code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize def A__ ( self ) -> List[Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = ImageGPTImageProcessingTester(self ) @property def A__ ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def _A ( ): lowercase__ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ = Image.open(dataset[4]["""file"""] ) lowercase__ = Image.open(dataset[5]["""file"""] ) lowercase__ = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def A__ ( self ) -> str: '''simple docstring''' lowercase__ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ = prepare_images() # test non-batched lowercase__ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) lowercase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) lowercase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
325
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A ( __UpperCAmelCase ): lowerCamelCase : Union[str, Any] = """ctrl""" lowerCamelCase : Optional[int] = ["""past_key_values"""] lowerCamelCase : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=246_534 , lowerCamelCase__=256 , lowerCamelCase__=1_280 , lowerCamelCase__=8_192 , lowerCamelCase__=48 , lowerCamelCase__=16 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-6 , lowerCamelCase__=0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = dff lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache super().__init__(**lowerCamelCase__ )
325
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __snake_case ): """simple docstring""" def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ) -> Any: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def _UpperCAmelCase ( self ) -> int: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> int: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: A = DistilBertModel(config=a__ ) model.to(a__ ) model.eval() A = model(a__ , a__ ) A = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> int: A = DistilBertForMaskedLM(config=a__ ) model.to(a__ ) model.eval() A = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> Tuple: A = DistilBertForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() A = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: A = self.num_labels A = DistilBertForSequenceClassification(a__ ) model.to(a__ ) model.eval() A = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: A = self.num_labels A = DistilBertForTokenClassification(config=a__ ) model.to(a__ ) model.eval() A = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: A = self.num_choices A = DistilBertForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Optional[int]: A = self.prepare_config_and_inputs() ((A) , (A) , (A) , (A) , (A) , (A)) = config_and_inputs A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True def _UpperCAmelCase ( self ) -> List[Any]: A = DistilBertModelTester(self ) A = ConfigTester(self , config_class=a__ , dim=37 ) def _UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a__ ) def _UpperCAmelCase ( self ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a__ ) def _UpperCAmelCase ( self ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a__ ) def _UpperCAmelCase ( self ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a__ ) def _UpperCAmelCase ( self ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a__ ) def _UpperCAmelCase ( self ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a__ ) @slow def _UpperCAmelCase ( self ) -> Any: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = DistilBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A = True A = model_class(config=a__ ) A = self._prepare_for_class(a__ , a__ ) A = torch.jit.trace( a__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a__ , os.path.join(a__ , """traced_model.pt""" ) ) A = torch.jit.load(os.path.join(a__ , """traced_model.pt""" ) , map_location=a__ ) loaded(inputs_dict["""input_ids"""].to(a__ ) , inputs_dict["""attention_mask"""].to(a__ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> List[str]: A = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A = model(a__ , attention_mask=a__ )[0] A = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a__ ) A = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) )
708
import os def _lowerCAmelCase ( UpperCamelCase__: str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as in_file: A = in_file.read() A = [[int(UpperCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] A = [[0 for cell in row] for row in grid] A = len(grid[0] ) A = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] A = grid[0][0] for i in range(1 , UpperCamelCase__ ): A = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__ ): A = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): A = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
546
0
"""simple docstring""" from collections import defaultdict def __A ( a_ :int) -> int: __a : Dict = 1 __a : Any = True for v in tree[start]: if v not in visited: ret += dfs(a_) if ret % 2 == 0: cuts.append(a_) return ret def __A ( ) -> List[Any]: dfs(1) if __name__ == "__main__": A , A = 10, 9 A = defaultdict(list) A = {} A = [] A = 0 A = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
52
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Dict = len(lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) UpperCamelCase_ : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase_ : Tuple = True for i in range(lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase_ : str = True if a[i].islower(): UpperCamelCase_ : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
417
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case_ ( SCREAMING_SNAKE_CASE__): '''simple docstring''' lowerCamelCase :List[Any] = "xlm-roberta-xl" def __init__( self , __lowercase=2_5_0_8_8_0 , __lowercase=2_5_6_0 , __lowercase=3_6 , __lowercase=3_2 , __lowercase=1_0_2_4_0 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_1_4 , __lowercase=1 , __lowercase=0.0_2 , __lowercase=1e-05 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ) -> str: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowerCamelCase : Union[str, Any] =vocab_size lowerCamelCase : str =hidden_size lowerCamelCase : List[Any] =num_hidden_layers lowerCamelCase : int =num_attention_heads lowerCamelCase : int =hidden_act lowerCamelCase : Dict =intermediate_size lowerCamelCase : Union[str, Any] =hidden_dropout_prob lowerCamelCase : List[str] =attention_probs_dropout_prob lowerCamelCase : str =max_position_embeddings lowerCamelCase : str =type_vocab_size lowerCamelCase : Optional[int] =initializer_range lowerCamelCase : Tuple =layer_norm_eps lowerCamelCase : List[str] =position_embedding_type lowerCamelCase : List[str] =use_cache lowerCamelCase : Optional[int] =classifier_dropout class snake_case_ ( SCREAMING_SNAKE_CASE__): '''simple docstring''' @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase : List[str] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
721
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class snake_case_ ( _A): def __init__( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = None , **__lowercase , ) -> List[Any]: lowerCamelCase : Dict =path_or_paths lowerCamelCase : Optional[int] =split if split or isinstance(__lowercase , __lowercase ) else '''train''' lowerCamelCase : Tuple =features lowerCamelCase : Tuple =cache_dir lowerCamelCase : Optional[Any] =keep_in_memory lowerCamelCase : Any =streaming lowerCamelCase : Dict =num_proc lowerCamelCase : List[Any] =kwargs @abstractmethod def __lowercase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class snake_case_ ( _A): def __init__( self , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = None , **__lowercase , ) -> List[str]: lowerCamelCase : Tuple =features lowerCamelCase : Union[str, Any] =cache_dir lowerCamelCase : Optional[int] =keep_in_memory lowerCamelCase : List[str] =streaming lowerCamelCase : List[str] =num_proc lowerCamelCase : List[str] =kwargs @abstractmethod def __lowercase ( self ) -> Union[Dataset, IterableDataset]: pass
262
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) snake_case : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Optional[int] = self.dummy_uncond_unet snake_case : Dict = PNDMScheduler() snake_case : Dict = PNDMPipeline(unet=_A , scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : Any = pndm(generator=_A , num_inference_steps=20 , output_type='''numpy''' ).images snake_case : Any = torch.manual_seed(0 ) snake_case : Optional[int] = pndm(generator=_A , num_inference_steps=20 , output_type='''numpy''' , return_dict=_A )[0] snake_case : Any = image[0, -3:, -3:, -1] snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : List[str] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): def lowerCAmelCase( self : List[Any] ): """simple docstring""" snake_case : List[Any] = """google/ddpm-cifar10-32""" snake_case : int = UNetaDModel.from_pretrained(_A ) snake_case : Union[str, Any] = PNDMScheduler() snake_case : List[Any] = PNDMPipeline(unet=_A , scheduler=_A ) pndm.to(_A ) pndm.set_progress_bar_config(disable=_A ) snake_case : Dict = torch.manual_seed(0 ) snake_case : Any = pndm(generator=_A , output_type='''numpy''' ).images snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : Optional[Any] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
598
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( __a , unittest.TestCase): __a : Any = CTRLTokenizer __a : Any = False __a : str = False def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : int = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] _UpperCAmelCase : Any = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] _UpperCAmelCase : int = {"""unk_token""": """<unk>"""} _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def __snake_case ( self , **_A ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' _UpperCAmelCase : str = """adapt react readapt apt""" _UpperCAmelCase : List[str] = """adapt react readapt apt""" return input_text, output_text def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase : Optional[Any] = """adapt react readapt apt""" _UpperCAmelCase : int = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() _UpperCAmelCase : Any = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _UpperCAmelCase : Dict = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
238
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : bool = field(default=_lowerCAmelCase , metadata={"help": "Whether to use SortishSampler or not."} ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) a__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) a__ : Optional[Union[str, Path, GenerationConfig]] = field( default=_lowerCAmelCase , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def a ( self : List[Any] ): __UpperCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = v.to_dict() return d
721
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a__ : str = field( default=_lowerCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCAmelCase )} ) a__ : str = field( default=_lowerCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) a__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) a__ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) a__ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) a__ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) a__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = "train" a__ : List[Any] = "dev" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__( self : Optional[Any] , _lowercase : SquadDataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : Optional[int] = None , _lowercase : Union[str, Split] = Split.train , _lowercase : Optional[bool] = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "pt" , ): __UpperCAmelCase = args __UpperCAmelCase = is_language_sensitive __UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: __UpperCAmelCase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __UpperCAmelCase = mode # Load data features from cache or dataset file __UpperCAmelCase = '''v2''' if args.version_2_with_negative else '''v1''' __UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: __UpperCAmelCase = time.time() __UpperCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase = self.old_features['''features'''] __UpperCAmelCase = self.old_features.get('''dataset''' , _lowercase ) __UpperCAmelCase = self.old_features.get('''examples''' , _lowercase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: __UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase , __UpperCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) __UpperCAmelCase = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Any , _lowercase : Optional[int] ): # Convert to Tensors and build dataset __UpperCAmelCase = self.features[i] __UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
397
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case : List[Any] =False try: __snake_case : Optional[Any] =_is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase = None ,__lowerCamelCase = [] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : List[str] = choices lowerCAmelCase__ : Union[str, Any] = prompt if sys.platform == "win32": lowerCAmelCase__ : str = '''*''' else: lowerCAmelCase__ : Union[str, Any] = '''➔ ''' def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = "" ) -> str: """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] ,32 ,__lowerCamelCase ) else: forceWrite(self.choices[index] ,__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(__lowerCamelCase ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = 1 ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__lowerCamelCase ) move_cursor(__lowerCamelCase ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" move_cursor(len(self.choices ) - self.position ,'''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__lowerCamelCase )] for number in range(10 )] ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = int(chr(self.current_selection ) ) lowerCAmelCase__ : List[str] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,__lowerCamelCase ) else: return else: return def lowerCAmelCase__ (self ,__lowerCamelCase = 0 ) -> List[str]: """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt ,'''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' ,'''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' ,'''\n''' ) lowerCAmelCase__ : List[str] = default_choice for i in range(len(self.choices ) ): self.print_choice(__lowerCamelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position ,'''UP''' ) with cursor.hide(): while True: if in_colab: try: lowerCAmelCase__ : int = int(builtins.input() ) except ValueError: lowerCAmelCase__ : List[str] = default_choice else: lowerCAmelCase__ : str = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'''UP''' ) clear_line() self.write_choice(__lowerCamelCase ,'''\n''' ) return choice
647
import requests __snake_case : Optional[int] ='YOUR API KEY' def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str = giphy_api_key): '''simple docstring''' lowerCAmelCase__ : Tuple = '''+'''.join(query.split()) lowerCAmelCase__ : Optional[Any] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowerCAmelCase__ : Any = requests.get(lowerCamelCase_).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
647
1
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
707
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case = None ,__snake_case = None ) -> None: '''simple docstring''' if start is None: lowerCamelCase__ = 0 if end is None: lowerCamelCase__ = len(__snake_case ) - 1 if start >= end: return lowerCamelCase__ = (start + end) // 2 slowsort(__snake_case ,__snake_case ,__snake_case ) slowsort(__snake_case ,mid + 1 ,__snake_case ) if sequence[end] < sequence[mid]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[end] slowsort(__snake_case ,__snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"vocab_file": "spiece.model"} __snake_case = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } __snake_case = {"bert_for_seq_generation": 512} class UpperCAmelCase ( __snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = [] lowercase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[int]="<s>" , __magic_name__ : Any="</s>" , __magic_name__ : List[Any]="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Dict="<::::>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , sep_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return self.sp_model.get_piece_size() def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self : Union[str, Any] , __magic_name__ : Tuple ): """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : int ): """simple docstring""" return self.sp_model.piece_to_id(__magic_name__ ) def lowerCamelCase_ ( self : Dict , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(__magic_name__ ) return token def lowerCamelCase_ ( self : Any , __magic_name__ : Tuple ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__magic_name__ ) + token UpperCamelCase = [] else: current_sub_tokens.append(__magic_name__ ) out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def lowerCamelCase_ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
386
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE_ ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , local_sgd_steps=SCREAMING_SNAKE_CASE_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) def _lowercase ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=SCREAMING_SNAKE_CASE_ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
386
1
'''simple docstring''' def _snake_case ( A_ : int = 6008_5147_5143 ): """simple docstring""" try: a_ : Tuple = int(A_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) a_ : int = 2 a_ : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a_ : Dict = i while n % i == 0: a_ : Any = n // i i += 1 return int(A_ ) if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = PriorTransformer a_ = "hidden_states" @property def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = 4 a_ : List[str] = 8 a_ : List[str] = 7 a_ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : List[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCAmelCase ( self , lowerCAmelCase_=0 ): '''simple docstring''' torch.manual_seed(lowerCAmelCase_ ) a_ : List[Any] = 4 a_ : Union[str, Any] = 8 a_ : Optional[int] = 7 a_ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : Optional[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowerCAmelCase ( self ): '''simple docstring''' return (4, 8) @property def _lowerCAmelCase ( self ): '''simple docstring''' return (4, 8) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } a_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Optional[Any] = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase_ ) a_ : List[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Optional[int] = self.prepare_init_args_and_inputs_for_common() a_ : str = self.model_class(**lowerCAmelCase_ ) a_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : str = [*signature.parameters.keys()] a_ : str = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) a_ : Optional[Any] = model.to(lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() a_ : Tuple = self.get_dummy_seed_input() with torch.no_grad(): a_ : List[str] = model(**lowerCAmelCase_ )[0] a_ : Optional[Any] = output[0, :5].flatten().cpu() print(lowerCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. a_ : List[str] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-2 ) ) @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self , lowerCAmelCase_=1 , lowerCAmelCase_=7_68 , lowerCAmelCase_=77 , lowerCAmelCase_=0 ): '''simple docstring''' torch.manual_seed(lowerCAmelCase_ ) a_ : str = batch_size a_ : Dict = embedding_dim a_ : Tuple = num_embeddings a_ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : List[str] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase_ ) a_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Any = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(lowerCAmelCase_ ) a_ : Optional[int] = self.get_dummy_seed_input(seed=lowerCAmelCase_ ) with torch.no_grad(): a_ : str = model(**lowerCAmelCase_ )[0] assert list(sample.shape ) == [1, 7_68] a_ : int = sample[0, :8].flatten().cpu() print(lowerCAmelCase_ ) a_ : str = torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 )
460
0
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase_ = 2 class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments _a="<s>" , _a="<pad>" , _a="</s>" , _a="<unk>" , _a=None , ): __a , __a , __a , __a = bos, unk, pad, eos __a = [] __a = [] __a = {} __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) __a = self.add_symbol(_a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_a ) __a = len(self.symbols ) def __eq__( self , _a ): return self.indices == other.indices def __getitem__( self , _a ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): return len(self.symbols ) def __contains__( self , _a ): return sym in self.indices @classmethod def __UpperCAmelCase ( cls , _a ): __a = cls() d.add_from_file(_a ) return d def __UpperCAmelCase ( self , _a , _a=1 , _a=False ): if word in self.indices and not overwrite: __a = self.indices[word] __a = self.count[idx] + n return idx else: __a = len(self.symbols ) __a = idx self.symbols.append(_a ) self.count.append(_a ) return idx def __UpperCAmelCase ( self , _a ): return 0 def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): try: with open(_a , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_a ) ) return __a = f.readlines() __a = self._load_meta(_a ) for line in lines[indices_start_line:]: try: __a , __a = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": __a = True __a , __a = line.rsplit(''' ''' , 1 ) else: __a = False __a = int(_a ) __a = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_a ) ) self.add_symbol(_a , n=_a , overwrite=_a ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __a = dict((re.sub(r'''@@$''' , '''''' , lowerCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , lowerCAmelCase__ ), v) for k, v in d.items() ) __a = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] __a = d[k] # restore return da def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Optional[int]: # prep if not os.path.exists(lowerCAmelCase__ ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models __a = os.path.join(lowerCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = chkpt['''cfg''']['''model'''] # dicts __a = os.path.join(lowerCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) __a = Dictionary.load(lowerCAmelCase__ ) __a = rewrite_dict_keys(src_dict.indices ) __a = len(lowerCAmelCase__ ) __a = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) __a = os.path.join(lowerCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) __a = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config __a = os.path.join(lowerCAmelCase__ , '''config.json''' ) __a = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-1_2, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) __a = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model __a = chkpt['''model'''] # remove unneeded keys __a = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) __a = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __a = model_state_dict.pop(lowerCAmelCase__ ) else: __a = model_state_dict.pop(lowerCAmelCase__ ) __a = BioGptConfig.from_pretrained(lowerCAmelCase__ ) __a = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save __a = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A_ ( lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = (1 - _cos) / 2 SCREAMING_SNAKE_CASE = 1 - _cos SCREAMING_SNAKE_CASE = 1 + alpha SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 - alpha SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = (1 + _cos) / 2 SCREAMING_SNAKE_CASE = -1 - _cos SCREAMING_SNAKE_CASE = 1 + alpha SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 - alpha SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = _sin / 2 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = -ba SCREAMING_SNAKE_CASE = 1 + alpha SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 - alpha SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = 1 - alpha SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 + alpha SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) , ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE = 1 + alpha * big_a SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 - alpha * big_a SCREAMING_SNAKE_CASE = 1 + alpha / big_a SCREAMING_SNAKE_CASE = -2 * _cos SCREAMING_SNAKE_CASE = 1 - alpha / big_a SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) , ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE = 2 * sqrt(lowercase_ ) * alpha SCREAMING_SNAKE_CASE = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE = 2 * big_a * mpc SCREAMING_SNAKE_CASE = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE = ppmc + aaa SCREAMING_SNAKE_CASE = -2 * pmpc SCREAMING_SNAKE_CASE = ppmc - aaa SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1 / sqrt(2 ) , ) ->IIRFilter: """simple docstring""" SCREAMING_SNAKE_CASE = tau * frequency / samplerate SCREAMING_SNAKE_CASE = sin(lowercase_ ) SCREAMING_SNAKE_CASE = cos(lowercase_ ) SCREAMING_SNAKE_CASE = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE = 1_0 ** (gain_db / 4_0) SCREAMING_SNAKE_CASE = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE = 2 * sqrt(lowercase_ ) * alpha SCREAMING_SNAKE_CASE = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE = -2 * big_a * pmpc SCREAMING_SNAKE_CASE = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE = pmc + aaa SCREAMING_SNAKE_CASE = 2 * mpc SCREAMING_SNAKE_CASE = pmc - aaa SCREAMING_SNAKE_CASE = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
700
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_( lowercase__ ): """simple docstring""" __snake_case : int ='''van''' def __init__( self : Tuple , lowerCAmelCase__ : Optional[int]=2_2_4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Tuple=[7, 3, 3, 3] , lowerCAmelCase__ : Any=[4, 2, 2, 2] , lowerCAmelCase__ : Optional[int]=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCAmelCase__ : Optional[Any]=[3, 3, 1_2, 3] , lowerCAmelCase__ : str=[8, 8, 4, 4] , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Any=1e-6 , lowerCAmelCase__ : Optional[Any]=1e-2 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Any=0.0 , **lowerCAmelCase__ : Tuple , ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
259
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCamelCase : Union[str, Any] = get_tests_dir('''fixtures''') class lowercase ( unittest.TestCase ): def __snake_case( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 500 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_UpperCamelCase ) as mock_head: SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class lowercase ( unittest.TestCase ): @classmethod def __snake_case( cls : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __snake_case( cls : Dict ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="test-feature-extractor" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(F"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE = CustomFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( F"{USER}/test-dynamic-feature-extractor" , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
403
0
'''simple docstring''' import requests snake_case_ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _lowerCamelCase( UpperCamelCase__ : str ) -> None: # fetching a list of articles in json format A : Any = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
537
'''simple docstring''' import requests snake_case_ = """YOUR API KEY""" def _lowerCamelCase( UpperCamelCase__ : str , UpperCamelCase__ : str = giphy_api_key ) -> list: A : Optional[Any] = '''+'''.join(query.split() ) A : List[Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' A : int = requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
537
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''beit''' def __init__( self : Optional[Any] , UpperCAmelCase : Dict=8192 , UpperCAmelCase : int=768 , UpperCAmelCase : int=12 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : int=3072 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : str=1e-12 , UpperCAmelCase : Dict=224 , UpperCAmelCase : Dict=16 , UpperCAmelCase : int=3 , UpperCAmelCase : int=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=[3, 5, 7, 11] , UpperCAmelCase : List[str]=[1, 2, 3, 6] , UpperCAmelCase : Dict=True , UpperCAmelCase : int=0.4 , UpperCAmelCase : int=256 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : str=False , UpperCAmelCase : int=255 , **UpperCAmelCase : Dict , ) -> int: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Any =vocab_size lowercase : int =hidden_size lowercase : int =num_hidden_layers lowercase : List[Any] =num_attention_heads lowercase : Optional[int] =intermediate_size lowercase : Any =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : List[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =initializer_range lowercase : List[str] =layer_norm_eps lowercase : str =image_size lowercase : List[str] =patch_size lowercase : List[str] =num_channels lowercase : int =use_mask_token lowercase : Dict =use_absolute_position_embeddings lowercase : Optional[int] =use_relative_position_bias lowercase : List[str] =use_shared_relative_position_bias lowercase : List[str] =layer_scale_init_value lowercase : Any =drop_path_rate lowercase : Tuple =use_mean_pooling # decode head attributes (semantic segmentation) lowercase : Optional[Any] =out_indices lowercase : Dict =pool_scales # auxiliary head attributes (semantic segmentation) lowercase : List[Any] =use_auxiliary_head lowercase : str =auxiliary_loss_weight lowercase : Optional[int] =auxiliary_channels lowercase : Union[str, Any] =auxiliary_num_convs lowercase : Tuple =auxiliary_concat_input lowercase : Dict =semantic_loss_ignore_index class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = version.parse('''1.11''' ) @property def A__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A__ ( self : Dict ) -> float: '''simple docstring''' return 1e-4
94
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__A ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''shortest_edge''': 224} lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : List[str] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : List[Any] =get_size_dict(UpperCAmelCase , param_name='''crop_size''' ) lowercase : Tuple =do_resize lowercase : Any =size lowercase : Optional[Any] =do_center_crop lowercase : str =crop_size lowercase : Any =resample lowercase : List[Any] =do_rescale lowercase : Dict =rescale_factor lowercase : List[str] =do_normalize lowercase : Optional[int] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : List[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' lowercase : str =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: lowercase : int =get_resize_output_image_size(UpperCAmelCase , size['''shortest_edge'''] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: lowercase : str =(size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : List[str] =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ) -> List[Any]: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Dict =to_numpy_array(UpperCAmelCase ) if do_resize: lowercase : Union[str, Any] =self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: lowercase : Optional[Any] =self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: lowercase : Dict =self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: lowercase : int =self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) lowercase : Optional[Any] =to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def A__ ( self : List[str] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Any =do_resize if do_resize is not None else self.do_resize lowercase : Union[str, Any] =resample if resample is not None else self.resample lowercase : Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : str =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[str] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Optional[Any] =size if size is not None else self.size lowercase : Any =get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase : Union[str, Any] =crop_size if crop_size is not None else self.crop_size lowercase : Optional[int] =get_size_dict(UpperCAmelCase , param_name='''crop_size''' ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : List[str] =make_batched(UpperCAmelCase ) lowercase : Union[str, Any] =[ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] lowercase : Dict ={'''pixel_values''': videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
94
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCAmelCase_ : Tuple = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCAmelCase_ : Dict = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCAmelCase_ : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCAmelCase_ : Any = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCAmelCase_ : Dict = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCAmelCase_ : List[Any] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCAmelCase_ : Any = tf.keras.preprocessing.image.img_to_array(test_image) lowerCAmelCase_ : Tuple = np.expand_dims(test_image, axis=0) lowerCAmelCase_ : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCAmelCase_ : List[Any] = 'Normal' if result[0][0] == 1: lowerCAmelCase_ : str = 'Abnormality detected'
464
'''simple docstring''' import string from math import logaa def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : Optional[Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) SCREAMING_SNAKE_CASE : Tuple = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : int = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' SCREAMING_SNAKE_CASE : Any = corpus_without_punctuation.split('''\n''' ) SCREAMING_SNAKE_CASE : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def UpperCAmelCase ( A : int , A : int , A : str=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase ( A : int , A : int ): return round(tf * idf , 3 )
464
1
'''simple docstring''' import os def _UpperCamelCase ()-> str: '''simple docstring''' __snake_case = os.path.join(os.path.dirname(_lowerCamelCase ) , '''num.txt''' ) with open(_lowerCamelCase ) as file_hand: return str(sum(int(_lowerCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : jnp.ndarray @flax_register_to_config class a ( nn.Module ,__lowercase ,__lowercase ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE__ : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE__ : Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE__ : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE__ : int = 1280 SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : bool = False def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE: Tuple = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = jax.random.split(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.block_out_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE: Any = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE: str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE: int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) __SCREAMING_SNAKE_CASE: Optional[int] = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE: List[str] = output_channel __SCREAMING_SNAKE_CASE: str = block_out_channels[i] __SCREAMING_SNAKE_CASE: Any = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE: str = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: Tuple = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = down_blocks # mid __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __SCREAMING_SNAKE_CASE: Optional[int] = [] __SCREAMING_SNAKE_CASE: Tuple = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __SCREAMING_SNAKE_CASE: int = output_channel __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[min(i + 1 , len(_lowerCAmelCase ) - 1 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = i == len(_lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __SCREAMING_SNAKE_CASE: Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: int = FlaxUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = output_channel __SCREAMING_SNAKE_CASE: Union[str, Any] = up_blocks # out __SCREAMING_SNAKE_CASE: Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = True , _lowerCAmelCase = False , ): """simple docstring""" if not isinstance(_lowerCAmelCase , jnp.ndarray ): __SCREAMING_SNAKE_CASE: Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE: Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Union[str, Any] = jnp.expand_dims(_lowerCAmelCase , 0 ) __SCREAMING_SNAKE_CASE: Any = self.time_proj(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.time_embedding(_lowerCAmelCase ) # 2. pre-process __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE: List[str] = self.conv_in(_lowerCAmelCase ) # 3. down __SCREAMING_SNAKE_CASE: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __SCREAMING_SNAKE_CASE: Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCAmelCase , _lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE: Union[str, Any] = new_down_block_res_samples # 4. mid __SCREAMING_SNAKE_CASE: Dict = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = up_block( _lowerCAmelCase , temb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train , ) else: __SCREAMING_SNAKE_CASE: List[str] = up_block(_lowerCAmelCase , temb=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train ) # 6. post-process __SCREAMING_SNAKE_CASE: Optional[Any] = self.conv_norm_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.conv_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCAmelCase )
202
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCAmelCase__ : Tuple = 1024 lowerCAmelCase__ : Optional[Any] = 4096 lowerCAmelCase__ : Tuple = 24 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Tuple = [5, 11, 17, 23] lowerCAmelCase__ : Dict = [256, 512, 1024, 1024] lowerCAmelCase__ : Any = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase__ : Any = 768 lowerCAmelCase__ : List[Any] = [1, 1, 1, 0.5] lowerCAmelCase__ : int = [256, 512, 768, 768] lowerCAmelCase__ : Dict = 150 lowerCAmelCase__ : Union[str, Any] = 16 lowerCAmelCase__ : str = (1, 384, 384) lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : List[str] = """project""" if "ade" in checkpoint_url: lowerCAmelCase__ : str = True lowerCAmelCase__ : Any = 768 lowerCAmelCase__ : Any = [1, 1, 1, 0.5] lowerCAmelCase__ : Any = 150 lowerCAmelCase__ : Dict = 16 lowerCAmelCase__ : Any = """huggingface/label-files""" lowerCAmelCase__ : Tuple = """ade20k-id2label.json""" lowerCAmelCase__ : Tuple = json.load(open(cached_download(hf_hub_url(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase__ : int = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : List[str] = idalabel lowerCAmelCase__ : int = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase__ : str = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCAmelCase__ : List[str] = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCAmelCase__ : str = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCAmelCase__ : str = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCAmelCase__ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCAmelCase__ : List[str] = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCAmelCase__ : Tuple = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCAmelCase__ : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCAmelCase__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCAmelCase__ : Optional[int] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCAmelCase__ : int = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCAmelCase__ : int = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCAmelCase__ : int = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCAmelCase__ : Optional[int] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase__ : Optional[Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowerCAmelCase__ : str = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCAmelCase__ : Dict = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCAmelCase__ : List[str] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCAmelCase__ : Optional[int] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase__ : str = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase__ : int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase__ : Any = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase__ : Optional[int] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase__ : Tuple = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase__ : Dict = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase__ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase__ : Tuple = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase__ : List[str] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase__ : int = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCAmelCase__ : str = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCAmelCase__ : Optional[Any] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCAmelCase__ : List[str] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCAmelCase__ : str = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCAmelCase__ : str = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCAmelCase__ : str = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCAmelCase__ : Dict = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase__ : Dict = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCAmelCase__ : Any = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCAmelCase__ : int = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase__ : int = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCAmelCase__ : int = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase__ : str = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Optional[Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Any = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ : Any = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[str] = get_dpt_config(UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase__ : Dict = torch.load(UpperCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ : List[str] = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # load HuggingFace model lowerCAmelCase__ : List[Any] = DPTForSemanticSegmentation(UpperCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # Check outputs on an image lowerCAmelCase__ : Union[str, Any] = 480 if """ade""" in checkpoint_url else 384 lowerCAmelCase__ : Tuple = DPTImageProcessor(size=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(UpperCamelCase , return_tensors="""pt""" ) # forward pass lowerCAmelCase__ : Any = model(**UpperCamelCase ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase ).predicted_depth if show_prediction: lowerCAmelCase__ : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=UpperCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) _lowerCAmelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
160
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCAmelCase = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" __A = 3 __A = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
55
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCAmelCase =50_003 UpperCAmelCase =50_002 @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = PLBartTokenizer _lowerCamelCase = None _lowerCamelCase = False def UpperCamelCase__ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing A = PLBartTokenizer(lowerCamelCase_ ,language_codes="""base""" ,keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> int: A = PLBartTokenizer(lowerCamelCase_ ,language_codes="""base""" ,keep_accents=lowerCamelCase_ ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) A = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] ,) A = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) A = tokenizer.vocab_size A = [tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) for x in range(end - 4 ,lowerCamelCase_ )] self.assertListEqual(lowerCamelCase_ ,["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ ) ,lowerCamelCase_ ,) def UpperCamelCase__ ( self ) -> Optional[Any]: A = PLBartTokenizer(lowerCamelCase_ ,language_codes="""multi""" ,keep_accents=lowerCamelCase_ ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) A = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] ,) A = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) A = tokenizer.vocab_size A = [tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) for x in range(end - 7 ,lowerCamelCase_ )] self.assertListEqual( lowerCamelCase_ ,["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ ) ,lowerCamelCase_ ,) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase = '''uclanlp/plbart-python-en_XX''' _lowerCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _lowerCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _lowerCamelCase = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def UpperCamelCase__ ( cls ) -> List[str]: A = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="""base""" ,src_lang="""python""" ,tgt_lang="""en_XX""" ) A = 1 return cls def UpperCamelCase__ ( self ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] ,5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] ,5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] ,5_0_0_0_3 ) def UpperCamelCase__ ( self ) -> Optional[int]: A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: self.assertIn(lowerCamelCase_ ,self.tokenizer.all_special_ids ) A = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] A = self.tokenizer.decode(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) A = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 2_0] self.assertIsInstance(src_text[0] ,lowerCamelCase_ ) A = 1_0 A = self.tokenizer(lowerCamelCase_ ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) ,[5_0_0_0_4, 5_0_0_0_1] ) def UpperCamelCase__ ( self ) -> Optional[int]: A = tempfile.mkdtemp() A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) A = PLBartTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase_ ) @require_torch def UpperCamelCase__ ( self ) -> Optional[int]: A = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase_ ,return_tensors="""pt""" ) A = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,lowerCamelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def UpperCamelCase__ ( self ) -> str: A = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) A = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertEqual((2, 2_6) ,batch.input_ids.shape ) self.assertEqual((2, 2_6) ,batch.attention_mask.shape ) A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase_ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCamelCase__ ( self ) -> Tuple: A = self.tokenizer(self.src_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=3 ,return_tensors="""pt""" ) A = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=1_0 ,return_tensors="""pt""" ) A = targets["""input_ids"""] A = shift_tokens_right(lowerCamelCase_ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,1_0 ) @require_torch def UpperCamelCase__ ( self ) -> List[Any]: A = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) ,{ # A, test, EOS, en_XX """input_ids""": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_0_0_0_1, } ,)
617
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _lowerCAmelCase( __A ): UpperCAmelCase = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [256, 512, 1024, 1024] UpperCAmelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase = 768 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = [256, 512, 768, 768] UpperCAmelCase = 150 UpperCAmelCase = 16 UpperCAmelCase = (1, 384, 384) UpperCAmelCase = False UpperCAmelCase = "project" if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 768 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = 150 UpperCAmelCase = 16 UpperCAmelCase = "huggingface/label-files" UpperCAmelCase = "ade20k-id2label.json" UpperCAmelCase = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="dataset" ) ) , "r" ) ) UpperCAmelCase = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 150, 480, 480] return config, expected_shape def _lowerCAmelCase( __A ): UpperCAmelCase = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__A , __A ) def _lowerCAmelCase( __A ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: UpperCAmelCase = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: UpperCAmelCase = name.replace("patch_embed" , "" ) if "pos_embed" in name: UpperCAmelCase = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace("proj" , "projection" ) if "blocks" in name: UpperCAmelCase = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: UpperCAmelCase = name.replace("scratch" , "neck" ) if "layer1_rn" in name: UpperCAmelCase = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: UpperCAmelCase = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: UpperCAmelCase = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: UpperCAmelCase = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: UpperCAmelCase = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: UpperCAmelCase = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: UpperCAmelCase = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: UpperCAmelCase = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: UpperCAmelCase = name.replace("conv1" , "convolution1" ) if "conv2" in name: UpperCAmelCase = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: UpperCAmelCase = name.replace("pretrained" , "dpt" ) if "bn" in name: UpperCAmelCase = name.replace("bn" , "batch_norm" ) if "head" in name: UpperCAmelCase = name.replace("head" , "head.head" ) if "encoder.norm" in name: UpperCAmelCase = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: UpperCAmelCase = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: UpperCAmelCase = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: UpperCAmelCase = name.replace(".." , "." ) if "stem.conv" in name: UpperCAmelCase = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: UpperCAmelCase = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: UpperCAmelCase = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: UpperCAmelCase = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: UpperCAmelCase = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def _lowerCAmelCase( __A , __A ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase( ): UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase , UpperCAmelCase = get_dpt_config(__A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase = torch.load(__A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__A ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(__A ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(__A , __A ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(__A ) if "ade" in checkpoint_url else DPTForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # Check outputs on an image UpperCAmelCase = 480 if "ade" in checkpoint_url else 384 UpperCAmelCase = DPTImageProcessor(size=__A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(__A , return_tensors="pt" ) # forward pass UpperCAmelCase = model(**__A ).logits if "ade" in checkpoint_url else model(**__A ).predicted_depth if show_prediction: UpperCAmelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
700
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case : int = logging.get_logger(__name__) class __lowercase ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , )-> None: super().__init__(**A_ ) _SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384} _SCREAMING_SNAKE_CASE = get_size_dict(A_ , default_to_square=A_ ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE = do_convert_rgb def __magic_name__ ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , )-> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A_ , default_to_square=A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _SCREAMING_SNAKE_CASE = (size['height'], size['width']) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self , A_ , A_ , A_ = None , **A_ , )-> List[str]: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self , A_ , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , )-> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A_ , default_to_square=A_ ) _SCREAMING_SNAKE_CASE = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(A_ ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(A_ , A_ ) for image in images] _SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=A_ ) return encoded_outputs
605
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def __magic_name__ ( self )-> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __magic_name__ ( self )-> List[str]: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser', }, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-0_5, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self )-> Tuple: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-0_5, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=6 ) , [ [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def __magic_name__ ( self )-> int: _SCREAMING_SNAKE_CASE = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() _SCREAMING_SNAKE_CASE = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(A_ , A_ ) @slow @require_torch def __magic_name__ ( self )-> Optional[int]: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(A_ ) @slow @require_tf def __magic_name__ ( self )-> str: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(A_ ) def __magic_name__ ( self , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(A_ ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'}, ] , ) _SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(A_ ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 12790, 'token_str': ' Lyon', }, ] , ) _SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(A_ ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None self.run_pipeline_test(A_ , [] ) @require_tf def __magic_name__ ( self )-> Any: _SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None self.run_pipeline_test(A_ , [] ) def __magic_name__ ( self , A_ , A_ , A_ )-> Optional[int]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __magic_name__ ( self , A_ , A_ )-> Optional[int]: _SCREAMING_SNAKE_CASE = fill_masker.tokenizer _SCREAMING_SNAKE_CASE = fill_masker.model _SCREAMING_SNAKE_CASE = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( A_ , [ [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], ] , ) with self.assertRaises(A_ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(A_ ): fill_masker('This is' ) self.run_test_top_k(A_ , A_ ) self.run_test_targets(A_ , A_ ) self.run_test_top_k_targets(A_ , A_ ) self.fill_mask_with_duplicate_targets_and_top_k(A_ , A_ ) self.fill_mask_with_multiple_masks(A_ , A_ ) def __magic_name__ ( self , A_ , A_ )-> List[Any]: _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:2] # Pipeline argument _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , targets=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , A_ ) _SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) ) # Call argument _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , A_ ) _SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) ) # Score equivalence _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) _SCREAMING_SNAKE_CASE = [top_mask['token_str'] for top_mask in outputs] _SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ) == set(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ ) _SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) # Raises with invalid with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''] ) with self.assertRaises(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='' ) def __magic_name__ ( self , A_ , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , top_k=2 ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( A_ , [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ] , ) self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def __magic_name__ ( self , A_ , A_ )-> Dict: _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) # top_k=2, ntargets=3 _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3] _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=A_ ) # If we use the most probably targets, and filter differently, we should still # have the same results _SCREAMING_SNAKE_CASE = [el['token_str'] for el in sorted(A_ , key=lambda A_ : x["score"] , reverse=A_ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(A_ ).issubset(A_ ): _SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=A_ ) # They should yield exactly the same result self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) ) def __magic_name__ ( self , A_ , A_ )-> Dict: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = tokenizer.get_vocab() # String duplicates + id duplicates _SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3] _SCREAMING_SNAKE_CASE = [targets[0], targets[1], targets[0], targets[2], targets[1]] _SCREAMING_SNAKE_CASE = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=A_ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(A_ ) , 3 ) def __magic_name__ ( self , A_ , A_ )-> int: _SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ ) _SCREAMING_SNAKE_CASE = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( A_ , [ [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], [ {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, {'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )}, ], ] , )
605
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( _a ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple=13 ,SCREAMING_SNAKE_CASE__ : Optional[int]=7 ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Any=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : int=2 ,SCREAMING_SNAKE_CASE__ : Any=99 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=32 ,SCREAMING_SNAKE_CASE__ : List[str]=5 ,SCREAMING_SNAKE_CASE__ : Tuple=4 ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : Optional[int]=12 ,SCREAMING_SNAKE_CASE__ : List[Any]=2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,SCREAMING_SNAKE_CASE__ : Dict="last" ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,): SCREAMING_SNAKE_CASE:Union[str, Any] = parent SCREAMING_SNAKE_CASE:Dict = batch_size SCREAMING_SNAKE_CASE:int = seq_length SCREAMING_SNAKE_CASE:Any = is_training SCREAMING_SNAKE_CASE:Union[str, Any] = use_input_lengths SCREAMING_SNAKE_CASE:List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE:Dict = use_labels SCREAMING_SNAKE_CASE:Dict = gelu_activation SCREAMING_SNAKE_CASE:Dict = sinusoidal_embeddings SCREAMING_SNAKE_CASE:List[str] = causal SCREAMING_SNAKE_CASE:List[Any] = asm SCREAMING_SNAKE_CASE:List[str] = n_langs SCREAMING_SNAKE_CASE:Optional[Any] = vocab_size SCREAMING_SNAKE_CASE:Optional[int] = n_special SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:Dict = num_hidden_layers SCREAMING_SNAKE_CASE:Dict = num_attention_heads SCREAMING_SNAKE_CASE:Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Tuple = max_position_embeddings SCREAMING_SNAKE_CASE:List[str] = type_vocab_size SCREAMING_SNAKE_CASE:int = type_sequence_label_size SCREAMING_SNAKE_CASE:Any = initializer_range SCREAMING_SNAKE_CASE:str = num_labels SCREAMING_SNAKE_CASE:Dict = num_choices SCREAMING_SNAKE_CASE:Any = summary_type SCREAMING_SNAKE_CASE:int = use_proj SCREAMING_SNAKE_CASE:int = scope def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE:str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE:Tuple = None if self.use_input_lengths: SCREAMING_SNAKE_CASE:List[Any] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE:Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE:Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) SCREAMING_SNAKE_CASE:Dict = None SCREAMING_SNAKE_CASE:List[Any] = None SCREAMING_SNAKE_CASE:List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE:Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE:int = ids_tensor([self.batch_size] ,2 ).float() SCREAMING_SNAKE_CASE:Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE:List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : Optional[int] ): return FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Union[str, Any] = FlaubertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,lengths=SCREAMING_SNAKE_CASE__ ,langs=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = model(SCREAMING_SNAKE_CASE__ ,langs=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : str ,): SCREAMING_SNAKE_CASE:Optional[int] = FlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,): SCREAMING_SNAKE_CASE:Optional[int] = FlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = model(SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:str = FlaubertForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:List[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = model( SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ,cls_index=SCREAMING_SNAKE_CASE__ ,is_impossible=SCREAMING_SNAKE_CASE__ ,p_mask=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:str = model( SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ,cls_index=SCREAMING_SNAKE_CASE__ ,is_impossible=SCREAMING_SNAKE_CASE__ ,) ((SCREAMING_SNAKE_CASE) , ):List[Any] = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ) ((SCREAMING_SNAKE_CASE) , ):List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Dict ,): SCREAMING_SNAKE_CASE:List[Any] = FlaubertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Tuple = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,): SCREAMING_SNAKE_CASE:List[str] = self.num_labels SCREAMING_SNAKE_CASE:Optional[int] = FlaubertForTokenClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,): SCREAMING_SNAKE_CASE:List[str] = self.num_choices SCREAMING_SNAKE_CASE:Any = FlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE:str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE:int = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ):Tuple = config_and_inputs SCREAMING_SNAKE_CASE:Tuple = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _snake_case ( _a , _a , unittest.TestCase ): _A : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int=False ): SCREAMING_SNAKE_CASE:Any = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE:Dict = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:int = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE:Dict = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,emb_dim=37 ) def __UpperCamelCase ( self : Any ): self.config_tester.run_common_tests() def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ): SCREAMING_SNAKE_CASE:str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*SCREAMING_SNAKE_CASE__ ) @slow def __UpperCamelCase ( self : List[str] ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:Tuple = FlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu def __UpperCamelCase ( self : str ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE:Union[str, Any] = True SCREAMING_SNAKE_CASE:Optional[int] = model_class(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = torch.jit.trace( SCREAMING_SNAKE_CASE__ ,(inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,"traced_model.pt" ) ) SCREAMING_SNAKE_CASE:Optional[Any] = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE__ ,"traced_model.pt" ) ,map_location=SCREAMING_SNAKE_CASE__ ) loaded(inputs_dict["input_ids"].to(SCREAMING_SNAKE_CASE__ ) ,inputs_dict["attention_mask"].to(SCREAMING_SNAKE_CASE__ ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Optional[int] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE:Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) )
465
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def A_ ( snake_case=32 , snake_case=10 , snake_case=100 , snake_case=1026 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=1026 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE:Tuple = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model SCREAMING_SNAKE_CASE:Optional[Any] = load_gpta("gpt2" ).to(snake_case ) print("computing perplexity on objective set" ) SCREAMING_SNAKE_CASE:str = compute_perplexity(snake_case , snake_case , snake_case ).item() print("perplexity on objective set:" , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def A_ ( snake_case , snake_case=15 , snake_case=128 , snake_case=100 , snake_case="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE:int = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE:Optional[Any] = SecondaryLearner(snake_case ) # Train secondary learner SCREAMING_SNAKE_CASE:int = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=100 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def A_ ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=1000 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ): SCREAMING_SNAKE_CASE:str = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE:Dict = RandomSampler(snake_case ) SCREAMING_SNAKE_CASE:str = DataLoader(snake_case , sampler=snake_case ) SCREAMING_SNAKE_CASE:str = max_steps // (len(snake_case )) + 1 SCREAMING_SNAKE_CASE:Tuple = 0 SCREAMING_SNAKE_CASE:List[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() SCREAMING_SNAKE_CASE:List[Any] = [] SCREAMING_SNAKE_CASE:Tuple = 0 SCREAMING_SNAKE_CASE:Tuple = [] SCREAMING_SNAKE_CASE:Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE:int = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE:str = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE:List[str] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE:Any = model(snake_case , labels=snake_case ) SCREAMING_SNAKE_CASE:List[Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE:List[str] = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE:int = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE:Optional[int] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE:Union[str, Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE:int = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE:Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print("Test perplexity, step" , snake_case , ":" , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def A_ ( ): SCREAMING_SNAKE_CASE:Optional[int] = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=snake_case , default=snake_case , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=snake_case , default=snake_case , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=snake_case , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=snake_case , default=snake_case , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=snake_case , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=snake_case , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=snake_case , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=snake_case , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=snake_case , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=snake_case , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=snake_case , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=snake_case , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=snake_case , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=snake_case , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=snake_case , type=snake_case , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=snake_case , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=snake_case , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=snake_case , type=snake_case , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=snake_case , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE:Union[str, Any] = joblib.load("data/IGF_values.jbl" ) # Train secondary learner SCREAMING_SNAKE_CASE:Optional[int] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE:Dict = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
465
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __A ( UpperCamelCase__ ): UpperCamelCase = """levit""" def __init__( self :Optional[int] , __snake_case :str=2_24 , __snake_case :Any=3 , __snake_case :List[str]=3 , __snake_case :List[Any]=2 , __snake_case :Optional[Any]=1 , __snake_case :Optional[int]=16 , __snake_case :List[str]=[1_28, 2_56, 3_84] , __snake_case :Dict=[4, 8, 12] , __snake_case :Optional[Any]=[4, 4, 4] , __snake_case :Union[str, Any]=[16, 16, 16] , __snake_case :Any=0 , __snake_case :Dict=[2, 2, 2] , __snake_case :List[Any]=[2, 2, 2] , __snake_case :List[Any]=0.02 , **__snake_case :Optional[int] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : List[Any] =image_size __magic_name__ : Optional[int] =num_channels __magic_name__ : Any =kernel_size __magic_name__ : Optional[Any] =stride __magic_name__ : Union[str, Any] =padding __magic_name__ : Tuple =hidden_sizes __magic_name__ : str =num_attention_heads __magic_name__ : Dict =depths __magic_name__ : Union[str, Any] =key_dim __magic_name__ : int =drop_path_rate __magic_name__ : List[Any] =patch_size __magic_name__ : Dict =attention_ratio __magic_name__ : List[Any] =mlp_ratio __magic_name__ : Tuple =initializer_range __magic_name__ : Any =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :Optional[int] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :List[str] ): '''simple docstring''' return 1E-4
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
from PIL import Image def lowerCamelCase__ ( _a , _a): def brightness(_a) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)") return img.point(_a) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a_ = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
707
class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size @staticmethod def __UpperCamelCase ( a : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def __UpperCamelCase ( a : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def __UpperCamelCase ( self : Any , a : int , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = value while index < self.size: SCREAMING_SNAKE_CASE : Dict = self.get_prev(a ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE : Optional[int] = value else: SCREAMING_SNAKE_CASE : Tuple = max(a , a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_next(a ) def __UpperCamelCase ( self : Optional[int] , a : int , a : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE : Optional[int] = 0 while left <= right: SCREAMING_SNAKE_CASE : List[Any] = self.get_prev(a ) if left <= current_left: SCREAMING_SNAKE_CASE : List[Any] = max(a , self.tree[right] ) SCREAMING_SNAKE_CASE : str = current_left else: SCREAMING_SNAKE_CASE : List[str] = max(a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
193
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A__ ( UpperCamelCase ): """simple docstring""" def __get__( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple=None ) -> str: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _UpperCAmelCase : List[Any] = "__cached_" + self.fget.__name__ _UpperCAmelCase : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if cached is None: _UpperCAmelCase : int = self.fget(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return cached def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Optional[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def __UpperCAmelCase ( a_: Tuple ): if is_torch_fx_proxy(a_ ): return True if is_torch_available(): import torch if isinstance(a_, torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(a_, tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(a_, (jnp.ndarray, Tracer) ): return True return isinstance(a_, np.ndarray ) def __UpperCAmelCase ( a_: Any ): return isinstance(a_, np.ndarray ) def __UpperCAmelCase ( a_: Dict ): return _is_numpy(a_ ) def __UpperCAmelCase ( a_: List[Any] ): import torch return isinstance(a_, torch.Tensor ) def __UpperCAmelCase ( a_: Optional[Any] ): return False if not is_torch_available() else _is_torch(a_ ) def __UpperCAmelCase ( a_: Optional[int] ): import torch return isinstance(a_, torch.device ) def __UpperCAmelCase ( a_: Union[str, Any] ): return False if not is_torch_available() else _is_torch_device(a_ ) def __UpperCAmelCase ( a_: Tuple ): import torch if isinstance(a_, a_ ): if hasattr(a_, a_ ): _UpperCAmelCase : List[Any] = getattr(a_, a_ ) else: return False return isinstance(a_, torch.dtype ) def __UpperCAmelCase ( a_: Tuple ): return False if not is_torch_available() else _is_torch_dtype(a_ ) def __UpperCAmelCase ( a_: List[str] ): import tensorflow as tf return isinstance(a_, tf.Tensor ) def __UpperCAmelCase ( a_: Tuple ): return False if not is_tf_available() else _is_tensorflow(a_ ) def __UpperCAmelCase ( a_: Optional[Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(a_, "is_symbolic_tensor" ): return tf.is_symbolic_tensor(a_ ) return type(a_ ) == tf.Tensor def __UpperCAmelCase ( a_: Dict ): return False if not is_tf_available() else _is_tf_symbolic_tensor(a_ ) def __UpperCAmelCase ( a_: Dict ): import jax.numpy as jnp # noqa: F811 return isinstance(a_, jnp.ndarray ) def __UpperCAmelCase ( a_: List[Any] ): return False if not is_flax_available() else _is_jax(a_ ) def __UpperCAmelCase ( a_: Dict ): if isinstance(a_, (dict, UserDict) ): return {k: to_py_obj(a_ ) for k, v in obj.items()} elif isinstance(a_, (list, tuple) ): return [to_py_obj(a_ ) for o in obj] elif is_tf_tensor(a_ ): return obj.numpy().tolist() elif is_torch_tensor(a_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(a_ ): return np.asarray(a_ ).tolist() elif isinstance(a_, (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __UpperCAmelCase ( a_: Union[str, Any] ): if isinstance(a_, (dict, UserDict) ): return {k: to_numpy(a_ ) for k, v in obj.items()} elif isinstance(a_, (list, tuple) ): return np.array(a_ ) elif is_tf_tensor(a_ ): return obj.numpy() elif is_torch_tensor(a_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(a_ ): return np.asarray(a_ ) else: return obj class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = fields(self ) # Safety and consistency checks if not len(lowerCAmelCase__ ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) _UpperCAmelCase : Union[str, Any] = getattr(self , class_fields[0].name ) _UpperCAmelCase : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = first_field.items() _UpperCAmelCase : List[str] = True else: try: _UpperCAmelCase : Tuple = iter(lowerCAmelCase__ ) _UpperCAmelCase : Dict = True except TypeError: _UpperCAmelCase : Union[str, Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCAmelCase__ ): if ( not isinstance(lowerCAmelCase__ , (list, tuple) ) or not len(lowerCAmelCase__ ) == 2 or not isinstance(element[0] , lowerCAmelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCAmelCase : int = element[1] elif first_field is not None: _UpperCAmelCase : Optional[Any] = first_field else: for field in class_fields: _UpperCAmelCase : Optional[Any] = getattr(self , field.name ) if v is not None: _UpperCAmelCase : Dict = v def __delitem__( self : str , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int ) -> Optional[int]: """simple docstring""" raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _lowerCAmelCase ( self : Any , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCAmelCase__ , lowerCAmelCase__ ) super().__setattr__(lowerCAmelCase__ , lowerCAmelCase__ ) def __setitem__( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" super().__setitem__(lowerCAmelCase__ , lowerCAmelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys() ) class A__ ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @classmethod def _lowerCAmelCase ( cls : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = '''longest''' UpperCamelCase_ : Dict = '''max_length''' UpperCamelCase_ : Tuple = '''do_not_pad''' class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = '''pt''' UpperCamelCase_ : int = '''tf''' UpperCamelCase_ : int = '''np''' UpperCamelCase_ : Tuple = '''jax''' class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : List[ContextManager] ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = context_managers _UpperCAmelCase : List[Any] = ExitStack() def __enter__( self : Any ) -> Tuple: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(lowerCAmelCase__ ) def __exit__( self : int , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" self.stack.__exit__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : int = infer_framework(a_ ) if framework == "tf": _UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Optional[int] = model_class.__name__ _UpperCAmelCase : Optional[int] = infer_framework(a_ ) if framework == "tf": _UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __UpperCAmelCase ( a_: MutableMapping, a_: str = "", a_: str = "." ): def _flatten_dict(a_: Dict, a_: Any="", a_: Optional[int]="." ): for k, v in d.items(): _UpperCAmelCase : Dict = str(a_ ) + delimiter + str(a_ ) if parent_key else k if v and isinstance(a_, a_ ): yield from flatten_dict(a_, a_, delimiter=a_ ).items() else: yield key, v return dict(_flatten_dict(a_, a_, a_ ) ) @contextmanager def __UpperCAmelCase ( a_: Any, a_: bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __UpperCAmelCase ( a_: Optional[int], a_: Optional[int]=None ): if is_numpy_array(a_ ): return np.transpose(a_, axes=a_ ) elif is_torch_tensor(a_ ): return array.T if axes is None else array.permute(*a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.transpose(a_, perm=a_ ) elif is_jax_tensor(a_ ): return jnp.transpose(a_, axes=a_ ) else: raise ValueError(f"""Type not supported for transpose: {type(a_ )}.""" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: str ): if is_numpy_array(a_ ): return np.reshape(a_, a_ ) elif is_torch_tensor(a_ ): return array.reshape(*a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.reshape(a_, a_ ) elif is_jax_tensor(a_ ): return jnp.reshape(a_, a_ ) else: raise ValueError(f"""Type not supported for reshape: {type(a_ )}.""" ) def __UpperCAmelCase ( a_: List[Any], a_: Any=None ): if is_numpy_array(a_ ): return np.squeeze(a_, axis=a_ ) elif is_torch_tensor(a_ ): return array.squeeze() if axis is None else array.squeeze(dim=a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.squeeze(a_, axis=a_ ) elif is_jax_tensor(a_ ): return jnp.squeeze(a_, axis=a_ ) else: raise ValueError(f"""Type not supported for squeeze: {type(a_ )}.""" ) def __UpperCAmelCase ( a_: List[Any], a_: Tuple ): if is_numpy_array(a_ ): return np.expand_dims(a_, a_ ) elif is_torch_tensor(a_ ): return array.unsqueeze(dim=a_ ) elif is_tf_tensor(a_ ): import tensorflow as tf return tf.expand_dims(a_, axis=a_ ) elif is_jax_tensor(a_ ): return jnp.expand_dims(a_, axis=a_ ) else: raise ValueError(f"""Type not supported for expand_dims: {type(a_ )}.""" ) def __UpperCAmelCase ( a_: List[str] ): if is_numpy_array(a_ ): return np.size(a_ ) elif is_torch_tensor(a_ ): return array.numel() elif is_tf_tensor(a_ ): import tensorflow as tf return tf.size(a_ ) elif is_jax_tensor(a_ ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(a_ )}.""" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): for key, value in auto_map.items(): if isinstance(a_, (tuple, list) ): _UpperCAmelCase : List[Any] = [f"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : Optional[Any] = f"""{repo_id}--{value}""" return auto_map def __UpperCAmelCase ( a_: Dict ): for base_class in inspect.getmro(a_ ): _UpperCAmelCase : Optional[Any] = base_class.__module__ _UpperCAmelCase : Any = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
494
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''blenderbot-small''' UpperCamelCase_ : Tuple = ['''past_key_values'''] UpperCamelCase_ : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , lowerCAmelCase__ : Dict=5_0_2_6_5 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=8 , lowerCAmelCase__ : str=2_0_4_8 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : Optional[int]=2_0_4_8 , lowerCAmelCase__ : List[Any]=1_6 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=2 , **lowerCAmelCase__ : Optional[Any] , ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Optional[Any] = d_model _UpperCAmelCase : List[str] = encoder_ffn_dim _UpperCAmelCase : Union[str, Any] = encoder_layers _UpperCAmelCase : List[Any] = encoder_attention_heads _UpperCAmelCase : Tuple = decoder_ffn_dim _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Union[str, Any] = decoder_attention_heads _UpperCAmelCase : List[Any] = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : Any = init_std _UpperCAmelCase : Optional[Any] = encoder_layerdrop _UpperCAmelCase : Tuple = decoder_layerdrop _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : str = encoder_layers _UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase : Tuple = {0: "batch"} _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "decoder_sequence"} _UpperCAmelCase : int = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : str = {0: "batch", 2: "past_sequence + sequence"} _UpperCAmelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} else: _UpperCAmelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowerCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Any = super().outputs else: _UpperCAmelCase : Union[str, Any] = super(lowerCAmelCase__ , self ).outputs if self.use_past: _UpperCAmelCase , _UpperCAmelCase : int = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} _UpperCAmelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs _UpperCAmelCase : Any = seq_length if not self.use_past else 1 _UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase : Union[str, Any] = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Dict = common_inputs["input_ids"].shape _UpperCAmelCase : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.num_attention_heads _UpperCAmelCase : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : Tuple = decoder_seq_length + 3 _UpperCAmelCase : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase , _UpperCAmelCase : str = self.num_layers _UpperCAmelCase : Optional[int] = min(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers _UpperCAmelCase : List[Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. _UpperCAmelCase : Tuple = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def _lowerCAmelCase ( self : int , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase : Any = seqlen + 2 _UpperCAmelCase , _UpperCAmelCase : Any = self.num_layers _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.num_attention_heads _UpperCAmelCase : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : List[str] = common_inputs["attention_mask"].dtype _UpperCAmelCase : Tuple = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Any = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase : Any = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase : Tuple = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: _UpperCAmelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCAmelCase : List[Any] = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
494
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def snake_case__ ( __lowercase = "laptop" ) -> Union[str, Any]: """simple docstring""" A__ : Dict = F'https://www.amazon.in/laptop/s?k={product}' A__ : Tuple = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } A__ : int = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles A__ : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: A__ : Dict = item.ha.text A__ : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] A__ : Optional[int] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: A__ : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: A__ : Optional[Any] = "Not available" try: A__ : Dict = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: A__ : Union[str, Any] = "" try: A__ : Union[str, Any] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 1_0_0 ) except ValueError: A__ : List[str] = float("nan" ) except AttributeError: pass A__ : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ : List[str] = " " A__ : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case : str = 'headphones' get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
711
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case__ ( __lowercase ) -> bool: """simple docstring""" A__ : int = int(number**0.5 ) return number == sq * sq def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> tuple[int, int]: """simple docstring""" A__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den A__ : int = x_den * y_den * z_den A__ : int = gcd(__lowercase , __lowercase ) top //= hcf bottom //= hcf return top, bottom def snake_case__ ( __lowercase = 3_5 ) -> int: """simple docstring""" A__ : set = set() A__ : int A__ : Fraction = Fraction(0 ) A__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 A__ : Any = x_num * y_den + x_den * y_num A__ : List[Any] = x_den * y_den A__ : List[Any] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : List[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=2 A__ : Any = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) A__ : Optional[int] = x_den * x_den * y_den * y_den if is_sq(__lowercase ) and is_sq(__lowercase ): A__ : Union[str, Any] = int(sqrt(__lowercase ) ) A__ : int = int(sqrt(__lowercase ) ) A__ : Any = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : List[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=-1 A__ : Tuple = x_num * y_num A__ : int = x_den * y_num + x_num * y_den A__ : List[str] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : str = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) # n=2 A__ : Any = x_num * x_num * y_num * y_num A__ : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowercase ) and is_sq(__lowercase ): A__ : Optional[int] = int(sqrt(__lowercase ) ) A__ : List[Any] = int(sqrt(__lowercase ) ) A__ : Union[str, Any] = gcd(__lowercase , __lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: A__ : Optional[Any] = add_three( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) unique_s.add(__lowercase ) for num, den in unique_s: total += Fraction(__lowercase , __lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
182
0
def lowerCamelCase_ ( __UpperCamelCase ): A_ = [1] A_ , A_ , A_ = 0, 0, 0 A_ = ugly_nums[ia] * 2 A_ = ugly_nums[ia] * 3 A_ = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): A_ = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 A_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 A_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 A_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
141
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) class __lowercase ( A ): __magic_name__ : Any = '''sequence-classification''' def __init__( self , a__ ) -> Optional[Any]: '''simple docstring''' if type(a__ ) == dict: A_ = Namespace(**a__ ) A_ = glue_output_modes[hparams.task] A_ = glue_tasks_num_labels[hparams.task] super().__init__(a__ , a__ , self.mode ) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' return self.model(**a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ = outputs[0] A_ = self.trainer.lr_schedulers[0]['''scheduler'''] A_ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = self.hparams A_ = processors[args.task]() A_ = processor.get_labels() for mode in ["train", "dev"]: A_ = self._feature_file(a__ ) if os.path.exists(a__ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , a__ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) A_ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) A_ = convert_examples_to_features( a__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ , a__ = False ) -> DataLoader: '''simple docstring''' A_ = '''dev''' if mode == '''test''' else mode A_ = self._feature_file(a__ ) logger.info('''Loading features from cached file %s''' , a__ ) A_ = torch.load(a__ ) A_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) A_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a__ , a__ , a__ , a__ ) , batch_size=a__ , shuffle=a__ , ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ , A_ = outputs[:2] A_ = logits.detach().cpu().numpy() A_ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase_ ( self , a__ ) -> tuple: '''simple docstring''' A_ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() A_ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": A_ = np.argmax(a__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": A_ = np.squeeze(a__ ) A_ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , a__ , a__ )} A_ = dict(results.items() ) A_ = results return ret, preds_list, out_label_list def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase_ ( a__ , a__ ) -> Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(a__ , a__ ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=a__ , required=a__ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=a__ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowerCamelCase_ ( ): A_ = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) A_ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) A_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A_ = os.path.join( '''./results''' , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) A_ = GLUETransformer(__UpperCamelCase ) A_ = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A_ = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__UpperCamelCase ) ) A_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
141
1
import os def __lowerCAmelCase ( ) -> Tuple: __lowerCamelCase: Union[str, Any] = os.path.dirname(os.path.realpath(snake_case ) ) __lowerCamelCase: List[str] = os.path.join(snake_case , """triangle.txt""" ) with open(snake_case ) as f: __lowerCamelCase: Any = f.readlines() __lowerCamelCase: Union[str, Any] = [] for line in triangle: __lowerCamelCase: List[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(snake_case ) ) a.append(snake_case ) for i in range(1 , len(snake_case ) ): for j in range(len(a[i] ) ): __lowerCamelCase: int = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase: Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case , snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
712
class a : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : bool = False ): # Mapping from the first character of the prefix of the node __lowerCamelCase: dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __lowerCamelCase: str = is_leaf __lowerCamelCase: Optional[int] = prefix def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: Optional[Any] = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : list[str] ): for word in words: self.insert(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: __lowerCamelCase: Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowerCamelCase: Any = RadixNode(prefix=SCREAMING_SNAKE_CASE_ , is_leaf=SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase: Union[str, Any] = self.nodes[word[0]] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: List[str] = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowerCamelCase: List[Any] = remaining_prefix __lowerCamelCase: Optional[Any] = self.nodes[matching_string[0]] __lowerCamelCase: Optional[int] = RadixNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Union[str, Any] = aux_node if remaining_word == "": __lowerCamelCase: Optional[int] = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: int = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: Any = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : str ): __lowerCamelCase: str = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase: Dict = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __lowerCamelCase: List[Any] = list(self.nodes.values() )[0] __lowerCamelCase: Any = merging_node.is_leaf self.prefix += merging_node.prefix __lowerCamelCase: Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __lowerCamelCase: int = False # If there is 1 edge, we merge it with its child else: __lowerCamelCase: Union[str, Any] = list(incoming_node.nodes.values() )[0] __lowerCamelCase: List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowerCamelCase: Union[str, Any] = merging_node.nodes return True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCAmelCase ( ) -> bool: __lowerCamelCase: Optional[int] = """banana bananas bandana band apple all beast""".split() __lowerCamelCase: Optional[Any] = RadixNode() root.insert_many(snake_case ) assert all(root.find(snake_case ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCAmelCase ( ) -> None: assert test_trie() def __lowerCAmelCase ( ) -> None: __lowerCamelCase: int = RadixNode() __lowerCamelCase: str = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(snake_case ) print("""Words:""" , snake_case ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
189
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase (nn.Module ): _SCREAMING_SNAKE_CASE : Any = 42 _SCREAMING_SNAKE_CASE : List[Any] = jnp.floataa def __snake_case ( self :Tuple ) ->str: lowercase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , __magic_name__ :Any ) ->Any: lowercase , lowercase , lowercase , lowercase : str = hidden_states.shape lowercase : int = jax.image.resize( __A , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) lowercase : List[str] = self.conv(__A ) return hidden_states class UpperCamelCase (nn.Module ): _SCREAMING_SNAKE_CASE : Optional[Any] = 42 _SCREAMING_SNAKE_CASE : int = jnp.floataa def __snake_case ( self :Union[str, Any] ) ->Dict: lowercase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , __magic_name__ :Union[str, Any] ) ->Tuple: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowercase : int = self.conv(__A ) return hidden_states class UpperCamelCase (nn.Module ): _SCREAMING_SNAKE_CASE : Tuple = 42 _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : Dict = 0.0 _SCREAMING_SNAKE_CASE : Any = None _SCREAMING_SNAKE_CASE : int = jnp.floataa def __snake_case ( self :Optional[Any] ) ->Dict: lowercase : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels lowercase : str = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase : Tuple = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase : Optional[int] = nn.Dense(__A , dtype=self.dtype ) lowercase : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase : List[str] = nn.Dropout(self.dropout_prob ) lowercase : Union[str, Any] = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase : Optional[Any] = None if use_nin_shortcut: lowercase : List[Any] = nn.Conv( __A , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :List[Any]=True ) ->Optional[Any]: lowercase : Optional[Any] = hidden_states lowercase : Union[str, Any] = self.norma(__A ) lowercase : str = nn.swish(__A ) lowercase : int = self.conva(__A ) lowercase : int = self.time_emb_proj(nn.swish(__A ) ) lowercase : Union[str, Any] = jnp.expand_dims(jnp.expand_dims(__A , 1 ) , 1 ) lowercase : str = hidden_states + temb lowercase : int = self.norma(__A ) lowercase : Any = nn.swish(__A ) lowercase : List[Any] = self.dropout(__A , __A ) lowercase : Dict = self.conva(__A ) if self.conv_shortcut is not None: lowercase : Union[str, Any] = self.conv_shortcut(__A ) return hidden_states + residual
264
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __A = logging.get_logger('transformers.models.encodec') __A = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } __A = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } __A = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } __A = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } __A = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __A = [] __A = [] def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for attribute in key.split('''.''' ): _A = getattr(_lowercase , _lowercase ) if weight_type is not None: _A = getattr(_lowercase , _lowercase ).shape else: _A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value elif weight_type == "running_mean": _A = value elif weight_type == "running_var": _A = value elif weight_type == "num_batches_tracked": _A = value elif weight_type == "weight_ih_l0": _A = value elif weight_type == "weight_hh_l0": _A = value elif weight_type == "bias_ih_l0": _A = value elif weight_type == "bias_hh_l0": _A = value elif weight_type == "weight_ih_l1": _A = value elif weight_type == "weight_hh_l1": _A = value elif weight_type == "bias_ih_l1": _A = value elif weight_type == "bias_hh_l1": _A = value else: _A = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def __A ( _lowercase , _lowercase ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _A ,_A = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [] if model_name == "encodec_24khz" or "encodec_32khz": _A = MAPPING_24K elif model_name == "encodec_48khz": _A = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_lowercase , _lowercase ): logger.info(f"""{name} was ignored""" ) continue _A = False for key, mapped_key in MAPPING.items(): if "*" in key: _A ,_A = key.split('''.*.''' ) if prefix in name and suffix in name: _A = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _A = True if "*" in mapped_key: _A = name.split(_lowercase )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _lowercase ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight_ih_l0" in name: _A = '''weight_ih_l0''' elif "weight_hh_l0" in name: _A = '''weight_hh_l0''' elif "bias_ih_l0" in name: _A = '''bias_ih_l0''' elif "bias_hh_l0" in name: _A = '''bias_hh_l0''' elif "weight_ih_l1" in name: _A = '''weight_ih_l1''' elif "weight_hh_l1" in name: _A = '''weight_hh_l1''' elif "bias_ih_l1" in name: _A = '''bias_ih_l1''' elif "bias_hh_l1" in name: _A = '''bias_hh_l1''' elif "bias" in name: _A = '''bias''' elif "weight" in name: _A = '''weight''' elif "running_mean" in name: _A = '''running_mean''' elif "running_var" in name: _A = '''running_var''' elif "num_batches_tracked" in name: _A = '''num_batches_tracked''' else: _A = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __A ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ): '''simple docstring''' if config_path is not None: _A = EncodecConfig.from_pretrained(_lowercase ) else: _A = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _A = [8, 5, 4, 4] _A = [2.2] _A = 64 _A = 3_20_00 _A = 20_48 _A = False _A = False _A = False elif model_name == "encodec_48khz": _A = [8, 5, 4, 2] _A = [3.0, 6.0, 12.0, 24.0] _A = 4_80_00 _A = 2 _A = False _A = '''time_group_norm''' _A = True _A = 1.0 _A = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) _A = EncodecModel(_lowercase ) _A = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_lowercase ) _A = torch.load(_lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _A = original_checkpoint['''best_state'''] recursively_load_weights(_lowercase , _lowercase , _lowercase ) model.save_pretrained(_lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
484
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase_ ( unittest.TestCase ): _lowerCAmelCase : List[str] = JukeboxTokenizer _lowerCAmelCase : str = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def __lowercase ( self : Optional[int] ): """simple docstring""" import torch SCREAMING_SNAKE_CASE : Dict = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) SCREAMING_SNAKE_CASE : int = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE : List[str] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __lowercase ( self : List[Any] ): """simple docstring""" import torch SCREAMING_SNAKE_CASE : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
713
'''simple docstring''' import string from math import logaa def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : Optional[Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) SCREAMING_SNAKE_CASE : Tuple = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase ( A : str , A : str ): SCREAMING_SNAKE_CASE : int = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' SCREAMING_SNAKE_CASE : Any = corpus_without_punctuation.split('''\n''' ) SCREAMING_SNAKE_CASE : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def UpperCAmelCase ( A : int , A : int , A : str=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase ( A : int , A : int ): return round(tf * idf , 3 )
464
0
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
471
import random def lowerCamelCase_ ( UpperCamelCase_ ): _a : str = num - 1 _a : int = 0 while s % 2 == 0: _a : Optional[int] = s // 2 t += 1 for _ in range(5 ): _a : int = random.randrange(2 , num - 1 ) _a : Tuple = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if v != 1: _a : str = 0 while v != (num - 1): if i == t - 1: return False else: _a : str = i + 1 _a : str = (v**2) % num return True def lowerCamelCase_ ( UpperCamelCase_ ): if num < 2: return False _a : Optional[int] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ = 1024 ): while True: _a : Optional[int] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(UpperCamelCase_ ): return num if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
471
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __UpperCamelCase ( a : List[Any] ) ->List[str]: snake_case = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a , a ) def __UpperCamelCase ( a : int ) ->Union[str, Any]: snake_case , snake_case = emb.weight.shape snake_case = nn.Linear(a , a , bias=a ) snake_case = emb.weight.data return lin_layer def __UpperCamelCase ( a : List[str] ) ->List[str]: snake_case = torch.load(a , map_location='''cpu''' ) snake_case = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] snake_case = mam_aaa['''model'''] remove_ignore_keys_(a ) snake_case = state_dict['''encoder.embed_tokens.weight'''].shape[0] snake_case = MaMaaaConfig( vocab_size=a , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) snake_case = state_dict['''decoder.embed_tokens.weight'''] snake_case = MaMaaaForConditionalGeneration(a ) model.model.load_state_dict(a , strict=a ) snake_case = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowercase = parser.parse_args() _lowercase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
44
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowercase ( yaml.SafeLoader ): def UpperCamelCase ( self , A__ ) -> List[str]: snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case = [tuple(A__ ) if isinstance(A__ , A__ ) else key for key in keys] snake_case = Counter(A__ ) snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self , A__ , A__=False ) -> List[Any]: snake_case = super().construct_mapping(A__ , deep=A__ ) self._check_no_duplicates_on_constructed_node(A__ ) return mapping def __UpperCamelCase ( a : str ) ->Tuple[Optional[str], str]: snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case = full_content[1:].index('''---''' ) + 1 snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _lowercase ( __a ): # class attributes _UpperCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case , snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A__ ) else: return cls() def UpperCamelCase ( self , A__ ) -> str: if path.exists(): with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case = readme_file.read() else: snake_case = None snake_case = self._to_readme(A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(A__ ) def UpperCamelCase ( self , A__ = None ) -> str: if readme_content is not None: snake_case , snake_case = _split_yaml_from_readme(A__ ) snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": snake_case = yaml.load(A__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A__ ) def UpperCamelCase ( self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A__ , allow_unicode=A__ , encoding='''utf-8''' , ).decode('''utf-8''' ) _lowercase = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowercase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowercase = ap.parse_args() _lowercase = Path(args.readme_filepath) _lowercase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
44
1
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _UpperCamelCase = int(input("""Enter number: """).strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
341
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase__ : def __init__( self ,A = None ): if components is None: UpperCAmelCase = [] UpperCAmelCase = list(A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(A ,self.__components ) ) + ")" def __add__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("""must have the same size""" ) def __sub__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,(float, int) ): UpperCAmelCase = [c * other for c in self.__components] return Vector(A ) elif isinstance(A ,A ) and len(self ) == len(A ): UpperCAmelCase = len(self ) UpperCAmelCase = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("""invalid operand!""" ) def _UpperCamelCase ( self ): return Vector(self.__components ) def _UpperCamelCase ( self ,A ): if isinstance(A ,A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _UpperCamelCase ( self ,A ,A ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase = value def _UpperCamelCase ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def _UpperCamelCase ( self ,A ,A = False ): UpperCAmelCase = self * other UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) return Vector([0] * dimension ) def _a ( _snake_case , _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , _snake_case )) UpperCAmelCase = [0] * dimension UpperCAmelCase = 1 return Vector(_snake_case ) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , (int, float) )) ) return x * scalar + y def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] return Vector(_snake_case ) class lowerCamelCase__ : def __init__( self ,A ,A ,A ): UpperCAmelCase = matrix UpperCAmelCase = w UpperCAmelCase = h def __str__( self ): UpperCAmelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] + other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] - other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,A ): # matrix-vector if len(A ) == self.__width: UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A ,sum(A ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(A ,(int, float) ): # matrix-scalar UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A ,self.__width ,self.__height ) return None def _UpperCamelCase ( self ): return self.__height def _UpperCamelCase ( self ): return self.__width def _UpperCamelCase ( self ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(A ,self.__width - 1 ,self.__height - 1 ).determinant() def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A ,A ) else: raise Exception("""Indices out of bounds""" ) def _UpperCamelCase ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 ,A ) for y in range(self.__width ) ] return sum(A ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [[0] * n for _ in range(_snake_case )] return Matrix(_snake_case , _snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [ [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] for _ in range(_snake_case ) ] return Matrix(_snake_case , _snake_case , _snake_case )
341
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : int = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
import argparse import copy def UpperCamelCase__ ( _A: Dict ): '''simple docstring''' __lowerCamelCase = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCamelCase__ ( _A: str , _A: Optional[int] ): '''simple docstring''' with open(_A ) as f: __lowerCamelCase = f.read(1 ) __lowerCamelCase = start_node __lowerCamelCase = [] __lowerCamelCase = start_node __lowerCamelCase = 0 while visiting not in first_solution: __lowerCamelCase = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: __lowerCamelCase = k[1] __lowerCamelCase = k[0] first_solution.append(_A ) __lowerCamelCase = distance_of_first_solution + int(_A ) __lowerCamelCase = best_node first_solution.append(_A ) __lowerCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowerCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def UpperCamelCase__ ( _A: str , _A: Tuple ): '''simple docstring''' __lowerCamelCase = [] for n in solution[1:-1]: __lowerCamelCase = solution.index(_A ) for kn in solution[1:-1]: __lowerCamelCase = solution.index(_A ) if n == kn: continue __lowerCamelCase = copy.deepcopy(_A ) __lowerCamelCase = kn __lowerCamelCase = n __lowerCamelCase = 0 for k in _tmp[:-1]: __lowerCamelCase = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowerCamelCase = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowerCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCamelCase__ ( _A: Optional[int] , _A: List[str] , _A: Union[str, Any] , _A: Any , _A: List[str] ): '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = first_solution __lowerCamelCase = [] __lowerCamelCase = distance_of_first_solution __lowerCamelCase = solution while count <= iters: __lowerCamelCase = find_neighborhood(_A , _A ) __lowerCamelCase = 0 __lowerCamelCase = neighborhood[index_of_best_solution] __lowerCamelCase = len(_A ) - 1 __lowerCamelCase = False while not found: __lowerCamelCase = 0 while i < len(_A ): if best_solution[i] != solution[i]: __lowerCamelCase = best_solution[i] __lowerCamelCase = solution[i] break __lowerCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowerCamelCase = True __lowerCamelCase = best_solution[:-1] __lowerCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowerCamelCase = cost __lowerCamelCase = solution else: __lowerCamelCase = index_of_best_solution + 1 __lowerCamelCase = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) __lowerCamelCase = count + 1 return best_solution_ever, best_cost def UpperCamelCase__ ( _A: str=None ): '''simple docstring''' __lowerCamelCase = generate_neighbours(args.File ) __lowerCamelCase , __lowerCamelCase = generate_first_solution( args.File , _A ) __lowerCamelCase , __lowerCamelCase = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
571
0
"""simple docstring""" import heapq import sys import numpy as np UpperCamelCase__ :str = tuple[int, int] class A: """simple docstring""" def __init__( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Optional[int] = [] _UpperCamelCase :Optional[Any] = set() def _UpperCamelCase( self ) -> str: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" return len(self.elements ) == 0 def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE__ ) else: # update # print("update", item) _UpperCamelCase :Optional[Any] = [] ((_UpperCamelCase) , (_UpperCamelCase)) :Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCamelCase) , (_UpperCamelCase)) :Any = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :int = [] ((_UpperCamelCase) , (_UpperCamelCase)) :Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCamelCase) , (_UpperCamelCase)) :Optional[Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" return self.elements[0][1] def _UpperCamelCase( self ) -> Any: """simple docstring""" ((_UpperCamelCase) , (_UpperCamelCase)) :Tuple = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE__ ) return (priority, item) def A_ ( snake_case__ , snake_case__ ) -> Any: # euclidean distance _UpperCamelCase :Union[str, Any] = np.array(snake_case__ ) _UpperCamelCase :Tuple = np.array(snake_case__ ) return np.linalg.norm(a - b ) def A_ ( snake_case__ , snake_case__ ) -> List[str]: # integer division by time variable return consistent_heuristic(snake_case__ , snake_case__ ) // t def A_ ( snake_case__ , snake_case__ ) -> List[str]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: _UpperCamelCase :Tuple = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Tuple: _UpperCamelCase :Union[str, Any] = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): _UpperCamelCase :List[Any] = '''*''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: _UpperCamelCase :Any = '''#''' _UpperCamelCase :Tuple = '''-''' _UpperCamelCase :Dict = back_pointer[goal] while x != start: ((_UpperCamelCase) , (_UpperCamelCase)) :Tuple = x # print(x) _UpperCamelCase :Any = '''-''' _UpperCamelCase :Optional[int] = back_pointer[x] _UpperCamelCase :Tuple = '''-''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) _UpperCamelCase :int = back_pointer[goal] while x != start: print(snake_case__ , end=''' ''' ) _UpperCamelCase :Optional[int] = back_pointer[x] print(snake_case__ ) sys.exit() def A_ ( snake_case__ ) -> Dict: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> str: for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((_UpperCamelCase) , (_UpperCamelCase)) :Optional[Any] = s _UpperCamelCase :List[Any] = (x - 1, y) _UpperCamelCase :Optional[int] = (x + 1, y) _UpperCamelCase :List[Any] = (x, y + 1) _UpperCamelCase :List[Any] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) _UpperCamelCase :str = -1 _UpperCamelCase :str = float('''inf''' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: _UpperCamelCase :str = g_function[s] + 1 _UpperCamelCase :Optional[int] = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def A_ ( ) -> Dict: _UpperCamelCase :Tuple = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCamelCase__ :int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase__ :Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase__ :Union[str, Any] = make_common_ground() UpperCamelCase__ :int = blocks_blk # hyper parameters UpperCamelCase__ :Union[str, Any] = 1 UpperCamelCase__ :Optional[int] = 1 UpperCamelCase__ :Any = 20 UpperCamelCase__ :List[Any] = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase__ :Tuple = (0, 0) UpperCamelCase__ :int = (n - 1, n - 1) UpperCamelCase__ :Union[str, Any] = 1 def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: _UpperCamelCase :List[str] = {start: 0, goal: float('''inf''' )} _UpperCamelCase :Tuple = {start: -1, goal: -1} _UpperCamelCase :List[str] = [] _UpperCamelCase :Tuple = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) _UpperCamelCase :list[int] = [] _UpperCamelCase :list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: _UpperCamelCase , _UpperCamelCase :List[Any] = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: _UpperCamelCase :Optional[int] = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } _UpperCamelCase :Union[str, Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) _UpperCamelCase :Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) _UpperCamelCase :List[str] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :str = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :str = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Optional[int] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Union[str, Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCamelCase :List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :List[str] = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :List[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :str = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :str = np.random.randn(3 , 4 ) _UpperCamelCase :int = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Tuple = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
355
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a_ ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 10 def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [1, 2, 3, 4] UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" UpperCamelCase ,UpperCamelCase = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = """""" UpperCamelCase ,UpperCamelCase = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) UpperCamelCase ,UpperCamelCase = process_story(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = ["""It was the best of times."""] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = torch.tensor([1, 2, 3, 4] ) UpperCamelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 0 ).numpy() , expected.numpy() ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 23 ).numpy() , expected.numpy() ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 1 ).numpy() , expected.numpy() ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 101 UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase = compute_token_type_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) np.testing.assert_array_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
35
'''simple docstring''' from math import sqrt def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def lowercase__ ( __UpperCamelCase = 10000 )-> int: UpperCamelCase = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
1
"""simple docstring""" def lowercase (_snake_case ) -> str: '''simple docstring''' __UpperCamelCase = int(_snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(_snake_case ) __UpperCamelCase , __UpperCamelCase = divmod(_snake_case ,2 ) return binary_recursive(_snake_case ) + str(_snake_case ) def lowercase (_snake_case ) -> str: '''simple docstring''' __UpperCamelCase = str(_snake_case ).strip() if not number: raise ValueError("No input value was provided" ) __UpperCamelCase = "-" if number.startswith("-" ) else "" __UpperCamelCase = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(_snake_case ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
505
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _A = 10 def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ) -> int: '''simple docstring''' for i in range(_snake_case ,_snake_case ): if array[i] == target: return i return -1 def lowercase (_snake_case ,_snake_case ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(_snake_case ) while left <= right: if right - left < precision: return lin_search(_snake_case ,_snake_case ,_snake_case ,_snake_case ) __UpperCamelCase = (left + right) // 3 + 1 __UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCamelCase = one_third - 1 elif array[two_third] < target: __UpperCamelCase = two_third + 1 else: __UpperCamelCase = one_third + 1 __UpperCamelCase = two_third - 1 else: return -1 def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(_snake_case ,_snake_case ,_snake_case ,_snake_case ) __UpperCamelCase = (left + right) // 3 + 1 __UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_snake_case ,one_third - 1 ,_snake_case ,_snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,_snake_case ,_snake_case ,_snake_case ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,_snake_case ,_snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by comma:\n").strip() _A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _A = int(input("Enter the number to be found in the list:\n").strip()) _A = ite_ternary_search(collection, target) _A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
505
1
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : def __init__( self : Tuple , A : Union[str, Any] , A : Optional[int]=13 , A : Dict=30 , A : List[Any]=2 , A : List[Any]=3 , A : Tuple=True , A : Dict=True , A : Union[str, Any]=32 , A : Optional[int]=5 , A : Tuple=4 , A : Any=37 , A : Dict="gelu" , A : Optional[Any]=0.1 , A : Union[str, Any]=0.1 , A : Any=10 , A : Dict=0.02 , A : Any=3 , A : str=None , A : Dict=2 , ) -> Optional[int]: lowercase_ : str = parent lowercase_ : Optional[int] = batch_size lowercase_ : int = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Optional[Any] = is_training lowercase_ : str = use_labels lowercase_ : Tuple = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Any = initializer_range lowercase_ : Optional[int] = scope lowercase_ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ : Optional[Any] = (image_size // patch_size) ** 2 lowercase_ : List[Any] = num_patches + 2 def A ( self : Dict ) -> str: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : int = self.get_config() return config, pixel_values, labels def A ( self : Tuple ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Optional[Any] , A : Optional[int] , A : Any , A : Any ) -> int: lowercase_ : Any = DeiTModel(config=A ) model.to(A ) model.eval() lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , A : int , A : Optional[int] , A : Optional[Any] ) -> str: lowercase_ : int = DeiTForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowercase_ : int = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : Any = DeiTForMaskedImageModeling(A ) model.to(A ) model.eval() lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A ( self : int , A : str , A : Optional[int] , A : List[str] ) -> List[Any]: lowercase_ : str = self.type_sequence_label_size lowercase_ : Tuple = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Optional[Any] = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Dict ) -> Optional[Any]: lowercase_ : List[str] = self.prepare_config_and_inputs() ( lowercase_ ) : Union[str, Any] = config_and_inputs lowercase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False def A ( self : Optional[Any] ) -> Dict: lowercase_ : List[Any] = DeiTModelTester(self ) lowercase_ : int = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def A ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def A ( self : int ) -> List[Any]: pass def A ( self : Any ) -> Tuple: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def A ( self : Tuple ) -> Optional[int]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(A ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : Tuple ) -> Optional[int]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : Dict ) -> List[str]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def A ( self : int ) -> Union[str, Any]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def A ( self : Tuple , A : Optional[int] , A : int , A : Optional[Any]=False ) -> int: lowercase_ : Dict = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self : int ) -> str: if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ : Any = model_class(A ) model.to(A ) model.train() lowercase_ : Any = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Dict ) -> Union[str, Any]: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = False lowercase_ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ : Optional[Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() lowercase_ : str = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Tuple ) -> Any: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), *get_values(A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): lowercase_ : int = problem_type['''title'''] lowercase_ : int = problem_type['''num_labels'''] lowercase_ : Dict = model_class(A ) model.to(A ) model.train() lowercase_ : Tuple = self._prepare_for_class(A , A , return_labels=A ) if problem_type["num_labels"] > 1: lowercase_ : Any = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) lowercase_ : Dict = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: lowercase_ : str = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = DeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ) -> Dict: return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def A ( self : Optional[Any] ) -> Dict: lowercase_ : Dict = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( A ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Dict = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**A ) # verify the logits lowercase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : int = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase_ : Any = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=A , return_tensors='''pt''' ) lowercase_ : Any = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : List[Any] = model(A )
716
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A : List[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30_522, type=int) __A : Optional[int] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, '''rb''') as fp: __A : List[str] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : Dict = [0] * args.vocab_size for k, v in counter.items(): __A : Union[str, Any] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
141
0
def UpperCamelCase ( _A : list[int] )-> list[list[int]]: """simple docstring""" A__ = [] if len(_A ) == 1: return [nums.copy()] for _ in range(len(_A ) ): A__ = nums.pop(0 ) A__ = permute(_A ) for perm in permutations: perm.append(_A ) result.extend(_A ) nums.append(_A ) return result def UpperCamelCase ( _A : Optional[Any] )-> List[str]: """simple docstring""" def backtrack(_A : str ): if start == len(_A ) - 1: output.append(nums[:] ) else: for i in range(_A , len(_A ) ): A__ , A__ = nums[i], nums[start] backtrack(start + 1 ) A__ , A__ = nums[i], nums[start] # backtrack A__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase_ : Optional[int] = permutea([1, 2, 3]) print(res) doctest.testmod()
491
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : Dict = logging.get_logger(__name__) @dataclass class UpperCamelCase : lowerCAmelCase : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase : bool = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A ( self ): A__ = self.task_name.lower() class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : int = """train""" lowerCAmelCase : Tuple = """dev""" lowerCAmelCase : Optional[Any] = """test""" class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : GlueDataTrainingArguments lowerCAmelCase : str lowerCAmelCase : List[InputFeatures] def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = Split.train , UpperCAmelCase__ = None , ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , UpperCAmelCase__ , ) A__ = args A__ = glue_processors[args.task_name]() A__ = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: A__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) A__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A__ , A__ = label_list[2], label_list[1] A__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + ".lock" with FileLock(UpperCAmelCase__ ): if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(UpperCAmelCase__ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A__ = self.processor.get_test_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A__ = examples[:limit_length] A__ = glue_convert_examples_to_features( UpperCAmelCase__ , UpperCAmelCase__ , max_length=args.max_seq_length , label_list=UpperCAmelCase__ , output_mode=self.output_mode , ) A__ = time.time() torch.save(self.features , UpperCAmelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): return len(self.features ) def __getitem__( self , UpperCAmelCase__ ): return self.features[i] def __A ( self ): return self.label_list
491
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case ( UpperCamelCase_ ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'OwlViTImageProcessor' lowercase_ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[str] , a_ : List[Any]=None , a_ : str=None , **a_ : Any )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Optional[int]=None , a_ : Tuple=None , a_ : List[Any]=None , a_ : Tuple="max_length" , a_ : str="np" , **a_ : Any )-> int: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )): SCREAMING_SNAKE_CASE__ : Tuple = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )] elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ): SCREAMING_SNAKE_CASE__ : Any = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ : str = max([len(a_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a_ ) != max_num_queries: SCREAMING_SNAKE_CASE__ : Tuple = t + [' '] * (max_num_queries - len(a_ )) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ ) encodings.append(a_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ : Dict = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ : List[Any] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ : str = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ : Dict = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) SCREAMING_SNAKE_CASE__ : Optional[int] = BatchEncoding() SCREAMING_SNAKE_CASE__ : List[str] = input_ids SCREAMING_SNAKE_CASE__ : Tuple = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ : Any = BatchEncoding() SCREAMING_SNAKE_CASE__ : Dict = self.image_processor( a_ , return_tensors=a_ , **a_ ).pixel_values SCREAMING_SNAKE_CASE__ : Dict = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def __lowercase( self : str , *a_ : List[str] , **a_ : int )-> List[Any]: """simple docstring""" return self.image_processor.post_process(*a_ , **a_ ) def __lowercase( self : Tuple , *a_ : List[str] , **a_ : str )-> Union[str, Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*a_ , **a_ ) def __lowercase( self : Optional[Any] , *a_ : str , **a_ : Dict )-> Optional[int]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*a_ , **a_ ) def __lowercase( self : Optional[int] , *a_ : Tuple , **a_ : Tuple )-> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def __lowercase( self : Tuple , *a_ : Tuple , **a_ : Tuple )-> List[str]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def __lowercase( self : Tuple )-> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a_ , ) return self.image_processor_class @property def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a_ , ) return self.image_processor
636
from math import factorial, radians def _a ( lowercase__ : float , lowercase__ : int = 18 , lowercase__ : int = 10 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE__ : int = radians(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = angle_in_radians SCREAMING_SNAKE_CASE__ : Optional[int] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__("doctest").testmod()
636
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : int ) ->Union[str, Any]: """simple docstring""" a__ :Union[str, Any] = get_activation("swish" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _snake_case ( self : int ) ->List[str]: """simple docstring""" a__ :int = get_activation("silu" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _snake_case ( self : List[Any] ) ->Any: """simple docstring""" a__ :List[Any] = get_activation("mish" ) self.assertIsInstance(__A , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _snake_case ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a__ :Tuple = get_activation("gelu" ) self.assertIsInstance(__A , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
395
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Dict = """luke""" def __init__( self , a=5_0267 , a=50_0000 , a=768 , a=256 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=2 , a=0.02 , a=1e-12 , a=True , a=None , a=1 , a=0 , a=2 , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) lowercase__ : Tuple = vocab_size lowercase__ : Optional[Any] = entity_vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = entity_emb_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : Any = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Tuple = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[Any] = use_entity_aware_attention lowercase__ : Union[str, Any] = classifier_dropout
164
0
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : Union[str, Any] ): '''simple docstring''' if len(__UpperCamelCase ) == 0: return array _a , _a = min(__UpperCamelCase ), max(__UpperCamelCase ) # Compute the variables _a = _max - _min + 1 _a , _a = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _a = i - _min _a = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _a = 0 for i in range(__UpperCamelCase ): while holes_repeat[i] > 0: _a = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _snake_case : int = input('Enter numbers separated by comma:\n') _snake_case : Tuple = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
713
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) _snake_case : int = None _snake_case : Tuple = { '7B': 11008, '13B': 13824, '30B': 17920, '65B': 22016, '70B': 28672, } _snake_case : int = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=256 ): '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' with open(UpperCamelCase , '''r''' ) as f: return json.load(UpperCamelCase ) def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' with open(UpperCamelCase , '''w''' ) as f: json.dump(UpperCamelCase , UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str=True ): '''simple docstring''' os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) _a = os.path.join(UpperCamelCase , '''tmp''' ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) _a = read_json(os.path.join(UpperCamelCase , '''params.json''' ) ) _a = NUM_SHARDS[model_size] _a = params['''n_layers'''] _a = params['''n_heads'''] _a = n_heads // num_shards _a = params['''dim'''] _a = dim // n_heads _a = 10000.0 _a = 1.0 / (base ** (torch.arange(0 , UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _a = params['''n_kv_heads'''] # for GQA / MQA _a = n_heads_per_shard // num_key_value_heads _a = dim // num_key_value_heads else: # compatibility with other checkpoints _a = n_heads _a = n_heads_per_shard _a = dim # permute for sliced rotary def permute(UpperCamelCase : List[str] , UpperCamelCase : str=n_heads , UpperCamelCase : int=dim , UpperCamelCase : Optional[Any]=dim ): return w.view(UpperCamelCase , dima // n_heads // 2 , 2 , UpperCamelCase ).transpose(1 , 2 ).reshape(UpperCamelCase , UpperCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _a = torch.load(os.path.join(UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded _a = [ torch.load(os.path.join(UpperCamelCase , f'consolidated.{i:02d}.pth' ) , map_location='''cpu''' ) for i in range(UpperCamelCase ) ] _a = 0 _a = {'''weight_map''': {}} for layer_i in range(UpperCamelCase ): _a = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _a = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _a = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _a = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in range(UpperCamelCase ) ] , dim=0 , ).reshape(UpperCamelCase , UpperCamelCase ) ) _a = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in range(UpperCamelCase ) ] , dim=0 , ).reshape(UpperCamelCase , UpperCamelCase ) , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) _a = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in range(UpperCamelCase ) ] , dim=0 , ).reshape(UpperCamelCase , UpperCamelCase ) _a = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(UpperCamelCase )] , dim=1 ) _a = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(UpperCamelCase )] , dim=0 ) _a = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(UpperCamelCase )] , dim=1 ) _a = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(UpperCamelCase )] , dim=0 ) _a = inv_freq for k, v in state_dict.items(): _a = filename param_count += v.numel() torch.save(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) _a = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _a = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: _a = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _a = filename param_count += v.numel() torch.save(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) # Write configs _a = {'''total_size''': param_count * 2} write_json(UpperCamelCase , os.path.join(UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) _a = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 _a = params['''multiple_of'''] if '''multiple_of''' in params else 256 _a = LlamaConfig( hidden_size=UpperCamelCase , intermediate_size=compute_intermediate_size(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=UpperCamelCase , ) config.save_pretrained(UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) _a = LlamaForCausalLM.from_pretrained(UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(UpperCamelCase , safe_serialization=UpperCamelCase ) shutil.rmtree(UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' _a = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _a = tokenizer_class(UpperCamelCase ) tokenizer.save_pretrained(UpperCamelCase ) def snake_case_ (): '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) _a = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _a = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , UpperCamelCase ) if __name__ == "__main__": main()
377
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __magic_name__ ( ) -> Tuple: a__ = torch.nn.Linear(2 , 4 ) a__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) a__ = torch.optim.lr_scheduler.OneCycleLR(UpperCamelCase , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) a__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __magic_name__ ( UpperCamelCase : Dict ) -> Optional[int]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __magic_name__ ( UpperCamelCase : Any ) -> List[str]: a__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(UpperCamelCase ) class lowercase(_lowercase ): @require_cuda def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCAmelCase_ ): a__ = Accelerator(cpu=UpperCAmelCase_ ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" a__ = Accelerator() a__ = GradientState() assert state.num_steps == 1 a__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True a__ = False assert state.sync_gradients is False GradientState._reset_state() def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = Accelerator() a__ = create_components() ( a__ ) = accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = Accelerator() a__ = create_components() accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): pass with patch('torch.cuda.set_device' , UpperCAmelCase_ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): a__ = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = Accelerator() a__ = create_components() accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a__ = get_signature(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase_ ) # make sure random weights don't match load_random_weights(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) < 1e-3 ) def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = Accelerator() a__ = create_components() accelerator.prepare(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a__ = get_signature(UpperCAmelCase_ ) # saving hook def save_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = {"class_name": models[0].__class__.__name__} with open(os.path.join(UpperCAmelCase_ , 'data.json' ) , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # loading hook def load_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): with open(os.path.join(UpperCAmelCase_ , 'data.json' ) , 'r' ) as f: a__ = json.load(UpperCAmelCase_ ) a__ = config["class_name"] a__ = accelerator.register_save_state_pre_hook(UpperCAmelCase_ ) a__ = accelerator.register_load_state_pre_hook(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase_ ) # make sure random weights don't match with hooks load_random_weights(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) > 1e-3 ) # random class name to verify correct one is loaded a__ = "random" # make sure loaded weights match with hooks accelerator.load_state(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCAmelCase_ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) > 1e-3 ) # random class name to verify correct one is loaded a__ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCAmelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCAmelCase_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowercase__ ( self ) -> List[str]: """simple docstring""" a__ = Accelerator() a__ = create_components() a__ = None # This should work a__ = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(dummy_obj is None ) def lowercase__ ( self ) -> str: """simple docstring""" a__ = Accelerator() a__ = create_components() a__ = [1, 2, 3] # This should work a__ = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCAmelCase_ , '_is_accelerate_prepared' , UpperCAmelCase_ ) , UpperCAmelCase_ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def lowercase__ ( self ) -> List[Any]: """simple docstring""" from transformers import AutoModelForCausalLM a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase_ , device_map={'': 0} , ) a__ = Accelerator() # This should work a__ = accelerator.prepare(UpperCAmelCase_ ) @slow @require_bnb def lowercase__ ( self ) -> List[Any]: """simple docstring""" from transformers import AutoModelForCausalLM a__ = Accelerator() with init_empty_weights(): a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() a__ = infer_auto_device_map(UpperCAmelCase_ ) a__ = "cpu" a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=UpperCAmelCase_ , load_in_abit=UpperCAmelCase_ , llm_inta_enable_fpaa_cpu_offload=UpperCAmelCase_ ) # This should not work and get value error with self.assertRaises(UpperCAmelCase_ ): a__ = accelerator.prepare(UpperCAmelCase_ ) @slow @require_bnb @require_multi_gpu def lowercase__ ( self ) -> int: """simple docstring""" from transformers import AutoModelForCausalLM a__ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() a__ = infer_auto_device_map(UpperCAmelCase_ ) a__ = 1 a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase_ , device_map=UpperCAmelCase_ , ) a__ = Accelerator() # This should not work and get value error with self.assertRaises(UpperCAmelCase_ ): a__ = accelerator.prepare(UpperCAmelCase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowercase__ ( self ) -> Tuple: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) a__ = infer_auto_device_map(UpperCAmelCase_ ) a__ = 1 a__ = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCAmelCase_ , device_map=UpperCAmelCase_ , ) a__ = Accelerator() # This should work a__ = accelerator.prepare(UpperCAmelCase_ ) @require_cuda def lowercase__ ( self ) -> Tuple: """simple docstring""" a__ = torch.nn.Linear(1_0 , 1_0 ) a__ = torch.optim.SGD(model.parameters() , lr=0.01 ) a__ = Accelerator(cpu=UpperCAmelCase_ ) a__ = accelerator.prepare(UpperCAmelCase_ )
273
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = LayoutLMTokenizer UpperCamelCase_ : str = LayoutLMTokenizerFast UpperCamelCase_ : Any = True UpperCamelCase_ : Optional[Any] = True def _A ( self : Any ): super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : str , **UpperCAmelCase_ : Optional[int] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Any = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE : Union[str, Any] = "unwanted, running" return input_text, output_text def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _A ( self : List[str] ): pass
62
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase_ = logging.get_logger(__name__) @dataclass class _a : '''simple docstring''' A : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) A : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.task_name.lower() class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = """train""" A : Optional[int] = """dev""" A : Optional[Any] = """test""" class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : GlueDataTrainingArguments A : str A : List[InputFeatures] def __init__( self, A, A, A = None, A = Split.train, A = None, ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py', A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = args SCREAMING_SNAKE_CASE : Any = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE : Optional[Any] = glue_output_modes[args.task_name] if isinstance(A, A ): try: SCREAMING_SNAKE_CASE : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}", ) SCREAMING_SNAKE_CASE : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = label_list[2], label_list[1] SCREAMING_SNAKE_CASE : Union[str, Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE : List[str] = cached_features_file + '.lock' with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() SCREAMING_SNAKE_CASE : Dict = torch.load(A ) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(F"Creating features from dataset file at {args.data_dir}" ) if mode == Split.dev: SCREAMING_SNAKE_CASE : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE : Union[str, Any] = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE : Any = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE : int = examples[:limit_length] SCREAMING_SNAKE_CASE : int = glue_convert_examples_to_features( A, A, max_length=args.max_seq_length, label_list=A, output_mode=self.output_mode, ) SCREAMING_SNAKE_CASE : Any = time.time() torch.save(self.features, A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self, A ): '''simple docstring''' return self.features[i] def UpperCamelCase_ ( self ): '''simple docstring''' return self.label_list
721
'''simple docstring''' import socket def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE : Any = socket.gethostname() SCREAMING_SNAKE_CASE : str = 1_23_12 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE : int = sock.recv(10_24 ) if not data: break out_file.write(__UpperCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
508
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _UpperCAmelCase ( __A : List[Any] ): a_ : int = SwinConfig(image_size=1_92 ) if "base" in model_name: a_ : Dict = 6 a_ : Any = 1_28 a_ : List[Any] = (2, 2, 18, 2) a_ : Dict = (4, 8, 16, 32) elif "large" in model_name: a_ : List[Any] = 12 a_ : List[Any] = 1_92 a_ : Optional[Any] = (2, 2, 18, 2) a_ : List[Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) a_ : str = window_size a_ : Dict = embed_dim a_ : List[str] = depths a_ : Tuple = num_heads return config def _UpperCAmelCase ( __A : Dict ): if "encoder.mask_token" in name: a_ : List[str] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: a_ : Optional[int] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: a_ : Optional[int] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: a_ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a_ : Union[str, Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a_ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a_ : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a_ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a_ : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": a_ : List[Any] = 'layernorm.weight' if name == "encoder.norm.bias": a_ : Optional[Any] = 'layernorm.bias' if "decoder" in name: pass else: a_ : Any = 'swin.' + name return name def _UpperCAmelCase ( __A : List[Any] , __A : Tuple ): for key in orig_state_dict.copy().keys(): a_ : Tuple = orig_state_dict.pop(lowerCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: a_ : Any = key.split('''.''' ) a_ : int = int(key_split[2] ) a_ : Optional[Any] = int(key_split[4] ) a_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a_ : Optional[int] = val[:dim, :] a_ : str = val[ dim : dim * 2, : ] a_ : Optional[int] = val[-dim:, :] else: a_ : Tuple = val[ :dim ] a_ : List[str] = val[ dim : dim * 2 ] a_ : Dict = val[ -dim: ] else: a_ : List[str] = val return orig_state_dict def _UpperCAmelCase ( __A : Any , __A : str , __A : List[Any] , __A : Union[str, Any] ): a_ : Optional[Any] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['model'] a_ : Tuple = get_swin_config(lowerCAmelCase__ ) a_ : Optional[Any] = SwinForMaskedImageModeling(lowerCAmelCase__ ) model.eval() a_ : int = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) a_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a_ : Any = ViTImageProcessor(size={'''height''': 1_92, '''width''': 1_92} ) a_ : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) a_ : Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) with torch.no_grad(): a_ : List[Any] = model(**lowerCAmelCase__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
466
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Any =False @skip_mps class UpperCamelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[int] = StableDiffusionAttendAndExcitePipeline _a : Union[str, Any] = False _a : Dict = TEXT_TO_IMAGE_PARAMS _a : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls : Tuple ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : Tuple ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) lowerCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCamelCase_ : Any = CLIPTextModel(lowerCamelCase ) lowerCamelCase_ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=0 ): if str(lowerCamelCase ).startswith('mps' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase ) else: lowerCamelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase_ : Dict = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __a ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] = 'cpu' lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : List[str] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase_ : List[Any] = self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase_ : List[str] = pipe(**lowerCamelCase ).images lowerCamelCase_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ : Dict = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __a ( self : Tuple ): super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : List[str] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : Optional[Any] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self : Tuple ): super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): @classmethod def __a ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : List[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(51 ) lowerCamelCase_ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ : List[Any] = 'a painting of an elephant with glasses' lowerCamelCase_ : Tuple = [5, 7] lowerCamelCase_ : List[str] = pipe( prompt=lowerCamelCase , token_indices=lowerCamelCase , guidance_scale=7.5 , generator=lowerCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
364
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] ): '''simple docstring''' if len(__snake_case ) == 0: return array lowercase , lowercase = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase = _max - _min + 1 lowercase , lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase = i - _min lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : Optional[Any] = input('Enter numbers separated by comma:\n') _UpperCamelCase : Any = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
134
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _UpperCamelCase : int = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : int , __snake_case : Dict ): '''simple docstring''' lowercase = UniSpeechSatForSequenceClassification.from_pretrained(__snake_case , config=__snake_case ) lowercase = downstream_dict['projector.weight'] lowercase = downstream_dict['projector.bias'] lowercase = downstream_dict['model.post_net.linear.weight'] lowercase = downstream_dict['model.post_net.linear.bias'] return model def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(__snake_case , config=__snake_case ) lowercase = downstream_dict['model.linear.weight'] lowercase = downstream_dict['model.linear.bias'] return model def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' lowercase = UniSpeechSatForXVector.from_pretrained(__snake_case , config=__snake_case ) lowercase = downstream_dict['connector.weight'] lowercase = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] lowercase = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] lowercase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] lowercase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] lowercase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] lowercase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] lowercase = downstream_dict['objective.W'] return model @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Dict ): '''simple docstring''' lowercase = torch.load(__snake_case , map_location='cpu' ) lowercase = checkpoint['Downstream'] lowercase = UniSpeechSatConfig.from_pretrained(__snake_case ) lowercase = WavaVecaFeatureExtractor.from_pretrained( __snake_case , return_attention_mask=__snake_case , do_normalize=__snake_case ) lowercase = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): lowercase = convert_classification(__snake_case , __snake_case , __snake_case ) elif arch.endswith('ForAudioFrameClassification' ): lowercase = convert_diarization(__snake_case , __snake_case , __snake_case ) elif arch.endswith('ForXVector' ): lowercase = convert_xvector(__snake_case , __snake_case , __snake_case ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: lowercase = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _UpperCamelCase : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
134
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) UpperCamelCase_ : Union[str, Any] = '''CIDAS/clipseg-rd64-refined''' UpperCamelCase_ : Any = '''image_segmenter''' UpperCamelCase_ : int = CLIPSegForImageSegmentation UpperCamelCase_ : Optional[Any] = ['''image''', '''text'''] UpperCamelCase_ : int = ['''image'''] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str ): return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors="pt" ) def _A ( self : str , UpperCAmelCase_ : Optional[Any] ): with torch.no_grad(): SCREAMING_SNAKE_CASE : str = self.model(**UpperCAmelCase_ ).logits return logits def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
62
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" stooge(_UpperCamelCase , 0 , len(_UpperCamelCase ) - 1 ) return arr def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowercase , _lowercase: Optional[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowercase: Tuple = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCamelCase , i + t , (_UpperCamelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) if __name__ == "__main__": A__ : Dict = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
353
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase__ : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ['DPTFeatureExtractor'] UpperCamelCase__ : List[str] = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase__ : Union[str, Any] = re.compile(r'\b(a|an|the)\b', re.UNICODE) UpperCamelCase__ : List[Any] = None def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=_A , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=_A , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __UpperCamelCase( _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase__ : Union[str, Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __UpperCamelCase( _A : Dict ): '''simple docstring''' def remove_articles(_A : Union[str, Any] ): return ARTICLES_REGEX.sub(''' ''' , _A ) def white_space_fix(_A : Optional[int] ): return " ".join(text.split() ) def remove_punc(_A : Optional[Any] ): UpperCAmelCase__ : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' if not s: return [] return normalize_answer(_A ).split() def __UpperCamelCase( _A : Tuple , _A : str ): '''simple docstring''' return int(normalize_answer(_A ) == normalize_answer(_A ) ) def __UpperCamelCase( _A : Optional[Any] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = get_tokens(_A ) UpperCAmelCase__ : Tuple = get_tokens(_A ) UpperCAmelCase__ : Any = collections.Counter(_A ) & collections.Counter(_A ) UpperCAmelCase__ : List[Any] = sum(common.values() ) if len(_A ) == 0 or len(_A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase__ : Optional[Any] = 1.0 * num_same / len(_A ) UpperCAmelCase__ : Tuple = 1.0 * num_same / len(_A ) UpperCAmelCase__ : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase( _A : List[str] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = {} UpperCAmelCase__ : Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase__ : str = qa['''id'''] UpperCAmelCase__ : List[Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(_A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase__ : Tuple = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCAmelCase__ : Union[str, Any] = preds[qid] # Take max over all gold answers UpperCAmelCase__ : List[str] = max(compute_exact(_A , _A ) for a in gold_answers ) UpperCAmelCase__ : List[str] = max(compute_fa(_A , _A ) for a in gold_answers ) return exact_scores, fa_scores def __UpperCamelCase( _A : Any , _A : Optional[Any] , _A : List[str] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = {} for qid, s in scores.items(): UpperCAmelCase__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase__ : Any = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase__ : List[str] = s return new_scores def __UpperCamelCase( _A : str , _A : Optional[Any] , _A : Any=None ): '''simple docstring''' if not qid_list: UpperCAmelCase__ : List[Any] = len(_A ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: UpperCAmelCase__ : List[str] = len(_A ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __UpperCamelCase( _A : List[str] , _A : List[Any] , _A : Tuple ): '''simple docstring''' for k in new_eval: UpperCAmelCase__ : List[str] = new_eval[k] def __UpperCamelCase( _A : Tuple , _A : Any , _A : Optional[int] , _A : int ): '''simple docstring''' plt.step(_A , _A , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(_A , _A , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_A ) plt.savefig(_A ) plt.clf() def __UpperCamelCase( _A : Optional[int] , _A : Tuple , _A : Any , _A : Any , _A : Tuple=None , _A : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = sorted(_A , key=lambda _A : na_probs[k] ) UpperCAmelCase__ : Tuple = 0.0 UpperCAmelCase__ : Any = 1.0 UpperCAmelCase__ : Any = 0.0 UpperCAmelCase__ : Union[str, Any] = [1.0] UpperCAmelCase__ : int = [0.0] UpperCAmelCase__ : Optional[Any] = 0.0 for i, qid in enumerate(_A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase__ : Optional[Any] = true_pos / float(i + 1 ) UpperCAmelCase__ : int = true_pos / float(_A ) if i == len(_A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_A ) recalls.append(_A ) if out_image: plot_pr_curve(_A , _A , _A , _A ) return {"ap": 1_0_0.0 * avg_prec} def __UpperCamelCase( _A : Any , _A : Optional[Any] , _A : List[Any] , _A : Any , _A : Dict , _A : Any ): '''simple docstring''' if out_image_dir and not os.path.exists(_A ): os.makedirs(_A ) UpperCAmelCase__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase__ : Dict = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) UpperCAmelCase__ : Any = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) UpperCAmelCase__ : Tuple = {k: float(_A ) for k, v in qid_to_has_ans.items()} UpperCAmelCase__ : Any = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(_A , _A , '''pr_exact''' ) merge_eval(_A , _A , '''pr_f1''' ) merge_eval(_A , _A , '''pr_oracle''' ) def __UpperCamelCase( _A : Tuple , _A : Dict , _A : Dict , _A : Tuple ): '''simple docstring''' if not qid_list: return UpperCAmelCase__ : Optional[Any] = [na_probs[k] for k in qid_list] UpperCAmelCase__ : Union[str, Any] = np.ones_like(_A ) / float(len(_A ) ) plt.hist(_A , weights=_A , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_A , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __UpperCamelCase( _A : List[Any] , _A : List[str] , _A : Optional[int] , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase__ : List[str] = num_no_ans UpperCAmelCase__ : Any = cur_score UpperCAmelCase__ : List[str] = 0.0 UpperCAmelCase__ : Dict = sorted(_A , key=lambda _A : na_probs[k] ) for i, qid in enumerate(_A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase__ : int = scores[qid] else: if preds[qid]: UpperCAmelCase__ : Any = -1 else: UpperCAmelCase__ : Dict = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase__ : Optional[Any] = cur_score UpperCAmelCase__ : Tuple = na_probs[qid] return 1_0_0.0 * best_score / len(_A ), best_thresh def __UpperCamelCase( _A : str , _A : str , _A : int , _A : int , _A : Tuple , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = find_best_thresh(_A , _A , _A , _A ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = find_best_thresh(_A , _A , _A , _A ) UpperCAmelCase__ : List[str] = best_exact UpperCAmelCase__ : Any = exact_thresh UpperCAmelCase__ : Dict = best_fa UpperCAmelCase__ : Dict = fa_thresh def __UpperCamelCase( ): '''simple docstring''' with open(OPTS.data_file ) as f: UpperCAmelCase__ : Dict = json.load(_A ) UpperCAmelCase__ : str = dataset_json['''data'''] with open(OPTS.pred_file ) as f: UpperCAmelCase__ : Any = json.load(_A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase__ : Optional[Any] = json.load(_A ) else: UpperCAmelCase__ : Dict = {k: 0.0 for k in preds} UpperCAmelCase__ : int = make_qid_to_has_ans(_A ) # maps qid to True/False UpperCAmelCase__ : Any = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase__ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = get_raw_scores(_A , _A ) UpperCAmelCase__ : Optional[int] = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCAmelCase__ : Dict = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCAmelCase__ : Union[str, Any] = make_eval_dict(_A , _A ) if has_ans_qids: UpperCAmelCase__ : Optional[int] = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , '''HasAns''' ) if no_ans_qids: UpperCAmelCase__ : Dict = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_A , _A , _A , _A , _A , _A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_A , _A , _A , _A , _A , OPTS.out_image_dir ) histogram_na_prob(_A , _A , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(_A , _A , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(_A , _A ) else: print(json.dumps(_A , indent=2 ) ) if __name__ == "__main__": UpperCamelCase__ : Tuple = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
496
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _SCREAMING_SNAKE_CASE : Optional[int] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : bool = field(default=__lowerCamelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__ : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCamelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def __lowercase( self : Optional[Any] ) -> List[Any]: UpperCamelCase__ : int = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCamelCase__ : Dict = v.to_dict() return d
344
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def __lowercase( self : List[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowercase( self : int ) -> Tuple: UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : List[Any] = 3 UpperCamelCase__ : Optional[int] = (32, 32) UpperCamelCase__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def __lowercase( self : str ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def __lowercase( self : Dict ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase__ : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def __lowercase( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) return CLIPTextModel(__lowerCamelCase ) @property def __lowercase( self : Dict ) -> Any: def extract(*__lowerCamelCase : Dict, **__lowerCamelCase : List[str] ): class UpperCamelCase__ : def __init__( self : Union[str, Any] ) -> Dict: UpperCamelCase__ : int = torch.ones([0] ) def __lowercase( self : Union[str, Any], __lowerCamelCase : List[str] ) -> str: self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def __lowercase( self : Dict ) -> str: UpperCamelCase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Optional[Any] = self.dummy_cond_unet UpperCamelCase__ : Optional[int] = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=__lowerCamelCase, set_alpha_to_one=__lowerCamelCase, ) UpperCamelCase__ : Optional[Any] = self.dummy_vae UpperCamelCase__ : int = self.dummy_text_encoder UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCamelCase__ : Tuple = StableDiffusionPipeline( unet=__lowerCamelCase, scheduler=__lowerCamelCase, vae=__lowerCamelCase, text_encoder=__lowerCamelCase, tokenizer=__lowerCamelCase, safety_checker=__lowerCamelCase, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : Optional[int] = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = sd_pipe([prompt], generator=__lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=__lowerCamelCase, )[0] UpperCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : str = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase( self : Dict ) -> Any: UpperCamelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase__ : Dict = self.dummy_vae UpperCamelCase__ : Tuple = self.dummy_text_encoder UpperCamelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCamelCase__ : str = StableDiffusionPipeline( unet=__lowerCamelCase, scheduler=__lowerCamelCase, vae=__lowerCamelCase, text_encoder=__lowerCamelCase, tokenizer=__lowerCamelCase, safety_checker=__lowerCamelCase, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : Dict = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : int = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase__ : int = sd_pipe([prompt], generator=__lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : str = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=__lowerCamelCase, )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase( self : Tuple ) -> List[Any]: UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=__lowerCamelCase ) assert isinstance(__lowerCamelCase, __lowerCamelCase ) assert isinstance(pipe.scheduler, __lowerCamelCase ) assert pipe.safety_checker is None UpperCamelCase__ : Tuple = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) UpperCamelCase__ : str = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : int = pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def __lowercase( self : Dict ) -> int: UpperCamelCase__ : Optional[int] = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase__ : str = self.dummy_vae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCamelCase__ : Dict = unet.half() UpperCamelCase__ : List[Any] = vae.half() UpperCamelCase__ : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=__lowerCamelCase, scheduler=__lowerCamelCase, vae=__lowerCamelCase, text_encoder=__lowerCamelCase, tokenizer=__lowerCamelCase, safety_checker=__lowerCamelCase, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ : Tuple = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : Any = '''A painting of a squirrel eating a burger''' UpperCamelCase__ : Tuple = sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def __lowercase( self : str ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : List[Any] ) -> int: UpperCamelCase__ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=__lowerCamelCase ) UpperCamelCase__ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase__ : Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : Any = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCamelCase__ : Tuple = 40_03_66_03_46 UpperCamelCase__ : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : Dict = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Any = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=0, ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase__ : int = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Any = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Any = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=20_00, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : Dict = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase( self : Optional[Any] ) -> Tuple: UpperCamelCase__ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase__ : List[str] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : Dict = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCamelCase__ : Any = 27_34_97_17_55 UpperCamelCase__ : List[Any] = 7 UpperCamelCase__ : Dict = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Tuple = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=0, ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCamelCase__ : Optional[Any] = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=20_00, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : int = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase( self : Optional[Any] ) -> Dict: UpperCamelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCamelCase__ : str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__ : List[Any] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCamelCase__ : Any = 10_44_35_52_34 UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=0, ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=__lowerCamelCase, num_inference_steps=50, output_type='''np''', width=5_12, height=5_12, sld_guidance_scale=20_00, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : Dict = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
344
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , a__ : UNetaDModel , a__ : UNetaDModel , a__ : DDPMScheduler , a__ : Dict , ): super().__init__() UpperCAmelCase = value_function UpperCAmelCase = unet UpperCAmelCase = scheduler UpperCAmelCase = env UpperCAmelCase = env.get_dataset() UpperCAmelCase = {} for key in self.data.keys(): try: UpperCAmelCase = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase = {} for key in self.data.keys(): try: UpperCAmelCase = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase = env.observation_space.shape[0] UpperCAmelCase = env.action_space.shape[0] def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Optional[int] ): return (x_in - self.means[key]) / self.stds[key] def __snake_case ( self : str , a__ : List[Any] , a__ : Dict ): return x_in * self.stds[key] + self.means[key] def __snake_case ( self : Dict , a__ : int ): if type(a__ ) is dict: return {k: self.to_torch(a__ ) for k, v in x_in.items()} elif torch.is_tensor(a__ ): return x_in.to(self.unet.device ) return torch.tensor(a__ , device=self.unet.device ) def __snake_case ( self : Tuple , a__ : List[str] , a__ : Union[str, Any] , a__ : str ): for key, val in cond.items(): UpperCAmelCase = val.clone() return x_in def __snake_case ( self : Dict , a__ : Optional[Any] , a__ : Optional[Any] , a__ : Tuple , a__ : int ): UpperCAmelCase = x.shape[0] UpperCAmelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase = torch.full((batch_size,) , a__ , device=self.unet.device , dtype=torch.long ) for _ in range(a__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , a__ ).sample UpperCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase = self.scheduler._get_variance(a__ ) UpperCAmelCase = torch.exp(0.5 * posterior_variance ) UpperCAmelCase = model_std * grad UpperCAmelCase = 0 UpperCAmelCase = x.detach() UpperCAmelCase = x + scale * grad UpperCAmelCase = self.reset_xa(a__ , a__ , self.action_dim ) UpperCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , a__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase = self.scheduler.step(a__ , a__ , a__ , predict_epsilon=a__ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) UpperCAmelCase = self.reset_xa(a__ , a__ , self.action_dim ) UpperCAmelCase = self.to_torch(a__ ) return x, y def __call__( self : List[str] , a__ : List[str] , a__ : Dict=64 , a__ : str=32 , a__ : List[str]=2 , a__ : Any=0.1 ): # normalize the observations and create batch dimension UpperCAmelCase = self.normalize(a__ , '''observations''' ) UpperCAmelCase = obs[None].repeat(a__ , axis=0 ) UpperCAmelCase = {0: self.to_torch(a__ )} UpperCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase = randn_tensor(a__ , device=self.unet.device ) UpperCAmelCase = self.reset_xa(a__ , a__ , self.action_dim ) UpperCAmelCase = self.to_torch(a__ ) # run the diffusion process UpperCAmelCase, UpperCAmelCase = self.run_diffusion(a__ , a__ , a__ , a__ ) # sort output trajectories by value UpperCAmelCase = y.argsort(0 , descending=a__ ).squeeze() UpperCAmelCase = x[sorted_idx] UpperCAmelCase = sorted_values[:, :, : self.action_dim] UpperCAmelCase = actions.detach().cpu().numpy() UpperCAmelCase = self.de_normalize(a__ , key='''actions''' ) # select the action with the highest value if y is not None: UpperCAmelCase = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase = np.random.randint(0 , a__ ) UpperCAmelCase = denorm_actions[selected_index, 0] return denorm_actions
705
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : List[str] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=8 ) -> str: """simple docstring""" UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : VQModel , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : int , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] ): if latents is None: UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase = latents.to(a__ ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[Any] , a__ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __snake_case ( self : Union[str, Any] , a__ : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase, UpperCAmelCase = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self : Union[str, Any] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : torch.FloatTensor , a__ : int = 512 , a__ : int = 512 , a__ : int = 100 , a__ : float = 4.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , ): UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = hint.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) UpperCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) self.scheduler.set_timesteps(a__ , device=a__ ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.movq.config.latent_channels UpperCAmelCase, UpperCAmelCase = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''image_embeds''': image_embeds, '''hint''': hint} UpperCAmelCase = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase, UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase, UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing UpperCAmelCase = self.movq.decode(a__ , force_not_quantize=a__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
570
0
def lowerCamelCase__ ( _lowercase = 10 , _lowercase = 22 ): '''simple docstring''' UpperCAmelCase_ : Tuple = range(1 , _lowercase ) UpperCAmelCase_ : Optional[int] = range(1 , _lowercase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
30
import torch from torch import nn class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_=1 , A_=False ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE__ = n_token SCREAMING_SNAKE_CASE__ = d_embed SCREAMING_SNAKE_CASE__ = d_proj SCREAMING_SNAKE_CASE__ = cutoffs + [n_token] SCREAMING_SNAKE_CASE__ = [0] + self.cutoffs SCREAMING_SNAKE_CASE__ = div_val SCREAMING_SNAKE_CASE__ = self.cutoffs[0] SCREAMING_SNAKE_CASE__ = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList() SCREAMING_SNAKE_CASE__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(A_ , A_ ) ) ) else: self.out_projs.append(A_ ) self.out_layers.append(nn.Linear(A_ , A_ ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(A_ , A_ ) ) ) self.out_layers.append(nn.Linear(A_ , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE__ = keep_order def lowercase_ ( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if proj is None: SCREAMING_SNAKE_CASE__ = nn.functional.linear(A_ , A_ , bias=A_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE__ = nn.functional.linear(A_ , proj.t().contiguous() ) SCREAMING_SNAKE_CASE__ = nn.functional.linear(A_ , A_ , bias=A_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase_ ( self , A_ , A_=None , A_=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE__ = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE__ = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: SCREAMING_SNAKE_CASE__ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE__ = labels != -1_00 SCREAMING_SNAKE_CASE__ = torch.zeros_like(A_ , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE__ = ( -nn.functional.log_softmax(A_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(A_ , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE__ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ = self.out_layers[i].weight SCREAMING_SNAKE_CASE__ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A_ ) biases.append(A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(A_ , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE__ = torch.zeros_like(A_ , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [0] + self.cutoffs for i in range(len(A_ ) - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE__ = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE__ = labels.index_select(0 , A_ ) - l_idx SCREAMING_SNAKE_CASE__ = head_logprob.index_select(0 , A_ ) SCREAMING_SNAKE_CASE__ = hidden.index_select(0 , A_ ) else: SCREAMING_SNAKE_CASE__ = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE__ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE__ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(A_ , dim=1 ) SCREAMING_SNAKE_CASE__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE__ = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , A_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase_ ( self , A_ ): '''simple docstring''' if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(A_ , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE__ = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ = self.out_layers[i].weight SCREAMING_SNAKE_CASE__ = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A_ ) biases.append(A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(A_ , dim=1 ) SCREAMING_SNAKE_CASE__ = [0] + self.cutoffs for i in range(len(A_ ) - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE__ = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE__ = self._compute_logit(A_ , A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(A_ , dim=1 ) SCREAMING_SNAKE_CASE__ = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE__ = logprob_i return out
100
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase__ : int = StableDiffusionInstructPixaPixPipeline UpperCAmelCase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCAmelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase(self : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) snake_case = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case = CLIPTextModel(lowercase_ ) snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase(self : str , _A : Dict , _A : List[Any]=0 ) -> Optional[int]: snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ) if str(lowercase_ ).startswith("mps" ): snake_case = torch.manual_seed(lowercase_ ) else: snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase(self : Dict ) -> Dict: snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase_ ) snake_case = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = self.get_dummy_inputs(lowercase_ ) snake_case = sd_pipe(**lowercase_ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase_ ) snake_case = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = self.get_dummy_inputs(lowercase_ ) snake_case = "french fries" snake_case = sd_pipe(**lowercase_ , negative_prompt=lowercase_ ) snake_case = output.images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase_ ) snake_case = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = self.get_dummy_inputs(lowercase_ ) snake_case = [inputs["prompt"]] * 2 snake_case = np.array(inputs["image"] ).astype(np.floataa ) / 2_55.0 snake_case = torch.from_numpy(lowercase_ ).unsqueeze(0 ).to(lowercase_ ) snake_case = image / 2 + 0.5 snake_case = image.permute(0 , 3 , 1 , 2 ) snake_case = image.repeat(2 , 1 , 1 , 1 ) snake_case = sd_pipe(**lowercase_ ).images snake_case = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase(self : str ) -> Union[str, Any]: snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" ) snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase_ ) snake_case = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = self.get_dummy_inputs(lowercase_ ) snake_case = sd_pipe(**lowercase_ ).images snake_case = image[0, -3:, -3:, -1] snake_case = [round(lowercase_ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(lowercase_ ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase(self : Dict ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase(self : Union[str, Any] ) -> Union[str, Any]: snake_case = self.get_dummy_components() snake_case = StableDiffusionInstructPixaPixPipeline(**lowercase_ ) snake_case = VaeImageProcessor(do_resize=lowercase_ , do_normalize=lowercase_ ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = pipe(**self.get_dummy_inputs_by_type(lowercase_ , input_image_type="pt" ) )[0] snake_case = components["vae"] snake_case = self.get_dummy_inputs_by_type(lowercase_ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case = pipe(**lowercase_ )[0] snake_case = np.abs(out - out_latents_inputs ).max() self.assertLess(lowercase_ , 1E-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Dict ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase(self : Any , _A : int=0 ) -> Tuple: snake_case = torch.manual_seed(lowercase_ ) snake_case = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) snake_case = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def UpperCAmelCase(self : int ) -> Optional[Any]: snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**lowercase_ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase(self : str ) -> List[str]: snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowercase_ ) snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**lowercase_ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase(self : Tuple ) -> Dict: snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowercase_ ) snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**lowercase_ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase(self : Union[str, Any] ) -> int: snake_case = 0 def callback_fn(_A : Union[str, Any] , _A : Dict , _A : Optional[int] ) -> None: snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case = False snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowercase_ , torch_dtype=torch.floataa ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase(self : Any ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=lowercase_ , torch_dtype=torch.floataa ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case = self.get_inputs() snake_case = pipe(**lowercase_ ) snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def UpperCAmelCase(self : Optional[int] ) -> Optional[int]: snake_case = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case = inputs["image"].resize((5_0_4, 5_0_4) ) snake_case = "timbrooks/instruct-pix2pix" snake_case = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() snake_case = pipe(**lowercase_ ) snake_case = output.images[0] snake_case = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
704
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Any = CpmAntTokenizer UpperCAmelCase__ : Optional[Any] = False def UpperCAmelCase(self : Optional[Any] ) -> Dict: super().setUp() snake_case = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) snake_case = "今天天气真好!" snake_case = ["今天", "天气", "真", "好", "!"] snake_case = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) snake_case = "今天天气真好!" snake_case = [tokenizer.bos_token] + tokens snake_case = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) snake_case = tokenizer.decode(_A ) self.assertEqual(_A , _A )
294
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = 0 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : str = Path(lowerCAmelCase ) / """preprocessor_config.json""" __lowerCAmelCase : Union[str, Any] = Path(lowerCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase , """w""" ) ) __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Dict = Path(lowerCAmelCase ) / """preprocessor_config.json""" __lowerCAmelCase : Dict = Path(lowerCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase , """w""" ) ) __lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Union[str, Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCAmelCase : Dict = Path(lowerCAmelCase ) / """preprocessor_config.json""" __lowerCAmelCase : List[Any] = Path(lowerCAmelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase ).to_dict() config_dict.pop("""image_processor_type""" ) __lowerCAmelCase : Dict = CLIPImageProcessor(**lowerCAmelCase ) # save in new folder model_config.save_pretrained(lowerCAmelCase ) config.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained(lowerCAmelCase ) # make sure private variable is not incorrectly saved __lowerCAmelCase : List[str] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Any = Path(lowerCAmelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase , """w""" ) , ) __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """clip-base is not a local folder and is not a valid model identifier""" ): __lowerCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""clip-base""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: """simple docstring""" with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase ) __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained(lowerCAmelCase , trust_remote_code=lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCAmelCase ) AutoImageProcessor.register(lowerCAmelCase , lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoImageProcessor.register(lowerCAmelCase , lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Dict = Path(lowerCAmelCase ) / """preprocessor_config.json""" __lowerCAmelCase : Optional[Any] = Path(lowerCAmelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(lowerCAmelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(lowerCAmelCase , """w""" ) ) __lowerCAmelCase : List[Any] = CustomImageProcessor.from_pretrained(lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =True try: AutoConfig.register("""custom""" , lowerCAmelCase ) AutoImageProcessor.register(lowerCAmelCase , lowerCAmelCase ) # If remote code is not set, the default is to use local __lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCAmelCase : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
651
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def snake_case_ (*__A : Optional[Any] ) -> str: with open(__A , """r""" ) as fh: fcntl.flock(__A , fcntl.LOCK_EX ) try: print(*__A ) finally: fcntl.flock(__A , fcntl.LOCK_UN ) __UpperCAmelCase = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) __UpperCAmelCase = torch.device("""cuda""", local_rank) __UpperCAmelCase = socket.gethostname() __UpperCAmelCase = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCAmelCase = dist.get_rank() __UpperCAmelCase = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
651
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = XLMRobertaTokenizer lowercase_ = XLMRobertaTokenizerFast lowercase_ = True lowercase_ = True def snake_case ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowercase__ : int = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : str ): lowercase__ : Optional[int] = "<pad>" lowercase__ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1_002 ) def snake_case ( self : int ): self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase__ : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def snake_case ( self : Union[str, Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase__ : List[str] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : int = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = tempfile.mkdtemp() lowercase__ : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowercase__ : Union[str, Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way lowercase__ : Any = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True lowercase__ : List[str] = tempfile.mkdtemp() lowercase__ : Tuple = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE ) lowercase__ : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way lowercase__ : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) shutil.rmtree(SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False lowercase__ : Optional[int] = tempfile.mkdtemp() lowercase__ : Dict = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ : Any = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) shutil.rmtree(SCREAMING_SNAKE_CASE ) @cached_property def snake_case ( self : List[str] ): return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def snake_case ( self : List[str] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE , f.name ) lowercase__ : List[str] = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = pickle.dumps(SCREAMING_SNAKE_CASE ) pickle.loads(SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): if not self.test_rust_tokenizer: return lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Optional[Any] = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowercase__ : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = self.get_rust_tokenizer() lowercase__ : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : List[Any] ): lowercase__ : Tuple = "Hello World!" lowercase__ : Dict = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @slow def snake_case ( self : Optional[Any] ): lowercase__ : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase__ : Optional[int] = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE ) ) @slow def snake_case ( self : Tuple ): # fmt: off lowercase__ : List[str] = {"input_ids": [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
81
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : CLIPSegForImageSegmentation , SCREAMING_SNAKE_CASE : CLIPSegProcessor , SCREAMING_SNAKE_CASE : AutoencoderKL , SCREAMING_SNAKE_CASE : CLIPTextModel , SCREAMING_SNAKE_CASE : CLIPTokenizer , SCREAMING_SNAKE_CASE : UNetaDConditionModel , SCREAMING_SNAKE_CASE : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : int = dict(scheduler.config ) lowercase__ : Any = 1 lowercase__ : Union[str, Any] = FrozenDict(SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = dict(scheduler.config ) lowercase__ : Union[str, Any] = True lowercase__ : int = FrozenDict(SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE , segmentation_processor=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase__ : Union[str, Any] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, List[str]] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 50 , SCREAMING_SNAKE_CASE : float = 7.5 , SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE : int = 1 , **SCREAMING_SNAKE_CASE : Optional[Any] , ): lowercase__ : Dict = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowercase__ : int = self.segmentation_model(**SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase__ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase__ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , mask_image=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , )
81
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _lowerCamelCase( _a ): lowercase_ : Any = """M-CLIP""" def __init__( self, lowerCamelCase=10_24, lowerCamelCase=7_68, **lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = transformerDimSize _lowercase : Union[str, Any] = imageDimSize super().__init__(**lowerCamelCase) class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = MCLIPConfig def __init__( self, lowerCamelCase, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" super().__init__(lowerCamelCase, *lowerCamelCase, **lowerCamelCase) _lowercase : Dict = XLMRobertaModel(lowerCamelCase) _lowercase : Any = torch.nn.Linear( in_features=config.transformerDimensions, out_features=config.numDims) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Tuple = self.transformer(input_ids=lowerCamelCase, attention_mask=lowerCamelCase)[0] _lowercase : Union[str, Any] = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowerCamelCase), embs
89
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase( unittest.TestCase ): snake_case_ : int = MODEL_FOR_MASKED_LM_MAPPING snake_case_ : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-0_5, "token": 3_8_0_1_5, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-0_5, "token": 2_5_5_0_6, "token_str": " accuser"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-0_5, "token": 3_8_0_1_5, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-0_5, "token": 2_5_5_0_6, "token_str": " accuser", }, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-0_5, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-0_5, "token": 2_9_4_1, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS"}, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-0_5, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-0_5, "token": 2_9_4_1, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3_6_0_6, "token_str": " Clara"}, ] , ) __snake_case = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ [ { "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() __snake_case = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(SCREAMING_SNAKE_CASE ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: '''simple docstring''' __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"sequence": "My name is John", "score": 0.008, "token": 6_1_0, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_5_7_3, "token_str": " Chris"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_2_0_1, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2_7_9_0, "token_str": " Lyon", }, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_9_4_1, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) __snake_case = None __snake_case = None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) __snake_case = None __snake_case = None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> int: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: '''simple docstring''' __snake_case = fill_masker.tokenizer __snake_case = fill_masker.model __snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker("This is" ) self.run_test_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_top_k_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_duplicate_targets_and_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_multiple_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case = tokenizer.get_vocab() __snake_case = sorted(vocab.keys() )[:2] # Pipeline argument __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , targets=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE ) __snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Call argument __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE ) __snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Score equivalence __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) __snake_case = [top_mask["token_str"] for top_mask in outputs] __snake_case = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ) == set(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) __snake_case = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) # Raises with invalid with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , top_k=2 ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' __snake_case = tokenizer.get_vocab() __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) # top_k=2, ntargets=3 __snake_case = sorted(vocab.keys() )[:3] __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=SCREAMING_SNAKE_CASE ) # If we use the most probably targets, and filter differently, we should still # have the same results __snake_case = [el["token_str"] for el in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ).issubset(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=SCREAMING_SNAKE_CASE ) # They should yield exactly the same result self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.get_vocab() # String duplicates + id duplicates __snake_case = sorted(vocab.keys() )[:3] __snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] __snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 3 ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], ] , )
371
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _a : Dict = input("""Enter image url: """).strip() print(f'Downloading image from {url} ...') _a : str = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _a : str = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] _a : Dict = requests.get(image_url).content _a : str = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, """wb""") as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
87
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _UpperCAmelCase ( unittest.TestCase): def lowerCamelCase__ ( self ): _snake_case : List[Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _snake_case : List[Any] = Vector() def lowerCamelCase__ ( self ): _snake_case : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case_ ) , "(0,0,0,0,0,1)" ) def lowerCamelCase__ ( self ): _snake_case : Dict = Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case_ ) , 4 ) def lowerCamelCase__ ( self ): _snake_case : List[Any] = Vector([1, 2] ) _snake_case : List[str] = Vector([1, 2, 3, 4, 5] ) _snake_case : List[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _snake_case : Any = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCamelCase__ ( self ): _snake_case : List[Any] = Vector([1, 2, 3] ) _snake_case : Any = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCamelCase__ ( self ): _snake_case : str = Vector([1, 2, 3] ) _snake_case : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCamelCase__ ( self ): _snake_case : Optional[int] = Vector([1, 2, 3] ) _snake_case : List[Any] = Vector([2, -1, 4] ) # for test of dot product _snake_case : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def lowerCamelCase__ ( self ): self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def lowerCamelCase__ ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def lowerCamelCase__ ( self ): _snake_case : Tuple = Vector([1, 2, 3] ) _snake_case : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case_ , snake_case_ ) ) , "(3,4,7)" ) def lowerCamelCase__ ( self ): _snake_case : Union[str, Any] = Vector([1, 0, 0, 0, 0, 0] ) _snake_case : Optional[int] = x.copy() self.assertEqual(str(snake_case_ ) , str(snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : Dict = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case_ ) , "(0,1,0)" ) def lowerCamelCase__ ( self ): _snake_case : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case : str = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case_ , snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case : Optional[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case_ , snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCamelCase__ ( self ): _snake_case : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _snake_case : List[str] = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def lowerCamelCase__ ( self ): _snake_case : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCamelCase__ ( self ): _snake_case : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def lowerCamelCase__ ( self ): _snake_case : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _snake_case : Optional[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def lowerCamelCase__ ( self ): self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
87
1
"""simple docstring""" from __future__ import annotations import time import numpy as np A_ : Any = [8, 5, 9, 7] A_ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : int = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase : def __init__( self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , ) -> None: SCREAMING_SNAKE_CASE__ = claim_vector SCREAMING_SNAKE_CASE__ = allocated_resources_table SCREAMING_SNAKE_CASE__ = maximum_claim_table def SCREAMING_SNAKE_CASE ( self : int ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def SCREAMING_SNAKE_CASE ( self : int ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowerCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def SCREAMING_SNAKE_CASE ( self : Any ) -> dict[int, list[int]]: return {self.__need().index(_lowerCAmelCase ): i for i in self.__need()} def SCREAMING_SNAKE_CASE ( self : Any , **__UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.__need() SCREAMING_SNAKE_CASE__ = self.__allocated_resources_table SCREAMING_SNAKE_CASE__ = self.__available_resources() SCREAMING_SNAKE_CASE__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 5_0 + """\n""" ) while need_list: SCREAMING_SNAKE_CASE__ = False for each_need in need_list: SCREAMING_SNAKE_CASE__ = True for index, need in enumerate(_lowerCAmelCase ): if need > available_resources[index]: SCREAMING_SNAKE_CASE__ = False break if execution: SCREAMING_SNAKE_CASE__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE__ = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_lowerCAmelCase ) # update available/freed resources stack SCREAMING_SNAKE_CASE__ = np.array(_lowerCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(_lowerCAmelCase ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_lowerCAmelCase ) + 1}""" + """ """.join(F"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_lowerCAmelCase ) + 1}""" + """ """.join(F"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(_lowerCAmelCase ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(_lowerCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
196
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase_ : Any = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase_ : str = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): lowercase = (images / 2 + 0.5).clamp(0 , 1 ) lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase = numpy_to_pil(lowercase_ ) return images def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): if images.ndim == 3: lowercase = images[None, ...] lowercase = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowercase = [Image.fromarray(lowercase_ ) for image in images] return pil_images
588
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __snake_case ( SCREAMING_SNAKE_CASE: int = 5000 ): """simple docstring""" _lowerCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = pentagonal_nums[j] _lowerCAmelCase = pentagonal_i + pentagonal_j _lowerCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(f'{solution() = }')
491
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = [int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": _snake_case = input().strip() _snake_case = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
491
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _lowerCAmelCase :int = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : tuple , UpperCamelCase__ : Path , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False , ): output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : bool = False ): _UpperCAmelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _UpperCAmelCase : int = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: _UpperCAmelCase : Dict = '''cpu''' _UpperCAmelCase : Optional[int] = Path(UpperCamelCase__ ) # VAE DECODER _UpperCAmelCase : List[str] = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) _UpperCAmelCase : Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part _UpperCAmelCase : Optional[Any] = vae_decoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , 25 , 25 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCamelCase__ , ) del vae_decoder if __name__ == "__main__": _lowerCAmelCase :Any = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _lowerCAmelCase :str = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
506
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : str = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : List[str] = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value _lowerCAmelCase :Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skip('''Test was skipped''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : str=None , UpperCamelCase__ : str=None ): if test_case is None: return partial(UpperCamelCase__ , version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version('''>=''' , UpperCamelCase__ ) , F'test requires torch version >= {version}' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Any ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(UpperCamelCase__ ) _lowerCAmelCase :Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ (UpperCamelCase__ : str ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(UpperCamelCase__ ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' a__ =True @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: _UpperCAmelCase : Tuple = tempfile.mkdtemp() @classmethod def __lowerCAmelCase ( cls ) -> List[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __lowerCAmelCase ( self ) -> Dict: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : Any = mocks if isinstance(A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Union[str, Any] = AcceleratorState() _UpperCAmelCase : Union[str, Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : List[str] = gather(UpperCamelCase__ ).cpu() _UpperCAmelCase : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCamelCase__ ): return False return True class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A , A ) -> Optional[int]: _UpperCAmelCase : List[Any] = returncode _UpperCAmelCase : Any = stdout _UpperCAmelCase : Tuple = stderr async def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : int ): while True: _UpperCAmelCase : Tuple = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False ): if echo: print('''\nRunning: ''' , ''' '''.join(UpperCamelCase__ ) ) _UpperCAmelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[int] = [] def tee(UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Dict="" ): _UpperCAmelCase : int = line.decode('''utf-8''' ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=180 , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=True ): _UpperCAmelCase : Optional[int] = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) _UpperCAmelCase : Tuple = ''' '''.join(UpperCamelCase__ ) if result.returncode > 0: _UpperCAmelCase : Any = '''\n'''.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class _UpperCAmelCase ( a ): '''simple docstring''' pass def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Union[str, Any] = subprocess.check_output(UpperCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__ , '''decode''' ): _UpperCAmelCase : List[Any] = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
506
1
from itertools import count def lowercase_ ( _UpperCamelCase = 50 ): '''simple docstring''' __lowercase = [1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
714
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = ["speech"] def __init__( self , *snake_case_ , **snake_case_ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''speech'''] ) class lowerCamelCase_ ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = ["speech"] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''speech'''] )
527
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
271
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Dict = VQModel lowerCAmelCase : List[str] = '''sample''' @property def lowerCAmelCase ( self : List[Any] , _lowercase : Tuple=(32, 32) ): """simple docstring""" _UpperCamelCase: List[Any] = 4 _UpperCamelCase: Tuple = 3 _UpperCamelCase: List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_lowercase ) return {"sample": image} @property def lowerCAmelCase ( self : List[Any] ): """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : str ): """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Any = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } _UpperCamelCase: Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: int = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowercase ) _UpperCamelCase: Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Dict = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_lowercase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCamelCase: int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCamelCase: Tuple = image.to(_lowercase ) with torch.no_grad(): _UpperCamelCase: Optional[int] = model(_lowercase ).sample _UpperCamelCase: List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase: Any = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) )
271
1
'''simple docstring''' snake_case_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} snake_case_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict[int, list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[bool] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Optional[int] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) order.append(SCREAMING_SNAKE_CASE_ ) return order def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict[int, list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[bool] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return component def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) * [False] SCREAMING_SNAKE_CASE_ : dict[int, list[int]] = {vert: [] for vert in range(len(SCREAMING_SNAKE_CASE_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : List[str] = [] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE_ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : Dict = order[len(SCREAMING_SNAKE_CASE_ ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = find_components(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) components_list.append(SCREAMING_SNAKE_CASE_ ) return components_list
700
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCamelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.nn.Linear(2 , 4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) SCREAMING_SNAKE_CASE_ : Any = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) SCREAMING_SNAKE_CASE_ : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator(cpu=lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator() SCREAMING_SNAKE_CASE_ : Any = GradientState() assert state.num_steps == 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True SCREAMING_SNAKE_CASE_ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() ( ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ) : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCamelCase ( self ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase__ , **lowercase__ ): pass with patch("torch.cuda.set_device" , lowercase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): SCREAMING_SNAKE_CASE_ : List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_signature(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_signature(lowercase__ ) # saving hook def save_config(lowercase__ , lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowercase__ , "data.json" ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) # loading hook def load_config(lowercase__ , lowercase__ ): with open(os.path.join(lowercase__ , "data.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ : Any = json.load(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = config["class_name"] SCREAMING_SNAKE_CASE_ : Dict = accelerator.register_save_state_pre_hook(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Union[str, Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Tuple = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(dummy_obj is None ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 2, 3] # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : int = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map={"": 0} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(lowercase__ ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowercase__ , load_in_abit=lowercase__ , llm_inta_enable_fpaa_cpu_offload=lowercase__ ) # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : str = accelerator.prepare(lowercase__ ) @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : str = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : str = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = accelerator.prepare(lowercase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare(lowercase__ ) @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple = Accelerator(cpu=lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(lowercase__ )
68
0
def __magic_name__ ( __lowerCAmelCase : int ) -> List[str]: __lowerCamelCase = len(_A ) __lowerCamelCase = sum(_A ) __lowerCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCamelCase = True for i in range(1 , s + 1 ): __lowerCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCamelCase = dp[i][j - 1] if arr[i - 1] <= j: __lowerCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCamelCase = s - 2 * j break return diff
298
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_: Tuple = logging.get_logger(__name__) A_: str = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_vision_model' def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=288 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_channels _lowercase = patch_size _lowercase = image_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = stop_gradient _lowercase = share_layernorm _lowercase = remove_last_layer @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower_text_model' def __init__( self , UpperCAmelCase=50265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=1 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=514 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = initializer_factor _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = pad_token_id _lowercase = bos_token_id _lowercase = eos_token_id @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'bridgetower' def __init__( self , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=768 , UpperCAmelCase=1 , UpperCAmelCase=1e-05 , UpperCAmelCase=False , UpperCAmelCase="add" , UpperCAmelCase=12 , UpperCAmelCase=6 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' _lowercase = kwargs.pop("""text_config_dict""" , UpperCAmelCase ) _lowercase = kwargs.pop("""vision_config_dict""" , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) _lowercase = share_cross_modal_transformer_layers _lowercase = hidden_act _lowercase = hidden_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = share_link_tower_layers _lowercase = link_tower_type _lowercase = num_attention_heads _lowercase = num_hidden_layers _lowercase = tie_word_embeddings _lowercase = init_layernorm_from_vision_encoder if text_config is None: _lowercase = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _lowercase = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _lowercase = BridgeTowerTextConfig(**UpperCAmelCase ) _lowercase = BridgeTowerVisionConfig(**UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.text_config.to_dict() _lowercase = self.vision_config.to_dict() _lowercase = self.__class__.model_type return output
398
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : List[str] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class _lowerCamelCase (lowerCamelCase ): lowercase__ = """transfo-xl""" lowercase__ = ["""mems"""] lowercase__ = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , SCREAMING_SNAKE_CASE_=267_735 , SCREAMING_SNAKE_CASE_=[20_000, 40_000, 200_000] , SCREAMING_SNAKE_CASE_=1_024 , SCREAMING_SNAKE_CASE_=1_024 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=4_096 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=1_600 , SCREAMING_SNAKE_CASE_=1_000 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="normal" , SCREAMING_SNAKE_CASE_=0.0_1 , SCREAMING_SNAKE_CASE_=0.0_1 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , ): __snake_case = vocab_size __snake_case = [] self.cutoffs.extend(SCREAMING_SNAKE_CASE_ ) if proj_share_all_but_first: __snake_case = [False] + [True] * len(self.cutoffs ) else: __snake_case = [False] + [False] * len(self.cutoffs ) __snake_case = d_model __snake_case = d_embed __snake_case = d_head __snake_case = d_inner __snake_case = div_val __snake_case = pre_lnorm __snake_case = n_layer __snake_case = n_head __snake_case = mem_len __snake_case = same_length __snake_case = attn_type __snake_case = clamp_len __snake_case = sample_softmax __snake_case = adaptive __snake_case = dropout __snake_case = dropatt __snake_case = untie_r __snake_case = init __snake_case = init_range __snake_case = proj_init_std __snake_case = init_std __snake_case = layer_norm_epsilon super().__init__(eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def __lowerCamelCase ( self ): # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
345
from __future__ import annotations from typing import Any def __lowercase( __snake_case : list ) -> int: if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
345
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : List[Any] = TaConfig.from_json_file(lowerCAmelCase__ ) print(F"Building PyTorch model from configuration: {config}" ) lowerCamelCase_ : Union[str, Any] = TaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _lowercase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase : str =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
364
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = order # a_{0} ... a_{k} UpperCAmelCase : Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase : List[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase : Dict = [0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase : Optional[Any] = [0.0] * self.order def A_ ( self , snake_case , snake_case ): '''simple docstring''' if len(snake_case ) < self.order: UpperCAmelCase : Dict = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: UpperCAmelCase : Optional[Any] = ( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(snake_case )}" ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: UpperCAmelCase : Optional[Any] = ( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(snake_case )}" ) raise ValueError(snake_case ) UpperCAmelCase : Optional[int] = a_coeffs UpperCAmelCase : Optional[Any] = b_coeffs def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase : List[str] = self.input_history[:-1] UpperCAmelCase : List[Any] = self.output_history[:-1] UpperCAmelCase : str = sample UpperCAmelCase : str = result return result
679
0
from __future__ import annotations from collections import Counter from random import random class _lowerCAmelCase : """simple docstring""" def __init__( self : int): '''simple docstring''' snake_case__ = {} def __magic_name__ ( self : Any , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = {} def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float): '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCamelCase__) if nodea not in self.connections: self.add_node(UpperCamelCase__) snake_case__ = probability def __magic_name__ ( self : Any): '''simple docstring''' return list(self.connections) def __magic_name__ ( self : int , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = 0 snake_case__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _UpperCAmelCase ( a : str , a : list[tuple[str, str, float]] , a : int ): snake_case__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(a , a , a ) snake_case__ = Counter(graph.get_nodes() ) snake_case__ = start for _ in range(a ): snake_case__ = graph.transition(a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
99
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a__ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : str , **UpperCamelCase__ : Dict): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ = deprecated_arg[3:] setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__)) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''') snake_case__ = kwargs.pop("""torchscript""" , self.torchscript) snake_case__ = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics) snake_case__ = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level) super().__init__(**UpperCamelCase__) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Trace the models using torchscript'''} ) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) _lowercase : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def __magic_name__ ( self : Tuple): '''simple docstring''' requires_backends(self , ["""torch"""]) logger.info("""PyTorch: setting up devices""") if not self.cuda: snake_case__ = torch.device("""cpu""") snake_case__ = 0 elif is_torch_tpu_available(): snake_case__ = xm.xla_device() snake_case__ = 0 else: snake_case__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") snake_case__ = torch.cuda.device_count() return device, n_gpu @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __magic_name__ ( self : List[str]): '''simple docstring''' requires_backends(self , ["""torch"""]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[0] @property def __magic_name__ ( self : str): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[1] @property def __magic_name__ ( self : str): '''simple docstring''' return self.n_gpu > 0
99
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 0 ) -> List[str]: """simple docstring""" A__ = length or len(lowerCamelCase_ ) A__ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A__ = list_data[i + 1], list_data[i] A__ = True return list_data if not swapped else bubble_sort(lowerCamelCase_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
87
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
379
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( _lowercase : Tuple ): '''simple docstring''' UpperCAmelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): UpperCAmelCase : List[str] = key.replace("module.encoder" , "glpn.encoder" ) if key.startswith("module.decoder" ): UpperCAmelCase : int = key.replace("module.decoder" , "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase : Optional[int] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowercase )-1}""" ) if "norm" in key: UpperCAmelCase : List[Any] = key.replace("norm" , "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase : Dict = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] UpperCAmelCase : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowercase )-1}""" ) if "layer_norm1" in key: UpperCAmelCase : Optional[Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase : Optional[Any] = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase : Tuple = key[key.find("block" ) + len("block" )] UpperCAmelCase : Optional[int] = key.replace(F"""block{idx}""" , F"""block.{int(_lowercase )-1}""" ) if "attn.q" in key: UpperCAmelCase : List[Any] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase : Union[str, Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCAmelCase : Optional[Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCAmelCase : List[str] = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCAmelCase : Tuple = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCAmelCase : str = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCAmelCase : Union[str, Any] = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCAmelCase : Tuple = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase : Any = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase : List[Any] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowercase )-1}""" ) if "bot_conv" in key: UpperCAmelCase : Any = key.replace("bot_conv" , "0.convolution" ) if "skip_conv1" in key: UpperCAmelCase : int = key.replace("skip_conv1" , "1.convolution" ) if "skip_conv2" in key: UpperCAmelCase : Any = key.replace("skip_conv2" , "2.convolution" ) if "fusion1" in key: UpperCAmelCase : Union[str, Any] = key.replace("fusion1" , "1.fusion" ) if "fusion2" in key: UpperCAmelCase : str = key.replace("fusion2" , "2.fusion" ) if "fusion3" in key: UpperCAmelCase : List[str] = key.replace("fusion3" , "3.fusion" ) if "fusion" in key and "conv" in key: UpperCAmelCase : Union[str, Any] = key.replace("conv" , "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): UpperCAmelCase : Dict = key.replace("module.last_layer_depth" , "head.head" ) UpperCAmelCase : Tuple = value return new_state_dict def lowercase_ ( _lowercase : Optional[int] , _lowercase : Optional[Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase : List[str] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase : Optional[int] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase : Optional[Any] = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase : List[Any] = kv_bias[config.hidden_sizes[i] :] def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return image @torch.no_grad() def lowercase_ ( _lowercase : List[Any] , _lowercase : Tuple , _lowercase : List[Any]=False , _lowercase : str=None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : str = image_processor(images=_lowercase , return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict UpperCAmelCase : Union[str, Any] = torch.load(_lowercase , map_location=torch.device("cpu" ) ) # rename keys UpperCAmelCase : Optional[int] = rename_keys(_lowercase ) # key and value matrices need special treatment read_in_k_v(_lowercase , _lowercase ) # create HuggingFace model and load state dict UpperCAmelCase : Tuple = GLPNForDepthEstimation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # forward pass UpperCAmelCase : List[Any] = model(_lowercase ) UpperCAmelCase : Union[str, Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase : int = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: UpperCAmelCase : Any = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase : List[str] = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowercase , atol=1E-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowercase , _lowercase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowercase , ) if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) snake_case_ : Union[str, Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
292
"""simple docstring""" def lowercase_ ( _lowercase : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) UpperCAmelCase : Optional[int] = sorted(string.lower() ) return len(_lowercase ) == len(set(_lowercase ) ) if __name__ == "__main__": snake_case_ : Tuple = input("""Enter a string """).strip() snake_case_ : str = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
292
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase :List[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Tuple = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCamelCase :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
222
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCamelCase :Union[str, Any] = logging.getLogger(__name__) __lowerCamelCase :str = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __lowerCamelCase :int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowercase)} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''}) snake_case__ : Optional[str] =field( default=__lowercase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) snake_case__ : Optional[str] =field( default=__lowercase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''}) snake_case__ : bool =field(default=__lowercase , metadata={'''help''': '''Whether ot not to use whole word mask.'''}) snake_case__ : float =field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''}) snake_case__ : float =field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) snake_case__ : int =field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''}) snake_case__ : int =field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) snake_case__ : bool =field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''}) def snake_case ( UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , ) -> Optional[int]: def _dataset(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCamelCase : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCamelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCamelCase : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase : Dict = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCamelCase : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCamelCase : Tuple = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCamelCase : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCamelCase : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCamelCase : int = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: lowerCamelCase : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase : List[Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase : Dict = trainer.evaluate() lowerCamelCase : List[Any] = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase : Any = {"""perplexity""": perplexity} lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def snake_case ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
222
1
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
704
'''simple docstring''' import argparse import os import re import packaging.version __snake_case : int = 'examples/' __snake_case : Dict = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __snake_case : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } __snake_case : int = 'README.md' def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : List[Any], _UpperCamelCase : List[str] ) -> int: with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.read() A_ ,A_ = REPLACE_PATTERNS[pattern] A_ = replace.replace('''VERSION''', _UpperCamelCase ) A_ = re_pattern.sub(_UpperCamelCase, _UpperCamelCase ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Any ) -> int: for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_UpperCamelCase, _UpperCamelCase ), _UpperCamelCase, pattern='''examples''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _UpperCAmelCase ( ) -> Dict: A_ = '''🤗 Transformers currently provides the following architectures''' A_ = '''1. Want to contribute a new model?''' with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.readlines() # Find the start of the list. A_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): A_ = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''', '''https://huggingface.co/docs/diffusers/model_doc''', ) index += 1 with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) def _UpperCAmelCase ( ) -> List[Any]: with open(REPLACE_FILES['''init'''], '''r''' ) as f: A_ = f.read() A_ = REPLACE_PATTERNS['''init'''][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : str=False ) -> Union[str, Any]: A_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: A_ = default_version.base_version elif patch: A_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase, patch=_UpperCamelCase ) def _UpperCAmelCase ( ) -> int: A_ = get_version() A_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ = current_version.base_version # Check with the user we got that right. A_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __snake_case : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
174
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : int = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _snake_case ( lowerCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = 'unispeech-sat' def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE="group" , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=3_20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1_00 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="mean" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=(5_12, 5_12, 5_12, 5_12, 15_00) , _SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5_04 , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = hidden_size lowerCAmelCase = feat_extract_norm lowerCAmelCase = feat_extract_activation lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = conv_bias lowerCAmelCase = num_conv_pos_embeddings lowerCAmelCase = num_conv_pos_embedding_groups lowerCAmelCase = len(self.conv_dim ) lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = feat_proj_dropout lowerCAmelCase = final_dropout lowerCAmelCase = layerdrop lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = vocab_size lowerCAmelCase = num_clusters lowerCAmelCase = do_stable_layer_norm lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase = apply_spec_augment lowerCAmelCase = mask_time_prob lowerCAmelCase = mask_time_length lowerCAmelCase = mask_time_min_masks lowerCAmelCase = mask_feature_prob lowerCAmelCase = mask_feature_length lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase = num_codevectors_per_group lowerCAmelCase = num_codevector_groups lowerCAmelCase = contrastive_logits_temperature lowerCAmelCase = feat_quantizer_dropout lowerCAmelCase = num_negatives lowerCAmelCase = codevector_dim lowerCAmelCase = proj_codevector_dim lowerCAmelCase = diversity_loss_weight # ctc loss lowerCAmelCase = ctc_loss_reduction lowerCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
284
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[int] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='altclip_text_model' def __init__( self, lowerCAmelCase=250_002, lowerCAmelCase=1_024, lowerCAmelCase=24, lowerCAmelCase=16, lowerCAmelCase=4_096, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=514, lowerCAmelCase=1, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-05, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase="absolute", lowerCAmelCase=True, lowerCAmelCase=768, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =initializer_factor lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =project_dim class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Dict ='altclip_vision_model' def __init__( self, lowerCAmelCase=768, lowerCAmelCase=3_072, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3, lowerCAmelCase=224, lowerCAmelCase=32, lowerCAmelCase="quick_gelu", lowerCAmelCase=1e-5, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=1.0, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =hidden_size lowerCamelCase_ =intermediate_size lowerCamelCase_ =projection_dim lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =num_channels lowerCamelCase_ =patch_size lowerCamelCase_ =image_size lowerCamelCase_ =initializer_range lowerCamelCase_ =initializer_factor lowerCamelCase_ =attention_dropout lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =hidden_act @classmethod def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =cls.get_config_dict(lowerCAmelCase, **lowerCAmelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": lowerCamelCase_ =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase, **lowerCAmelCase ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Dict ='altclip' lowercase : str =True def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=768, lowerCAmelCase=2.6_5_9_2, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =kwargs.pop('''text_config_dict''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''vision_config_dict''', lowerCAmelCase ) super().__init__(**lowerCAmelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCamelCase_ ={} # This is the complete result when using `text_config_dict`. lowerCamelCase_ =AltCLIPTextConfig(**lowerCAmelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCamelCase_ =( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase_ =( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowerCAmelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCamelCase_ ={} # This is the complete result when using `vision_config_dict`. lowerCamelCase_ =AltCLIPVisionConfig(**lowerCAmelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCamelCase_ ={ str(lowerCAmelCase ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCamelCase_ =( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase_ =( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowerCAmelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCamelCase_ ={} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: lowerCamelCase_ ={} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) lowerCamelCase_ =AltCLIPTextConfig(**lowerCAmelCase ) lowerCamelCase_ =AltCLIPVisionConfig(**lowerCAmelCase ) lowerCamelCase_ =projection_dim lowerCamelCase_ =logit_scale_init_value lowerCamelCase_ =1.0 @classmethod def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =copy.deepcopy(self.__dict__ ) lowerCamelCase_ =self.text_config.to_dict() lowerCamelCase_ =self.vision_config.to_dict() lowerCamelCase_ =self.__class__.model_type return output
676
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'data2vec-audio' def __init__( self : List[str] , a : Optional[Any]=32 , a : Optional[int]=768 , a : Optional[int]=12 , a : List[Any]=12 , a : Optional[int]=3_072 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : Optional[int]=0.1 , a : Dict=0.0 , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : List[str]=0.02 , a : Any=1E-5 , a : Optional[int]="gelu" , a : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , a : List[str]=(5, 2, 2, 2, 2, 2, 2) , a : Dict=(10, 3, 3, 3, 3, 2, 2) , a : str=False , a : int=16 , a : Dict=19 , a : int=5 , a : Optional[Any]=0.05 , a : Tuple=10 , a : int=2 , a : Optional[Any]=0.0 , a : Any=10 , a : Any=0 , a : List[Any]="sum" , a : str=False , a : Dict=False , a : Optional[Any]=256 , a : Optional[Any]=(512, 512, 512, 512, 1_500) , a : Tuple=(5, 3, 3, 1, 1) , a : List[Any]=(1, 2, 3, 1, 1) , a : int=512 , a : List[str]=0 , a : Tuple=1 , a : Dict=2 , a : Dict=False , a : Optional[Any]=3 , a : List[str]=2 , a : Union[str, Any]=3 , a : Optional[Any]=None , **a : Optional[Any] , )-> List[Any]: """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowercase__ = hidden_size lowercase__ = feat_extract_activation lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = conv_pos_kernel_size lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # adapter lowercase__ = add_adapter lowercase__ = adapter_kernel_size lowercase__ = adapter_stride lowercase__ = num_adapter_layers lowercase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Union[str, Any]: """simple docstring""" return math.prod(self.conv_stride )
45
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class SCREAMING_SNAKE_CASE( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = """markuplm""" def __init__( self : Optional[int] , __snake_case : List[str]=30522 , __snake_case : int=768 , __snake_case : Optional[int]=12 , __snake_case : int=12 , __snake_case : List[str]=3072 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Any=512 , __snake_case : Union[str, Any]=2 , __snake_case : List[str]=0.02 , __snake_case : Union[str, Any]=1E-12 , __snake_case : str=0 , __snake_case : int=0 , __snake_case : Union[str, Any]=2 , __snake_case : Union[str, Any]=256 , __snake_case : int=1024 , __snake_case : List[str]=216 , __snake_case : Dict=1001 , __snake_case : str=32 , __snake_case : Dict=50 , __snake_case : str="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Optional[Any]=None , **__snake_case : str , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) UpperCAmelCase : Any = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : List[str] = position_embedding_type UpperCAmelCase : str = use_cache UpperCAmelCase : Optional[int] = classifier_dropout # additional properties UpperCAmelCase : Tuple = max_depth UpperCAmelCase : Optional[int] = max_xpath_tag_unit_embeddings UpperCAmelCase : str = max_xpath_subs_unit_embeddings UpperCAmelCase : Optional[int] = tag_pad_id UpperCAmelCase : List[Any] = subs_pad_id UpperCAmelCase : Dict = xpath_unit_hidden_size
127
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE_ = version.parse(accelerate.__version__ ).base_version if version.parse(SCREAMING_SNAKE_CASE ) < version.parse('0.17.0' ): return method def wrapper(self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return wrapper
205
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } __SCREAMING_SNAKE_CASE : Any = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } __SCREAMING_SNAKE_CASE : List[Any] = '''</w>''' __SCREAMING_SNAKE_CASE : str = '''@@ ''' def snake_case_ ( lowercase__ : Dict ): '''simple docstring''' _lowerCAmelCase =set() _lowerCAmelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase =char return pairs # Speech2Text2 has no max input length __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class __lowerCamelCase ( a__ ): """simple docstring""" a_: Tuple = VOCAB_FILES_NAMES a_: List[Any] = PRETRAINED_VOCAB_FILES_MAP a_: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_: Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : int="<s>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : Any="</s>" , lowerCamelCase_ : Any="<unk>" , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Any , ): super().__init__( unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , do_lower_case=_A , **_A , ) _lowerCAmelCase =do_lower_case with open(_A , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase =json.load(_A ) _lowerCAmelCase ={v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) _lowerCAmelCase =None _lowerCAmelCase =None else: with open(_A , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase =merges_handle.read().split("""\n""" )[:-1] _lowerCAmelCase =[tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase =dict(zip(_A , range(len(_A ) ) ) ) _lowerCAmelCase ={} @property def lowerCAmelCase__ ( self : str ): return len(self.decoder ) def lowerCAmelCase__ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Tuple ): _lowerCAmelCase =tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase =get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase =min(_A , key=lambda lowerCamelCase_ : self.bpe_ranks.get(_A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase =bigram _lowerCAmelCase =[] _lowerCAmelCase =0 while i < len(_A ): try: _lowerCAmelCase =word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase =j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase =tuple(_A ) _lowerCAmelCase =new_word if len(_A ) == 1: break else: _lowerCAmelCase =get_pairs(_A ) _lowerCAmelCase =' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase ='\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase =word.replace(_A , """""" ) _lowerCAmelCase =word.replace(""" """ , _A ) _lowerCAmelCase =word return word def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Optional[int] ): if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: _lowerCAmelCase =text.lower() _lowerCAmelCase =text.split() _lowerCAmelCase =[] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase__ ( self : int , lowerCamelCase_ : Any ): return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Tuple ): _lowerCAmelCase =self.decoder.get(_A , self.unk_token ) return result def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : int ): _lowerCAmelCase =' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase =''.join(string.split(_A ) ) return string def lowerCAmelCase__ ( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] = None ): if not os.path.isdir(_A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase =os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase =os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + """\n""" ) _lowerCAmelCase =0 if self.bpe_ranks is None: return (vocab_file,) with open(_A , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase =token_index writer.write(""" """.join(_A ) + """\n""" ) index += 1 return (vocab_file, merges_file)
716
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __SCREAMING_SNAKE_CASE : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(vocab, range(len(vocab)))) __SCREAMING_SNAKE_CASE : int = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Optional[Any] = Path(tmpdirname) __SCREAMING_SNAKE_CASE : Any = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __SCREAMING_SNAKE_CASE : Optional[Any] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __SCREAMING_SNAKE_CASE : Tuple = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __SCREAMING_SNAKE_CASE : List[Any] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __SCREAMING_SNAKE_CASE : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __SCREAMING_SNAKE_CASE : Optional[Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __SCREAMING_SNAKE_CASE : Tuple = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __SCREAMING_SNAKE_CASE : Optional[Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
149
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_ ( A__ ): a_ = int(number**0.5 ) return number == sq * sq def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__ , A__ ): a_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a_ = x_den * y_den * z_den a_ = gcd(A__ , A__ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_ ( A__ = 35 ): a_ = set() a_ = 42 a_ = Fraction(0 ) a_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a_ = x_num * y_den + x_den * y_num a_ = x_den * y_den a_ = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 a_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a_ = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): a_ = int(sqrt(A__ ) ) a_ = int(sqrt(A__ ) ) a_ = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=-1 a_ = x_num * y_num a_ = x_den * y_num + x_num * y_den a_ = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) # n=2 a_ = x_num * x_num * y_num * y_num a_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): a_ = int(sqrt(A__ ) ) a_ = int(sqrt(A__ ) ) a_ = gcd(A__ , A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ = add_three( A__ , A__ , A__ , A__ , A__ , A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ , A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
263
'''simple docstring''' import math def UpperCamelCase_ ( A__ ): return math.sqrt(A__ ) * math.sqrt(A__ ) == num def UpperCamelCase_ ( A__ ): a_ = 0 a_ = n while left <= right: a_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: a_ = mid - 1 else: a_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
263
1
def A ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): _snake_case : str = set() # Replace all the whitespace in our sentence _snake_case : Dict = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase ) == 26 def A ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): _snake_case : Dict = [False] * 26 for char in input_str: if char.islower(): _snake_case : List[Any] = True elif char.isupper(): _snake_case : Optional[Any] = True return all(UpperCAmelCase ) def A ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A ( ): from timeit import timeit _snake_case : Dict = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
278
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCAmelCase :Tuple = logging.get_logger(__name__) @dataclass class _a: lowerCamelCase__ :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowerCamelCase__ :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase__ :int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ :bool = field( default=__A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase ( self ) -> Optional[Any]: '''simple docstring''' _snake_case : Dict = self.task_name.lower() class _a( __A ): lowerCamelCase__ :Optional[Any] = 'train' lowerCamelCase__ :List[str] = 'dev' lowerCamelCase__ :Any = 'test' class _a( __A ): lowerCamelCase__ :GlueDataTrainingArguments lowerCamelCase__ :str lowerCamelCase__ :List[InputFeatures] def __init__( self , __snake_case , __snake_case , __snake_case = None , __snake_case = Split.train , __snake_case = None , ) -> Any: '''simple docstring''' warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , __snake_case , ) _snake_case : Optional[Any] = args _snake_case : Optional[int] = glue_processors[args.task_name]() _snake_case : int = glue_output_modes[args.task_name] if isinstance(__snake_case , __snake_case ): try: _snake_case : Tuple = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file _snake_case : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _snake_case : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _snake_case , _snake_case : int = label_list[2], label_list[1] _snake_case : str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case : Optional[Any] = cached_features_file + ".lock" with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not args.overwrite_cache: _snake_case : List[str] = time.time() _snake_case : str = torch.load(__snake_case ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _snake_case : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _snake_case : List[Any] = self.processor.get_test_examples(args.data_dir ) else: _snake_case : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _snake_case : Tuple = examples[:limit_length] _snake_case : List[str] = glue_convert_examples_to_features( __snake_case , __snake_case , max_length=args.max_seq_length , label_list=__snake_case , output_mode=self.output_mode , ) _snake_case : Optional[Any] = time.time() torch.save(self.features , __snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[str]: '''simple docstring''' return len(self.features ) def __getitem__( self , __snake_case ) -> InputFeatures: '''simple docstring''' return self.features[i] def lowercase ( self ) -> Optional[Any]: '''simple docstring''' return self.label_list
278
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MobileBertTokenizer UpperCAmelCase : List[Any] = MobileBertTokenizerFast UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = filter_non_english UpperCAmelCase : str = """google/mobilebert-uncased""" def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase ( self : Dict , lowerCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = '''unwanted, running''' return input_text, output_text def _lowercase ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing SCREAMING_SNAKE_CASE_ = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowercase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowercase ( self : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowercase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowercase ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _lowercase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def _lowercase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE_ = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE_ = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , '''do_lower_case''' ) else False SCREAMING_SNAKE_CASE_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _lowercase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''的''', '''人''', '''有'''] SCREAMING_SNAKE_CASE_ = ''''''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE_ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
393
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = int(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=300 )-> Optional[Any]: '''simple docstring''' return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase ( UpperCAmelCase )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_ = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_ = f'''{elt:.6f}''' if isinstance(UpperCAmelCase ,UpperCAmelCase ) else str(UpperCAmelCase ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case : '''simple docstring''' UpperCAmelCase : Tuple = 5 UpperCAmelCase : Any = 0.2 def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase_ : int = 300 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = total SCREAMING_SNAKE_CASE_ = '''''' if prefix is None else prefix SCREAMING_SNAKE_CASE_ = leave SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = width SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = value if comment is not None: SCREAMING_SNAKE_CASE_ = comment if self.last_value is None: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.warmup SCREAMING_SNAKE_CASE_ = 1 self.update_bar(lowerCAmelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_ = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_ = None if value >= self.total: SCREAMING_SNAKE_CASE_ = self.total SCREAMING_SNAKE_CASE_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_ = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_ = 1 else: SCREAMING_SNAKE_CASE_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=None ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase_ ) )) + str(lowerCAmelCase_ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: SCREAMING_SNAKE_CASE_ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : List[str] , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" if self.inner_table is None: SCREAMING_SNAKE_CASE_ = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=300 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = NotebookProgressBar(lowerCAmelCase_ , prefix=lowerCAmelCase_ , parent=self , width=lowerCAmelCase_ ) return self.child_bar def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = None self.display() class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) SCREAMING_SNAKE_CASE_ = NotebookTrainingTracker(state.max_steps , lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" if not has_length(lowerCAmelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = self.training_tracker.add_child(len(lowerCAmelCase_ ) ) else: SCREAMING_SNAKE_CASE_ = NotebookProgressBar(len(lowerCAmelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ) -> Any: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_ = state.global_step self.training_tracker.write_line(lowerCAmelCase_ ) def _lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ) -> str: """simple docstring""" if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE_ = log['''loss'''] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_ = int(state.epoch ) else: SCREAMING_SNAKE_CASE_ = state.global_step SCREAMING_SNAKE_CASE_ = '''eval''' for k in metrics: if k.endswith('''_loss''' ): SCREAMING_SNAKE_CASE_ = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''total_flos''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''epoch''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_runtime''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase_ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': SCREAMING_SNAKE_CASE_ = v else: SCREAMING_SNAKE_CASE_ = k.split('''_''' ) SCREAMING_SNAKE_CASE_ = ''' '''.join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE_ = v self.training_tracker.write_line(lowerCAmelCase_ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_ = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_ = True def _lowercase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None
393
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """SpeechT5FeatureExtractor""" A_ = """SpeechT5Tokenizer""" def __init__( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self : Union[str, Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Any ) -> str: '''simple docstring''' _lowercase : str = kwargs.pop('audio' , UpperCamelCase_ ) _lowercase : Any = kwargs.pop('text' , UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('text_target' , UpperCamelCase_ ) _lowercase : int = kwargs.pop('audio_target' , UpperCamelCase_ ) _lowercase : Any = kwargs.pop('sampling_rate' , UpperCamelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _lowercase : Union[str, Any] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) elif text is not None: _lowercase : int = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) else: _lowercase : Optional[int] = None if audio_target is not None: _lowercase : Tuple = self.feature_extractor(audio_target=UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : str = targets['input_values'] elif text_target is not None: _lowercase : List[str] = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Tuple = targets['input_ids'] else: _lowercase : Optional[Any] = None if inputs is None: return targets if targets is not None: _lowercase : Optional[Any] = labels _lowercase : List[Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: _lowercase : Union[str, Any] = decoder_attention_mask return inputs def __UpperCAmelCase ( self : List[str] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> List[Any]: '''simple docstring''' _lowercase : Optional[Any] = kwargs.pop('input_values' , UpperCamelCase_ ) _lowercase : int = kwargs.pop('input_ids' , UpperCamelCase_ ) _lowercase : Dict = kwargs.pop('labels' , UpperCamelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _lowercase : int = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) elif input_ids is not None: _lowercase : int = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) else: _lowercase : Union[str, Any] = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and "input_ids" in labels[0]): _lowercase : Any = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = targets['input_ids'] else: _lowercase : Dict = self.feature_extractor.feature_size _lowercase : Union[str, Any] = self.feature_extractor.num_mel_bins _lowercase : int = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = feature_size_hack _lowercase : List[str] = targets['input_values'] else: _lowercase : Dict = None if inputs is None: return targets if targets is not None: _lowercase : Optional[Any] = labels _lowercase : Union[str, Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: _lowercase : Tuple = decoder_attention_mask return inputs def __UpperCAmelCase ( self : List[str] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : int , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : int ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
4
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCAmelCase__ :str = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCAmelCase__ ( a__: Dict , a__: tuple , a__: Path , a__: Optional[int] , a__: int , a__: Optional[int] , a__: Optional[int] , a__: Tuple=False , ) -> Optional[Any]: '''simple docstring''' output_path.parent.mkdir(parents=a__ , exist_ok=a__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def lowerCAmelCase__ ( a__: str , a__: str , a__: int , a__: bool = False ) -> Dict: '''simple docstring''' _UpperCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _UpperCAmelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _UpperCAmelCase = 'cpu' _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(a__ , torch_dtype=a__ ).to(a__ ) _UpperCAmelCase = Path(a__ ) # TEXT ENCODER _UpperCAmelCase = pipeline.text_encoder.config.max_position_embeddings _UpperCAmelCase = pipeline.text_encoder.config.hidden_size _UpperCAmelCase = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=a__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=a__ , ) del pipeline.text_encoder # UNET _UpperCAmelCase = pipeline.unet.config.in_channels _UpperCAmelCase = pipeline.unet.config.sample_size _UpperCAmelCase = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a__ , a__ , a__ ).to(device=a__ , dtype=a__ ), torch.randn(2 ).to(device=a__ , dtype=a__ ), torch.randn(2 , a__ , a__ ).to(device=a__ , dtype=a__ ), False, ) , output_path=a__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=a__ , use_external_data_format=a__ , ) _UpperCAmelCase = str(unet_path.absolute().as_posix() ) _UpperCAmelCase = os.path.dirname(a__ ) _UpperCAmelCase = onnx.load(a__ ) # clean up existing tensor files shutil.rmtree(a__ ) os.mkdir(a__ ) # collate external tensor files into one onnx.save_model( a__ , a__ , save_as_external_data=a__ , all_tensors_to_one_file=a__ , location='weights.pb' , convert_attribute=a__ , ) del pipeline.unet # VAE ENCODER _UpperCAmelCase = pipeline.vae _UpperCAmelCase = vae_encoder.config.in_channels _UpperCAmelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _UpperCAmelCase = lambda a__ , a__ : vae_encoder.encode(a__ , a__ )[0].sample() onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__ ).to(device=a__ , dtype=a__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) # VAE DECODER _UpperCAmelCase = pipeline.vae _UpperCAmelCase = vae_decoder.config.latent_channels _UpperCAmelCase = vae_decoder.config.out_channels # forward only through the decoder part _UpperCAmelCase = vae_encoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__ ).to(device=a__ , dtype=a__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _UpperCAmelCase = pipeline.safety_checker _UpperCAmelCase = safety_checker.config.vision_config.num_channels _UpperCAmelCase = safety_checker.config.vision_config.image_size _UpperCAmelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a__ , a__ , a__ , ).to(device=a__ , dtype=a__ ), torch.randn(1 , a__ , a__ , a__ ).to(device=a__ , dtype=a__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=a__ , ) del pipeline.safety_checker _UpperCAmelCase = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) _UpperCAmelCase = pipeline.feature_extractor else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=a__ , feature_extractor=a__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a__ ) print('ONNX pipeline saved to' , a__ ) del pipeline del onnx_pipeline _UpperCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(a__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ :Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
618
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
618
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Any = """detr""" _SCREAMING_SNAKE_CASE : Optional[int] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self :Optional[int] , __magic_name__ :Optional[int]=True , __magic_name__ :int=None , __magic_name__ :List[str]=3 , __magic_name__ :List[Any]=100 , __magic_name__ :Tuple=6 , __magic_name__ :Optional[Any]=2_048 , __magic_name__ :Union[str, Any]=8 , __magic_name__ :List[Any]=6 , __magic_name__ :str=2_048 , __magic_name__ :Dict=8 , __magic_name__ :Optional[int]=0.0 , __magic_name__ :Optional[Any]=0.0 , __magic_name__ :List[str]=True , __magic_name__ :Optional[int]="relu" , __magic_name__ :Optional[int]=256 , __magic_name__ :Dict=0.1 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1.0 , __magic_name__ :Optional[int]=False , __magic_name__ :Tuple="sine" , __magic_name__ :Optional[Any]="resnet50" , __magic_name__ :str=True , __magic_name__ :int=False , __magic_name__ :Any=1 , __magic_name__ :Tuple=5 , __magic_name__ :List[str]=2 , __magic_name__ :int=1 , __magic_name__ :Tuple=1 , __magic_name__ :Any=5 , __magic_name__ :Dict=2 , __magic_name__ :Any=0.1 , **__magic_name__ :List[Any] , ) ->Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__magic_name__ , __magic_name__ ): lowercase : Any = backbone_config.get("""model_type""" ) lowercase : Tuple = CONFIG_MAPPING[backbone_model_type] lowercase : List[Any] = config_class.from_dict(__magic_name__ ) # set timm attributes to None lowercase : Any = None, None, None lowercase : Union[str, Any] = use_timm_backbone lowercase : Dict = backbone_config lowercase : Any = num_channels lowercase : Any = num_queries lowercase : List[str] = d_model lowercase : Any = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Optional[int] = encoder_attention_heads lowercase : Dict = decoder_ffn_dim lowercase : int = decoder_layers lowercase : Optional[Any] = decoder_attention_heads lowercase : Tuple = dropout lowercase : Dict = attention_dropout lowercase : Union[str, Any] = activation_dropout lowercase : Optional[int] = activation_function lowercase : Any = init_std lowercase : Tuple = init_xavier_std lowercase : Union[str, Any] = encoder_layerdrop lowercase : str = decoder_layerdrop lowercase : Dict = encoder_layers lowercase : List[Any] = auxiliary_loss lowercase : Tuple = position_embedding_type lowercase : Optional[Any] = backbone lowercase : Any = use_pretrained_backbone lowercase : str = dilation # Hungarian matcher lowercase : Tuple = class_cost lowercase : Any = bbox_cost lowercase : Dict = giou_cost # Loss coefficients lowercase : str = mask_loss_coefficient lowercase : Union[str, Any] = dice_loss_coefficient lowercase : Optional[int] = bbox_loss_coefficient lowercase : List[Any] = giou_loss_coefficient lowercase : Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __snake_case ( self :Optional[int] ) ->int: return self.encoder_attention_heads @property def __snake_case ( self :str ) ->int: return self.d_model @classmethod def __snake_case ( cls :Any , __magic_name__ :PretrainedConfig , **__magic_name__ :List[Any] ) ->Tuple: return cls(backbone_config=__magic_name__ , **__magic_name__ ) def __snake_case ( self :List[str] ) ->Dict[str, any]: lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase : List[Any] = self.backbone_config.to_dict() lowercase : Tuple = self.__class__.model_type return output class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : int = version.parse("""1.11""" ) @property def __snake_case ( self :Dict ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __snake_case ( self :List[Any] ) ->float: return 1E-5 @property def __snake_case ( self :int ) ->int: return 12
704
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCamelCase ( _A , _A , _A=0 ) -> Any: # Format the message. if name is None: lowercase : Tuple = None else: lowercase : Any = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" lowercase : List[str] = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , """:""" , val.size() ) else: print(_A , """:""" , _A ) def UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowercase : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase : str = (num_heads, hidden_size, num_splits) + input_shape[1:] lowercase : Dict = param.view(*_A ) lowercase : str = param.transpose(0 , 2 ) lowercase : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowercase : Any = param.view(*_A ) lowercase : Optional[int] = param.transpose(0 , 1 ).contiguous() lowercase : Any = param.view(*_A ) return param def UpperCamelCase ( _A , _A , _A ) -> List[str]: # The converted output model. lowercase : str = {} # old versions did not store training args lowercase : Optional[int] = input_state_dict.get("""args""" , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase : List[Any] = ds_args.padded_vocab_size lowercase : int = ds_args.max_position_embeddings lowercase : Optional[Any] = ds_args.hidden_size lowercase : int = ds_args.num_layers lowercase : Union[str, Any] = ds_args.num_attention_heads lowercase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase : int = config.n_head # The hidden_size per head. lowercase : Union[str, Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase : List[str] = input_state_dict["""checkpoint_version"""] else: lowercase : List[str] = 0.0 # The model. lowercase : Tuple = input_state_dict["""model"""] # The language model. lowercase : Optional[int] = model["""language_model"""] # The embeddings. lowercase : Optional[int] = lm["""embedding"""] # The word embeddings. lowercase : Union[str, Any] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. lowercase : Tuple = word_embeddings[: config.vocab_size, :] lowercase : Tuple = word_embeddings # The position embeddings. lowercase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. lowercase : Optional[int] = pos_embeddings # The transformer. lowercase : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. lowercase : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. lowercase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase : int = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase : Optional[int] = int(m.group(1 ) ) # The name of the operation. lowercase : Union[str, Any] = m.group(2 ) # Is it a weight or a bias? lowercase : Dict = m.group(3 ) # The name of the layer. lowercase : List[Any] = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): lowercase : List[str] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" lowercase : Dict = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) lowercase : List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. lowercase : str = torch.tensor(-1e4 , dtype=torch.floataa ) lowercase : Tuple = masked_bias lowercase : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase : int = out_val.transpose(0 , 1 ).contiguous() # Store. lowercase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. lowercase : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase : Optional[int] = megatron_to_transformers[op_name] lowercase : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase : Union[str, Any] = megatron_to_transformers[op_name] lowercase : str = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase : Dict = transformer["""final_layernorm.weight"""] lowercase : Any = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. lowercase : int = word_embeddings # It should be done! return output_state_dict def UpperCamelCase ( ) -> int: # Create the argument parser. lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=_A , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=_A , help="""An optional config json file describing the pre-trained model.""" , ) lowercase : Dict = parser.parse_args() # Extract the basename. lowercase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: lowercase : Any = torch.load(_A , map_location="""cpu""" ) else: lowercase : Tuple = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) lowercase : Dict = input_state_dict.get("""args""" , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase : Optional[int] = """gelu_fast""" elif ds_args.openai_gelu: lowercase : int = """gelu_new""" else: lowercase : Tuple = """gelu""" else: # in the very early days this used to be "gelu_new" lowercase : List[str] = """gelu_new""" # Spell out all parameters in case the defaults change. lowercase : Optional[Any] = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=50_256 , eos_token_id=50_256 , ) else: lowercase : int = GPTaConfig.from_json_file(args.config_file ) lowercase : Optional[Any] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) lowercase : List[str] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase : Tuple = """gpt2""" elif tokenizer_type == "PretrainedFromHF": lowercase : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: lowercase : Optional[Any] = """gpt2""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : Union[str, Any] = type(_A ).__name__ lowercase : Any = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_A ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. lowercase : Any = os.path.join(_A , """pytorch_model.bin""" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
348
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : List[str] = AudioLDMPipeline __A : List[str] = TEXT_TO_AUDIO_PARAMS __A : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS __A : List[str] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __lowercase ( self) -> int: '''simple docstring''' torch.manual_seed(0) a__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowercase , ) a__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0) a__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) a__ : Tuple = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) a__ : str = ClapTextModelWithProjection(lowercase) a__ : Dict = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77) a__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowercase , ) a__ : Dict = SpeechTaHifiGan(lowercase) a__ : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def __lowercase ( self , lowercase , lowercase=0) -> Optional[int]: '''simple docstring''' if str(lowercase).startswith('mps'): a__ : int = torch.manual_seed(lowercase) else: a__ : List[str] = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Optional[int] = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ : List[Any] = self.get_dummy_components() a__ : int = AudioLDMPipeline(**lowercase) a__ : Optional[int] = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = self.get_dummy_inputs(lowercase) a__ : Optional[int] = audioldm_pipe(**lowercase) a__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase) == 256 a__ : List[Any] = audio[:10] a__ : Tuple = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def __lowercase ( self) -> str: '''simple docstring''' a__ : str = self.get_dummy_components() a__ : Tuple = AudioLDMPipeline(**lowercase) a__ : Any = audioldm_pipe.to(lowercase) a__ : Tuple = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = self.get_dummy_inputs(lowercase) a__ : Dict = 3 * [inputs['prompt']] # forward a__ : Union[str, Any] = audioldm_pipe(**lowercase) a__ : List[str] = output.audios[0] a__ : List[str] = self.get_dummy_inputs(lowercase) a__ : Tuple = 3 * [inputs.pop('prompt')] a__ : Optional[Any] = audioldm_pipe.tokenizer( lowercase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) a__ : str = text_inputs['input_ids'].to(lowercase) a__ : Union[str, Any] = audioldm_pipe.text_encoder( lowercase , ) a__ : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state a__ : Any = F.normalize(lowercase , dim=-1) a__ : Any = prompt_embeds # forward a__ : int = audioldm_pipe(**lowercase) a__ : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.get_dummy_components() a__ : Tuple = AudioLDMPipeline(**lowercase) a__ : str = audioldm_pipe.to(lowercase) a__ : Union[str, Any] = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : str = self.get_dummy_inputs(lowercase) a__ : List[str] = 3 * ['this is a negative prompt'] a__ : Optional[int] = negative_prompt a__ : Union[str, Any] = 3 * [inputs['prompt']] # forward a__ : Union[str, Any] = audioldm_pipe(**lowercase) a__ : str = output.audios[0] a__ : List[str] = self.get_dummy_inputs(lowercase) a__ : int = 3 * [inputs.pop('prompt')] a__ : Tuple = [] for p in [prompt, negative_prompt]: a__ : Optional[int] = audioldm_pipe.tokenizer( lowercase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) a__ : Optional[int] = text_inputs['input_ids'].to(lowercase) a__ : List[str] = audioldm_pipe.text_encoder( lowercase , ) a__ : int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state a__ : Optional[Any] = F.normalize(lowercase , dim=-1) embeds.append(lowercase) a__ , a__ : Union[str, Any] = embeds # forward a__ : str = audioldm_pipe(**lowercase) a__ : int = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1e-2 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ : Optional[Any] = self.get_dummy_components() a__ : List[Any] = PNDMScheduler(skip_prk_steps=lowercase) a__ : Any = AudioLDMPipeline(**lowercase) a__ : Any = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = self.get_dummy_inputs(lowercase) a__ : Tuple = 'egg cracking' a__ : Optional[int] = audioldm_pipe(**lowercase , negative_prompt=lowercase) a__ : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase) == 256 a__ : Optional[Any] = audio[:10] a__ : List[str] = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32]) assert np.abs(audio_slice - expected_slice).max() < 1e-2 def __lowercase ( self) -> int: '''simple docstring''' a__ : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ : List[str] = self.get_dummy_components() a__ : Optional[int] = PNDMScheduler(skip_prk_steps=lowercase) a__ : Optional[Any] = AudioLDMPipeline(**lowercase) a__ : Dict = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : int = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) a__ : Dict = audioldm_pipe(lowercase , num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts a__ : Union[str, Any] = 2 a__ : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt a__ : Tuple = 2 a__ : int = audioldm_pipe(lowercase , num_inference_steps=2 , num_waveforms_per_prompt=lowercase).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts a__ : Dict = 2 a__ : int = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowercase).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator a__ : List[str] = self.get_dummy_components() a__ : List[Any] = AudioLDMPipeline(**lowercase) a__ : str = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : List[Any] = audioldm_pipe.vocoder.config.sampling_rate a__ : Union[str, Any] = self.get_dummy_inputs(lowercase) a__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_16 , **lowercase) a__ : int = output.audios[0] assert audio.ndim == 1 assert len(lowercase) / vocoder_sampling_rate == 0.0_16 a__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_32 , **lowercase) a__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase) / vocoder_sampling_rate == 0.0_32 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = self.get_dummy_components() a__ : Optional[Any] = AudioLDMPipeline(**lowercase) a__ : Dict = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : Tuple = ['hey'] a__ : Dict = audioldm_pipe(lowercase , num_inference_steps=1) a__ : Union[str, Any] = output.audios.shape assert audio_shape == (1, 256) a__ : Union[str, Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 a__ : str = SpeechTaHifiGan(lowercase).to(lowercase) a__ : Union[str, Any] = audioldm_pipe(lowercase , num_inference_steps=1) a__ : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __lowercase ( self) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase) def __lowercase ( self) -> int: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowercase ( self) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase) @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , lowercase , lowercase="cpu" , lowercase=torch.floataa , lowercase=0) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : str = np.random.RandomState(lowercase).standard_normal((1, 8, 128, 16)) a__ : Union[str, Any] = torch.from_numpy(lowercase).to(device=lowercase , dtype=lowercase) a__ : Optional[Any] = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = AudioLDMPipeline.from_pretrained('cvssp/audioldm') a__ : Tuple = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = self.get_inputs(lowercase) a__ : Any = 25 a__ : str = audioldm_pipe(**lowercase).audios[0] assert audio.ndim == 1 assert len(lowercase) == 8_1920 a__ : List[str] = audio[7_7230:7_7240] a__ : Union[str, Any] = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15]) a__ : Union[str, Any] = np.abs(expected_slice - audio_slice).max() assert max_diff < 1e-2 def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm') a__ : Dict = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) a__ : Union[str, Any] = audioldm_pipe.to(lowercase) audioldm_pipe.set_progress_bar_config(disable=lowercase) a__ : Optional[Any] = self.get_inputs(lowercase) a__ : Any = audioldm_pipe(**lowercase).audios[0] assert audio.ndim == 1 assert len(lowercase) == 8_1920 a__ : Optional[Any] = audio[2_7780:2_7790] a__ : Any = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12]) a__ : Optional[Any] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3e-2
302
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Dict = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = '''yolos''' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__(**lowercase) a__ : int = hidden_size a__ : str = num_hidden_layers a__ : List[str] = num_attention_heads a__ : List[str] = intermediate_size a__ : Any = hidden_act a__ : str = hidden_dropout_prob a__ : Union[str, Any] = attention_probs_dropout_prob a__ : Any = initializer_range a__ : List[Any] = layer_norm_eps a__ : Union[str, Any] = image_size a__ : Optional[int] = patch_size a__ : Tuple = num_channels a__ : Optional[Any] = qkv_bias a__ : Union[str, Any] = num_detection_tokens a__ : Union[str, Any] = use_mid_position_embeddings a__ : List[Any] = auxiliary_loss # Hungarian matcher a__ : Union[str, Any] = class_cost a__ : Union[str, Any] = bbox_cost a__ : Dict = giou_cost # Loss coefficients a__ : Optional[Any] = bbox_loss_coefficient a__ : List[Any] = giou_loss_coefficient a__ : str = eos_coefficient class A__ ( __UpperCAmelCase ): """simple docstring""" __A : int = version.parse('''1.11''' ) @property def __lowercase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __lowercase ( self) -> float: '''simple docstring''' return 1e-4 @property def __lowercase ( self) -> int: '''simple docstring''' return 12
302
1
import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('Processing...' ) _lowerCAmelCase : Any = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : Tuple = random_chars(32 ) _lowerCAmelCase : int = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase : int = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__lowerCAmelCase )} with {file_name}""" ) _lowerCAmelCase : Optional[int] = [] for anno in new_annos[index]: _lowerCAmelCase : List[Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__lowerCAmelCase ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : int = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '*.txt' ) ): _lowerCAmelCase : Any = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__lowerCAmelCase ) as in_file: _lowerCAmelCase : Tuple = in_file.readlines() _lowerCAmelCase : str = os.path.join(__lowerCAmelCase , f"""{label_name}.jpg""" ) _lowerCAmelCase : Union[str, Any] = [] for obj_list in obj_lists: _lowerCAmelCase : Any = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = [] for idx in range(len(__lowerCAmelCase ) ): _lowerCAmelCase : str = [] _lowerCAmelCase : int = img_list[idx] path_list.append(__lowerCAmelCase ) _lowerCAmelCase : Any = anno_list[idx] _lowerCAmelCase : Optional[int] = cva.imread(__lowerCAmelCase ) if flip_type == 1: _lowerCAmelCase : Optional[int] = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase : Union[str, Any] = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase__ ( _lowerCamelCase = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : List[str] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = old_name if "patch_embed" in old_name: A_ : Optional[Any] = old_name.split(""".""" ) if layer == "0": A_ : str = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A_ : Optional[int] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A_ : List[str] = old_name.replace("""3""" , """convolution2""" ) else: A_ : Union[str, Any] = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , a_ ): A_ : Optional[Any] = R"""\b\d{2}\b""" if bool(re.search(a_ , a_ ) ): A_ : Tuple = re.search(R"""\d\.\d\d.""" , a_ ).group() else: A_ : List[str] = re.search(R"""\d\.\d.""" , a_ ).group() if int(match[0] ) < 6: A_ : Union[str, Any] = old_name.replace(a_ , """""" ) A_ : Optional[int] = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A_ : Dict = """intermediate_stages.""" + trimmed_name else: A_ : Dict = old_name.replace(a_ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A_ : List[Any] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A_ : str = str(int(match[2] ) - num_meta4D_last_stage ) A_ : Tuple = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A_ : List[Any] = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A_ : Any = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A_ : int = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A_ : int = trimmed_name.replace("""fc2""" , """linear_out""" ) A_ : Union[str, Any] = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , a_ ): A_ : Optional[int] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A_ : Union[str, Any] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A_ : Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A_ : Dict = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A_ : int = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A_ : Optional[Any] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A_ : List[str] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A_ : Dict = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A_ : Dict = new_name.replace("""norm""" , """layernorm""" ) A_ : Any = """efficientformer.""" + new_name else: A_ : Tuple = """efficientformer.encoder.""" + new_name return new_name def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" for key in checkpoint.copy().keys(): A_ : Optional[int] = checkpoint.pop(a_ ) A_ : Dict = val return checkpoint def UpperCAmelCase ( ) -> Any: """simple docstring""" A_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Union[str, Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return image def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Any = torch.load(a_ , map_location="""cpu""" )["""model"""] A_ : Any = EfficientFormerConfig.from_json_file(a_ ) A_ : str = EfficientFormerForImageClassificationWithTeacher(a_ ) A_ : Optional[Any] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A_ : int = config.depths[-1] - config.num_metaad_blocks + 1 A_ : Optional[Any] = convert_torch_checkpoint(a_ , a_ ) model.load_state_dict(a_ ) model.eval() A_ : Any = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A_ : List[str] = prepare_img() A_ : Tuple = 2_5_6 A_ : int = 2_2_4 A_ : Tuple = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A_ : List[Any] = processor(images=a_ , return_tensors="""pt""" ).pixel_values # original processing pipeline A_ : str = Compose( [ Resize(a_ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(a_ ), ToTensor(), Normalize(a_ , a_ ), ] ) A_ : List[str] = image_transforms(a_ ).unsqueeze(0 ) assert torch.allclose(a_ , a_ ) A_ : Optional[int] = model(a_ ) A_ : Optional[Any] = outputs.logits A_ : str = (1, 1_0_0_0) if "l1" in model_name: A_ : List[str] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , a_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A_ : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , a_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A_ : Union[str, Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(a_ ) print(F"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}" , commit_message="""Add model""" , use_temp_dir=a_ , ) processor.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}" , commit_message="""Add image processor""" , use_temp_dir=a_ , ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) UpperCamelCase__ : Tuple = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
713
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( a_ , a_=1 ) -> str: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase ( a_ , a_=0 ) -> Union[str, Any]: """simple docstring""" A_ : str = [] for old_item in old_list: A_ : List[str] = old_item.replace("""in_layers.0""" , """norm1""" ) A_ : Tuple = new_item.replace("""in_layers.2""" , """conv1""" ) A_ : List[Any] = new_item.replace("""out_layers.0""" , """norm2""" ) A_ : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) A_ : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) A_ : Optional[int] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) A_ : int = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_=0 ) -> Union[str, Any]: """simple docstring""" A_ : Any = [] for old_item in old_list: A_ : Optional[int] = old_item A_ : Dict = new_item.replace("""norm.weight""" , """group_norm.weight""" ) A_ : Optional[int] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) A_ : Union[str, Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) A_ : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) A_ : Union[str, Any] = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=None ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Optional[int] = old_checkpoint[path] A_ : Union[str, Any] = old_tensor.shape[0] // 3 A_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : Any = old_tensor.shape[0] // config["""num_head_channels"""] // 3 A_ : Tuple = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Tuple = old_tensor.split(channels // num_heads , dim=1 ) A_ : List[str] = query.reshape(a_ ) A_ : Union[str, Any] = key.reshape(a_ ) A_ : Optional[int] = value.reshape(a_ ) for path in paths: A_ : Optional[int] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) A_ : Any = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) A_ : Tuple = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : Union[str, Any] = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Tuple = old_checkpoint[path["""old"""]][:, :, 0] else: A_ : Optional[int] = old_checkpoint[path["""old"""]] def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[Any] = {} A_ : Dict = checkpoint["""time_embed.0.weight"""] A_ : Dict = checkpoint["""time_embed.0.bias"""] A_ : Optional[Any] = checkpoint["""time_embed.2.weight"""] A_ : Tuple = checkpoint["""time_embed.2.bias"""] A_ : List[Any] = checkpoint["""input_blocks.0.0.weight"""] A_ : List[str] = checkpoint["""input_blocks.0.0.bias"""] A_ : Any = checkpoint["""out.0.weight"""] A_ : Any = checkpoint["""out.0.bias"""] A_ : Optional[int] = checkpoint["""out.2.weight"""] A_ : int = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only A_ : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) A_ : Optional[int] = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the middle blocks only A_ : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) A_ : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the output blocks only A_ : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) A_ : Any = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(a_ ) } for i in range(1 , a_ ): A_ : int = (i - 1) // (config["""num_res_blocks"""] + 1) A_ : Optional[int] = (i - 1) % (config["""num_res_blocks"""] + 1) A_ : Dict = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] A_ : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: A_ : List[Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] A_ : Optional[Any] = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue A_ : Optional[Any] = renew_resnet_paths(a_ ) A_ : Dict = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : str = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path, resnet_op] , config=a_ ) if len(a_ ): A_ : Any = renew_attention_paths(a_ ) A_ : Any = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : List[Any] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=a_ , config=a_ , ) A_ : Tuple = middle_blocks[0] A_ : Optional[int] = middle_blocks[1] A_ : int = middle_blocks[2] A_ : int = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : Tuple = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : Optional[int] = renew_attention_paths(a_ ) A_ : Optional[int] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( a_ , a_ , a_ , attention_paths_to_split=a_ , config=a_ ) for i in range(a_ ): A_ : Union[str, Any] = i // (config["""num_res_blocks"""] + 1) A_ : Union[str, Any] = i % (config["""num_res_blocks"""] + 1) A_ : List[str] = [shave_segments(a_ , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : List[str] = layer.split(""".""" )[0], shave_segments(a_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(a_ ) else: A_ : Optional[int] = [layer_name] if len(a_ ) > 1: A_ : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] A_ : List[Any] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] A_ : str = renew_resnet_paths(a_ ) A_ : Dict = renew_resnet_paths(a_ ) A_ : Tuple = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : List[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) A_ : Optional[Any] = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] A_ : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(a_ ) == 2: A_ : int = [] if len(a_ ): A_ : Union[str, Any] = renew_attention_paths(a_ ) A_ : Optional[int] = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : str = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=a_ , ) else: A_ : List[str] = renew_resnet_paths(a_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : List[str] = """.""".join(["""output_blocks""", str(a_ ), path["""old"""]] ) A_ : int = """.""".join(["""up_blocks""", str(a_ ), """resnets""", str(a_ ), path["""new"""]] ) A_ : Tuple = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCamelCase__ : Tuple = parser.parse_args() UpperCamelCase__ : Union[str, Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCamelCase__ : Any = json.loads(f.read()) UpperCamelCase__ : Any = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCamelCase__ : List[str] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCamelCase__ : Dict = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : List[Any] = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : str = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
385
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ = "" else: snake_case_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A=True ): '''simple docstring''' snake_case_ = ViTConfig() # patch_size if model_name[-1] == "8": snake_case_ = 8 # set labels if required if not base_model: snake_case_ = 1000 snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 12 snake_case_ = 6 # load original model from torch hub snake_case_ = torch.hub.load("facebookresearch/dino:main" , SCREAMING_SNAKE_CASE__ ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE__ ) snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE__ , base_model=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model if base_model: snake_case_ = ViTModel(SCREAMING_SNAKE_CASE__ , add_pooling_layer=SCREAMING_SNAKE_CASE__ ).eval() else: snake_case_ = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by ViTImageProcessor snake_case_ = ViTImageProcessor() snake_case_ = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case_ = encoding["pixel_values"] snake_case_ = model(SCREAMING_SNAKE_CASE__ ) if base_model: snake_case_ = original_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: snake_case_ = original_model(SCREAMING_SNAKE_CASE__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) lowercase__ : str = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
376
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = '▁' UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = BigBirdTokenizer lowerCAmelCase_ : Optional[int] = BigBirdTokenizerFast lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Dict = True def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() UpperCAmelCase__ = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = """<s>""" UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(_UpperCAmelCase ) , 10_04 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = """I was born in 92000, and this is falsé.""" UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = """Hello World!""" UpperCAmelCase__ = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCAmelCase__ = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase__ = """ """.join(_UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors="""pt""" , return_token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = BigBirdConfig(attention_type="""original_full""" ) UpperCAmelCase__ = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCAmelCase__ = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
603
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowerCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _a ( __lowerCamelCase ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowercase : List[str] = MBartTokenizer _lowercase : str = [] _lowercase : str = [] def __init__( self: int , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Union[str, Any]="</s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: Tuple="<s>" , UpperCamelCase_: Tuple="<unk>" , UpperCamelCase_: Dict="<pad>" , UpperCamelCase_: Any="<mask>" , UpperCamelCase_: Any=None , UpperCamelCase_: str=None , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: List[Any] , ) -> Tuple: """simple docstring""" lowercase__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowercase__ = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__ = src_lang if src_lang is not None else 'en_XX' lowercase__ = self.convert_tokens_to_ids(self._src_lang ) lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> Optional[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[str]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__ = src_lang lowercase__ = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) lowercase__ = self.convert_tokens_to_ids(UpperCAmelCase_ ) lowercase__ = tgt_lang_id return inputs def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "en_XX" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "ro_RO" , **UpperCamelCase_: Dict , ) -> List[str]: """simple docstring""" lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Any ) -> Dict: """simple docstring""" lowercase__ = self.convert_tokens_to_ids(UpperCAmelCase_ ) lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] lowercase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: str ) -> int: """simple docstring""" lowercase__ = self.convert_tokens_to_ids(UpperCAmelCase_ ) lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] lowercase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Dict: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowercase__ = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
706
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''adaptor.''' )[-1] lowercase__ = name.split('''.''' ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) lowercase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights lowercase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False lowercase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''mbart50''' lowercase__ = '''wav2vec2''' lowercase__ = tokenizer.eos_token_id lowercase__ = 25_00_04 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_0004, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
429
0
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets __SCREAMING_SNAKE_CASE = datasets.logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __SCREAMING_SNAKE_CASE = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __SCREAMING_SNAKE_CASE = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :Dict ): '''simple docstring''' if self.config_name == "default": UpperCamelCase_ : List[Any] =comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: UpperCamelCase_ : Optional[int] =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Dict , _lowerCamelCase :str , _lowerCamelCase :Optional[int] , _lowerCamelCase :Dict=None , _lowerCamelCase :str=False ): '''simple docstring''' if gpus is None: UpperCamelCase_ : List[Any] =1 if torch.cuda.is_available() else 0 UpperCamelCase_ : Union[str, Any] ={"src": sources, "mt": predictions, "ref": references} UpperCamelCase_ : Union[str, Any] =[dict(zip(snake_case__ , snake_case__ ) ) for t in zip(*data.values() )] UpperCamelCase_ : Optional[int] =self.scorer.predict(snake_case__ , gpus=snake_case__ , progress_bar=snake_case__ ) return {"mean_score": mean_score, "scores": scores}
357
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase : List[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _lowerCAmelCase : List[str] = { """allenai/led-base-16384""": 16_384, } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =LEDTokenizer SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , snake_case__ : str=None , snake_case__ : List[Any]=None , snake_case__ : Dict=None , snake_case__ : List[str]="replace" , snake_case__ : Optional[int]="<s>" , snake_case__ : List[str]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : Any="<pad>" , snake_case__ : Dict="<mask>" , snake_case__ : int=False , snake_case__ : Optional[int]=True , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: UpperCAmelCase__ : Dict = getattr(snake_case__ , pre_tok_state.pop("type" ) ) UpperCAmelCase__ : str = add_prefix_space UpperCAmelCase__ : Any = pre_tok_class(**snake_case__ ) UpperCAmelCase__ : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase__ : List[str] = "post_processor" UpperCAmelCase__ : List[Any] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: UpperCAmelCase__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase__ : Any = tuple(state["cls"] ) UpperCAmelCase__ : Any = False if state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = add_prefix_space UpperCAmelCase__ : List[Any] = True if state.get("trim_offsets" , snake_case__ ) != trim_offsets: UpperCAmelCase__ : Optional[int] = trim_offsets UpperCAmelCase__ : List[Any] = True if changes_to_apply: UpperCAmelCase__ : List[str] = getattr(snake_case__ , state.pop("type" ) ) UpperCAmelCase__ : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __a ( self : Any ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __a ( self : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value UpperCAmelCase__ : Dict = value def __a ( self : str , *snake_case__ : Any , **snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.get("is_split_into_words" , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def __a ( self : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = kwargs.get("is_split_into_words" , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def __a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def __a ( self : str , snake_case__ : List[Any] , snake_case__ : str=None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : Any , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase__ : str = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : Any = len(encoded_inputs["global_attention_mask"] ) != len(snake_case__ ) if needs_to_be_padded: UpperCAmelCase__ : List[str] = len(snake_case__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Dict = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Dict = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
438
0
import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' lowercase__ = (0, 0) lowercase__ = None lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def __eq__( self : Tuple, lowerCamelCase : int ): '''simple docstring''' return self.position == cell.position def lowercase__ ( self : Dict ): '''simple docstring''' print(self.position ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any], lowerCamelCase : List[Any]=(5, 5) ): '''simple docstring''' lowercase__ = np.zeros(__lowerCamelCase ) lowercase__ = world_size[0] lowercase__ = world_size[1] def lowercase__ ( self : Dict ): '''simple docstring''' print(self.w ) def lowercase__ ( self : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase__ = cell.position[0] lowercase__ = cell.position[1] lowercase__ = [] for n in neughbour_cord: lowercase__ = current_x + n[0] lowercase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase__ = Cell() lowercase__ = (x, y) lowercase__ = cell neighbours.append(__lowerCamelCase ) return neighbours def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] _open.append(_lowerCamelCase ) while _open: lowercase__ = np.argmin([n.f for n in _open] ) lowercase__ = _open[min_f] _closed.append(_open.pop(_lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCamelCase ): for c in _closed: if c == n: continue lowercase__ = current.g + 1 lowercase__ = n.position lowercase__ = goal.position lowercase__ = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCamelCase ) lowercase__ = [] while current.parent is not None: path.append(current.position ) lowercase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A__ : int = Gridworld() # Start position and goal A__ : Dict = Cell() A__ : List[str] = (0, 0) A__ : List[str] = Cell() A__ : Dict = (4, 4) print(F"path from {start.position} to {goal.position}") A__ : Dict = astar(world, start, goal) # Just for visual reasons. for i in s: A__ : Dict = 1 print(world.w)
717
from math import sqrt def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase__ = True # 0 and 1 are none primes. if number <= 1: lowercase__ = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase__ = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase__ = list(range(2 , n + 1 ) ) lowercase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase__ = 0 # filters actual prime numbers. lowercase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" lowercase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowercase__ = [] # this list will be returns of the function. # potential prime number factors. lowercase__ = 2 lowercase__ = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase__ = 0 # prime factorization of 'number' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" lowercase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase__ = get_prime_numbers(lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) # run variable for while-loops. lowercase__ = 0 lowercase__ = None # exit variable. for break up the loops lowercase__ = True while i < len_pn and loop: lowercase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase__ = 0 while numbera != 0: lowercase__ = numbera % numbera lowercase__ = numbera lowercase__ = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase__ = prime_factorization(lowerCamelCase_ ) lowercase__ = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: lowercase__ = [] lowercase__ = [] lowercase__ = max(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase__ = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" lowercase__ = 0 lowercase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase__ = p_number_a + 1 # jump to the next number lowercase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowercase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase__ = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase__ = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowercase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase_ ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowercase__ = 0 lowercase__ = 1 lowercase__ = 1 # this will be return for _ in range(n - 1 ): lowercase__ = ans ans += fiba lowercase__ = tmp return ans
671
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =OmegaConf.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ : int =list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE__ : Any ={} SCREAMING_SNAKE_CASE__ : int ='''first_stage_model.''' for key in keys: if key.startswith(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE__ : List[str] ={} SCREAMING_SNAKE_CASE__ : Dict ='''model.diffusion_model.''' for key in keys: if key.startswith(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =state_dict[key] SCREAMING_SNAKE_CASE__ : Dict =config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE__ : List[str] =config.model.params.unet_config.params SCREAMING_SNAKE_CASE__ : Dict =VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule='''scaled_linear''', beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : Any =LDMPipeline(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) a_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
296
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a = logging.get_logger(__name__) class lowercase__( __A ): """simple docstring""" a :Optional[int] = ["""pixel_values"""] def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] = True , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Optional[Any] = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[int] = True , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Any = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : List[Any] = True , SCREAMING_SNAKE_CASE_ : Tuple = True , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : Any = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**UpperCamelCase__ ) lowercase_ = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} lowercase_ = get_size_dict(UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowercase_ = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : Union[str, Any] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[Any]: lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( UpperCamelCase__ , size=(size['''height'''], size['''width''']) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> List[str]: lowercase_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Optional[int]: return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Tuple: return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : List[str] = None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : Tuple = None , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : Dict = None , SCREAMING_SNAKE_CASE_ : List[Any] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Dict , ) -> List[Any]: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCamelCase__ ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: lowercase_ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
709
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __a = get_logger(__name__) def a ( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: int , snake_case__: int , snake_case__: Optional[Any]=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowercase_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def a ( snake_case__: Any , snake_case__: Optional[Any] , snake_case__: Optional[Any] , snake_case__: Union[str, Any] , snake_case__: Tuple=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = ( os.path.join(snake_case__ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowercase_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) lowercase_ = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(snake_case__ ) def a ( snake_case__: Dict , snake_case__: str , snake_case__: Optional[Any] , snake_case__: Any , snake_case__: str , snake_case__: str=0 ): '''simple docstring''' os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowercase_ = os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def a ( snake_case__: List[Any] , snake_case__: int , snake_case__: Dict , snake_case__: Union[str, Any] , snake_case__: str , snake_case__: List[str]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ = os.path.join(snake_case__ , snake_case__ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowercase_ = torch.load(snake_case__ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowercase_ = ( os.path.join(snake_case__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowercase_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) lowercase_ = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowercase_ = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
409
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case__ = ['''text''', '''image''', '''audio'''] def lowerCamelCase__ ( a : List[str] ) -> Tuple: """simple docstring""" a__ :Any = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(a , a ): inputs.append(create_inputs(a ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowerCamelCase__ ( a : List ) -> str: """simple docstring""" a__ :Any = [] for output in outputs: if isinstance(a , (str, AgentText) ): output_types.append("text" ) elif isinstance(a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCAmelCase_ : def _snake_case ( self : str ) ->Tuple: """simple docstring""" self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) a__ :Any = self.tool.inputs for _input in inputs: if isinstance(_input , __A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) a__ :Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self : List[Any] ) ->Any: """simple docstring""" a__ :Union[str, Any] = create_inputs(self.tool.inputs ) a__ :Dict = self.tool(*__A ) # There is a single output if len(self.tool.outputs ) == 1: a__ :Optional[Any] = [outputs] self.assertListEqual(output_types(__A ) , self.tool.outputs ) def _snake_case ( self : Tuple ) ->Dict: """simple docstring""" self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _snake_case ( self : str ) ->List[Any]: """simple docstring""" a__ :Any = create_inputs(self.tool.inputs ) a__ :Union[str, Any] = self.tool(*__A ) if not isinstance(__A , __A ): a__ :List[str] = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) ) for output, output_type in zip(__A , self.tool.outputs ): a__ :Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__A , __A ) ) def _snake_case ( self : Dict ) ->List[str]: """simple docstring""" a__ :Tuple = create_inputs(self.tool.inputs ) a__ :Tuple = [] for _input, input_type in zip(__A , self.tool.inputs ): if isinstance(__A , __A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error a__ :int = self.tool(*__A ) if not isinstance(__A , __A ): a__ :Any = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) )
395
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
395
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 50 , _lowercase = "pil" , _lowercase = True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowercase , ) _lowerCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowercase ), "This is a local test"
162
'''simple docstring''' from math import pi, sqrt def A (__lowerCamelCase :float ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A (): assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input("""Gamma of: """)) print(F"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
162
1
import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCAmelCase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''')) __UpperCAmelCase : List[Any] = self.transformer_dir shutil.copy( os.path.join(__UpperCAmelCase , '''src/transformers/models/bert/modeling_bert.py''') , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''') , ) def A( self): __UpperCAmelCase : int = 'src/transformers' shutil.rmtree(self.transformer_dir) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None): __UpperCAmelCase : Union[str, Any] = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __UpperCAmelCase : List[Any] = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __UpperCAmelCase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) __UpperCAmelCase : int = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase) __UpperCAmelCase : Any = os.path.join(self.transformer_dir , '''new_code.py''') with open(__UpperCAmelCase , '''w''' , newline='''\n''') as f: f.write(__UpperCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase) with open(__UpperCAmelCase , '''r''') as f: self.assertTrue(f.read() , __UpperCAmelCase) def A( self): __UpperCAmelCase : str = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''') self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def A( self): self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __UpperCAmelCase) , ) # Copy consistency with a really long name __UpperCAmelCase : Optional[int] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __UpperCAmelCase , __UpperCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __UpperCAmelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __UpperCAmelCase) , ) def A( self): __UpperCAmelCase : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] __UpperCAmelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) __UpperCAmelCase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __UpperCAmelCase : Any = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) __UpperCAmelCase : Union[str, Any] = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['''format_model_list''']) self.assertFalse(__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) __UpperCAmelCase : Optional[int] = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['''format_model_list''']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCAmelCase) __UpperCAmelCase : List[str] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) __UpperCAmelCase : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __UpperCAmelCase : Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __UpperCAmelCase : int = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['''format_model_list''']) # Check if the model link is synchronized. self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
462
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
0
from string import ascii_lowercase, ascii_uppercase def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> str: '''simple docstring''' if not sentence: return "" __UpperCamelCase : Union[str, Any] = dict(zip(_lowerCamelCase , _lowerCamelCase)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
94
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = BertConfig.from_json_file(_lowerCamelCase) print(F'Building PyTorch model from configuration: {config}') __UpperCamelCase : List[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
94
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowercase : def __init__( self : Any ,A : Union[str, Any] ,A : Optional[Any]=2 ,A : Tuple=True ,A : Tuple=False ,A : Optional[int]=10 ,A : Any=3 ,A : Tuple=32 * 8 ,A : List[Any]=32 * 8 ,A : int=4 ,A : List[Any]=64 ,): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Optional[Any] = use_auxiliary_loss UpperCAmelCase__ : int = num_queries UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : List[str] = min_size UpperCAmelCase__ : Optional[Any] = max_size UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = hidden_dim UpperCAmelCase__ : Union[str, Any] = hidden_dim def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A ) UpperCAmelCase__ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A ) UpperCAmelCase__ : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A ) > 0.5 ).float() UpperCAmelCase__ : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) ,device=A ) > 0.5).long() UpperCAmelCase__ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MaskaFormerConfig( hidden_size=self.hidden_dim ,) UpperCAmelCase__ : int = self.num_queries UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : List[Any] = [1, 1, 1, 1] UpperCAmelCase__ : List[Any] = self.num_channels UpperCAmelCase__ : List[Any] = 64 UpperCAmelCase__ : str = 128 UpperCAmelCase__ : int = self.hidden_dim UpperCAmelCase__ : List[Any] = self.hidden_dim UpperCAmelCase__ : int = self.hidden_dim return config def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __lowercase ( self : Optional[int] ,A : Any ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = output.encoder_hidden_states UpperCAmelCase__ : List[str] = output.pixel_decoder_hidden_states UpperCAmelCase__ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ) ,config.decoder_layers ) def __lowercase ( self : List[Any] ,A : List[Any] ,A : Dict ,A : Union[str, Any] ,A : str=False ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = MaskaFormerModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Tuple = model(pixel_values=A ,pixel_mask=A ) UpperCAmelCase__ : Optional[int] = model(A ,output_hidden_states=A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A ,A ) def __lowercase ( self : Tuple ,A : List[str] ,A : Dict ,A : Tuple ,A : Any ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = MaskaFormerForUniversalSegmentation(config=A ) model.to(A ) model.eval() def comm_check_on_output(A : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(pixel_values=A ,pixel_mask=A ) UpperCAmelCase__ : Tuple = model(A ) comm_check_on_output(A ) UpperCAmelCase__ : Optional[Any] = model( pixel_values=A ,pixel_mask=A ,mask_labels=A ,class_labels=A ) comm_check_on_output(A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = MaskaFormerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=A ,has_text_modality=A ) def __lowercase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A ,**A ,output_hidden_states=A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __lowercase ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(A ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase__ : Union[str, Any] = MaskaFormerModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase__ : Dict = { """pixel_values""": torch.randn((2, 3, *size) ,device=A ), """mask_labels""": torch.randn((2, 10, *size) ,device=A ), """class_labels""": torch.zeros(2 ,10 ,device=A ).long(), } UpperCAmelCase__ : List[Any] = self.model_tester.get_config() UpperCAmelCase__ : Union[str, Any] = MaskaFormerForUniversalSegmentation(A ).to(A ) UpperCAmelCase__ : List[str] = model(**A ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A ,**A ,output_hidden_states=A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(A ).to(A ) UpperCAmelCase__ : str = model(**A ,output_attentions=A ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = self.all_model_classes[1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ : Union[str, Any] = model_class(A ) model.to(A ) model.train() UpperCAmelCase__ : Optional[Any] = model(A ,mask_labels=A ,class_labels=A ).loss loss.backward() def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.all_model_classes[1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : int = model_class(A ).to(A ) model.train() UpperCAmelCase__ : Tuple = model(A ,mask_labels=A ,class_labels=A ) UpperCAmelCase__ : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase__ : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase__ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCAmelCase = 1E-4 def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __lowercase ( unittest.TestCase ): @cached_property def __lowercase ( self : str ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : str ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A ) UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(A ,return_tensors="""pt""" ).to(A ) UpperCAmelCase__ : Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A ,(1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase__ : int = model(**A ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A ,atol=A ) ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A ,atol=A ) ) UpperCAmelCase__ : int = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A ,atol=A ) ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : List[str] = prepare_img() UpperCAmelCase__ : List[str] = image_processor(A ,return_tensors="""pt""" ).to(A ) UpperCAmelCase__ : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A ,(1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**A ) # masks_queries_logits UpperCAmelCase__ : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase__ : Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase__ : Dict = torch.tensor(A ).to(A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A ,atol=A ) ) # class_queries_logits UpperCAmelCase__ : Any = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase__ : str = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A ,atol=A ) ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : Any = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) UpperCAmelCase__ : Tuple = inputs["""pixel_values"""].to(A ) UpperCAmelCase__ : List[Any] = [el.to(A ) for el in inputs["""mask_labels"""]] UpperCAmelCase__ : Union[str, Any] = [el.to(A ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**A ) self.assertTrue(outputs.loss is not None )
65
from __future__ import annotations from PIL import Image # Define glider example __a : Tuple = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __a : Optional[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" __A = [] for i in range(len(__lowercase ) ): __A = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __A = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__lowercase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__lowercase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__lowercase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __A = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__lowercase ) return next_generation def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[int]] , __lowercase : int ) -> list[Image.Image]: """simple docstring""" __A = [] for _ in range(__lowercase ): # Create output image __A = Image.new("""RGB""" , (len(cells[0] ), len(__lowercase )) ) __A = img.load() # Save cells to image for x in range(len(__lowercase ) ): for y in range(len(cells[0] ) ): __A = 2_5_5 - cells[y][x] * 2_5_5 __A = (colour, colour, colour) # Save image images.append(__lowercase ) __A = new_generation(__lowercase ) return images if __name__ == "__main__": __a : Optional[int] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
637
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __UpperCamelCase : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCamelCase : int = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) __a = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = 'src/transformers' shutil.rmtree(self.transformer_dir ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) ->List[Any]: '''simple docstring''' __a = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __a = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __a = black.format_str(lowerCamelCase , mode=lowerCamelCase ) __a = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCamelCase , 'w' , newline='\n' ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase ) with open(lowerCamelCase , 'r' ) as f: self.assertTrue(f.read() , lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCamelCase ) , ) # Copy consistency with a really long name __a = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , lowerCamelCase , lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCamelCase , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCamelCase ) , ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = check_copies.LOCALIZED_READMES['README_zh-hans.md'] __a = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) __a = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __a = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) __a , __a = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme['format_model_list'] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) __a , __a = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) __a = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) __a = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __a = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __a , __a = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase , lowerCamelCase )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Tuple = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1
'''simple docstring''' def __lowercase (_lowercase ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowerCamelCase : List[Any] = [True] * (num + 1) __lowerCamelCase : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, _lowercase ): __lowerCamelCase : Tuple = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ :int = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
150
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ :List[str] = logging.get_logger(__name__) UpperCAmelCase__ :Union[str, Any] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : str = 'altclip_text_model' def __init__( self : List[Any] , A__ : Optional[int]=250002 , A__ : Any=1024 , A__ : List[Any]=24 , A__ : Dict=16 , A__ : Union[str, Any]=4096 , A__ : Union[str, Any]="gelu" , A__ : str=0.1 , A__ : int=0.1 , A__ : str=514 , A__ : Optional[int]=1 , A__ : Optional[Any]=0.02 , A__ : int=0.02 , A__ : Optional[Any]=1e-0_5 , A__ : int=1 , A__ : Optional[Any]=0 , A__ : Dict=2 , A__ : Optional[int]="absolute" , A__ : Optional[int]=True , A__ : List[str]=768 , **A__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[str] = max_position_embeddings __lowerCamelCase : Optional[Any] = type_vocab_size __lowerCamelCase : int = initializer_range __lowerCamelCase : Optional[int] = initializer_factor __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : str = use_cache __lowerCamelCase : Optional[Any] = project_dim class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : List[Any] = 'altclip_vision_model' def __init__( self : Optional[int] , A__ : str=768 , A__ : str=3072 , A__ : str=512 , A__ : Optional[int]=12 , A__ : List[Any]=12 , A__ : Union[str, Any]=3 , A__ : Dict=224 , A__ : List[Any]=32 , A__ : List[Any]="quick_gelu" , A__ : Dict=1e-5 , A__ : List[str]=0.0 , A__ : Dict=0.02 , A__ : List[str]=1.0 , **A__ : Union[str, Any] , ): """simple docstring""" super().__init__(**A__ ) __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[int] = intermediate_size __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : str = num_channels __lowerCamelCase : Any = patch_size __lowerCamelCase : Any = image_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : List[str] = attention_dropout __lowerCamelCase : Any = layer_norm_eps __lowerCamelCase : Any = hidden_act @classmethod def a_ ( cls : str , A__ : Union[str, os.PathLike] , **A__ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(A__ ) __lowerCamelCase , __lowerCamelCase : str = cls.get_config_dict(A__ , **A__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __lowerCamelCase : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(A__ , **A__ ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : int = 'altclip' snake_case__ : Dict = True def __init__( self : Optional[Any] , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Union[str, Any]=768 , A__ : Tuple=2.6592 , **A__ : List[Any] ): """simple docstring""" __lowerCamelCase : str = kwargs.pop("""text_config_dict""" , A__ ) __lowerCamelCase : Dict = kwargs.pop("""vision_config_dict""" , A__ ) super().__init__(**A__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowerCamelCase : Any = {} # This is the complete result when using `text_config_dict`. __lowerCamelCase : Tuple = AltCLIPTextConfig(**A__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowerCamelCase : Optional[Any] = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : int = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowerCamelCase : Dict = {} # This is the complete result when using `vision_config_dict`. __lowerCamelCase : List[str] = AltCLIPVisionConfig(**A__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowerCamelCase : str = { str(A__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowerCamelCase : List[Any] = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase : Optional[Any] = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(A__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowerCamelCase : List[Any] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __lowerCamelCase : List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __lowerCamelCase : Union[str, Any] = AltCLIPTextConfig(**A__ ) __lowerCamelCase : Optional[int] = AltCLIPVisionConfig(**A__ ) __lowerCamelCase : Optional[Any] = projection_dim __lowerCamelCase : List[str] = logit_scale_init_value __lowerCamelCase : Union[str, Any] = 1.0 @classmethod def a_ ( cls : Optional[Any] , A__ : AltCLIPTextConfig , A__ : AltCLIPVisionConfig , **A__ : List[str] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A__ ) def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Optional[Any] = self.text_config.to_dict() __lowerCamelCase : Tuple = self.vision_config.to_dict() __lowerCamelCase : Tuple = self.__class__.model_type return output
150
1
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
468
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:list ): '''simple docstring''' __magic_name__ = len(__lowerCamelCase ) for i in range(1 , __lowerCamelCase ): __magic_name__ = collection[i] __magic_name__ = 0 __magic_name__ = i - 1 while low <= high: __magic_name__ = (low + high) // 2 if val < collection[mid]: __magic_name__ = mid - 1 else: __magic_name__ = mid + 1 for j in range(__lowerCamelCase , __lowerCamelCase , -1 ): __magic_name__ = collection[j - 1] __magic_name__ = val return collection if __name__ == "__main__": lowercase = input('''Enter numbers separated by a comma:\n''').strip() lowercase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
468
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __a : Dict = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __a : Optional[Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __a : str = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase( datasets.Metric ): """simple docstring""" def __a ( self ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase , hypotheses=lowerCamelCase , min_len=lowerCamelCase , max_len=lowerCamelCase ) }
397
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , 'width_multiplier' ) ) class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=64 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase="swish" , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=10 , lowerCamelCase=None , lowerCamelCase=0.25 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , ) ->List[str]: '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->str: '''simple docstring''' __a = MobileViTVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Any: '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Optional[int]: '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __a =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __a =( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __a =False __a =False __a =False __a =False def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' pass def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) ->int: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( lowerCamelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors='pt' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __a = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __a = model.to(lowerCamelCase ) __a = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors='pt' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __a = model.to(lowerCamelCase ) __a = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors='pt' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __a = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
448
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __lowercase (UpperCAmelCase_ ): def __init__( self , *A_ , **A_ ) ->List[Any]: '''simple docstring''' super().__init__(*_lowercase , **_lowercase ) requires_backends(self , '''vision''' ) self.check_model_type(_lowercase ) def __call__( self , A_ , **A_ ) ->int: '''simple docstring''' return super().__call__(_lowercase , **_lowercase ) def UpperCamelCase__ ( self , **A_ ) ->Optional[int]: '''simple docstring''' return {}, {}, {} def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = load_image(_lowercase ) __lowerCAmelCase : str = image.size __lowerCAmelCase : Union[str, Any] = self.image_processor(images=_lowercase , return_tensors=self.framework ) return model_inputs def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.model(**_lowercase ) return model_outputs def UpperCamelCase__ ( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : int = model_outputs.predicted_depth __lowerCAmelCase : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=_lowercase ) __lowerCAmelCase : str = prediction.squeeze().cpu().numpy() __lowerCAmelCase : List[str] = (output * 255 / np.max(_lowercase )).astype('''uint8''' ) __lowerCAmelCase : Union[str, Any] = Image.fromarray(_lowercase ) __lowerCAmelCase : List[Any] = {} __lowerCAmelCase : Dict = predicted_depth __lowerCAmelCase : Optional[Any] = depth return output_dict
707
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """git_vision_model""" def __init__( self , A_=768 , A_=3072 , A_=12 , A_=12 , A_=3 , A_=224 , A_=16 , A_="quick_gelu" , A_=1e-5 , A_=0.0 , A_=0.02 , **A_ , ) ->Any: '''simple docstring''' super().__init__(**A_ ) __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : List[str] = patch_size __lowerCAmelCase : Union[str, Any] = image_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Dict = attention_dropout __lowerCAmelCase : Tuple = layer_norm_eps __lowerCAmelCase : Any = hidden_act @classmethod def UpperCamelCase__ ( cls , A_ , **A_ ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowerCAmelCase, __lowerCAmelCase : Optional[int] = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __lowerCAmelCase : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """git""" def __init__( self , A_=None , A_=3_0522 , A_=768 , A_=6 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=0.02 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , A_=False , A_=101 , A_=102 , A_=None , **A_ , ) ->Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=A_ , eos_token_id=A_ , pad_token_id=A_ , **A_ ) if vision_config is None: __lowerCAmelCase : str = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __lowerCAmelCase : Any = GitVisionConfig(**A_ ) __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Dict = max_position_embeddings __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : List[str] = position_embedding_type __lowerCAmelCase : int = use_cache __lowerCAmelCase : List[str] = tie_word_embeddings __lowerCAmelCase : List[str] = num_image_with_embedding __lowerCAmelCase : List[str] = bos_token_id __lowerCAmelCase : Dict = eos_token_id def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = copy.deepcopy(self.__dict__ ) __lowerCAmelCase : List[Any] = self.vision_config.to_dict() __lowerCAmelCase : Optional[int] = self.__class__.model_type return output
583
0