path, bs=args.bs, fpaa=args.fpaa, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=UpperCamelCase__, **UpperCamelCase__, ) if args.local_rank <= 0: __A : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) __A : Dict = gather_results_from_each_node(UpperCamelCase__, UpperCamelCase__, args.sync_timeout ) __A : Union[str, Any] = combine_partial_results(UpperCamelCase__ ) if args.num_return_sequences > 1: __A : Any = save_dir.joinpath('pseudolabel_results.json' ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(UpperCamelCase__, UpperCamelCase__ ) return __A : int = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(UpperCamelCase__ ) as f: __A : str = [x.rstrip() for x in f.readlines()][: len(UpperCamelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __A : Tuple = 'translation' in args.task __A : Union[str, Any] = calculate_bleu if calc_bleu else calculate_rouge __A : Optional[Any] = 'bleu' if calc_bleu else 'rouge' __A : Dict = score_fn(UpperCamelCase__, UpperCamelCase__ ) __A : Any = len(UpperCamelCase__ ) __A : Tuple = time.time() - start_time __A : Tuple = round(runtime / metrics['n_obs'], 4 ) __A : int = num_replicas # TODO(@stas00): add whatever metadata to metrics __A : List[Any] = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(UpperCamelCase__, UpperCamelCase__, indent=UpperCamelCase__ ) print(UpperCamelCase__ ) write_txt_file(UpperCamelCase__, save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(UpperCamelCase__, save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : List[str] ): __A : List[str] = [] for partial_result in partial_results: records.extend(UpperCamelCase__ ) __A : List[Any] = sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x["id"] ) __A : Dict = [x['pred'] for x in records] return preds def _lowercase ( UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : int ): # WAIT FOR lots of .json files __A : Dict = time.time() logger.info('waiting for all nodes to finish' ) __A : int = None while (time.time() - start_wait) < timeout: __A : List[Any] = list(save_dir.glob('rank_*.json' ) ) if len(UpperCamelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __A : List[Any] = lmap(UpperCamelCase__, UpperCamelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
540
0
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = {"""vocab_file""": """prophetnet.tokenizer"""} UpperCamelCase_ = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } UpperCamelCase_ = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } UpperCamelCase_ = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def _UpperCAmelCase ( _lowerCamelCase : str ) -> Dict: _lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as reader: _lowerCAmelCase : Optional[Any] = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase : List[str] = token.rstrip("""\n""" ) _lowerCAmelCase : Optional[Any] = index return vocab class a_ (__SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="[SEP]" , snake_case_="[SEP]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_ = None , **snake_case_ , ): _lowerCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) _lowerCAmelCase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _lowerCAmelCase : Tuple = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0 ): _lowerCAmelCase : Tuple = f'[unused{i}]' _lowerCAmelCase : Union[str, Any] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _lowerCAmelCase : Dict = 1_2 _lowerCAmelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCamelCase__ ) def __getstate__( self ): _lowerCAmelCase : Union[str, Any] = self.__dict__.copy() _lowerCAmelCase : List[Any] = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Any = {} _lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ): return len(self.sp_model ) + self.fairseq_offset def __UpperCamelCase ( self ): _lowerCAmelCase : Any = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Dict = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Dict = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] _lowerCAmelCase : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
384
'''simple docstring''' from __future__ import annotations import queue class snake_case__ : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = data snake_case : Tuple = None snake_case : int = None def _UpperCamelCase ( ) -> TreeNode: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) snake_case : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() snake_case : queue.Queue = queue.Queue() snake_case : List[Any] = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : List[str] = q.get() snake_case : List[str] = F'Enter the left node of {node_found.data}: ' snake_case : List[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case : Any = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case : List[str] = left_node q.put(SCREAMING_SNAKE_CASE__ ) snake_case : Union[str, Any] = F'Enter the right node of {node_found.data}: ' snake_case : Optional[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case : Any = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case : Union[str, Any] = right_node q.put(SCREAMING_SNAKE_CASE__ ) raise def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : Any = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : str = [] while not q.empty(): snake_case : int = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : list[TreeNode] = [] snake_case : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(SCREAMING_SNAKE_CASE__ ) snake_case : Dict = n.left # end of while means current node doesn't have left child snake_case : List[Any] = stack.pop() # start to traverse its right child snake_case : Any = n.right def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : list[TreeNode] = [] snake_case : Dict = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = n.left snake_case : Union[str, Any] = stack.pop() print(n.data , end=''',''' ) snake_case : int = n.right def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case ,snake_case : Dict = [], [] snake_case : Optional[int] = node stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "" , SCREAMING_SNAKE_CASE__=50 , SCREAMING_SNAKE_CASE__="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char snake_case ,snake_case : Any = divmod(width - len(SCREAMING_SNAKE_CASE__ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) lowercase__ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
638
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__( snake_case__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: snake_case__ =parent snake_case__ =config_class snake_case__ =has_text_modality snake_case__ =kwargs snake_case__ =common_properties def _lowercase ( self ) -> str: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ =( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_UpperCAmelCase ): try: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_UpperCAmelCase ): try: snake_case__ =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self ) -> Optional[Any]: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _UpperCAmelCase ) def _lowercase ( self ) -> Tuple: snake_case__ =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =os.path.join(_UpperCAmelCase , 'config.json' ) config_first.to_json_file(_UpperCAmelCase ) snake_case__ =self.config_class.from_json_file(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_UpperCAmelCase ) snake_case__ =self.config_class.from_pretrained(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> List[str]: snake_case__ =self.config_class(**self.inputs_dict ) snake_case__ ='test' with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) config_first.save_pretrained(_UpperCAmelCase ) snake_case__ =self.config_class.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case__ =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self ) -> Dict: if self.config_class.is_composition: return snake_case__ =self.config_class() self.parent.assertIsNotNone(_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =copy.deepcopy(_UpperCAmelCase ) snake_case__ =self.config_class(**_UpperCAmelCase ) snake_case__ =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(_UpperCAmelCase , _UpperCAmelCase ) != value: wrong_values.append((key, getattr(_UpperCAmelCase , _UpperCAmelCase ), value) ) if len(_UpperCAmelCase ) > 0: snake_case__ ='\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self ) -> int: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
714
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a ( ) -> str: snake_case__ , snake_case__ =9, 14 # noqa: F841 snake_case__ =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case__ =defaultdict(UpperCamelCase_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case__ =mst(UpperCamelCase_ ) snake_case__ =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case__ =tuple(answer[:2] ) snake_case__ =tuple(edge[::-1] ) assert edge in result or reverse in result
581
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "segformer" def __init__(self : List[Any] , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[Any]=[8, 4, 2, 1] , UpperCAmelCase_ : Dict=[32, 64, 160, 256] , UpperCAmelCase_ : List[Any]=[7, 3, 3, 3] , UpperCAmelCase_ : int=[4, 2, 2, 2] , UpperCAmelCase_ : Dict=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=1E-6 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : Dict , ) ->Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =num_channels lowerCamelCase__: Optional[Any] =num_encoder_blocks lowerCamelCase__: List[Any] =depths lowerCamelCase__: str =sr_ratios lowerCamelCase__: Dict =hidden_sizes lowerCamelCase__: Dict =patch_sizes lowerCamelCase__: str =strides lowerCamelCase__: Dict =mlp_ratios lowerCamelCase__: Dict =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =classifier_dropout_prob lowerCamelCase__: List[Any] =initializer_range lowerCamelCase__: Tuple =drop_path_rate lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: int =decoder_hidden_size lowerCamelCase__: Tuple =kwargs.get("reshape_last_stage" , UpperCAmelCase_) lowerCamelCase__: List[str] =semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->float: '''simple docstring''' return 1E-4 @property def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' return 12
59
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A__ : List[str] = pytest.mark.integration A__ : List[Any] = {"""comet"""} A__ : str = importlib.util.find_spec("""fairseq""") is not None A__ : str = {"""code_eval"""} A__ : List[Any] = os.name == """nt""" A__ : Optional[Any] = {"""bertscore""", """frugalscore""", """perplexity"""} A__ : List[str] = importlib.util.find_spec("""transformers""") is not None def _a ( __UpperCamelCase : Dict ): @wraps(__UpperCamelCase ) def wrapper(self : Dict ,__UpperCamelCase : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self ,__UpperCamelCase ) return wrapper def _a ( __UpperCamelCase : Optional[int] ): @wraps(__UpperCamelCase ) def wrapper(self : Any ,__UpperCamelCase : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self ,__UpperCamelCase ) return wrapper def _a ( __UpperCamelCase : Optional[int] ): @wraps(__UpperCamelCase ) def wrapper(self : Optional[int] ,__UpperCamelCase : List[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self ,__UpperCamelCase ) return wrapper def _a ( ): lowerCAmelCase__ : str = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @local class lowercase ( parameterized.TestCase ): __a = {} __a = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : int = '''[...]''' lowerCAmelCase__ : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path ) lowerCAmelCase__ : Tuple = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE__ ) # check parameters lowerCAmelCase__ : Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(SCREAMING_SNAKE_CASE__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCAmelCase__ : Dict = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = '''[...]''' lowerCAmelCase__ : List[str] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCAmelCase__ : str = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE__ ): yield else: yield @contextmanager def lowercase_ ( self ): """simple docstring""" def load_local_metric(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return load_metric(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with patch('''datasets.load_metric''' ) as mock_load_metric: lowerCAmelCase__ : Optional[Any] = load_local_metric yield @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE__ ): """simple docstring""" def wrapper(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ : Any = contextmanager(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Tuple = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _a ( __UpperCamelCase : int ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' ,'''''' ,'''''' ) # handle pytest cli flags class lowercase ( __UpperCamelCase ): def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: lowerCAmelCase__ : List[str] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _a ( __UpperCamelCase : str ): import torch def bert_cos_score_idf(__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,*__UpperCamelCase : str ,**__UpperCamelCase : List[Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: lowerCAmelCase__ : List[str] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _a ( __UpperCamelCase : Tuple ): def load_from_checkpoint(__UpperCamelCase : Any ): class lowercase : def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert len(SCREAMING_SNAKE_CASE__ ) == 2 lowerCAmelCase__ : Dict = [0.19, 0.92] return scores, sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: lowerCAmelCase__ : str = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: lowerCAmelCase__ : Optional[Any] = load_from_checkpoint yield def _a ( ): lowerCAmelCase__ : int = load_metric(os.path.join('''metrics''' ,'''seqeval''' ) ) lowerCAmelCase__ : Dict = '''ERROR''' lowerCAmelCase__ : Optional[int] = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ): metric.compute(predictions=[] ,references=[] ,scheme=__UpperCamelCase )
233
0
"""simple docstring""" UpperCAmelCase = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase (a_ :int) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_)) def lowerCamelCase () -> int: return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(a_)) if __name__ == "__main__": print(solution())
475
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : str = FlaxAutoencoderKL @property def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Dict = 4 lowercase :Optional[int] = 3 lowercase :Any = (3_2, 3_2) lowercase :Optional[int] = jax.random.PRNGKey(0 ) lowercase :Any = jax.random.uniform(snake_case__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[Any] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowercase :Optional[int] = self.dummy_input return init_dict, inputs_dict
475
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ) -> int: # Construct model if openai_config_file == "": __snake_case : str = OpenAIGPTConfig() else: __snake_case : List[Any] = OpenAIGPTConfig.from_json_file(_UpperCAmelCase ) __snake_case : Optional[int] = OpenAIGPTModel(_UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model __snake_case : List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __snake_case : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() ,_UpperCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) A__ : Any = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
286
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : Optional[Any] = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
286
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _a : Optional[int] = logging.get_logger(__name__) _a : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _a : Optional[Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _a : Dict = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _a : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _UpperCAmelCase ( A_ ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = RealmTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) lowerCAmelCase__ :List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ :int = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ :Optional[Any] = do_lower_case lowerCAmelCase__ :List[str] = strip_accents lowerCAmelCase__ :Dict = tokenize_chinese_chars lowerCAmelCase__ :Optional[Any] = normalizer_class(**_lowerCAmelCase ) lowerCAmelCase__ :Any = do_lower_case def snake_case_ ( self , _lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = PaddingStrategy.MAX_LENGTH lowerCAmelCase__ :Optional[int] = text lowerCAmelCase__ :Tuple = kwargs.pop("text_pair" , _lowerCAmelCase ) lowerCAmelCase__ :List[Any] = kwargs.pop("return_tensors" , _lowerCAmelCase ) lowerCAmelCase__ :Tuple = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_lowerCAmelCase ): if batch_text_pair is not None: lowerCAmelCase__ :List[Any] = batch_text_pair[idx] else: lowerCAmelCase__ :Any = None lowerCAmelCase__ :List[str] = super().__call__(_lowerCAmelCase , _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :str = encoded_candidates.get("input_ids" ) lowerCAmelCase__ :Union[str, Any] = encoded_candidates.get("attention_mask" ) lowerCAmelCase__ :int = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowerCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowerCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = {key: item for key, item in output_data.items() if len(_lowerCAmelCase ) != 0} return BatchEncoding(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :List[str] = [self.sep_token_id] lowerCAmelCase__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
708
def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
111
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: List[str] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase_: Optional[int] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) UpperCamelCase_: Tuple = model.state_dict() def to_tf_var_name(UpperCAmelCase__ ): for patt, repl in iter(UpperCAmelCase__ ): UpperCamelCase_: Tuple = name.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return F'''bert/{name}''' def create_tf_var(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: int = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase_: Optional[int] = tf.get_variable(dtype=UpperCAmelCase__ , shape=tensor.shape , name=UpperCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase_: Tuple = to_tf_var_name(UpperCAmelCase__ ) UpperCamelCase_: str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase_: str = torch_tensor.T UpperCamelCase_: Optional[int] = create_tf_var(tensor=UpperCAmelCase__ , name=UpperCAmelCase__ , session=UpperCAmelCase__ ) tf.keras.backend.set_value(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[str] = session.run(UpperCAmelCase__ ) print(F'''Successfully created {tf_name}: {np.allclose(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) UpperCamelCase_: Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def snake_case (UpperCAmelCase__=None ) -> List[Any]: UpperCamelCase_: int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Directory in which to save tensorflow model' ) UpperCamelCase_: Union[str, Any] = parser.parse_args(UpperCAmelCase__ ) UpperCamelCase_: int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
57
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( lowercase__ ): lowercase = ['''image_processor''', '''tokenizer'''] lowercase = '''BlipImageProcessor''' lowercase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self : Any ,SCREAMING_SNAKE_CASE_ : List[str] ,SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = False super().__init__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = self.image_processor def __call__(self : int ,SCREAMING_SNAKE_CASE_ : ImageInput = None ,SCREAMING_SNAKE_CASE_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE_ : bool = True ,SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE_ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE_ : Optional[int] = None ,SCREAMING_SNAKE_CASE_ : int = 0 ,SCREAMING_SNAKE_CASE_ : Optional[int] = None ,SCREAMING_SNAKE_CASE_ : Optional[bool] = None ,SCREAMING_SNAKE_CASE_ : bool = False ,SCREAMING_SNAKE_CASE_ : bool = False ,SCREAMING_SNAKE_CASE_ : bool = False ,SCREAMING_SNAKE_CASE_ : bool = False ,SCREAMING_SNAKE_CASE_ : bool = False ,SCREAMING_SNAKE_CASE_ : bool = True ,SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE_ : str ,) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ,padding=SCREAMING_SNAKE_CASE_ ,truncation=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,stride=SCREAMING_SNAKE_CASE_ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE_ ,return_attention_mask=SCREAMING_SNAKE_CASE_ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE_ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE_ ,return_offsets_mapping=SCREAMING_SNAKE_CASE_ ,return_token_type_ids=SCREAMING_SNAKE_CASE_ ,return_length=SCREAMING_SNAKE_CASE_ ,verbose=SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) return text_encoding # add pixel_values lowerCAmelCase = self.image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ) if text is not None: lowerCAmelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ,padding=SCREAMING_SNAKE_CASE_ ,truncation=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,stride=SCREAMING_SNAKE_CASE_ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE_ ,return_attention_mask=SCREAMING_SNAKE_CASE_ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE_ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE_ ,return_offsets_mapping=SCREAMING_SNAKE_CASE_ ,return_token_type_ids=SCREAMING_SNAKE_CASE_ ,return_length=SCREAMING_SNAKE_CASE_ ,verbose=SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE_ ) return encoding_image_processor def UpperCAmelCase (self : List[str] ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[Any] ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @property def UpperCAmelCase (self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
535
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
210
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->bool: """simple docstring""" a_ = 0 for ch in input_str: a_ = ord(UpperCAmelCase ) a_ = pow(2 , UpperCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
210
1
import requests def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> None: '''simple docstring''' lowerCamelCase__: List[str] = {"""Content-Type""": """application/json"""} lowerCamelCase__: Dict = requests.post(_UpperCamelCase , json={"""text""": message_body} , headers=_UpperCamelCase ) if response.status_code != 200: lowerCamelCase__: str = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
306
_lowercase = 9.8_06_65 def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = g ) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
306
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case=True, snake_case="pt"): __snake_case = {'''add_prefix_space''': True} if isinstance(snake_case, snake_case) and not line.startswith(''' ''') else {} __snake_case = padding_side return tokenizer( [line], max_length=snake_case, padding='''max_length''' if pad_to_max_length else None, truncation=snake_case, return_tensors=snake_case, add_special_tokens=snake_case, **snake_case, ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=None, ): __snake_case = input_ids.ne(snake_case).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : List[Any] , A_ : Optional[int] , A_ : int , A_ : int , A_ : Any , A_ : str="train" , A_ : Tuple=None , A_ : int=None , A_ : Union[str, Any]=None , A_ : Union[str, Any]="" , ) -> Optional[int]: super().__init__() __snake_case = Path(A_ ).joinpath(type_path + '''.source''' ) __snake_case = Path(A_ ).joinpath(type_path + '''.target''' ) __snake_case = self.get_char_lens(self.src_file ) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self : Any ) -> Dict: return len(self.src_lens ) def __getitem__( self : List[str] , A_ : Tuple ) -> Dict[str, torch.Tensor]: __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip('''\n''' ) __snake_case = linecache.getline(str(self.tgt_file ) , A_ ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer __snake_case = encode_line(A_ , A_ , self.max_source_length , '''right''' ) __snake_case = encode_line(A_ , A_ , self.max_target_length , '''right''' ) __snake_case = source_inputs['''input_ids'''].squeeze() __snake_case = target_inputs['''input_ids'''].squeeze() __snake_case = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( A_ : str ) -> Dict: return [len(A_ ) for x in Path(A_ ).open().readlines()] def lowercase ( self : int , A_ : int ) -> Dict[str, torch.Tensor]: __snake_case = torch.stack([x['''input_ids'''] for x in batch] ) __snake_case = torch.stack([x['''attention_mask'''] for x in batch] ) __snake_case = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(A_ , A_ ) __snake_case , __snake_case = trim_batch(A_ , A_ , attention_mask=A_ ) __snake_case = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __lowercase : Optional[Any] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( snake_case): return list(itertools.chain.from_iterable(snake_case)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = get_git_info() save_json(snake_case, os.path.join(snake_case, '''git_log.json''')) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=4, **snake_case): with open(snake_case, '''w''') as f: json.dump(snake_case, snake_case, indent=snake_case, **snake_case) def SCREAMING_SNAKE_CASE ( snake_case): with open(snake_case) as f: return json.load(snake_case) def SCREAMING_SNAKE_CASE ( ): __snake_case = git.Repo(search_parent_directories=snake_case) __snake_case = { '''repo_id''': str(snake_case), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return list(map(snake_case, snake_case)) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): with open(snake_case, '''wb''') as f: return pickle.dump(snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): def remove_articles(snake_case): return re.sub(R'''\b(a|an|the)\b''', ''' ''', snake_case) def white_space_fix(snake_case): return " ".join(text.split()) def remove_punc(snake_case): __snake_case = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case)))) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = normalize_answer(snake_case).split() __snake_case = normalize_answer(snake_case).split() __snake_case = Counter(snake_case) & Counter(snake_case) __snake_case = sum(common.values()) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(snake_case) __snake_case = 1.0 * num_same / len(snake_case) __snake_case = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return normalize_answer(snake_case) == normalize_answer(snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): assert len(snake_case) == len(snake_case) __snake_case = 0 for hypo, pred in zip(snake_case, snake_case): em += exact_match_score(snake_case, snake_case) if len(snake_case) > 0: em /= len(snake_case) return {"em": em} def SCREAMING_SNAKE_CASE ( snake_case): return model_prefix.startswith('''rag''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = '''dropout_rate''' for p in extra_params: if getattr(snake_case, snake_case, snake_case): if not hasattr(snake_case, snake_case) and not hasattr(snake_case, equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(snake_case)) delattr(snake_case, snake_case) continue __snake_case = p if hasattr(snake_case, snake_case) else equivalent_param[p] setattr(snake_case, snake_case, getattr(snake_case, snake_case)) delattr(snake_case, snake_case) return hparams, config
93
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = qiskit.Aer.get_backend('''aer_simulator''') # Create a Quantum Circuit acting on the q register __snake_case = qiskit.QuantumCircuit(snake_case, snake_case) # Map the quantum measurement to the classical bits circuit.measure([0], [0]) # Execute the circuit on the simulator __snake_case = qiskit.execute(snake_case, snake_case, shots=10_00) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
93
1