code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter a = True except ImportError: a = False a = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class a_ ( snake_case ): @staticmethod def UpperCamelCase ( a_ : ArgumentParser ) -> Any: snake_case: Tuple =parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=a_ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=a_ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=a_ ) def __init__( self : Any , a_ : bool , a_ : str , a_ : int=None , *a_ : List[str] ) -> Dict: snake_case: Dict =testing snake_case: Union[str, Any] =testing_file snake_case: Any =path def UpperCamelCase ( self : str ) -> Optional[int]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case: int =[directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(a_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) snake_case: Tuple =( Path(a_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case: Optional[int] =path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(a_ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: snake_case: Dict =json.load(a_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=a_ , extra_context=a_ , ) snake_case: int =[directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: snake_case: Dict =json.load(a_ ) snake_case: Tuple =configuration['lowercase_modelname'] snake_case: Union[str, Any] =configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'''{directory}/configuration.json''' ) snake_case: Tuple ='PyTorch' in generate_tensorflow_pytorch_and_flax snake_case: Any ='TensorFlow' in generate_tensorflow_pytorch_and_flax snake_case: Union[str, Any] ='Flax' in generate_tensorflow_pytorch_and_flax snake_case: Optional[Any] =F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(a_ , exist_ok=a_ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=a_ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , 'w' ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(a_ : Union[str, Any] ): with open(a_ , 'r' ) as f: snake_case: Union[str, Any] =f.readlines() with open(a_ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(a_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(a_ : str , a_ : str , a_ : List[str] ): # Create temp file snake_case , snake_case: Union[str, Any] =mkstemp() snake_case: str =False with fdopen(a_ , 'w' ) as new_file: with open(a_ ) as old_file: for line in old_file: new_file.write(a_ ) if line_to_copy_below in line: snake_case: int =True for line_to_copy in lines_to_copy: new_file.write(a_ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(a_ , a_ ) # Remove original file remove(a_ ) # Move new file move(a_ , a_ ) def skip_units(a_ : List[str] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(a_ : Any ): with open(a_ ) as datafile: snake_case: List[str] =[] snake_case: Optional[int] =False snake_case: Optional[int] =False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case: Optional[Any] =line.split('"' )[1] snake_case: int =skip_units(a_ ) elif "# Below: " in line and "##" not in line: snake_case: Optional[Any] =line.split('"' )[1] snake_case: Any =skip_units(a_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(a_ , a_ , a_ ) snake_case: Tuple =[] elif "# Replace with" in line and "##" not in line: snake_case: Any =[] elif "##" not in line: lines_to_copy.append(a_ ) remove(a_ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(a_ )
350
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: """simple docstring""" snake_case: Any ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case: Dict =int(re.match(R'.*layer_(\d*).*' , __UpperCAmelCase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def a_ ( __UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" if dtype == torch.bool: return 1 / 8 snake_case: Optional[Any] =re.search(R'[^\d](\d+)$' , str(__UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) snake_case: str =int(bit_search.groups()[0] ) return bit_size // 8 def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: """simple docstring""" if bloom_config_file == "": snake_case: Tuple =BloomConfig() else: snake_case: List[Any] =BloomConfig.from_json_file(__UpperCAmelCase ) if shard_model: snake_case: Any =os.listdir(__UpperCAmelCase ) snake_case: Any =sorted(filter(lambda __UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , __UpperCAmelCase ) ) snake_case: int ={'weight_map': {}, 'metadata': {}} snake_case: Dict =0 snake_case: List[str] =None snake_case: Any =BloomConfig() for j, file in enumerate(__UpperCAmelCase ): print('Processing file: {}'.format(__UpperCAmelCase ) ) snake_case: Any =None for i in range(__UpperCAmelCase ): # load all TP files snake_case: Optional[int] =file.replace('model_00' , f'''model_0{i}''' ) snake_case: List[str] =torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names snake_case: int =list(temp.keys() ) for key in keys: snake_case: List[Any] =temp.pop(__UpperCAmelCase ) if tensors is None: snake_case: Tuple =temp else: for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case: Optional[int] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case: str =torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case: Dict =tensors[key] / pretraining_tp torch.save( __UpperCAmelCase , os.path.join( __UpperCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case: List[str] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case: List[Any] ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) snake_case: Tuple =BloomConfig() snake_case: Union[str, Any] =pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case: Any =total_size with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: snake_case: Tuple =json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) else: snake_case: Optional[Any] =BloomModel(__UpperCAmelCase ) snake_case: Any =os.listdir(__UpperCAmelCase ) snake_case: Optional[int] =sorted(filter(lambda __UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , __UpperCAmelCase ) ) snake_case: str =None for i, file in enumerate(__UpperCAmelCase ): snake_case: List[str] =None for i in range(__UpperCAmelCase ): # load all TP files snake_case: int =file.replace('model_00' , f'''model_0{i}''' ) snake_case: Optional[Any] =torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names snake_case: List[str] =list(temp.keys() ) for key in keys: snake_case: int =temp.pop(__UpperCAmelCase ) if tensors is None: snake_case: Any =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case: List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case: Tuple =torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case: int =tensors[key] / pretraining_tp snake_case: Optional[Any] =model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: snake_case: Optional[Any] =set(other_keys.missing_keys ) else: snake_case: Any =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) snake_case: Optional[int] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case: Any =pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: snake_case: Optional[Any] =model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
350
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : def __init__( self : int , _A : List[str] , _A : Tuple=13 , _A : Tuple=7 , _A : List[str]=True , _A : List[str]=True , _A : Tuple=True , _A : Any=True , _A : List[str]=True , _A : Dict=False , _A : str=False , _A : List[Any]=False , _A : int=2 , _A : Union[str, Any]=99 , _A : Dict=0 , _A : int=32 , _A : Optional[Any]=5 , _A : Dict=4 , _A : str=0.1 , _A : str=0.1 , _A : Any=512 , _A : Optional[Any]=2 , _A : Union[str, Any]=0.0_2 , _A : Optional[Any]=2 , _A : Optional[Any]=4 , _A : Optional[Any]="last" , _A : Optional[Any]=True , _A : Dict=None , _A : Optional[int]=0 , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Tuple = use_input_lengths UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : Tuple = gelu_activation UpperCAmelCase__ : Union[str, Any] = sinusoidal_embeddings UpperCAmelCase__ : Optional[Any] = causal UpperCAmelCase__ : Union[str, Any] = asm UpperCAmelCase__ : Dict = n_langs UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Dict = n_special UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Union[str, Any] = num_choices UpperCAmelCase__ : Dict = summary_type UpperCAmelCase__ : Dict = use_proj UpperCAmelCase__ : int = scope UpperCAmelCase__ : str = bos_token_id def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase__ : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase__ : int = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase_ ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase_ ( self : str , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[Any] , _A : List[str] , _A : List[Any] , _A : List[Any] , _A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : Tuple = XLMModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Optional[Any] = model(_A , lengths=_A , langs=_A ) UpperCAmelCase__ : Optional[Any] = model(_A , langs=_A ) UpperCAmelCase__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Tuple , _A : Dict , _A : Tuple , _A : Tuple , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : Dict , _A : List[str] , _A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : int = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , _A : Dict , _A : Any , _A : str , _A : int , _A : Tuple , _A : List[str] , _A : List[str] , _A : Dict , _A : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : int = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[Any] = model(_A ) UpperCAmelCase__ : Any = model(_A , start_positions=_A , end_positions=_A ) UpperCAmelCase__ : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Optional[int] , _A : List[str] , _A : int , _A : int , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : str , _A : List[str] , _A : Tuple , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = model(_A ) UpperCAmelCase__ : Union[str, Any] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) UpperCAmelCase__ : int = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) (UpperCAmelCase__ ) : Optional[Any] = result_with_labels.to_tuple() UpperCAmelCase__ : Dict = model(_A , start_positions=_A , end_positions=_A ) (UpperCAmelCase__ ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase_ ( self : int , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Optional[Any] , _A : int , _A : List[str] , _A : str , _A : Tuple , _A : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : Tuple = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = model(_A ) UpperCAmelCase__ : Optional[Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : Dict , _A : List[str] , _A : Tuple , _A : int , _A : Optional[Any] , _A : int , _A : List[str] , _A : int , _A : int , _A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : int = self.num_labels UpperCAmelCase__ : Any = XLMForTokenClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[Any] , _A : str , _A : Tuple , _A : Dict , _A : Any , _A : List[Any] , _A : Any , _A : Any , _A : List[Any] , _A : Tuple , ): '''simple docstring''' UpperCAmelCase__ : str = self.num_choices UpperCAmelCase__ : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Any = config_and_inputs UpperCAmelCase__ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase__ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : List[str] , _A : Any , _A : Optional[int] , _A : List[str] , _A : Optional[int] , _A : List[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase_ ( self : str , _A : Any , _A : str , _A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase__ : Dict = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) UpperCAmelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_A , emb_dim=37 ) def lowercase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def lowercase_ ( self : Tuple , _A : Any , _A : Optional[int] , _A : Any , _A : int , _A : Dict , _A : List[Any]=False , _A : List[Any]=1 ): '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token UpperCAmelCase__ : str = min_length + idx + 1 UpperCAmelCase__ : str = min_length + idx + 1 UpperCAmelCase__ : List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def lowercase_ ( self : Dict , _A : Union[str, Any] , _A : str , _A : str , _A : Optional[Any] , _A : int , _A : Tuple=False , _A : Union[str, Any]=1 ): '''simple docstring''' self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token UpperCAmelCase__ : List[str] = min_length + idx + 1 UpperCAmelCase__ : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president UpperCAmelCase__ : Tuple = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase__ : List[Any] = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
720
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) UpperCAmelCase__ : Tuple = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" def a ( __UpperCAmelCase : str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a ( __UpperCAmelCase : bytes , __UpperCAmelCase : int ) -> np.array: __magic_name__: Optional[int] = f'{sampling_rate}' __magic_name__: Union[str, Any] = """1""" __magic_name__: Tuple = """f32le""" __magic_name__: Optional[Any] = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(__UpperCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __magic_name__: Any = ffmpeg_process.communicate(__UpperCAmelCase ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error __magic_name__: Optional[Any] = output_stream[0] __magic_name__: Optional[int] = np.frombuffer(__UpperCAmelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def a ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : str = "f32le" , ) -> Optional[int]: __magic_name__: List[Any] = f'{sampling_rate}' __magic_name__: Optional[int] = """1""" if format_for_conversion == "s16le": __magic_name__: Dict = 2 elif format_for_conversion == "f32le": __magic_name__: List[str] = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) __magic_name__: str = platform.system() if system == "Linux": __magic_name__: Optional[Any] = """alsa""" __magic_name__: Optional[Any] = """default""" elif system == "Darwin": __magic_name__: Union[str, Any] = """avfoundation""" __magic_name__: Dict = """:0""" elif system == "Windows": __magic_name__: Any = """dshow""" __magic_name__: Union[str, Any] = """default""" __magic_name__: Union[str, Any] = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] __magic_name__: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __magic_name__: Union[str, Any] = _ffmpeg_stream(__UpperCAmelCase , __UpperCAmelCase ) for item in iterator: yield item def a ( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Union[Tuple[float, float], float]] = None , __UpperCAmelCase : str = "f32le" , ) -> List[Any]: if stream_chunk_s is not None: __magic_name__: Optional[int] = stream_chunk_s else: __magic_name__: List[str] = chunk_length_s __magic_name__: Optional[int] = ffmpeg_microphone(__UpperCAmelCase , __UpperCAmelCase , format_for_conversion=__UpperCAmelCase ) if format_for_conversion == "s16le": __magic_name__: str = np.intaa __magic_name__: str = 2 elif format_for_conversion == "f32le": __magic_name__: Optional[Any] = np.floataa __magic_name__: Dict = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: __magic_name__: List[Any] = chunk_length_s / 6 __magic_name__: Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCAmelCase , (int, float) ): __magic_name__: Union[str, Any] = [stride_length_s, stride_length_s] __magic_name__: List[str] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __magic_name__: List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __magic_name__: List[str] = datetime.datetime.now() __magic_name__: Optional[Any] = datetime.timedelta(seconds=__UpperCAmelCase ) for item in chunk_bytes_iter(__UpperCAmelCase , __UpperCAmelCase , stride=(stride_left, stride_right) , stream=__UpperCAmelCase ): # Put everything back in numpy scale __magic_name__: int = np.frombuffer(item["""raw"""] , dtype=__UpperCAmelCase ) __magic_name__: int = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) __magic_name__: Union[str, Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def a ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple[int, int] , __UpperCAmelCase : bool = False ) -> Union[str, Any]: __magic_name__: Tuple = B"""""" __magic_name__, __magic_name__: int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) __magic_name__: int = 0 for raw in iterator: acc += raw if stream and len(__UpperCAmelCase ) < chunk_len: __magic_name__: Optional[int] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator __magic_name__: Union[str, Any] = (_stride_left, stride_right) __magic_name__: Any = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: __magic_name__: str = False yield item __magic_name__: str = stride_left __magic_name__: Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCAmelCase ) > stride_left: __magic_name__: List[Any] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: __magic_name__: Union[str, Any] = False yield item def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : int ) -> List[Any]: __magic_name__: str = 2**2_4 # 16Mo try: with subprocess.Popen(__UpperCAmelCase , stdout=subprocess.PIPE , bufsize=__UpperCAmelCase ) as ffmpeg_process: while True: __magic_name__: Dict = ffmpeg_process.stdout.read(__UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
96
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _a : Dict = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } _a : List[str] = { '169M': 768, '430M': 1_024, '1B5': 2_048, '3B': 2_560, '7B': 4_096, '14B': 5_120, } def a_ ( __magic_name__ ) -> List[str]: """simple docstring""" snake_case : List[Any] = list(state_dict.keys() ) for name in state_dict_keys: snake_case : Tuple = state_dict.pop(__magic_name__ ) # emb -> embedding if name.startswith('''emb.''' ): snake_case : int = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): snake_case : List[str] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention snake_case : Union[str, Any] = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , __magic_name__ ) # ffn -> feed_forward snake_case : Dict = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , __magic_name__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): snake_case : Optional[int] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): snake_case : List[str] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): snake_case : List[Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": snake_case : Tuple = '''rwkv.''' + name snake_case : List[str] = weight return state_dict def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=False , __magic_name__=None ) -> Tuple: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) snake_case : str = 50_277 snake_case : str = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: snake_case : Tuple = PreTrainedTokenizerFast(tokenizer_file=__magic_name__ ) snake_case : str = len(__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) # 2. Build the config snake_case : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case : Union[str, Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) snake_case : Union[str, Any] = RwkvConfig( vocab_size=__magic_name__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__magic_name__ ) # 3. Download model file then convert state_dict snake_case : Union[str, Any] = hf_hub_download(__magic_name__ , __magic_name__ ) snake_case : List[Any] = torch.load(__magic_name__ , map_location='''cpu''' ) snake_case : Tuple = convert_state_dict(__magic_name__ ) # 4. Split in shards and save snake_case , snake_case : Optional[Any] = shard_checkpoint(__magic_name__ ) for shard_file, shard in shards.items(): torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) if index is not None: snake_case : Dict = os.path.join(__magic_name__ , __magic_name__ ) # Save the index as well with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as f: snake_case : Optional[int] = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + '''\n''' f.write(__magic_name__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) snake_case : Tuple = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case : Union[str, Any] = torch.load(os.path.join(__magic_name__ , __magic_name__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__magic_name__ , __magic_name__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(__magic_name__ ) model.push_to_hub(__magic_name__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__magic_name__ ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) _a : int = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
84
import string import numpy def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) class a_ : A__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) A__ : List[str] = numpy.vectorize(lambda a : x % 36 ) A__ : Dict = numpy.vectorize(a ) def __init__( self : List[str] , UpperCAmelCase__ : numpy.ndarray ): """simple docstring""" snake_case : int = self.modulus(UpperCAmelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key snake_case : List[str] = encrypt_key.shape[0] def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : str ): """simple docstring""" return self.key_string.index(UpperCAmelCase__ ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : int ): """simple docstring""" return self.key_string[round(UpperCAmelCase__ )] def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : Tuple = det % len(self.key_string ) snake_case : Tuple = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase__ , len(self.key_string ) ) != 1: snake_case : List[Any] = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = [char for char in text.upper() if char in self.key_string] snake_case : Optional[int] = chars[-1] while len(UpperCAmelCase__ ) % self.break_key != 0: chars.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = self.process_text(text.upper() ) snake_case : Optional[int] = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : int = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : Tuple = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[ 0 ] snake_case : Dict = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase( self : str ): """simple docstring""" snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : int = det % len(self.key_string ) snake_case : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: snake_case : Any = i break snake_case : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase__ ) ) def lowerCAmelCase( self : Dict , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Any = self.make_decrypt_key() snake_case : Optional[Any] = self.process_text(text.upper() ) snake_case : int = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : Any = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : List[str] = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(decrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[0] snake_case : int = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a_ ( ) -> None: """simple docstring""" snake_case : Any = int(input('''Enter the order of the encryption key: ''' ) ) snake_case : List[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__magic_name__ ): snake_case : Optional[Any] = [int(__magic_name__ ) for x in input().split()] hill_matrix.append(__magic_name__ ) snake_case : List[str] = HillCipher(numpy.array(__magic_name__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) snake_case : int = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": snake_case : List[Any] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__magic_name__ ) ) elif option == "2": snake_case : int = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
84
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : List[Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCAmelCase__ : int = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCAmelCase__ : str = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCAmelCase__ : Any = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
223
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _UpperCamelCase : Union[str, Any] = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) _UpperCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> List[str]: UpperCAmelCase_ : int = '''https://pypi.org/pypi/diffusers/json''' UpperCAmelCase_ : List[str] = json.loads(request.urlopen(A ).read() )['''releases'''].keys() return sorted(A , key=lambda A : version.Version(A ) ) def __UpperCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(A ) os.makedirs(A , exist_ok=A ) UpperCAmelCase_ : Tuple = Path(A ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( A : Union[str, os.PathLike] ) -> str: init_hf_modules() UpperCAmelCase_ : Any = Path(A ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(A , exist_ok=A ) UpperCAmelCase_ : str = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( A : Dict ) -> Optional[int]: with open(A , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : List[Any] = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ : Any = re.findall('''^\s*import\s+\.(\S+)\s*$''' , A , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , A , flags=re.MULTILINE ) # Unique-ify return list(set(A ) ) def __UpperCAmelCase ( A : Tuple ) -> List[str]: UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[str] = [module_file] UpperCAmelCase_ : str = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ : Any = [] for f in files_to_check: new_imports.extend(get_relative_imports(A ) ) UpperCAmelCase_ : Tuple = Path(A ).parent UpperCAmelCase_ : Union[str, Any] = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ : str = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ : str = [F"{f}.py" for f in new_import_files] UpperCAmelCase_ : Optional[int] = len(A ) == 0 all_relative_imports.extend(A ) return all_relative_imports def __UpperCAmelCase ( A : List[str] ) -> Union[str, Any]: with open(A , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : List[str] = f.read() # Imports of the form `import xxx` UpperCAmelCase_ : Optional[Any] = re.findall('''^\s*import\s+(\S+)\s*$''' , A , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , A , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ : List[str] = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all UpperCAmelCase_ : str = list(set(A ) ) UpperCAmelCase_ : int = [] for imp in imports: try: importlib.import_module(A ) except ImportError: missing_packages.append(A ) if len(A ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"{', '.join(A )}. Run `pip install {' '.join(A )}`" ) return get_relative_imports(A ) def __UpperCAmelCase ( A : Optional[Any] , A : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = module_path.replace(os.path.sep , '''.''' ) UpperCAmelCase_ : int = importlib.import_module(A ) if class_name is None: return find_pipeline_class(A ) return getattr(A , A ) def __UpperCAmelCase ( A : str ) -> List[str]: from ..pipelines import DiffusionPipeline UpperCAmelCase_ : List[Any] = dict(inspect.getmembers(A , inspect.isclass ) ) UpperCAmelCase_ : Optional[int] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , A ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) UpperCAmelCase_ : int = cls return pipeline_class def __UpperCAmelCase ( A : Union[str, os.PathLike] , A : str , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , A : bool = False , A : Optional[Dict[str, str]] = None , A : Optional[Union[bool, str]] = None , A : Optional[str] = None , A : bool = False , ) -> str: UpperCAmelCase_ : Any = str(A ) UpperCAmelCase_ : List[Any] = os.path.join(A , A ) if os.path.isfile(A ): UpperCAmelCase_ : Optional[Any] = module_file_or_url UpperCAmelCase_ : List[str] = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: UpperCAmelCase_ : List[str] = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ : Dict = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ : List[str] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: UpperCAmelCase_ : List[str] = F"v{revision}" elif revision == "main": UpperCAmelCase_ : Dict = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub UpperCAmelCase_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=A , pipeline=A ) try: UpperCAmelCase_ : List[Any] = cached_download( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) UpperCAmelCase_ : List[str] = '''git''' UpperCAmelCase_ : Union[str, Any] = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ : List[str] = hf_hub_download( A , A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) UpperCAmelCase_ : Tuple = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment UpperCAmelCase_ : Any = check_imports(A ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ : List[str] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(A ) UpperCAmelCase_ : Optional[Any] = Path(A ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(A , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ : int = F"{module_needed}.py" shutil.copy(os.path.join(A , A ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(A , A ): UpperCAmelCase_ : Tuple = use_auth_token elif use_auth_token is True: UpperCAmelCase_ : Tuple = HfFolder.get_token() else: UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = model_info(A , revision=A , token=A ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ : Optional[Any] = submodule_path / commit_hash UpperCAmelCase_ : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(A ) if not (submodule_path / module_file).exists(): shutil.copy(A , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( A , F"{module_needed}.py" , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return os.path.join(A , A ) def __UpperCAmelCase ( A : Union[str, os.PathLike] , A : str , A : Optional[str] = None , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , A : bool = False , A : Optional[Dict[str, str]] = None , A : Optional[Union[bool, str]] = None , A : Optional[str] = None , A : bool = False , **A : Optional[int] , ) -> Optional[Any]: UpperCAmelCase_ : Tuple = get_cached_module_file( A , A , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return get_class_in_module(A , final_module.replace('''.py''' , '''''' ) )
541
0
'''simple docstring''' import argparse import copy def lowercase_ ( lowercase__ ) ->str: _snake_case: Union[str, Any] = {} with open(lowercase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _snake_case: int = [] _list.append([line.split()[1], line.split()[2]] ) _snake_case: Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _snake_case: int = [] _list.append([line.split()[0], line.split()[2]] ) _snake_case: List[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase_ ( lowercase__ , lowercase__ ) ->str: with open(lowercase__ ) as f: _snake_case: str = f.read(1 ) _snake_case: Any = start_node _snake_case: Dict = [] _snake_case: Optional[int] = start_node _snake_case: str = 0 while visiting not in first_solution: _snake_case: Tuple = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowercase__ ) and k[0] not in first_solution: _snake_case: str = k[1] _snake_case: int = k[0] first_solution.append(lowercase__ ) _snake_case: Union[str, Any] = distance_of_first_solution + int(lowercase__ ) _snake_case: int = best_node first_solution.append(lowercase__ ) _snake_case: Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _snake_case: str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase_ ( lowercase__ , lowercase__ ) ->Any: _snake_case: Optional[Any] = [] for n in solution[1:-1]: _snake_case: Union[str, Any] = solution.index(lowercase__ ) for kn in solution[1:-1]: _snake_case: Union[str, Any] = solution.index(lowercase__ ) if n == kn: continue _snake_case: Any = copy.deepcopy(lowercase__ ) _snake_case: Tuple = kn _snake_case: Optional[int] = n _snake_case: str = 0 for k in _tmp[:-1]: _snake_case: str = _tmp[_tmp.index(lowercase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _snake_case: Optional[Any] = distance + int(i[1] ) _tmp.append(lowercase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _snake_case: Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) ->int: _snake_case: Optional[Any] = 1 _snake_case: Optional[Any] = first_solution _snake_case: List[Any] = [] _snake_case: Optional[Any] = distance_of_first_solution _snake_case: Optional[Any] = solution while count <= iters: _snake_case: Tuple = find_neighborhood(lowercase__ , lowercase__ ) _snake_case: int = 0 _snake_case: Optional[Any] = neighborhood[index_of_best_solution] _snake_case: Union[str, Any] = len(lowercase__ ) - 1 _snake_case: Union[str, Any] = False while not found: _snake_case: str = 0 while i < len(lowercase__ ): if best_solution[i] != solution[i]: _snake_case: Tuple = best_solution[i] _snake_case: Optional[int] = solution[i] break _snake_case: Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _snake_case: Optional[Any] = True _snake_case: Tuple = best_solution[:-1] _snake_case: int = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _snake_case: str = cost _snake_case: Any = solution else: _snake_case: List[str] = index_of_best_solution + 1 _snake_case: Union[str, Any] = neighborhood[index_of_best_solution] if len(lowercase__ ) >= size: tabu_list.pop(0 ) _snake_case: Tuple = count + 1 return best_solution_ever, best_cost def lowercase_ ( lowercase__=None ) ->List[str]: _snake_case: Optional[int] = generate_neighbours(args.File ) _snake_case , _snake_case: Union[str, Any] = generate_first_solution( args.File , lowercase__ ) _snake_case , _snake_case: Dict = tabu_search( lowercase__ , lowercase__ , lowercase__ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
273
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str=13 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=3 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=32 , __snake_case : Optional[int]=5 , __snake_case : Any=4 , __snake_case : int=37 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : int=10 , __snake_case : Any=0.02 , __snake_case : List[str]=None , __snake_case : Tuple=2 , ): '''simple docstring''' _snake_case: Optional[Any] = parent _snake_case: Tuple = batch_size _snake_case: str = image_size _snake_case: int = patch_size _snake_case: Union[str, Any] = num_channels _snake_case: Dict = is_training _snake_case: Optional[Any] = use_labels _snake_case: Optional[Any] = hidden_size _snake_case: Tuple = num_hidden_layers _snake_case: List[Any] = num_attention_heads _snake_case: Union[str, Any] = intermediate_size _snake_case: List[str] = hidden_act _snake_case: Tuple = hidden_dropout_prob _snake_case: List[Any] = attention_probs_dropout_prob _snake_case: str = type_sequence_label_size _snake_case: Any = initializer_range _snake_case: str = scope _snake_case: Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case: Tuple = (image_size // patch_size) ** 2 _snake_case: List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case: List[str] = None if self.use_labels: _snake_case: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' _snake_case: Dict = ViTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int ): '''simple docstring''' _snake_case: int = ViTForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Dict = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case: List[str] = 1 _snake_case: Tuple = ViTForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ): '''simple docstring''' _snake_case: Optional[int] = self.type_sequence_label_size _snake_case: Union[str, Any] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case: Tuple = 1 _snake_case: Optional[int] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): int = config_and_inputs _snake_case: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[int] = ViTModelTester(self ) _snake_case: Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case , _snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case: Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case , _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: int = model_class(__snake_case ) _snake_case: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case: List[Any] = [*signature.parameters.keys()] _snake_case: str = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: Any = ViTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase_ ( ) ->List[Any]: _snake_case: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Optional[int] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__snake_case ) _snake_case: Dict = self.default_image_processor _snake_case: Optional[Any] = prepare_img() _snake_case: List[str] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: Optional[int] = model(**__snake_case ) # verify the logits _snake_case: Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) _snake_case: Dict = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__snake_case ) _snake_case: Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80 ) _snake_case: Optional[int] = prepare_img() _snake_case: Dict = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Optional[Any] = inputs.pixel_values.to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: str = model(__snake_case , interpolate_pos_encoding=__snake_case ) # verify the logits _snake_case: List[str] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __snake_case ) _snake_case: Any = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: List[Any] = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) _snake_case: Dict = self.default_image_processor _snake_case: Any = prepare_img() _snake_case: str = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Any = inputs.pixel_values.to(__snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _snake_case: int = model(__snake_case )
273
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCamelCase__ ( nn.Module): """simple docstring""" def __init__( self : Tuple , UpperCamelCase_ : int = 1_6 , UpperCamelCase_ : int = 8_8 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : str = "geglu" , UpperCamelCase_ : Optional[int] = None , ): '''simple docstring''' super().__init__() __magic_name__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , in_channels=UpperCamelCase_ , num_layers=UpperCamelCase_ , dropout=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , cross_attention_dim=UpperCamelCase_ , attention_bias=UpperCamelCase_ , sample_size=UpperCamelCase_ , num_vector_embeds=UpperCamelCase_ , activation_fn=UpperCamelCase_ , num_embeds_ada_norm=UpperCamelCase_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __magic_name__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __magic_name__ = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __magic_name__ = [1, 0] def a__ ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : bool = True , ): '''simple docstring''' __magic_name__ = hidden_states __magic_name__ = [] __magic_name__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __magic_name__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __magic_name__ = self.transformer_index_for_condition[i] __magic_name__ = self.transformers[transformer_index]( UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ , cross_attention_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __magic_name__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __magic_name__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase_ )
545
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process snake_case : Any = logging.getLogger(__name__) snake_case : Optional[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) snake_case : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a_)} , ) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def a__ ( self : Optional[int] ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = field( default=a_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""}) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) __UpperCAmelCase = field(default=a_ , metadata={"""help""": """The input training data file (a text file)."""}) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) __UpperCAmelCase = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCAmelCase = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""}) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def a__ ( self : List[str] ): '''simple docstring''' if self.train_file is not None: __magic_name__ = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __magic_name__ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( __snake_case: Tuple , __snake_case: str ) -> Tuple: """simple docstring""" with open(__snake_case , 'r' , encoding='utf-8' ) as f: __magic_name__ = [json.loads(__snake_case ) for line in f.read().splitlines() if (len(__snake_case ) > 0 and not line.isspace())] assert len(__snake_case ) == len(__snake_case ) __magic_name__ = {c: dataset[c] for c in dataset.column_names} __magic_name__ = refs return Dataset.from_dict(__snake_case ) def A ( ) -> Union[str, Any]: """simple docstring""" __magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __magic_name__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __magic_name__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) __magic_name__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: __magic_name__ = {} if data_args.train_file is not None: __magic_name__ = data_args.train_file if data_args.validation_file is not None: __magic_name__ = data_args.validation_file __magic_name__ = data_args.train_file.split('.' )[-1] if extension == "txt": __magic_name__ = 'text' __magic_name__ = load_dataset(__snake_case , data_files=__snake_case ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ = AutoConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: __magic_name__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: __magic_name__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __magic_name__ = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__snake_case ) elif model_args.model_name_or_path: __magic_name__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __magic_name__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __magic_name__ = AutoModelForMaskedLM.from_config(__snake_case ) model.resize_token_embeddings(len(__snake_case ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __magic_name__ = datasets['train'].column_names else: __magic_name__ = datasets['validation'].column_names __magic_name__ = 'text' if 'text' in column_names else column_names[0] __magic_name__ = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(__snake_case: str ): # Remove empty lines __magic_name__ = [line for line in examples['text'] if len(__snake_case ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=__snake_case , truncation=__snake_case , max_length=data_args.max_seq_length ) __magic_name__ = datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __magic_name__ = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __magic_name__ = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __magic_name__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __magic_name__ = False # Data collator # This one will take care of randomly masking the tokens. __magic_name__ = DataCollatorForWholeWordMask(tokenizer=__snake_case , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __magic_name__ = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: if last_checkpoint is not None: __magic_name__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __magic_name__ = model_args.model_name_or_path else: __magic_name__ = None __magic_name__ = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() # Saves the tokenizer too for easy upload __magic_name__ = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(__snake_case , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation __magic_name__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __magic_name__ = trainer.evaluate() __magic_name__ = math.exp(eval_output['eval_loss'] ) __magic_name__ = perplexity __magic_name__ = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(__snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def A ( __snake_case: List[str] ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
545
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __snake_case : int =['small', 'medium', 'large'] __snake_case : List[Any] ='lm_head.decoder.weight' __snake_case : str ='lm_head.weight' def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : int = torch.load(lowerCamelCase_) lowerCAmelCase__ : List[Any] = d.pop(lowerCamelCase_) os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_) torch.save(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,lowerCamelCase_)) if __name__ == "__main__": __snake_case : Optional[Any] =argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) __snake_case : str =parser.parse_args() for MODEL in DIALOGPT_MODELS: __snake_case : int =os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __snake_case : Optional[Any] =f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
90
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =AutoencoderKL snake_case_ ="""sample""" snake_case_ =1e-2 @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : int = 3 lowerCAmelCase__ : List[Any] = (32, 32) lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) return {"sample": image} @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase__ : str = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Any: """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' ,'''Gradient checkpointing skipped on MPS''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Tuple = self.model_class(**__lowerCamelCase ) model.to(__lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training lowerCAmelCase__ : Tuple = model(**__lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowerCAmelCase__ : Optional[Any] = torch.randn_like(__lowerCamelCase ) lowerCAmelCase__ : Tuple = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowerCAmelCase__ : str = self.model_class(**__lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowerCAmelCase__ : Dict = model_a(**__lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowerCAmelCase__ : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) lowerCAmelCase__ : List[str] = dict(model.named_parameters() ) lowerCAmelCase__ : Optional[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) lowerCAmelCase__ : Tuple = model.to(__lowerCamelCase ) model.eval() if torch_device == "mps": lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) else: lowerCAmelCase__ : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = image.to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,sample_posterior=__lowerCamelCase ,generator=__lowerCamelCase ).sample lowerCAmelCase__ : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowerCAmelCase__ : List[str] = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": lowerCAmelCase__ : str = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: lowerCAmelCase__ : Any = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase ) for s in shape] )}.npy""" def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ,__lowerCamelCase=0 ,__lowerCamelCase=(4, 3, 5_12, 5_12) ,__lowerCamelCase=False ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[int] = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCamelCase ,__lowerCamelCase ) ) ).to(__lowerCamelCase ).to(__lowerCamelCase ) return image def lowerCAmelCase__ (self ,__lowerCamelCase="CompVis/stable-diffusion-v1-4" ,__lowerCamelCase=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Dict = '''fp16''' if fpaa else None lowerCAmelCase__ : Optional[Any] = torch.floataa if fpaa else torch.floataa lowerCAmelCase__ : List[Any] = AutoencoderKL.from_pretrained( __lowerCamelCase ,subfolder='''vae''' ,torch_dtype=__lowerCamelCase ,revision=__lowerCamelCase ,) model.to(__lowerCamelCase ).eval() return model def lowerCAmelCase__ (self ,__lowerCamelCase=0 ) -> str: """simple docstring""" if torch_device == "mps": return torch.manual_seed(__lowerCamelCase ) return torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_sd_vae_model() lowerCAmelCase__ : Any = self.get_sd_image(__lowerCamelCase ) lowerCAmelCase__ : List[str] = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Dict = model(__lowerCamelCase ,generator=__lowerCamelCase ,sample_posterior=__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : List[str] = self.get_sd_image(__lowerCamelCase ,fpaa=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,generator=__lowerCamelCase ,sample_posterior=__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ : Any = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = self.get_sd_vae_model() lowerCAmelCase__ : Dict = self.get_sd_image(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(__lowerCamelCase ).sample assert sample.shape == image.shape lowerCAmelCase__ : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase__ : List[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = self.get_sd_vae_model() lowerCAmelCase__ : Union[str, Any] = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ : str = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] lowerCAmelCase__ : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() lowerCAmelCase__ : Any = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : Dict = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] lowerCAmelCase__ : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase__ : Union[str, Any] = torch.tensor(__lowerCamelCase ) assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : Any = self.get_sd_vae_model(fpaa=__lowerCamelCase ) lowerCAmelCase__ : str = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Any = model.decode(__lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_sd_vae_model() lowerCAmelCase__ : Dict = self.get_sd_image(__lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model.decode(__lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model.decode(__lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Tuple = self.get_sd_vae_model() lowerCAmelCase__ : Tuple = self.get_sd_image(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.get_generator(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model.encode(__lowerCamelCase ).latent_dist lowerCAmelCase__ : int = dist.sample(generator=__lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowerCAmelCase__ : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() lowerCAmelCase__ : int = torch.tensor(__lowerCamelCase ) lowerCAmelCase__ : Any = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,atol=__lowerCamelCase )
90
1
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan SCREAMING_SNAKE_CASE_ = 6_37_81_37.0 SCREAMING_SNAKE_CASE_ = 6_35_67_52.31_42_45 SCREAMING_SNAKE_CASE_ = 6_37_81_37 def UpperCamelCase__ ( _lowercase : str , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[str] ) -> Optional[Any]: __UpperCAmelCase: List[str] = (AXIS_A - AXIS_B) / AXIS_A __UpperCAmelCase: Dict = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) __UpperCAmelCase: Dict = atan((1 - flattening) * tan(radians(lowerCAmelCase__ ) ) ) __UpperCAmelCase: Union[str, Any] = radians(lowerCAmelCase__ ) __UpperCAmelCase: Optional[int] = radians(lowerCAmelCase__ ) # Equation __UpperCAmelCase: Optional[Any] = sin((phi_a - phi_a) / 2 ) __UpperCAmelCase: str = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCAmelCase: Optional[Any] = sqrt(sin_sq_phi + (cos(lowerCAmelCase__ ) * cos(lowerCAmelCase__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
523
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase : int =logging.get_logger(__name__) class UpperCamelCase_ ( snake_case__ ): def __init__( self : Tuple , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
364
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case =logging.get_logger(__name__) __snake_case ={ """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class UpperCAmelCase_ ( __lowercase , __lowercase ): lowerCamelCase : List[Any] = '''resnet''' lowerCamelCase : List[str] = ['''basic''', '''bottleneck'''] def __init__( self : Tuple , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : List[str]=6_4 , UpperCAmelCase__ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase__ : Any=[3, 4, 6, 3] , UpperCAmelCase__ : List[Any]="bottleneck" , UpperCAmelCase__ : Any="relu" , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : List[Any] , ) -> int: super().__init__(**UpperCAmelCase__ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowerCAmelCase = num_channels lowerCAmelCase = embedding_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = layer_type lowerCAmelCase = hidden_act lowerCAmelCase = downsample_in_first_stage lowerCAmelCase = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowerCAmelCase , lowerCAmelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[int] = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Tuple ) -> float: return 1E-3
716
'''simple docstring''' def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Tuple ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase = (boundary[1] - boundary[0]) / steps lowerCAmelCase = boundary[0] lowerCAmelCase = boundary[1] lowerCAmelCase = make_points(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = 0.0 y += (h / 2.0) * f(lowerCamelCase ) for i in x_i: # print(i) y += h * f(lowerCamelCase ) y += (h / 2.0) * f(lowerCamelCase ) return y def a_ ( lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ): lowerCAmelCase = a + h while x < (b - h): yield x lowerCAmelCase = x + h def a_ ( lowerCamelCase : Optional[Any] ): # enter your function here lowerCAmelCase = (x - 0) * (x - 0) return y def a_ ( ): lowerCAmelCase = 0.0 # Lower bound of integration lowerCAmelCase = 1.0 # Upper bound of integration lowerCAmelCase = 10.0 # define number of steps or resolution lowerCAmelCase = [a, b] # define boundary of integration lowerCAmelCase = method_a(lowerCamelCase , lowerCamelCase ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
513
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _A: Tuple = True from torch.cuda.amp import autocast _A: List[str] = logging.getLogger(__name__) @dataclass class UpperCAmelCase : _A : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _A : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _A : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _A : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) _A : Optional[float] = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) _A : Optional[float] = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) _A : Optional[float] = field( default=0.99_9995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Tuple: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __UpperCAmelCase = logging.WARNING if model_args.verbose_logging: __UpperCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __UpperCAmelCase = logging.INFO logger.setLevel(_lowerCAmelCase ) @dataclass class UpperCAmelCase : _A : str = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _A : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _A : Optional[str] = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _A : Optional[str] = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) _A : Optional[str] = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) _A : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _A : Optional[int] = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _A : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _A : Optional[float] = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class UpperCAmelCase : _A : WavaVecaForPreTraining _A : WavaVecaFeatureExtractor _A : Union[bool, str] = "longest" _A : Optional[int] = None _A : Optional[int] = None def __call__( self , __A ): # reformat list to dict and set to pytorch format __UpperCAmelCase = self.feature_extractor.pad( __A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __UpperCAmelCase = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) __UpperCAmelCase = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __UpperCAmelCase = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) __UpperCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __UpperCAmelCase = 1 __UpperCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __UpperCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__A , min_masks=2 , ) return batch class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , *__A , __A=1 , __A=0 , __A=1.0 , **__A ): super().__init__(*__A , **__A ) __UpperCAmelCase = 0 __UpperCAmelCase = max_gumbel_temp __UpperCAmelCase = min_gumbel_temp __UpperCAmelCase = gumbel_temp_decay def __lowerCamelCase ( self , __A , __A ): model.train() __UpperCAmelCase = self._prepare_inputs(__A ) if self.use_amp: with autocast(): __UpperCAmelCase = self.compute_loss(__A , __A ) else: __UpperCAmelCase = self.compute_loss(__A , __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __UpperCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCAmelCase = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __UpperCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _lowerCAmelCase ( )-> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() configure_logger(_lowerCAmelCase , _lowerCAmelCase ) # Downloading and loading a dataset from the hub. __UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __UpperCAmelCase = DatasetDict() __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __UpperCAmelCase = DatasetDict() __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCAmelCase ) def prepare_dataset(_lowerCAmelCase ): # check that all files have the correct sampling rate __UpperCAmelCase , __UpperCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __UpperCAmelCase = datasets.map( _lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __UpperCAmelCase = vectorized_datasets.filter( lambda _lowerCAmelCase : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCAmelCase ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __UpperCAmelCase = vectorized_datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __UpperCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __UpperCAmelCase = WavaVecaForPreTraining(_lowerCAmelCase ) __UpperCAmelCase = DataCollatorForWavaVecaPretraining(model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) __UpperCAmelCase = WavaVecaPreTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=_lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
126
'''simple docstring''' from typing import Any import numpy as np def _lowerCAmelCase ( _lowerCAmelCase )-> bool: return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Any: __UpperCAmelCase = v.conjugate().T __UpperCAmelCase = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def _lowerCAmelCase ( )-> None: __UpperCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), F'{a} is not hermitian.' print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) __UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), F'{a} is not hermitian.' assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
126
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( _UpperCamelCase ): UpperCAmelCase : str UpperCAmelCase : int def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> list[str]: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(lowercase_ ) )] def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> BWTTransformDict: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) __snake_case : str = all_rotations(lowercase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase_ ), } return response def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) -> str: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: __snake_case : str = int(lowercase_ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(lowercase_ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) __snake_case : Dict = [""] * len(lowercase_ ) for _ in range(len(lowercase_ ) ): for i in range(len(lowercase_ ) ): __snake_case : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _a : Optional[Any]= "Provide a string that I will generate its BWT transform: " _a : Tuple= input(entry_msg).strip() _a : int= bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) _a : Union[str, Any]= reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
707
"""simple docstring""" from typing import Any class UpperCamelCase : def __init__(self : List[str] , _A : Any) -> int: __snake_case : Any = data __snake_case : Dict = None def __repr__(self : Tuple) -> str: return f"Node({self.data})" class UpperCamelCase : def __init__(self : Union[str, Any]) -> Union[str, Any]: __snake_case : Any = None def __iter__(self : Tuple) -> Any: __snake_case : List[str] = self.head while node: yield node.data __snake_case : Any = node.next def __len__(self : str) -> int: return sum(1 for _ in self) def __repr__(self : int) -> str: return "->".join([str(_A) for item in self]) def __getitem__(self : List[Any] , _A : int) -> Any: if not 0 <= index < len(self): raise ValueError('list index out of range.') for i, node in enumerate(self): if i == index: return node return None def __setitem__(self : int , _A : int , _A : Any) -> None: if not 0 <= index < len(self): raise ValueError('list index out of range.') __snake_case : Optional[int] = self.head for _ in range(_A): __snake_case : Any = current.next __snake_case : Dict = data def _lowercase (self : List[Any] , _A : Any) -> None: self.insert_nth(len(self) , _A) def _lowercase (self : List[str] , _A : Any) -> None: self.insert_nth(0 , _A) def _lowercase (self : Optional[Any] , _A : int , _A : Any) -> None: if not 0 <= index <= len(self): raise IndexError('list index out of range') __snake_case : str = Node(_A) if self.head is None: __snake_case : str = new_node elif index == 0: __snake_case : Union[str, Any] = self.head # link new_node to head __snake_case : int = new_node else: __snake_case : Any = self.head for _ in range(index - 1): __snake_case : Any = temp.next __snake_case : Dict = temp.next __snake_case : str = new_node def _lowercase (self : Optional[int]) -> None: # print every node data print(self) def _lowercase (self : Optional[Any]) -> Any: return self.delete_nth(0) def _lowercase (self : List[str]) -> Any: # delete from tail return self.delete_nth(len(self) - 1) def _lowercase (self : int , _A : int = 0) -> Any: if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('List index out of range.') __snake_case : int = self.head # default first node if index == 0: __snake_case : Any = self.head.next else: __snake_case : List[Any] = self.head for _ in range(index - 1): __snake_case : List[str] = temp.next __snake_case : Union[str, Any] = temp.next __snake_case : str = temp.next.next return delete_node.data def _lowercase (self : str) -> bool: return self.head is None def _lowercase (self : Tuple) -> None: __snake_case : List[Any] = None __snake_case : Optional[Any] = self.head while current: # Store the current node's next node. __snake_case : List[str] = current.next # Make the current node's next point backwards __snake_case : Optional[Any] = prev # Make the previous node be the current node __snake_case : Optional[Any] = current # Make the current node the next node (to progress iteration) __snake_case : Any = next_node # Return prev in order to put the head at the end __snake_case : Optional[Any] = prev def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(UpperCAmelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCAmelCase_ ) == i linked_list.insert_nth(UpperCAmelCase_ , i + 1 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCAmelCase_ ) == 9 assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __snake_case : Tuple = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(-8 , 1 ) ) def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : str = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __snake_case : Optional[Any] = LinkedList() for i in test_input: linked_list.insert_tail(UpperCAmelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCAmelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __snake_case : int = linked_list.delete_head() assert result == -9 assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __snake_case : Any = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __snake_case : Tuple = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(UpperCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCAmelCase_ ) assert ( str(UpperCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCAmelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' from doctest import testmod testmod() __snake_case : int = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(UpperCAmelCase_ ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) __snake_case : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(UpperCAmelCase_ ) print(F"length of linked_list is : {len(UpperCAmelCase_ )}" ) if __name__ == "__main__": main()
192
0
def __a ( __UpperCAmelCase ): a__ = len(__UpperCAmelCase ) a__ = len(matrix[0] ) a__ = min(__UpperCAmelCase , __UpperCAmelCase ) for row in range(__UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __UpperCAmelCase ): a__ = matrix[col][row] / matrix[row][row] for i in range(__UpperCAmelCase , __UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows a__ = True for i in range(row + 1 , __UpperCAmelCase ): if matrix[i][row] != 0: a__ , a__ = matrix[i], matrix[row] a__ = False break if reduce: rank -= 1 for i in range(__UpperCAmelCase ): a__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
194
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a_ : Any = logging.get_logger(__name__) a_ : str = TypeVar('DatasetType', Dataset, IterableDataset) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) else: return _interleave_iterable_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase ) else: return _concatenate_iterable_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase )
194
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( lowercase_ ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , """depth_multiplier""" ) ) class __lowercase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=13 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : Dict=0.25 , UpperCamelCase_ : Optional[int]=8 , UpperCamelCase_ : Dict=8 , UpperCamelCase_ : List[str]=6 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]="relu6" , UpperCamelCase_ : int=1_280 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[Any]=10 , UpperCamelCase_ : Any=None , ): """simple docstring""" __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = depth_divisible_by __A = min_depth __A = expand_ratio __A = tf_padding __A = output_stride __A = first_layer_is_expansion __A = finegrained_output __A = hidden_act __A = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = MobileNetVaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] ): """simple docstring""" __A = self.num_labels __A = MobileNetVaForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ): """simple docstring""" __A = self.num_labels __A = MobileNetVaForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __A = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase_ ( self : str ): """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(UpperCamelCase_ ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ): __A = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __A = outputs.hidden_states __A = 16 self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : str ): """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" __A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(UpperCamelCase_ ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): __A = model(**UpperCamelCase_ ) # verify the logits __A = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __A = torch.tensor([0.2445, -1.1993, 0.1905] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __A = model.to(UpperCamelCase_ ) __A = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __A = prepare_img() __A = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): __A = model(**UpperCamelCase_ ) __A = outputs.logits # verify the logits __A = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , UpperCamelCase_ ) __A = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
199
from typing import TYPE_CHECKING from ...utils import _LazyModule __a : Optional[int] = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
199
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase: Dict = logging.get_logger(__name__) def _lowerCamelCase ( snake_case ): _lowerCAmelCase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowerCAmelCase = [144, 192, 240] _lowerCAmelCase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowerCAmelCase = [96, 120, 144] _lowerCAmelCase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowerCAmelCase = [64, 80, 96] _lowerCAmelCase = [16, 16, 24, 48, 64, 80, 320] _lowerCAmelCase = 0.05 _lowerCAmelCase = 2.0 if mobilevit_name.startswith('deeplabv3_' ): _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 21 _lowerCAmelCase = 'pascal-voc-id2label.json' else: _lowerCAmelCase = 1_000 _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( snake_case , snake_case=False ): for i in range(1 , 6 ): if F'layer_{i}.' in name: _lowerCAmelCase = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' ) if "conv_1." in name: _lowerCAmelCase = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: _lowerCAmelCase = name.replace('.block.' , '.' ) if "exp_1x1" in name: _lowerCAmelCase = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: _lowerCAmelCase = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: _lowerCAmelCase = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: _lowerCAmelCase = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: _lowerCAmelCase = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: _lowerCAmelCase = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: _lowerCAmelCase = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: _lowerCAmelCase = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: _lowerCAmelCase = name.replace(F'.{i}.{j}.' , F'.{i}.' ) if "expand_1x1" in name: _lowerCAmelCase = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: _lowerCAmelCase = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: _lowerCAmelCase = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'.global_rep.{i}.weight' in name: _lowerCAmelCase = name.replace(F'.global_rep.{i}.weight' , '.layernorm.weight' ) if F'.global_rep.{i}.bias' in name: _lowerCAmelCase = name.replace(F'.global_rep.{i}.bias' , '.layernorm.bias' ) if ".global_rep." in name: _lowerCAmelCase = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: _lowerCAmelCase = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: _lowerCAmelCase = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: _lowerCAmelCase = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: _lowerCAmelCase = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: _lowerCAmelCase = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: _lowerCAmelCase = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: _lowerCAmelCase = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: _lowerCAmelCase = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): _lowerCAmelCase = 'mobilevit.' + name return name def _lowerCamelCase ( snake_case , snake_case , snake_case=False ): if base_model: _lowerCAmelCase = '' else: _lowerCAmelCase = 'mobilevit.' for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(snake_case ) if key[:8] == "encoder.": _lowerCAmelCase = key[8:] if "qkv" in key: _lowerCAmelCase = key.split('.' ) _lowerCAmelCase = int(key_split[0][6:] ) - 1 _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) _lowerCAmelCase = layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowerCAmelCase = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def _lowerCamelCase ( ): _lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case=False ): _lowerCAmelCase = get_mobilevit_config(snake_case ) # load original state_dict _lowerCAmelCase = torch.load(snake_case , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): _lowerCAmelCase = MobileViTForSemanticSegmentation(snake_case ).eval() else: _lowerCAmelCase = MobileViTForImageClassification(snake_case ).eval() _lowerCAmelCase = convert_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowerCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowerCAmelCase = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowerCAmelCase = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowerCAmelCase = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1E-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _lowerCAmelCase = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowerCAmelCase = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowerCAmelCase = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , snake_case , atol=1E-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if push_to_hub: _lowerCAmelCase = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) _lowerCAmelCase = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case , organization='apple' ) model.push_to_hub(snake_case , organization='apple' ) if __name__ == "__main__": _lowercase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase: List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
192
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase: Any = logging.get_logger(__name__) # General docstring _lowercase: List[Any] = '''RegNetConfig''' # Base docstring _lowercase: List[Any] = '''facebook/regnet-y-040''' _lowercase: int = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowercase: Union[str, Any] = '''facebook/regnet-y-040''' _lowercase: Tuple = '''tabby, tabby cat''' _lowercase: str = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : int , lowercase__ : int , lowercase__ : int = 3 , lowercase__ : int = 1 , lowercase__ : int = 1 , lowercase__ : Optional[str] = "relu" , ): super().__init__() _lowerCAmelCase = nn.Convad( lowercase__ , lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=kernel_size // 2 , groups=lowercase__ , bias=lowercase__ , ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) _lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Union[str, Any] ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _lowerCAmelCase = self.embedder(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 ): super().__init__() _lowerCAmelCase = nn.Convad(lowercase__ , lowercase__ , kernel_size=1 , stride=lowercase__ , bias=lowercase__ ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Tensor ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int ): super().__init__() _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) _lowerCAmelCase = nn.Sequential( nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.Sigmoid() , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[Any] ): # b c h w -> b c 1 1 _lowerCAmelCase = self.pooler(lowercase__ ) _lowerCAmelCase = self.attention(lowercase__ ) _lowerCAmelCase = hidden_state * attention return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Any ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Any , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetSELayer(lowercase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Tuple ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 2 , ): super().__init__() _lowerCAmelCase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer _lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowercase__ , lowercase__ , lowercase__ , stride=lowercase__ , ) , *[layer(lowercase__ , lowercase__ , lowercase__ ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.layers(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowercase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase__ , config.depths[1:] ): self.stages.append(RegNetStage(lowercase__ , lowercase__ , lowercase__ , depth=lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tensor , lowercase__ : bool = False , lowercase__ : bool = True ): _lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) _lowerCAmelCase = stage_module(lowercase__ ) if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =RegNetConfig UpperCamelCase__ ="regnet" UpperCamelCase__ ="pixel_values" UpperCamelCase__ =True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : List[Any] ): if isinstance(lowercase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[str] , lowercase__ : List[Any]=False ): if isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase = value _lowercase: Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase: str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : List[str] , lowercase__ : int ): super().__init__(lowercase__ ) _lowerCAmelCase = config _lowerCAmelCase = RegNetEmbeddings(lowercase__ ) _lowerCAmelCase = RegNetEncoder(lowercase__ ) _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Tensor , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None ): _lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.embedder(lowercase__ ) _lowerCAmelCase = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : str , lowercase__ : Union[str, Any] ): super().__init__(lowercase__ ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = RegNetModel(lowercase__ ) # classification head _lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[torch.FloatTensor] = None , lowercase__ : Optional[torch.LongTensor] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , ): _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.regnet(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase = self.classifier(lowercase__ ) _lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase = 'single_label_classification' else: _lowerCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase = MSELoss() if self.num_labels == 1: _lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase = BCEWithLogitsLoss() _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) if not return_dict: _lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
192
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCamelCase ( __UpperCAmelCase ): # to overwrite at feature extractactor specific tests _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__snake_case , 'feature_size' ) ) self.assertTrue(hasattr(__snake_case , 'sampling_rate' ) ) self.assertTrue(hasattr(__snake_case , 'padding_value' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: Union[str, Any] = feat_extract.model_input_names[0] _snake_case: Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__snake_case ) == len(__snake_case ) for x, y in zip(__snake_case , processed_features[input_name] ) ) ) _snake_case: int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) _snake_case: List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _snake_case: Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case: List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) _snake_case: Any = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: Union[str, Any] = feat_extract.model_input_names[0] _snake_case: List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _snake_case: Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) _snake_case: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: List[Any] = feat_extract.model_input_names[0] _snake_case: Any = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) _snake_case: Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case: List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : Any=False ): '''simple docstring''' def _inputs_have_equal_length(__snake_case : List[Any] ): _snake_case: Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : Union[str, Any] , __snake_case : str ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1e-3 ): return False return True _snake_case: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: Dict = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) _snake_case: Union[str, Any] = feat_extract.model_input_names[0] _snake_case: Dict = BatchFeature({input_name: speech_inputs} ) _snake_case: Optional[int] = self.feat_extract_tester.seq_length_diff _snake_case: Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff _snake_case: Any = self.feat_extract_tester.min_seq_length _snake_case: Dict = self.feat_extract_tester.batch_size _snake_case: int = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _snake_case: Optional[int] = feat_extract.pad(__snake_case , padding=__snake_case ) _snake_case: int = input_a[input_name] _snake_case: Tuple = feat_extract.pad(__snake_case , padding='longest' ) _snake_case: Any = input_a[input_name] _snake_case: Union[str, Any] = feat_extract.pad(__snake_case , padding='max_length' , max_length=len(speech_inputs[-1] ) ) _snake_case: Dict = input_a[input_name] _snake_case: Any = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np' ) _snake_case: int = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='max_length' )[input_name] _snake_case: Optional[int] = feat_extract.pad( __snake_case , padding='max_length' , max_length=__snake_case , return_tensors='np' ) _snake_case: Tuple = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _snake_case: Union[str, Any] = feat_extract.pad(__snake_case , pad_to_multiple_of=10 ) _snake_case: Optional[Any] = input_a[input_name] _snake_case: Optional[int] = feat_extract.pad(__snake_case , padding='longest' , pad_to_multiple_of=10 ) _snake_case: List[Any] = input_a[input_name] _snake_case: Tuple = feat_extract.pad( __snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=__snake_case ) _snake_case: List[Any] = input_a[input_name] _snake_case: Optional[int] = feat_extract.pad( __snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=__snake_case , return_tensors='np' , ) _snake_case: Optional[int] = input_a[input_name] self.assertTrue(all(len(__snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) _snake_case: str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _snake_case: int = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : Any=False ): '''simple docstring''' def _inputs_have_equal_length(__snake_case : Any ): _snake_case: Tuple = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : List[str] , __snake_case : Union[str, Any] ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1e-3 ): return False return True _snake_case: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: Dict = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) _snake_case: Any = feat_extract.model_input_names[0] _snake_case: Union[str, Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _snake_case: int = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=__snake_case ) _snake_case: List[str] = input_a[input_name] _snake_case: Any = feat_extract.pad(__snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) ) _snake_case: List[str] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to smallest with np _snake_case: List[str] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=__snake_case , ) _snake_case: Any = input_a[input_name] _snake_case: List[Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) _snake_case: Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to middle _snake_case: str = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=__snake_case , return_tensors='np' , ) _snake_case: str = input_a[input_name] _snake_case: Any = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=__snake_case ) _snake_case: List[str] = input_a[input_name] _snake_case: Union[str, Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) _snake_case: int = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='longest' , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='longest' , truncation=__snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='max_length' , truncation=__snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _snake_case: Optional[int] = 12 _snake_case: int = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) _snake_case: List[str] = input_a[input_name] _snake_case: Tuple = feat_extract.pad( __snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , ) _snake_case: Tuple = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _snake_case: Tuple = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _snake_case: Tuple = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' self._check_padding(numpify=__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._check_padding(numpify=__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' self._check_truncation(numpify=__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' self._check_truncation(numpify=__snake_case ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: str = self.feat_extract_tester.prepare_inputs_for_common() _snake_case: List[Any] = feat_extract.model_input_names[0] _snake_case: Optional[Any] = BatchFeature({input_name: speech_inputs} ) _snake_case: str = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np' )[input_name] _snake_case: str = feat_extract.pad(__snake_case , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Dict = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case: str = self.feat_extract_tester.prepare_inputs_for_common() _snake_case: Union[str, Any] = feat_extract.model_input_names[0] _snake_case: Tuple = BatchFeature({input_name: speech_inputs} ) _snake_case: List[Any] = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np' )[input_name] _snake_case: int = feat_extract.pad(__snake_case , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Optional[int] = self.feat_extract_dict _snake_case: Optional[Any] = True _snake_case: Tuple = self.feature_extraction_class(**__snake_case ) _snake_case: Any = self.feat_extract_tester.prepare_inputs_for_common() _snake_case: List[str] = [len(__snake_case ) for x in speech_inputs] _snake_case: Optional[Any] = feat_extract.model_input_names[0] _snake_case: Optional[int] = BatchFeature({input_name: speech_inputs} ) _snake_case: Optional[Any] = feat_extract.pad(__snake_case , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , __snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Any = self.feat_extract_dict _snake_case: Any = True _snake_case: str = self.feature_extraction_class(**__snake_case ) _snake_case: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() _snake_case: int = [len(__snake_case ) for x in speech_inputs] _snake_case: Optional[Any] = feat_extract.model_input_names[0] _snake_case: Optional[int] = BatchFeature({input_name: speech_inputs} ) _snake_case: Optional[Any] = min(__snake_case ) _snake_case: Union[str, Any] = feat_extract.pad( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='np' ) self.assertIn('attention_mask' , __snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
273
'''simple docstring''' A : List[str] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] A : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
273
1
import math import flax.linen as nn import jax.numpy as jnp def __lowerCAmelCase ( A_ : jnp.ndarray , A_ : int , A_ : float = 1 , A_ : float = 1 , A_ : float = 1.0e4 , A_ : bool = False , A_ : float = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' __UpperCAmelCase = float(embedding_dim // 2 ) __UpperCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __UpperCAmelCase = min_timescale * jnp.exp(jnp.arange(A_ , dtype=jnp.floataa ) * -log_timescale_increment ) __UpperCAmelCase = jnp.expand_dims(A_ , 1 ) * jnp.expand_dims(A_ , 0 ) # scale embeddings __UpperCAmelCase = scale * emb if flip_sin_to_cos: __UpperCAmelCase = jnp.concatenate([jnp.cos(A_ ), jnp.sin(A_ )] , axis=1 ) else: __UpperCAmelCase = jnp.concatenate([jnp.sin(A_ ), jnp.cos(A_ )] , axis=1 ) __UpperCAmelCase = jnp.reshape(A_ , [jnp.shape(A_ )[0], embedding_dim] ) return signal class UpperCAmelCase__ ( nn.Module ): """simple docstring""" lowerCAmelCase__ : int = 32 lowerCAmelCase__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self: Union[str, Any] , __lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(__lowerCAmelCase ) __UpperCAmelCase = nn.silu(__lowerCAmelCase ) __UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(__lowerCAmelCase ) return temb class UpperCAmelCase__ ( nn.Module ): """simple docstring""" lowerCAmelCase__ : int = 32 lowerCAmelCase__ : bool = False lowerCAmelCase__ : float = 1 @nn.compact def __call__( self: List[str] , __lowerCAmelCase: Optional[int] ) -> Dict: '''simple docstring''' return get_sinusoidal_embeddings( __lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
221
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : Optional[Any]=10 ) -> Optional[int]: __UpperCAmelCase = [] for _ in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowerCAmelCase ( A_ : str , A_ : List[Any]=10 ) -> List[Any]: __UpperCAmelCase = [] for step in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = os.path.join(A_ , "schedule.bin" ) torch.save(scheduler.state_dict() , A_ ) __UpperCAmelCase = torch.load(A_ ) scheduler.load_state_dict(A_ ) return lrs @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Dict ) -> str: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _UpperCAmelCase ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(1_000 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Tuple = nn.Linear(50 , 50 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = 10 def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Any , __lowerCAmelCase: List[Any] , __lowerCAmelCase: int=None ) -> List[Any]: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __UpperCAmelCase , __UpperCAmelCase = data __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __UpperCAmelCase = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule __UpperCAmelCase = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class UpperCAmelCase__ : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = fn def __call__( self: int , *__lowerCAmelCase: List[str] , **__lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
221
1
from __future__ import annotations from random import choice def __a ( __lowerCAmelCase ) -> int: return choice(__lowerCAmelCase ) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE : str = random_pivot(__lowerCAmelCase ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE : str = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCAmelCase ) < k - 1: return kth_number(__lowerCAmelCase , k - len(__lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
308
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowercase : '''simple docstring''' def __init__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case , snake_case ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE : int = deepcopy(snake_case ) elif os.path.exists(snake_case ): with io.open(snake_case , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : List[str] = json.load(snake_case ) else: try: SCREAMING_SNAKE_CASE : Union[str, Any] = baseaa.urlsafe_baadecode(snake_case ).decode('utf-8' ) SCREAMING_SNAKE_CASE : Any = json.loads(snake_case ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) SCREAMING_SNAKE_CASE : Tuple = config self.set_stage_and_offload() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_value('zero_optimization.stage' , -1 ) # offload SCREAMING_SNAKE_CASE : int = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE : Union[str, Any] = set(['cpu', 'nvme'] ) SCREAMING_SNAKE_CASE : Tuple = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE : List[Any] = True def lowerCamelCase_ ( self : List[str] , snake_case : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE : List[str] = ds_key_long.split('.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE : List[str] = config.get(snake_case ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase_ ( self : Dict , snake_case : Any , snake_case : Any=None ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.find_config_node(snake_case ) if config is None: return default return config.get(snake_case , snake_case ) def lowerCamelCase_ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Tuple=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE : str = ds_key_long.split('.' ) for node in nodes: SCREAMING_SNAKE_CASE : List[Any] = config SCREAMING_SNAKE_CASE : List[Any] = config.get(snake_case ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case ) def lowerCamelCase_ ( self : Optional[int] , snake_case : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_value(snake_case ) return False if value is None else bool(snake_case ) def lowerCamelCase_ ( self : Dict , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_value(snake_case ) return False if value is None else not bool(snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self._stage == 2 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self._stage == 3 def lowerCamelCase_ ( self : str ): '''simple docstring''' return self._offload class lowercase : '''simple docstring''' def __init__( self : Optional[int] , snake_case : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = engine def lowerCamelCase_ ( self : str , snake_case : Optional[int] , **snake_case : Any ): '''simple docstring''' self.engine.backward(snake_case , **snake_case ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : Any , snake_case : int ): '''simple docstring''' super().__init__(snake_case , device_placement=snake_case , scaler=snake_case ) SCREAMING_SNAKE_CASE : Dict = hasattr(self.optimizer , 'overflow' ) def lowerCamelCase_ ( self : Optional[int] , snake_case : Optional[Any]=None ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int , snake_case : Any ): '''simple docstring''' super().__init__(snake_case , snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowercase : '''simple docstring''' def __init__( self : Tuple , snake_case : Optional[Any] , snake_case : Any=0.001 , snake_case : Tuple=0 , **snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = params SCREAMING_SNAKE_CASE : Optional[int] = lr SCREAMING_SNAKE_CASE : Tuple = weight_decay SCREAMING_SNAKE_CASE : int = kwargs class lowercase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int , snake_case : Optional[int]=None , snake_case : Any=0 , **snake_case : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = optimizer SCREAMING_SNAKE_CASE : List[Any] = total_num_steps SCREAMING_SNAKE_CASE : Optional[Any] = warmup_num_steps SCREAMING_SNAKE_CASE : int = kwargs
308
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } UpperCAmelCase : Optional[int] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } UpperCAmelCase : str = "</w>" UpperCAmelCase : List[str] = "@@ " def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char return pairs # Speech2Text2 has no max input length UpperCAmelCase : Dict = {"facebook/s2t-wav2vec2-large-en-de": 1024} class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : Union[str, Any]="<pad>" , lowerCAmelCase_ : int="</s>" , lowerCAmelCase_ : List[Any]="<unk>" , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = do_lower_case with open(lowerCAmelCase_ , encoding="""utf-8""") as vocab_handle: lowercase_ = json.load(lowerCAmelCase_) lowercase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''') lowercase_ = None lowercase_ = None else: with open(lowerCAmelCase_ , encoding="""utf-8""") as merges_handle: lowercase_ = merges_handle.read().split("""\n""")[:-1] lowercase_ = [tuple(merge.split()[:2]) for merge in merges] lowercase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_)))) lowercase_ = {} @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return len(self.decoder) def _UpperCAmelCase ( self : Dict): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase_ = get_pairs(lowerCAmelCase_) if not pairs: return token while True: lowercase_ = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_: self.bpe_ranks.get(lowerCAmelCase_ , float("""inf"""))) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(lowerCAmelCase_): try: lowercase_ = word.index(lowerCAmelCase_ , lowerCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) lowercase_ = j if word[i] == first and i < len(lowerCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase_ = tuple(lowerCAmelCase_) lowercase_ = new_word if len(lowerCAmelCase_) == 1: break else: lowercase_ = get_pairs(lowerCAmelCase_) lowercase_ = """ """.join(lowerCAmelCase_) if word == "\n " + BPE_TOKEN_MERGES: lowercase_ = """\n""" + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase_): lowercase_ = word.replace(lowerCAmelCase_ , """""") lowercase_ = word.replace(""" """ , lowerCAmelCase_) lowercase_ = word return word def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int]): """simple docstring""" if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""") if self.do_lower_case: lowercase_ = text.lower() lowercase_ = text.split() lowercase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase_).split(""" """))) return split_tokens def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : str): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.decoder.get(lowerCAmelCase_ , self.unk_token) return result def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = """ """.join(lowerCAmelCase_) # make sure @@ tokens are concatenated lowercase_ = """""".join(string.split(lowerCAmelCase_)) return string def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(lowerCAmelCase_): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return lowercase_ = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) lowercase_ = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_) + """\n""") lowercase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_: kv[1]): if index != token_index: logger.warning( F'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""") lowercase_ = token_index writer.write(""" """.join(lowerCAmelCase_) + """\n""") index += 1 return (vocab_file, merges_file)
567
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = 42 lowercase__ = None lowercase__ = None UpperCAmelCase : Dict = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__lowerCAmelCase ) != count_coins(__lowerCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(__lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase_ , lowercase_ = get_distrib(node.left ) lowercase_ , lowercase_ = get_distrib(node.right ) lowercase_ = 1 - left_distrib_excess lowercase_ = 1 - right_distrib_excess lowercase_ = ( left_distrib_moves + right_distrib_moves + abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) ) lowercase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__lowerCAmelCase , __lowerCAmelCase ) return get_distrib(__lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
567
1
'''simple docstring''' def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return number | (1 << position) def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return number & ~(1 << position) def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return number ^ (1 << position) def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return ((number >> position) & 1) == 1 def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase :Optional[Any] = logging.get_logger(__name__) # General docstring __UpperCAmelCase :List[Any] = "RegNetConfig" # Base docstring __UpperCAmelCase :List[Any] = "facebook/regnet-y-040" __UpperCAmelCase :Union[str, Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring __UpperCAmelCase :int = "facebook/regnet-y-040" __UpperCAmelCase :Optional[Any] = "tabby, tabby cat" __UpperCAmelCase :Dict = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : int , snake_case : int = 3 , snake_case : int = 1 , snake_case : int = 1 , snake_case : Optional[str] = "relu" , **snake_case : Any , ) -> Union[str, Any]: super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCAmelCase : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCAmelCase : List[Any] = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=snake_case , strides=snake_case , padding='''VALID''' , groups=snake_case , use_bias=snake_case , name='''convolution''' , ) __UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __UpperCAmelCase : Any = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase__ ( self : Any , snake_case : List[str] ) -> int: __UpperCAmelCase : Tuple = self.convolution(self.padding(snake_case ) ) __UpperCAmelCase : List[Any] = self.normalization(snake_case ) __UpperCAmelCase : Optional[Any] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : RegNetConfig , **snake_case : Tuple ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = config.num_channels __UpperCAmelCase : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Dict ) -> int: __UpperCAmelCase : int = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCAmelCase : Dict = tf.transpose(snake_case , perm=(0, 2, 3, 1) ) __UpperCAmelCase : List[str] = self.embedder(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : int , snake_case : int = 2 , **snake_case : Tuple ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : str = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=1 , strides=snake_case , use_bias=snake_case , name='''convolution''' ) __UpperCAmelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def lowerCamelCase__ ( self : str , snake_case : tf.Tensor , snake_case : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(snake_case ) , training=snake_case ) class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , snake_case : int , snake_case : int , **snake_case : Tuple ) -> List[Any]: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) __UpperCAmelCase : Dict = [ tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def lowerCamelCase__ ( self : Optional[int] , snake_case : Tuple ) -> Union[str, Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCAmelCase : str = self.pooler(snake_case ) for layer_module in self.attention: __UpperCAmelCase : int = layer_module(snake_case ) __UpperCAmelCase : List[Any] = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : int ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : Any = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Optional[int] = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.2''' ), ] __UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : Optional[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : Tuple = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : List[str] ) -> Optional[int]: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[Any] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Any = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __UpperCAmelCase : List[str] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.3''' ), ] __UpperCAmelCase : Dict = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple ) -> Any: __UpperCAmelCase : Optional[int] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : int = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 2 , snake_case : int = 2 , **snake_case : str ) -> Optional[Any]: super().__init__(**snake_case ) __UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __UpperCAmelCase : str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , snake_case , stride=snake_case , name='''layers.0''' ), *[layer(snake_case , snake_case , snake_case , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase__ ( self : List[str] , snake_case : Any ) -> List[Any]: for layer_module in self.layers: __UpperCAmelCase : Optional[Any] = layer_module(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , **snake_case : int ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __UpperCAmelCase : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case , snake_case , snake_case , depth=snake_case , name=f'stages.{i+1}' ) ) def lowerCamelCase__ ( self : int , snake_case : tf.Tensor , snake_case : bool = False , snake_case : bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase : Any = hidden_states + (hidden_state,) __UpperCAmelCase : List[Any] = stage_module(snake_case ) if output_hidden_states: __UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case ) @keras_serializable class a ( tf.keras.layers.Layer ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RegNetConfig def __init__( self : Dict , snake_case : str , **snake_case : Optional[int] ) -> Any: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = config __UpperCAmelCase : List[str] = TFRegNetEmbeddings(snake_case , name='''embedder''' ) __UpperCAmelCase : List[str] = TFRegNetEncoder(snake_case , name='''encoder''' ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) @unpack_inputs def lowerCamelCase__ ( self : Dict , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[Any] = self.embedder(snake_case , training=snake_case ) __UpperCAmelCase : Optional[int] = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : List[str] = encoder_outputs[0] __UpperCAmelCase : str = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules __UpperCAmelCase : Optional[Any] = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) __UpperCAmelCase : str = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCAmelCase : Dict = tuple([tf.transpose(snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = RegNetConfig SCREAMING_SNAKE_CASE : Tuple = "regnet" SCREAMING_SNAKE_CASE : List[Any] = "pixel_values" @property def lowerCamelCase__ ( self : int ) -> List[str]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCAmelCase :Optional[int] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase :List[Any] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _a , ) class a ( _a ): """simple docstring""" def __init__( self : List[Any] , snake_case : RegNetConfig , *snake_case : Optional[int] , **snake_case : List[str] ) -> Tuple: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : Dict = TFRegNetMainLayer(snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : str=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCAmelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Dict = self.regnet( pixel_values=snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class a ( _a , _a ): """simple docstring""" def __init__( self : Tuple , snake_case : RegNetConfig , *snake_case : Optional[Any] , **snake_case : List[Any] ) -> List[Any]: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : List[Any] = config.num_labels __UpperCAmelCase : Optional[int] = TFRegNetMainLayer(snake_case , name='''regnet''' ) # classification head __UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor = None , snake_case : tf.Tensor = None , snake_case : bool = None , snake_case : bool = None , snake_case : Tuple=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Tuple = self.classifier[0](snake_case ) __UpperCAmelCase : Tuple = self.classifier[1](snake_case ) __UpperCAmelCase : Any = None if labels is None else self.hf_compute_loss(labels=snake_case , logits=snake_case ) if not return_dict: __UpperCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
266
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : Union[str, Any] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : Dict = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : List[str] = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : str = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : int = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): lowercase__ : Dict = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def lowercase_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"] )
261
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase =logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : lowercase__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCAmelCase__ : lowercase__ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) lowercase__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) lowercase__ : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( ) -> Dict: '''simple docstring''' A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) A__ = import_module("tasks" ) try: A__ = getattr(A , model_args.task_type ) A__ = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task A__ = token_classification_task.get_labels(data_args.labels ) A__ = dict(enumerate(A ) ) A__ = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) A__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets A__ = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A__ = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A , A ) -> Tuple[List[int], List[int]]: A__ = np.argmax(A , axis=2 ) A__ , A__ = preds.shape A__ = [[] for _ in range(A )] A__ = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A ) -> Dict: A__ , A__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator A__ = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A__ = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , A , A ) writer.write("%s = %s\n" % (key, value) ) results.update(A ) # Predict if training_args.do_predict: A__ = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) A__ , A__ , A__ = trainer.predict(A ) A__ , A__ = align_predictions(A , A ) A__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , A , A ) writer.write("%s = %s\n" % (key, value) ) # Save predictions A__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def __a ( A ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
261
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase : Any = "hf-internal-testing/tiny-random-bert" lowerCamelCase : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowerCamelCase : str = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = cached_file(A_ , A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_ , A_ ) ) ) with open(os.path.join(A_ , 'refs' , 'main' ) ) as f: lowerCamelCase_ = f.read() self.assertEqual(A_ , os.path.join(A_ , 'snapshots' , A_ , A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. lowerCamelCase_ = cached_file(A_ , A_ ) self.assertEqual(A_ , A_ ) # Using a specific revision to test the full commit hash. lowerCamelCase_ = cached_file(A_ , A_ , revision='9b8c223' ) self.assertEqual(A_ , os.path.join(A_ , 'snapshots' , A_ , A_ ) ) def a__ ( self : Tuple ) -> str: """simple docstring""" with self.assertRaisesRegex(A_ , 'is not a valid model identifier' ): lowerCamelCase_ = cached_file('tiny-random-bert' , A_ ) with self.assertRaisesRegex(A_ , 'is not a valid git identifier' ): lowerCamelCase_ = cached_file(A_ , A_ , revision='aaaa' ) with self.assertRaisesRegex(A_ , 'does not appear to have a file named' ): lowerCamelCase_ = cached_file(A_ , 'conf' ) def a__ ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex(A_ , 'does not appear to have a file named' ): lowerCamelCase_ = cached_file(A_ , 'conf' ) with open(os.path.join(A_ , 'refs' , 'main' ) ) as f: lowerCamelCase_ = f.read() self.assertTrue(os.path.isfile(os.path.join(A_ , '.no_exist' , A_ , 'conf' ) ) ) lowerCamelCase_ = cached_file(A_ , 'conf' , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) lowerCamelCase_ = cached_file(A_ , 'conf' , local_files_only=A_ , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) lowerCamelCase_ = mock.Mock() lowerCamelCase_ = 500 lowerCamelCase_ = {} lowerCamelCase_ = HTTPError lowerCamelCase_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: lowerCamelCase_ = cached_file(A_ , 'conf' , _raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , A_ , revision='ahaha' ) lowerCamelCase_ = get_file_from_repo('bert-base-cased' , A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase_ = json.loads(open(A_ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = Path(A_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(A_ , 'a.txt' ) , str(A_ ) ) self.assertIsNone(get_file_from_repo(A_ , 'b.txt' ) )
70
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[int]: lowercase : int = [True] * limit lowercase : Tuple = False lowercase : List[Any] = False lowercase : Union[str, Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase : Tuple = i * 2 while index < limit: lowercase : Optional[int] = False lowercase : Optional[int] = index + i lowercase : int = [2] for i in range(3 , SCREAMING_SNAKE_CASE__ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE__ ) return primes def _snake_case( SCREAMING_SNAKE_CASE__ = 1_000_000 ) -> int: lowercase : int = prime_sieve(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + length , len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[int] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase : Any = j - i lowercase : int = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
336
0
'''simple docstring''' from __future__ import annotations from cmath import sqrt def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> tuple[complex, complex]: if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _lowercase : Tuple = b * b - 4 * a * c _lowercase : List[Any] = (-b + sqrt(_lowercase )) / (2 * a) _lowercase : Dict = (-b - sqrt(_lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __UpperCamelCase ( ) -> List[Any]: _lowercase , _lowercase : Optional[Any] = quadratic_roots(a=5, b=6, c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
4
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __SCREAMING_SNAKE_CASE = [] for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __a ( _snake_case, _snake_case ): __UpperCamelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Union[str, Any] = 2 @register_to_config def __init__( self : Union[str, Any] ,lowerCamelCase : int = 1000 ,lowerCamelCase : float = 0.00_085 ,lowerCamelCase : float = 0.012 ,lowerCamelCase : str = "linear" ,lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : str = "linspace" ,lowerCamelCase : int = 0 ,): '''simple docstring''' if trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE = torch.linspace(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,lowerCamelCase ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : str ,lowerCamelCase : int=None ): '''simple docstring''' if schedule_timesteps is None: __SCREAMING_SNAKE_CASE = self.timesteps __SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE = 1 if len(lowerCamelCase ) > 1 else 0 else: __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep __SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Union[float, torch.FloatTensor] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) if self.state_in_first_order: __SCREAMING_SNAKE_CASE = self.sigmas[step_index] else: __SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE = np.linspace(0 ,num_train_timesteps - 1 ,lowerCamelCase ,dtype=lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(lowerCamelCase ,0 ,-step_ratio )).round().copy().astype(lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE = torch.from_numpy(np.log(lowerCamelCase ) ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.interp(lowerCamelCase ,np.arange(0 ,len(lowerCamelCase ) ) ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) # interpolate sigmas __SCREAMING_SNAKE_CASE = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() __SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase ).startswith("""mps""" ): # mps does not support float64 __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) # interpolate timesteps __SCREAMING_SNAKE_CASE = self.sigma_to_t(lowerCamelCase ).to(lowerCamelCase ,dtype=timesteps.dtype ) __SCREAMING_SNAKE_CASE = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() __SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], interleaved_timesteps] ) __SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE = defaultdict(lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = sigma.log() # get distribution __SCREAMING_SNAKE_CASE = log_sigma - self.log_sigmas[:, None] # get sigmas range __SCREAMING_SNAKE_CASE = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE = low_idx + 1 __SCREAMING_SNAKE_CASE = self.log_sigmas[low_idx] __SCREAMING_SNAKE_CASE = self.log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE = w.clamp(0 ,1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE = t.view(sigma.shape ) return t @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.sample is None def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : Union[float, torch.FloatTensor] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) # advance index counter by 1 __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index + 1] __SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE = sigma_interpol - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __SCREAMING_SNAKE_CASE = sigma_next - sigma_hat __SCREAMING_SNAKE_CASE = self.sample __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase ): # mps does not support float64 __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = [self.index_for_timestep(lowerCamelCase ,lowerCamelCase ) for t in timesteps] __SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
109
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __a = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __snake_case( _lowerCAmelCase=True ) -> Dict: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a ) ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = None lowercase = None def lowerCamelCase ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): with TemporaryDirectory() as tmp_dir: snake_case__ : Dict = dataset_module_factory(snake_case_ , cache_dir=snake_case_ ) snake_case__ : Optional[int] = import_main_class(dataset_module.module_path , dataset=snake_case_ ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=snake_case_ , config_name=snake_case_ , hash=dataset_module.hash , ) snake_case__ : Dict = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) snake_case__ : List[str] = cached_path(snake_case_ , cache_dir=snake_case_ ) self.assertTrue(os.path.exists(snake_case_ ) ) @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" snake_case__ : Dict = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : Dict = import_main_class(dataset_module.module_path ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case__ : Any = None builder_instance.download_and_prepare() snake_case__ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) snake_case__ : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] , _lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
374
0
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 10_00 ) -> int: """simple docstring""" __snake_case , __snake_case = 1, 1 __snake_case = [] for i in range(1 , n + 1 ): __snake_case = prev_numerator + 2 * prev_denominator __snake_case = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE ) ) > len(str(SCREAMING_SNAKE_CASE ) ): result.append(SCREAMING_SNAKE_CASE ) __snake_case = numerator __snake_case = denominator return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
614
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __snake_case = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __snake_case = 4 __snake_case = True # hparam_utils.py hparams __snake_case = 0.664_694 __snake_case = 0.207_951 __snake_case = 0.121_194 __snake_case = True __snake_case = True __snake_case = False __snake_case = 0.0_352_513 __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __snake_case = 4 __snake_case = False # hparam_utils.py hparams __snake_case = 36.4_519 __snake_case = 0.903_421 __snake_case = 222.088 __snake_case = True __snake_case = True __snake_case = True __snake_case = 0.763_141 __snake_case = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __snake_case = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __snake_case = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __snake_case = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) __snake_case = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=5_12 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
614
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
64
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : str = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' _a = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) _a = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _a = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase_ : Optional[Any] = self.task_name.lower() class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "train" _a = "dev" _a = "test" class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = 42 _a = 42 _a = 42 def __init__( self : Any , __a : GlueDataTrainingArguments , __a : PreTrainedTokenizerBase , __a : Optional[int] = None , __a : Union[str, Split] = Split.train , __a : Optional[str] = None , ) ->Optional[int]: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , __a , ) lowerCamelCase_ : Optional[int] = args lowerCamelCase_ : Tuple = glue_processors[args.task_name]() lowerCamelCase_ : Optional[Any] = glue_output_modes[args.task_name] if isinstance(__a , __a ): try: lowerCamelCase_ : List[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCamelCase_ : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowerCamelCase_ : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_, lowerCamelCase_ : int = label_list[2], label_list[1] lowerCamelCase_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ : List[Any] = cached_features_file + """.lock""" with FileLock(__a ): if os.path.exists(__a ) and not args.overwrite_cache: lowerCamelCase_ : str = time.time() lowerCamelCase_ : int = torch.load(__a ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowerCamelCase_ : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase_ : Tuple = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase_ : List[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase_ : Dict = examples[:limit_length] lowerCamelCase_ : Union[str, Any] = glue_convert_examples_to_features( __a , __a , max_length=args.max_seq_length , label_list=__a , output_mode=self.output_mode , ) lowerCamelCase_ : Optional[Any] = time.time() torch.save(self.features , __a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Any ) ->Any: return len(self.features ) def __getitem__( self : List[Any] , __a : Optional[int] ) ->InputFeatures: return self.features[i] def _lowerCAmelCase ( self : int ) ->Optional[int]: return self.label_list
278
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Optional[int]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class __lowerCamelCase ( _a ): a : Tuple =["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) UpperCamelCase__ = size if size is not None else {'shortest_edge': 256} UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = offset UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ) -> np.ndarray: UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" in size: UpperCamelCase__ = get_resize_output_image_size(snake_case_ , size['shortest_edge'] , default_to_square=snake_case_ ) elif "height" in size and "width" in size: UpperCamelCase__ = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: UpperCamelCase__ = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> str: UpperCamelCase__ = image.astype(np.floataa ) if offset: UpperCamelCase__ = image - (scale / 2) return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. UpperCamelCase__ = to_numpy_array(snake_case_ ) if do_resize: UpperCamelCase__ = self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) if do_center_crop: UpperCamelCase__ = self.center_crop(snake_case_ , size=snake_case_ ) if do_rescale: UpperCamelCase__ = self.rescale(image=snake_case_ , scale=snake_case_ , offset=snake_case_ ) if do_normalize: UpperCamelCase__ = self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) UpperCamelCase__ = to_channel_dimension_format(snake_case_ , snake_case_ ) return image def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> PIL.Image.Image: UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = offset if offset is not None else self.offset UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase__ = make_batched(snake_case_ ) UpperCamelCase__ = [ [ self._preprocess_image( image=snake_case_ , do_resize=snake_case_ , size=snake_case_ , resample=snake_case_ , do_center_crop=snake_case_ , crop_size=snake_case_ , do_rescale=snake_case_ , rescale_factor=snake_case_ , offset=snake_case_ , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , data_format=snake_case_ , ) for img in video ] for video in videos ] UpperCamelCase__ = {'pixel_values': videos} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
def lowerCAmelCase_ ( __lowerCamelCase = 1_0_0_0_0_0_0 ): __snake_case : Any = 1 __snake_case : Any = 1 __snake_case : Union[str, Any] = {1: 1} for inputa in range(2 , __lowerCamelCase ): __snake_case : str = 0 __snake_case : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __snake_case : List[str] = (3 * number) + 1 counter += 1 if inputa not in counters: __snake_case : str = counter if counter > pre_counter: __snake_case : List[Any] = inputa __snake_case : Tuple = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
81
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' a_ = 42 # Cache store of keys a_ = 42 # References of the keys in cache a_ = 10 # Maximum capacity of cache def __init__( self , _snake_case ): _lowerCAmelCase : Tuple = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _lowerCAmelCase : List[str] = n def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Optional[int] = self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for k in self.dq_store: print(_snake_case ) def __repr__( self ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
424
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=2 , snake_case__ : Any=3 , snake_case__ : str=4 , snake_case__ : Tuple=2 , snake_case__ : Optional[Any]=7 , snake_case__ : int=True , snake_case__ : Dict=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=99 , snake_case__ : str=36 , snake_case__ : Tuple=2 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=37 , snake_case__ : int="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Optional[Any]=512 , snake_case__ : Union[str, Any]=16 , snake_case__ : Optional[int]=2 , snake_case__ : Any=0.0_2 , snake_case__ : List[str]=6 , snake_case__ : Optional[int]=6 , snake_case__ : Any=3 , snake_case__ : str=4 , snake_case__ : int=None , snake_case__ : Any=1_000 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = coordinate_size __lowerCAmelCase = shape_size __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase = text_seq_length __lowerCAmelCase = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase = bbox[i, j, 3] __lowerCAmelCase = bbox[i, j, 1] __lowerCAmelCase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase = bbox[i, j, 2] __lowerCAmelCase = bbox[i, j, 0] __lowerCAmelCase = tmp_coordinate __lowerCAmelCase = tf.constant(snake_case__ ) __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = TFLayoutLMvaModel(config=snake_case__ ) # text + image __lowerCAmelCase = model(snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) __lowerCAmelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , training=snake_case__ , ) __lowerCAmelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase = model({"pixel_values": pixel_values} , training=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMvaForSequenceClassification(config=snake_case__ ) __lowerCAmelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMvaForTokenClassification(config=snake_case__ ) __lowerCAmelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = 2 __lowerCAmelCase = TFLayoutLMvaForQuestionAnswering(config=snake_case__ ) __lowerCAmelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , training=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs __lowerCAmelCase = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase_ : Optional[int] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase_ : Dict = False lowercase_ : str = False lowercase_ : Any = False def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" return True def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple=False ): """simple docstring""" __lowerCAmelCase = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): __lowerCAmelCase = { k: tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(snake_case__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): __lowerCAmelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(snake_case__ ): __lowerCAmelCase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = TFLayoutLMvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) if getattr(snake_case__ , "hf_compute_loss" , snake_case__ ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=snake_case__ )[0] ] __lowerCAmelCase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = prepared_for_class.pop("input_ids" ) __lowerCAmelCase = model(snake_case__ , **snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: __lowerCAmelCase = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase = -100 __lowerCAmelCase = tf.convert_to_tensor(snake_case__ ) __lowerCAmelCase = model(snake_case__ , **snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(snake_case__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase = inspect.signature(model.call ).parameters __lowerCAmelCase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase = {0: "input_ids"} for label_key in label_keys: __lowerCAmelCase = signature_names.index(snake_case__ ) __lowerCAmelCase = label_key __lowerCAmelCase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase = prepared_for_class[value] __lowerCAmelCase = tuple(snake_case__ ) # Send to model __lowerCAmelCase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFLayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="tf" ).pixel_values __lowerCAmelCase = tf.constant([[1, 2]] ) __lowerCAmelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase = model(input_ids=snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ ) # verify the logits __lowerCAmelCase = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) __lowerCAmelCase = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1E-4 ) )
376
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( __UpperCAmelCase ): lowercase_ : Union[str, Any] = 'segformer' def __init__( self : List[str] , snake_case__ : Any=3 , snake_case__ : int=4 , snake_case__ : Tuple=[2, 2, 2, 2] , snake_case__ : Optional[int]=[8, 4, 2, 1] , snake_case__ : Union[str, Any]=[32, 64, 160, 256] , snake_case__ : str=[7, 3, 3, 3] , snake_case__ : List[Any]=[4, 2, 2, 2] , snake_case__ : Tuple=[1, 2, 5, 8] , snake_case__ : List[str]=[4, 4, 4, 4] , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : str=0.1 , snake_case__ : List[Any]=0.0_2 , snake_case__ : Any=0.1 , snake_case__ : List[Any]=1E-6 , snake_case__ : Any=256 , snake_case__ : Optional[Any]=255 , **snake_case__ : Union[str, Any] , ): """simple docstring""" super().__init__(**snake_case__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , snake_case__ , ) __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = depths __lowerCAmelCase = sr_ratios __lowerCAmelCase = hidden_sizes __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = mlp_ratios __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = drop_path_rate __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = decoder_hidden_size __lowerCAmelCase = kwargs.get("reshape_last_stage" , snake_case__ ) __lowerCAmelCase = semantic_loss_ignore_index class a ( __UpperCAmelCase ): lowercase_ : List[str] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return 1E-4 @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return 12
376
1
from math import pi def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int )-> float: return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
632
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
632
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = LayoutLMTokenizer _UpperCamelCase = LayoutLMTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def _UpperCAmelCase ( self ): super().setUp() _lowerCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase ( self , **a__ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = '''UNwant\u00E9d,running''' _lowerCamelCase = '''unwanted, running''' return input_text, output_text def _UpperCAmelCase ( self ): _lowerCamelCase = self.tokenizer_class(self.vocab_file ) _lowerCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(a__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [7, 4, 5, 10, 8, 9] ) def _UpperCAmelCase ( self ): pass
297
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCamelCase ( _a ): """simple docstring""" random.seed(_a ) np.random.seed(_a ) torch.manual_seed(_a ) torch.cuda.manual_seed_all(_a ) # ^^ safe to call this function even if cuda is not available class __magic_name__ : """simple docstring""" def __init__( self , a__ , a__ = 0.9999 , a__ = 0.0 , a__ = 0 , a__ = False , a__ = 1.0 , a__ = 2 / 3 , a__ = None , a__ = None , **a__ , ): if isinstance(a__ , torch.nn.Module ): _lowerCamelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , a__ , standard_warn=a__ , ) _lowerCamelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase = True if kwargs.get('''max_value''' , a__ ) is not None: _lowerCamelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , a__ , standard_warn=a__ ) _lowerCamelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , a__ ) is not None: _lowerCamelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , a__ , standard_warn=a__ ) _lowerCamelCase = kwargs['''min_value'''] _lowerCamelCase = list(a__ ) _lowerCamelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , a__ ) is not None: _lowerCamelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , a__ , standard_warn=a__ ) self.to(device=kwargs['''device'''] ) _lowerCamelCase = None _lowerCamelCase = decay _lowerCamelCase = min_decay _lowerCamelCase = update_after_step _lowerCamelCase = use_ema_warmup _lowerCamelCase = inv_gamma _lowerCamelCase = power _lowerCamelCase = 0 _lowerCamelCase = None # set in `step()` _lowerCamelCase = model_cls _lowerCamelCase = model_config @classmethod def _UpperCAmelCase ( cls , a__ , a__ ): _lowerCamelCase , _lowerCamelCase = model_cls.load_config(a__ , return_unused_kwargs=a__ ) _lowerCamelCase = model_cls.from_pretrained(a__ ) _lowerCamelCase = cls(model.parameters() , model_cls=a__ , model_config=model.config ) ema_model.load_state_dict(a__ ) return ema_model def _UpperCAmelCase ( self , a__ ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _lowerCamelCase = self.model_cls.from_config(self.model_config ) _lowerCamelCase = self.state_dict() state_dict.pop('''shadow_params''' , a__ ) model.register_to_config(**a__ ) self.copy_to(model.parameters() ) model.save_pretrained(a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase = (1 + step) / (10 + step) _lowerCamelCase = min(a__ , self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase = max(a__ , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCAmelCase ( self , a__ ): if isinstance(a__ , torch.nn.Module ): _lowerCamelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , a__ , standard_warn=a__ , ) _lowerCamelCase = parameters.parameters() _lowerCamelCase = list(a__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase = self.get_decay(self.optimization_step ) _lowerCamelCase = decay _lowerCamelCase = 1 - decay _lowerCamelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , a__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase = deepspeed.zero.GatheredParameters(a__ , modifier_rank=a__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = list(a__ ) for s_param, param in zip(self.shadow_params , a__ ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCAmelCase ( self , a__=None , a__=None ): _lowerCamelCase = [ p.to(device=a__ , dtype=a__ ) if p.is_floating_point() else p.to(device=a__ ) for p in self.shadow_params ] def _UpperCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = [param.detach().cpu().clone() for param in parameters] def _UpperCAmelCase ( self , a__ ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , a__ ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase = None def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = copy.deepcopy(a__ ) _lowerCamelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _lowerCamelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , a__ ): raise ValueError('''Invalid min_decay''' ) _lowerCamelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , a__ ): raise ValueError('''Invalid optimization_step''' ) _lowerCamelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , a__ ): raise ValueError('''Invalid update_after_step''' ) _lowerCamelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , a__ ): raise ValueError('''Invalid use_ema_warmup''' ) _lowerCamelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _lowerCamelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _lowerCamelCase = state_dict.get('''shadow_params''' , a__ ) if shadow_params is not None: _lowerCamelCase = shadow_params if not isinstance(self.shadow_params , a__ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(a__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
297
1
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __snake_case : Tuple = logging.get_logger(__name__) @add_end_docstrings(a ) class UpperCamelCase ( a ): """simple docstring""" def __init__( self : str , *_lowerCamelCase : str , **_lowerCamelCase : Tuple ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) self.check_model_type(_lowerCamelCase ) def A__ ( self : List[Any] , _lowerCamelCase : str=None , _lowerCamelCase : Any=None , _lowerCamelCase : Union[str, Any]=None , **_lowerCamelCase : Tuple ): A__ , A__ = {}, {} if padding is not None: A__ = padding if truncation is not None: A__ = truncation if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , _lowerCamelCase : Union["Image.Image", str] , _lowerCamelCase : str = None , **_lowerCamelCase : Optional[Any] ): if isinstance(_lowerCamelCase , (Image.Image, str) ) and isinstance(_lowerCamelCase , _lowerCamelCase ): A__ = {'''image''': image, '''question''': question} else: A__ = image A__ = super().__call__(_lowerCamelCase , **_lowerCamelCase ) return results def A__ ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False ): A__ = load_image(inputs['''image'''] ) A__ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_lowerCamelCase , truncation=_lowerCamelCase ) A__ = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) model_inputs.update(_lowerCamelCase ) return model_inputs def A__ ( self : int , _lowerCamelCase : int ): A__ = self.model(**_lowerCamelCase ) return model_outputs def A__ ( self : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=5 ): if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.sigmoid()[0] A__ , A__ = probs.topk(_lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
571
"""simple docstring""" def a_ ( __a ): assert ( isinstance(__a , __a ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A__ , A__ = 1, 1 for _ in range(number_of_steps - 1 ): A__ , A__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
571
1
"""simple docstring""" from math import ceil def _UpperCamelCase ( UpperCamelCase = 1001 ) -> str: """simple docstring""" __UpperCAmelCase : Any = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __UpperCAmelCase : int = 2 * i + 1 __UpperCAmelCase : int = 2 * i __UpperCAmelCase : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
720
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a__ ( __magic_name__ ): def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCamelCase_ , "hidden_sizes")) self.parent.assertTrue(hasattr(UpperCamelCase_ , "num_attention_heads")) self.parent.assertTrue(hasattr(UpperCamelCase_ , "num_encoder_blocks")) class a__ : def __init__( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : str=64 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : int=[2, 2, 2, 2] , UpperCamelCase_ : int=[8, 4, 2, 1] , UpperCamelCase_ : int=[16, 32, 64, 128] , UpperCamelCase_ : Tuple=[1, 4, 8, 16] , UpperCamelCase_ : List[str]=[1, 2, 4, 8] , UpperCamelCase_ : str=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : Union[str, Any]=None , ): """simple docstring""" __UpperCAmelCase : str = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Any = num_encoder_blocks __UpperCAmelCase : List[Any] = sr_ratios __UpperCAmelCase : Optional[int] = depths __UpperCAmelCase : Union[str, Any] = hidden_sizes __UpperCAmelCase : Union[str, Any] = downsampling_rates __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Any = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Union[str, Any] = scope def a_ ( self : int): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : List[Any] = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def a_ ( self : Any): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a_ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict): """simple docstring""" __UpperCAmelCase : Optional[int] = SegformerModel(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase_) __UpperCAmelCase : Optional[int] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def a_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __UpperCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def a_ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = SegformerForSemanticSegmentation(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : List[str] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertGreater(result.loss , 0.0) def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Dict = SegformerModelTester(self) __UpperCAmelCase : Any = SegformerConfigTester(self , config_class=UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase_) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase_) @unittest.skip("SegFormer does not use inputs_embeds") def a_ ( self : Dict): """simple docstring""" pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def a_ ( self : Any): """simple docstring""" pass def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : int = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : Union[str, Any] = outputs.attentions __UpperCAmelCase : Optional[Any] = sum(self.model_tester.depths) self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # verify the first attentions (first block, first layer) __UpperCAmelCase : Any = (self.model_tester.image_size // 4) ** 2 __UpperCAmelCase : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __UpperCAmelCase : int = (self.model_tester.image_size // 32) ** 2 __UpperCAmelCase : List[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __UpperCAmelCase : Optional[int] = len(UpperCamelCase_) # Check attention is always last and order is fine __UpperCAmelCase : str = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : List[str] = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) self.assertEqual(out_len + 1 , len(UpperCamelCase_)) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # verify the first attentions (first block, first layer) __UpperCAmelCase : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 __UpperCAmelCase : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def a_ ( self : Union[str, Any]): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]): __UpperCAmelCase : Tuple = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" if not self.model_tester.is_training: return __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase_): continue __UpperCAmelCase : List[Any] = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.train() __UpperCAmelCase : Optional[int] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_) __UpperCAmelCase : Tuple = model(**UpperCamelCase_).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def a_ ( self : List[str]): """simple docstring""" pass @slow def a_ ( self : int): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = SegformerModel.from_pretrained(UpperCamelCase_) self.assertIsNotNone(UpperCamelCase_) def _UpperCamelCase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class a__ ( unittest.TestCase ): @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_) __UpperCAmelCase : List[str] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( UpperCamelCase_) __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt") __UpperCAmelCase : Optional[int] = encoded_inputs.pixel_values.to(UpperCamelCase_) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCamelCase_) __UpperCAmelCase : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : List[str] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(UpperCamelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4)) @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Any = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_) __UpperCAmelCase : Dict = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024").to(UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt") __UpperCAmelCase : int = encoded_inputs.pixel_values.to(UpperCamelCase_) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCamelCase_) __UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(UpperCamelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-1)) @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( UpperCamelCase_) __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : Any = image_processor(images=UpperCamelCase_ , return_tensors="pt") __UpperCAmelCase : List[str] = encoded_inputs.pixel_values.to(UpperCamelCase_) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCamelCase_) __UpperCAmelCase : Any = outputs.logits.detach().cpu() __UpperCAmelCase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(500, 300)]) __UpperCAmelCase : Tuple = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , UpperCamelCase_) __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_) __UpperCAmelCase : str = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , UpperCamelCase_)
487
0
import math def _lowerCAmelCase ( A__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( A__ = 10_001 ): try: lowercase__ = int(UpperCamelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) lowercase__ = [] lowercase__ = 2 while len(UpperCamelCase_ ) < nth: if is_prime(UpperCamelCase_ ): primes.append(UpperCamelCase_ ) num += 1 else: num += 1 return primes[len(UpperCamelCase_ ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
622
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _lowerCAmelCase ( UpperCamelCase_ ): return np.dot(UpperCamelCase_ , UpperCamelCase_ ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , *, lowerCAmelCase__ = np.inf , lowerCAmelCase__ = "linear" , lowerCAmelCase__ = 0.0 , ): __SCREAMING_SNAKE_CASE = regularization __SCREAMING_SNAKE_CASE = gamma if kernel == "linear": __SCREAMING_SNAKE_CASE = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""") if not isinstance(self.gamma , (float, int)): raise ValueError("""gamma must be float or int""") if not self.gamma > 0: raise ValueError("""gamma must be > 0""") __SCREAMING_SNAKE_CASE = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __SCREAMING_SNAKE_CASE = f"Unknown kernel: {kernel}" raise ValueError(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): return np.dot(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = observations __SCREAMING_SNAKE_CASE = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__SCREAMING_SNAKE_CASE) ,) = np.shape(lowerCAmelCase__) def to_minimize(lowerCAmelCase__) -> float: __SCREAMING_SNAKE_CASE = 0 ((__SCREAMING_SNAKE_CASE) ,) = np.shape(lowerCAmelCase__) for i in range(lowerCAmelCase__): for j in range(lowerCAmelCase__): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = LinearConstraint(lowerCAmelCase__ , 0 , 0) __SCREAMING_SNAKE_CASE = Bounds(0 , self.regularization) __SCREAMING_SNAKE_CASE = minimize( lowerCAmelCase__ , np.ones(lowerCAmelCase__) , bounds=lowerCAmelCase__ , constraints=[ly_contraint]).x __SCREAMING_SNAKE_CASE = l_star # calculating mean offset of separation plane to points __SCREAMING_SNAKE_CASE = 0 for i in range(lowerCAmelCase__): for j in range(lowerCAmelCase__): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) __SCREAMING_SNAKE_CASE = s / n def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowerCAmelCase__) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
155
0
import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]="sayef/fsner-bert-base-uncased" ) -> Dict: super(__UpperCamelCase , self ).__init__() A = AutoModel.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) A = torch.nn.CosineSimilarity(3 , 1e-08 ) A = torch.nn.Softmax(dim=1 ) def __UpperCamelCase ( self : Optional[Any] , **__UpperCamelCase : List[str] ) -> Optional[int]: return self.bert(**__UpperCamelCase ).last_hidden_state def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict ) -> Dict: return token_embeddings.sum(2 , keepdim=__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=1 ) -> Optional[int]: return self.softmax(T * self.cos(__UpperCamelCase , __UpperCamelCase ) ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: A = W_supports['sizes'].tolist() A = W_supports['start_token_id'].item() A = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] A = self.BERT(**__UpperCamelCase ) A = self.BERT(**__UpperCamelCase ) A = None A = None A = W_supports['input_ids'] == start_token_id A = W_supports['input_ids'] == end_token_id for i, size in enumerate(__UpperCamelCase ): if i == 0: A = 0 else: A = support_sizes[i - 1] A = S[s : s + size][start_token_masks[s : s + size]] A = S[s : s + size][end_token_masks[s : s + size]] A = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) A = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: A = torch.vstack((p_starts, p_start) ) A = torch.vstack((p_ends, p_end) ) else: A = p_start A = p_end return p_starts, p_ends
224
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case :Tuple ='src/transformers' __snake_case :Dict ='docs/source/en' __snake_case :Dict ='.' def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Find the start prompt. A = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 A = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case :List[Any] ='Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case :List[Any] =re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case :List[str] =re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case :Tuple =re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case :int =direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = 2 if text == '✅' or text == '❌' else len(lowerCAmelCase__ ) A = (width - text_length) // 2 A = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): A = None if attr_name.endswith('Tokenizer' ): A = slow_tokenizers A = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): A = fast_tokenizers A = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: A = tf_models A = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: A = flax_models A = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: A = pt_models A = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): A = True break # Try again after removing the last word in the name A = ''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! A = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). A = [len(lowerCAmelCase__ ) + 2 for c in columns] A = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se A = '|' + '|'.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" A = {True: '✅', False: '❌'} for name in model_names: A = model_name_to_prefix[name] A = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def lowerCamelCase_ ( lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' A , A , A , A = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) A = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case :List[Any] =parser.parse_args() check_model_table(args.fix_and_overwrite)
224
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-vision" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[3, 5, 7, 11], SCREAMING_SNAKE_CASE_=[1, 2, 3, 6], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.4, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=255, **SCREAMING_SNAKE_CASE_, ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : List[Any] = image_size UpperCamelCase : int = patch_size UpperCamelCase : Tuple = num_channels UpperCamelCase : str = use_mask_token UpperCamelCase : Union[str, Any] = use_absolute_position_embeddings UpperCamelCase : int = use_relative_position_bias UpperCamelCase : Optional[int] = use_shared_relative_position_bias UpperCamelCase : int = layer_scale_init_value UpperCamelCase : List[Any] = drop_path_rate UpperCamelCase : str = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase : List[str] = out_indices UpperCamelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase : List[str] = use_auxiliary_head UpperCamelCase : Any = auxiliary_loss_weight UpperCamelCase : Any = auxiliary_channels UpperCamelCase : Tuple = auxiliary_num_convs UpperCamelCase : str = auxiliary_concat_input UpperCamelCase : Optional[int] = semantic_loss_ignore_index class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-4
40
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A : Tuple = 10 def UpperCamelCase_ ( A__ : int , A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' for i in range(A__ , A__ ): if array[i] == target: return i return -1 def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Union[str, Any] = len(A__ ) while left <= right: if right - left < precision: return lin_search(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Dict = (left + right) // 3 + 1 lowerCAmelCase_ : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase_ : List[str] = one_third - 1 elif array[two_third] < target: lowerCAmelCase_ : Tuple = two_third + 1 else: lowerCAmelCase_ : Tuple = one_third + 1 lowerCAmelCase_ : Any = two_third - 1 else: return -1 def UpperCamelCase_ ( A__ : int , A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Dict = (left + right) // 3 + 1 lowerCAmelCase_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(A__ , one_third - 1 , A__ , A__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , A__ , A__ , A__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , A__ , A__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A : List[Any] = input("Enter numbers separated by comma:\n").strip() __A : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __A : List[Any] = int(input("Enter the number to be found in the list:\n").strip()) __A : str = ite_ternary_search(collection, target) __A : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
275
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : Dict = dict(zip(snake_case_, range(len(snake_case_)))) _lowerCAmelCase : Tuple = {"unk_token": "<unk>"} _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Dict = BartphoTokenizer(snake_case_, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **snake_case_) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = BartphoTokenizer(snake_case_, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : Optional[int] = "This is a là test" _lowerCAmelCase : Optional[Any] = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : Dict = tokenizer.tokenize(snake_case_) self.assertListEqual(snake_case_, snake_case_) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_), snake_case_)
720
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
42
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
1
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(snake_case__ ) SCREAMING_SNAKE_CASE__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE__ = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
616
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'unispeech' def __init__( self : Union[str, Any] , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : Union[str, Any]=7_6_8 , __UpperCAmelCase : Tuple=1_2 , __UpperCAmelCase : Dict=1_2 , __UpperCAmelCase : Optional[Any]=3_0_7_2 , __UpperCAmelCase : Optional[Any]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=1e-5 , __UpperCAmelCase : List[Any]="group" , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCAmelCase : List[str]=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase : int=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase : str=False , __UpperCAmelCase : Any=1_2_8 , __UpperCAmelCase : str=1_6 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Union[str, Any]=0.05 , __UpperCAmelCase : str=1_0 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=1_0 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=3_2_0 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Any=1_0_0 , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=2_5_6 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]="mean" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : str=2_5_6 , __UpperCAmelCase : Dict=8_0 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=0.5 , **__UpperCAmelCase : List[str] , ) -> Tuple: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = feat_extract_norm SCREAMING_SNAKE_CASE__ = feat_extract_activation SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = list(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = conv_bias SCREAMING_SNAKE_CASE__ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = feat_proj_dropout SCREAMING_SNAKE_CASE__ = final_dropout SCREAMING_SNAKE_CASE__ = layerdrop SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_ctc_classes SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = do_stable_layer_norm SCREAMING_SNAKE_CASE__ = use_weighted_layer_sum SCREAMING_SNAKE_CASE__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ = apply_spec_augment SCREAMING_SNAKE_CASE__ = mask_time_prob SCREAMING_SNAKE_CASE__ = mask_time_length SCREAMING_SNAKE_CASE__ = mask_time_min_masks SCREAMING_SNAKE_CASE__ = mask_feature_prob SCREAMING_SNAKE_CASE__ = mask_feature_length SCREAMING_SNAKE_CASE__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ = num_codevectors_per_group SCREAMING_SNAKE_CASE__ = num_codevector_groups SCREAMING_SNAKE_CASE__ = contrastive_logits_temperature SCREAMING_SNAKE_CASE__ = feat_quantizer_dropout SCREAMING_SNAKE_CASE__ = num_negatives SCREAMING_SNAKE_CASE__ = codevector_dim SCREAMING_SNAKE_CASE__ = proj_codevector_dim SCREAMING_SNAKE_CASE__ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ = ctc_loss_reduction SCREAMING_SNAKE_CASE__ = ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
616
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING a = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class UpperCamelCase__ ( __magic_name__ ): def __init__( self : Tuple , *UpperCamelCase__ : int , **UpperCamelCase__ : Dict ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int ): '''simple docstring''' lowercase_ , lowercase_ = {}, {} if padding is not None: lowercase_ = padding if truncation is not None: lowercase_ = truncation if top_k is not None: lowercase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict , UpperCamelCase__ : Union["Image.Image", str] , UpperCamelCase__ : str = None , **UpperCamelCase__ : Any ): '''simple docstring''' if isinstance(UpperCamelCase__ , (Image.Image, str) ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = {"""image""": image, """question""": question} else: lowercase_ = image lowercase_ = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) return results def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' lowercase_ = load_image(inputs["""image"""] ) lowercase_ = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase__ , truncation=UpperCamelCase__ ) lowercase_ = self.image_processor(images=UpperCamelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) return model_inputs def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Any ): '''simple docstring''' lowercase_ = self.model(**UpperCamelCase__ ) return model_outputs def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase_ = self.model.config.num_labels if self.framework == "pt": lowercase_ = model_outputs.logits.sigmoid()[0] lowercase_ , lowercase_ = probs.topk(UpperCamelCase__ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase_ = scores.tolist() lowercase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
412
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCAmelCase_ ( UpperCAmelCase__ ): return np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase__ : def __init__( self : Any , *, UpperCamelCase__ : float = np.inf , UpperCamelCase__ : str = "linear" , UpperCamelCase__ : float = 0.0 , ): '''simple docstring''' lowercase_ = regularization lowercase_ = gamma if kernel == "linear": lowercase_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) lowercase_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase_ = F'''Unknown kernel: {kernel}''' raise ValueError(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ndarray , UpperCamelCase__ : ndarray ): '''simple docstring''' return np.dot(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : ndarray , UpperCamelCase__ : ndarray ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : list[ndarray] , UpperCamelCase__ : ndarray ): '''simple docstring''' lowercase_ = observations lowercase_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowercase_) , ) = np.shape(UpperCamelCase__ ) def to_minimize(UpperCamelCase__ : ndarray ) -> float: lowercase_ = 0 ((lowercase_) , ) = np.shape(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(UpperCamelCase__ ) lowercase_ = LinearConstraint(UpperCamelCase__ , 0 , 0 ) lowercase_ = Bounds(0 , self.regularization ) lowercase_ = minimize( UpperCamelCase__ , np.ones(UpperCamelCase__ ) , bounds=UpperCamelCase__ , constraints=[ly_contraint] ).x lowercase_ = l_star # calculating mean offset of separation plane to points lowercase_ = 0 for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase_ = s / n def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : ndarray ): '''simple docstring''' lowercase_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCamelCase__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
412
1
import collections import os import re from pathlib import Path __magic_name__ = '''src/transformers''' # Matches is_xxx_available() __magic_name__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __magic_name__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __magic_name__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __magic_name__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __magic_name__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __magic_name__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __magic_name__ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __magic_name__ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __magic_name__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __magic_name__ = re.compile(r'''^\s*try:''') # Catches a line with else: __magic_name__ = re.compile(r'''^\s*else:''') def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if _re_test_backend.search(__lowerCAmelCase ) is None: return None snake_case__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case__ = f.readlines() snake_case__ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: snake_case__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): snake_case__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] snake_case__ = re.findall(R"\[([^\]]+)\]" , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue snake_case__ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: snake_case__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 snake_case__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): snake_case__ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: snake_case__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(", " ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: snake_case__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(", " ) snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 snake_case__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case__ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): snake_case__ = lines[line_index] snake_case__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): def find_duplicates(__lowerCAmelCase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case__ = [] for key in import_dict_objects.keys(): snake_case__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case__ = "base imports" if key == "none" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: snake_case__ = os.path.join(__lowerCAmelCase , "__init__.py" ) snake_case__ = parse_init(__lowerCAmelCase ) if objects is not None: snake_case__ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("\n\n".join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("*.py" ) ) ) == 0: continue snake_case__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace(os.path.sep , "." ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) snake_case__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules __magic_name__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def SCREAMING_SNAKE_CASE__ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case__ = direct_transformers_import(__lowerCAmelCase ) snake_case__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , "__init__.py" ) , "r" ) as f: snake_case__ = f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , __lowerCAmelCase ) ) ) snake_case__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: snake_case__ = "\n".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
700
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: return False snake_case__ = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = input('''Enter numbers separated by comma:\n''').strip() __magic_name__ = [int(item.strip()) for item in user_input.split(''',''')] __magic_name__ = int(input('''Enter the number to be found in the list:\n''').strip()) __magic_name__ = '''''' if binary_search(sequence, target) else '''not ''' print(F'''{target} was {not_str}found in {sequence}''')
530
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _a: int = logging.get_logger(__name__) _a: int = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ = '''trajectory_transformer''' SCREAMING_SNAKE_CASE__ = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , lowerCAmelCase : int=100 , lowerCAmelCase : str=5 , lowerCAmelCase : Dict=1 , lowerCAmelCase : int=1 , lowerCAmelCase : Any=249 , lowerCAmelCase : str=6 , lowerCAmelCase : int=17 , lowerCAmelCase : Any=25 , lowerCAmelCase : str=4 , lowerCAmelCase : int=4 , lowerCAmelCase : str=128 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[str]=0.0_006 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : int=0.02 , lowerCAmelCase : Optional[Any]=1e-12 , lowerCAmelCase : int=1 , lowerCAmelCase : str=True , lowerCAmelCase : int=1 , lowerCAmelCase : str=50_256 , lowerCAmelCase : Optional[int]=50_256 , **lowerCAmelCase : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = action_weight UpperCAmelCase_ = reward_weight UpperCAmelCase_ = value_weight UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = block_size UpperCAmelCase_ = action_dim UpperCAmelCase_ = observation_dim UpperCAmelCase_ = transition_dim UpperCAmelCase_ = learning_rate UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_embd UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = kaiming_initializer_range UpperCAmelCase_ = use_cache super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
162
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( __lowerCAmelCase ): raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self ): raise NotImplementedError()
208
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=6 , a__=17 , a__=23 , a__=11 , a__=True , ): _lowerCAmelCase : int = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Optional[int] = act_dim _lowerCAmelCase : Any = state_dim _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = max_length _lowerCAmelCase : int = is_training def __A ( self ): _lowerCAmelCase : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCAmelCase : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCAmelCase : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _lowerCAmelCase : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCAmelCase : str = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __A ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Any = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : List[Any] = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __A ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Dict = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __A ( __a , __a , __a , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () _UpperCamelCase : List[str] = () _UpperCamelCase : Optional[int] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _UpperCamelCase : Optional[int] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : List[str] = False def __A ( self ): _lowerCAmelCase : Any = DecisionTransformerModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __A ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case__ ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : str = [*signature.parameters.keys()] _lowerCAmelCase : Dict = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : int = 2 # number of steps of autoregressive prediction we will perform _lowerCAmelCase : str = 10 # defined by the RL environment, may be normalized _lowerCAmelCase : str = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) _lowerCAmelCase : Dict = model.to(snake_case__ ) _lowerCAmelCase : str = model.config torch.manual_seed(0 ) _lowerCAmelCase : Any = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() _lowerCAmelCase : List[Any] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=snake_case__ ) _lowerCAmelCase : List[Any] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCAmelCase : int = state _lowerCAmelCase : List[str] = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) _lowerCAmelCase : Dict = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) _lowerCAmelCase : Union[str, Any] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): _lowerCAmelCase : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) _lowerCAmelCase : Union[str, Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCAmelCase : Union[str, Any] = action_pred[0, -1] _lowerCAmelCase : List[Any] = torch.cat([states, state] , dim=1 ) _lowerCAmelCase : List[str] = returns_to_go[0, -1] - reward _lowerCAmelCase : Tuple = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCAmelCase : Any = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
706
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = CodeGenTokenizer _UpperCamelCase : Dict = CodeGenTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[Any] = {"add_prefix_space": True} _UpperCamelCase : str = False def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowerCAmelCase : Optional[int] = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : List[str] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(a__ , add_prefix_space=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Any = """lower newer""" # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ ) _lowerCAmelCase : int = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _lowerCAmelCase : int = self.get_rust_tokenizer(add_prefix_space=a__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_prefix_space=a__ ) _lowerCAmelCase : Any = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def __A ( self , *a__ , **a__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : Dict = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : Optional[int] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): _lowerCAmelCase : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input _lowerCAmelCase : Union[str, Any] = """This is a simple input""" _lowerCAmelCase : Dict = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowerCAmelCase : Any = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[int] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : Any = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) _lowerCAmelCase : str = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) _lowerCAmelCase : int = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __A ( self ): _lowerCAmelCase : List[str] = """$$$""" _lowerCAmelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ ) _lowerCAmelCase : Tuple = """This is a simple input""" _lowerCAmelCase : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : str = tokenizer(a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ ) self.assertEqual(out_s.input_ids[0] , a__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __A ( self ): _lowerCAmelCase : int = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowerCAmelCase : Optional[int] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowerCAmelCase : List[Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _lowerCAmelCase : Tuple = tokenizer.encode(a__ ) _lowerCAmelCase : Optional[Any] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowerCAmelCase : int = tokenizer.decode(a__ , truncate_before_pattern=a__ ) self.assertEqual(a__ , a__ ) def __A ( self ): pass
663
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowerCAmelCase : def __init__( self : List[str] , __lowercase : str=None , **__lowercase : Dict ): """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) __lowercase =model __lowercase =kwargs.get('model_save_dir' , __lowercase ) __lowercase =kwargs.get('latest_model_name' , __lowercase ) def __call__( self : List[str] , **__lowercase : int ): """simple docstring""" __lowercase ={k: np.array(__lowercase ) for k, v in kwargs.items()} return self.model.run(__lowercase , __lowercase ) @staticmethod def snake_case ( __lowercase : Union[str, Path] , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None ): """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) __lowercase ='CPUExecutionProvider' return ort.InferenceSession(__lowercase , providers=[provider] , sess_options=__lowercase ) def snake_case ( self : Dict , __lowercase : Union[str, Path] , __lowercase : Optional[str] = None , **__lowercase : List[Any] ): """simple docstring""" __lowercase =file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowercase =self.model_save_dir.joinpath(self.latest_model_name ) __lowercase =Path(__lowercase ).joinpath(__lowercase ) try: shutil.copyfile(__lowercase , __lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowercase =self.model_save_dir.joinpath(__lowercase ) if src_path.exists(): __lowercase =Path(__lowercase ).joinpath(__lowercase ) try: shutil.copyfile(__lowercase , __lowercase ) except shutil.SameFileError: pass def snake_case ( self : List[Any] , __lowercase : Union[str, os.PathLike] , **__lowercase : Any , ): """simple docstring""" if os.path.isfile(__lowercase ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__lowercase , exist_ok=__lowercase ) # saving model weights/files self._save_pretrained(__lowercase , **__lowercase ) @classmethod def snake_case ( cls : Any , __lowercase : Union[str, Path] , __lowercase : Optional[Union[bool, str, None]] = None , __lowercase : Optional[Union[str, None]] = None , __lowercase : bool = False , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional["ort.SessionOptions"] = None , **__lowercase : Tuple , ): """simple docstring""" __lowercase =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowercase ): __lowercase =OnnxRuntimeModel.load_model( os.path.join(__lowercase , __lowercase ) , provider=__lowercase , sess_options=__lowercase ) __lowercase =Path(__lowercase ) # load model from hub else: # download model __lowercase =hf_hub_download( repo_id=__lowercase , filename=__lowercase , use_auth_token=__lowercase , revision=__lowercase , cache_dir=__lowercase , force_download=__lowercase , ) __lowercase =Path(__lowercase ).parent __lowercase =Path(__lowercase ).name __lowercase =OnnxRuntimeModel.load_model(__lowercase , provider=__lowercase , sess_options=__lowercase ) return cls(model=__lowercase , **__lowercase ) @classmethod def snake_case ( cls : int , __lowercase : Union[str, Path] , __lowercase : bool = True , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , **__lowercase : Optional[Any] , ): """simple docstring""" __lowercase =None if len(str(__lowercase ).split('@' ) ) == 2: __lowercase , __lowercase =model_id.split('@' ) return cls._from_pretrained( model_id=__lowercase , revision=__lowercase , cache_dir=__lowercase , force_download=__lowercase , use_auth_token=__lowercase , **__lowercase , )
119
'''simple docstring''' def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : Tuple ): '''simple docstring''' __lowercase =[0 for i in range(r + 1 )] # nc0 = 1 __lowercase =1 for i in range(1, n + 1 ): # to compute current row from previous row. __lowercase =min(lowercase__, lowercase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
119
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
587
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): _lowerCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _lowerCAmelCase : List[Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id="test-config" , push_to_hub=_snake_case , use_auth_token=self._token ) _lowerCAmelCase : Union[str, Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _lowerCAmelCase : Tuple = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id="valid_org/test-config-org" , push_to_hub=_snake_case , use_auth_token=self._token ) _lowerCAmelCase : Any = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self ): CustomConfig.register_for_auto_class() _lowerCAmelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _lowerCAmelCase : Any = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase : Tuple = c.n_embd + 1 # int _lowerCAmelCase : Dict = c.resid_pdrop + 1.0 # float _lowerCAmelCase : Dict = not c.scale_attn_weights # bool _lowerCAmelCase : int = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_snake_case , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(_snake_case , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(_snake_case , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(_snake_case , c.summary_type , "mismatch for key: summary_type" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = PretrainedConfig() _lowerCAmelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _lowerCAmelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case )] if len(_snake_case ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(_snake_case )}.""" ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _lowerCAmelCase : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): # A mock response for an HTTP head request to emulate server down _lowerCAmelCase : Tuple = mock.Mock() _lowerCAmelCase : Any = 500 _lowerCAmelCase : Any = {} _lowerCAmelCase : Any = HTTPError _lowerCAmelCase : List[str] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_snake_case ) as mock_head: _lowerCAmelCase : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase : Any = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = AutoConfig.from_pretrained("bert-base-cased" ) _lowerCAmelCase : Tuple = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case ) _lowerCAmelCase : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase : int = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase : List[Any] = ["config.42.0.0.json"] _lowerCAmelCase : str = 768 configuration.save_pretrained(_snake_case ) shutil.move(os.path.join(_snake_case , "config.4.0.0.json" ) , os.path.join(_snake_case , "config.42.0.0.json" ) ) _lowerCAmelCase : str = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _lowerCAmelCase : str = "v4.0.0" _lowerCAmelCase , _lowerCAmelCase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase : Union[str, Any] = "v3.0.0" _lowerCAmelCase : Any = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case ) self.assertEqual(old_configuration.hidden_size , 768 )
587
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Any = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _UpperCamelCase : Union[str, Any] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = model.state_dict() def to_tf_var_name(UpperCAmelCase_ ): for patt, repl in iter(UpperCAmelCase_ ): _UpperCamelCase : int = name.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return f'bert/{name}' def create_tf_var(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _UpperCamelCase : Union[str, Any] = tf.get_variable(dtype=UpperCAmelCase_ , shape=tensor.shape , name=UpperCAmelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _UpperCamelCase : Optional[int] = to_tf_var_name(UpperCAmelCase_ ) _UpperCamelCase : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _UpperCamelCase : Optional[int] = torch_tensor.T _UpperCamelCase : Optional[Any] = create_tf_var(tensor=UpperCAmelCase_ , name=UpperCAmelCase_ , session=UpperCAmelCase_ ) tf.keras.backend.set_value(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Any = session.run(UpperCAmelCase_ ) print(f'Successfully created {tf_name}: {np.allclose(UpperCAmelCase_ , UpperCAmelCase_ )}' ) _UpperCamelCase : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def A__ ( UpperCAmelCase_=None ): _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Directory in which to save tensorflow model' ) _UpperCamelCase : Optional[int] = parser.parse_args(UpperCAmelCase_ ) _UpperCamelCase : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
195
'''simple docstring''' from pathlib import Path import fire def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = Path(UpperCAmelCase_ ) _UpperCamelCase : str = Path(UpperCAmelCase_ ) dest_dir.mkdir(exist_ok=UpperCAmelCase_ ) for path in src_dir.iterdir(): _UpperCamelCase : int = [x.rstrip() for x in list(path.open().readlines() )][:n] _UpperCamelCase : Any = dest_dir.joinpath(path.name ) print(UpperCAmelCase_ ) dest_path.open('w' ).write('\n'.join(UpperCAmelCase_ ) ) if __name__ == "__main__": fire.Fire(minify)
195
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __lowerCamelCase : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a__ ( nn.Module ): def __init__( self : Tuple,_A : str ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : List[str] = torchvision.models.resnetaaa(pretrained=__A ) SCREAMING_SNAKE_CASE_ : Any = list(model.children() )[:-2] SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Sequential(*__A ) SCREAMING_SNAKE_CASE_ : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __UpperCamelCase ( self : Tuple,_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.pool(self.model(__A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.flatten(__A,start_dim=2 ) SCREAMING_SNAKE_CASE_ : Any = out.transpose(1,2 ).contiguous() return out # BxNx2048 class a__ ( __lowercase ): def __init__( self : Optional[Any],_A : List[Any],_A : Union[str, Any],_A : List[str],_A : List[Any],_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [json.loads(__A ) for l in open(__A )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.dirname(__A ) SCREAMING_SNAKE_CASE_ : int = tokenizer SCREAMING_SNAKE_CASE_ : Dict = labels SCREAMING_SNAKE_CASE_ : int = len(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max_seq_length SCREAMING_SNAKE_CASE_ : Optional[int] = transforms def __len__( self : Tuple ): """simple docstring""" return len(self.data ) def __getitem__( self : Optional[int],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"],add_special_tokens=__A ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE_ : str = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE_ : Dict = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Tuple = Image.open(os.path.join(self.data_dir,self.data[index]["img"] ) ).convert("RGB" ) SCREAMING_SNAKE_CASE_ : int = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def _snake_case ( lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [len(row["sentence"] ) for row in batch] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = len(a__ ), max(a__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.zeros(a__ , a__ , dtype=torch.long ) SCREAMING_SNAKE_CASE_ : Any = torch.zeros(a__ , a__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a__ , a__ ) ): SCREAMING_SNAKE_CASE_ : str = input_row["sentence"] SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([row["image"] for row in batch] ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.stack([row["label"] for row in batch] ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.stack([row["image_start_token"] for row in batch] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _snake_case ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _snake_case ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
714
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCamelCase : Optional[int] = '''pt''' elif is_tf_available(): __lowerCamelCase : str = '''tf''' else: __lowerCamelCase : int = '''jax''' class a__ ( A__ , unittest.TestCase ): A = PerceiverTokenizer A = False def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCamelCase ( self : Any ): """simple docstring""" return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def __UpperCamelCase ( self : Optional[int],**_A : List[Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : List[Any],_A : Optional[Any],_A : str=False,_A : Tuple=20,_A : Tuple=5 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode([i],clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ : int = list(filter(lambda _A : re.match(R"^[ a-zA-Z]+$",t[1] ),_A ) ) SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1],add_special_tokens=_A ),_A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ : List[str] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ : int = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ : List[Any] = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A,clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ : Dict = ( tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=_A ) + " " + tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ : str = " " + output_txt SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A,add_special_tokens=_A ) return output_txt, output_ids def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = "Unicode €." SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A ) SCREAMING_SNAKE_CASE_ : int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]Unicode €.[SEP]" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ),"[CLS]e è é ê ë[SEP]" ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding=_A,return_tensors=_A ) self.assertIsInstance(_A,_A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A,_A ) self.assertEqual((2, 38),batch.input_ids.shape ) self.assertEqual((2, 38),batch.attention_mask.shape ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(_A,padding=_A,return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids",_A ) self.assertIn("attention_mask",_A ) self.assertNotIn("decoder_input_ids",_A ) self.assertNotIn("decoder_attention_mask",_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : int = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer( text_target=_A,max_length=32,padding="max_length",truncation=_A,return_tensors=_A ) self.assertEqual(32,targets["input_ids"].shape[1] ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length,42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : str = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Tuple = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) self.assertIn("new_additional_special_token",after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length,42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.__class__.from_pretrained(_A,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length,43 ) shutil.rmtree(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A,"special_tokens_map.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(_A ) with open(os.path.join(_A,"tokenizer_config.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : int = json.load(_A ) SCREAMING_SNAKE_CASE_ : Any = [F'<extra_id_{i}>' for i in range(125 )] SCREAMING_SNAKE_CASE_ : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_A,"special_tokens_map.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) with open(os.path.join(_A,"tokenizer_config.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ : Dict = tokenizer_class.from_pretrained( _A,) self.assertIn( "an_additional_special_token",tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"],tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ),) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token",lstrip=_A )] SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_class.from_pretrained( _A,additional_special_tokens=_A,) self.assertIn("a_new_additional_special_token",tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"],tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ),"�" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" pass def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass def __UpperCamelCase ( self : List[str] ): """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(fast=_A,do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): SCREAMING_SNAKE_CASE_ : str = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A,_A )
316
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _a = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a) @torch.no_grad() def __call__( self , __a = 1 , __a = 1_00 , __a = None , __a = None , __a = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: _UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate _UpperCamelCase = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''') _UpperCamelCase = int(__a) if sample_size % down_scale_factor != 0: _UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''') _UpperCamelCase = int(__a) _UpperCamelCase = next(iter(self.unet.parameters())).dtype _UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__a)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _UpperCamelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a) # set step values self.scheduler.set_timesteps(__a , device=audio.device) _UpperCamelCase = self.scheduler.timesteps.to(__a) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _UpperCamelCase = self.unet(__a , __a).sample # 2. compute previous image: x_t -> t_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a).prev_sample _UpperCamelCase = audio.clamp(-1 , 1).float().cpu().numpy() _UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a)
19
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "big_bird" def __init__( self : Tuple , A : Tuple=5_03_58 , A : Any=7_68 , A : Union[str, Any]=12 , A : List[str]=12 , A : Dict=30_72 , A : int="gelu_new" , A : Optional[int]=0.1 , A : Optional[int]=0.1 , A : Dict=40_96 , A : Tuple=2 , A : Union[str, Any]=0.02 , A : str=1e-12 , A : Optional[Any]=True , A : Union[str, Any]=0 , A : Optional[int]=1 , A : Optional[int]=2 , A : Any=66 , A : List[Any]="block_sparse" , A : List[Any]=True , A : Union[str, Any]=False , A : Optional[Any]=64 , A : Optional[Any]=3 , A : Tuple=None , **A : Union[str, Any] , ) -> Tuple: super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , sep_token_id=A , **A , ) lowercase_ : Tuple = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : int = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Optional[int] = initializer_range lowercase_ : List[str] = type_vocab_size lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : int = use_cache lowercase_ : int = rescale_embeddings lowercase_ : Optional[Any] = attention_type lowercase_ : str = use_bias lowercase_ : Dict = block_size lowercase_ : str = num_random_blocks lowercase_ : Optional[Any] = classifier_dropout class _UpperCAmelCase ( _A ): @property def A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase_ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
231
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''src/diffusers''' _lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : List[str] ): return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , lowerCAmelCase__ ) is not None def _snake_case ( snake_case__ : Optional[int] ): A = object_name.split('.' ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): A = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Now let's find the class / func in the code! A = '' A = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) _lowercase = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") _lowercase = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") _lowercase = re.compile(r"""<FILL\s+[^>]*>""") def _snake_case ( snake_case__ : Any ): A = code.split('\n' ) A = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _snake_case ( snake_case__ : Optional[int] ): A = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: A = F'class Bla:\n{code}' A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase__ ) A = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) A , A = style_docstrings_in_code(lowerCAmelCase__ ) return result[len('class Bla:\n' ) :] if has_indent else result def _snake_case ( snake_case__ : str , snake_case__ : str=False ): with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(lowerCAmelCase__ ) A = get_indent(lowerCAmelCase__ ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break A = lines[line_index] A = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = ''.join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] A = '\n'.join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: A = replace_pattern.replace('with' , '' ).split(',' ) A = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) A = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCAmelCase__ ) return diffs def _snake_case ( snake_case__ : Optional[int] = False ): A = glob.glob(os.path.join(lowerCAmelCase__ , '**/*.py' ) , recursive=lowerCAmelCase__ ) A = [] for filename in all_files: A = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: A = '\n'.join(lowerCAmelCase__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) a__ = '''bert-base-cased''' a__ = '''fp16''' a__ = '''bf16''' a__ = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[str]: super().setUp() _a : str = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __lowercase ( self ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_a ): _a : Union[str, Any] = self.dist_env.copy() _a : int = F"""{i + 1}""" _a : Dict = strategy with mockenv_context(**_a ): _a : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __lowercase ( self ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_a ): _a : Dict = self.dist_env.copy() _a : Any = prefetch_policy with mockenv_context(**_a ): _a : Tuple = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __lowercase ( self ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_a ): _a : List[Any] = self.dist_env.copy() _a : List[Any] = state_dict_type with mockenv_context(**_a ): _a : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = AutoModel.from_pretrained(_a ) for policy in FSDP_AUTO_WRAP_POLICY: _a : Any = self.dist_env.copy() _a : str = policy if policy == "TRANSFORMER_BASED_WRAP": _a : Optional[Any] = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": _a : Optional[int] = '''2000''' with mockenv_context(**_a ): _a : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _a : Optional[int] = self.dist_env.copy() _a : Union[str, Any] = '''TRANSFORMER_BASED_WRAP''' _a : Optional[Any] = '''T5Layer''' with mockenv_context(**_a ): _a : Tuple = FullyShardedDataParallelPlugin() with self.assertRaises(_a ) as cm: fsdp_plugin.set_auto_wrap_policy(_a ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) _a : int = self.dist_env.copy() _a : Optional[Any] = '''SIZE_BASED_WRAP''' _a : Optional[Any] = '''0''' with mockenv_context(**_a ): _a : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __lowercase ( self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _a : List[str] = self.dist_env.copy() _a : Optional[Any] = mp_dtype with mockenv_context(**_a ): _a : Tuple = Accelerator() if mp_dtype == "fp16": _a : Union[str, Any] = torch.floataa elif mp_dtype == "bf16": _a : str = torch.bfloataa _a : Tuple = MixedPrecision(param_dtype=_a , reduce_dtype=_a , buffer_dtype=_a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_a ) def __lowercase ( self ) -> Optional[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _a : Union[str, Any] = self.dist_env.copy() _a : Tuple = str(_a ).lower() with mockenv_context(**_a ): _a : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_a ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : List[Any] = 0.82 _a : str = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] _a : str = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _a : Any = 1_6_0 _a : str = 1_6_0 _a : str = inspect.getfile(accelerate.test_utils ) _a : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __lowercase ( self ) -> List[Any]: _a : str = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) _a : Union[str, Any] = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: _a : Optional[int] = cmd.copy() for i, strategy in enumerate(_a ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def __lowercase ( self ) -> str: _a : List[Any] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) _a : Dict = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_a ): _a : int = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _a : int = len(_a ) for state_dict_type in FSDP_STATE_DICT_TYPE: _a : Dict = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) _a : str = cmd_config[:-1] _a : Union[str, Any] = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) def __lowercase ( self ) -> int: _a : Optional[int] = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) _a : Tuple = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _a : int = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(_a ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
14
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
1
import os import sys import transformers __lowercase : str = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
706
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowercase : List[str] = ["""bert-base-uncased""", """bert-base-cased"""] __lowercase : Tuple = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = TFAutoModel.from_config(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(UpperCamelCase__ ) lowerCamelCase_ = self.bert(**UpperCamelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> int: '''simple docstring''' super().setUp() lowerCamelCase_ = [ BertTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase_ = [TFBertTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(UpperCamelCase__ , use_fast_bert_tokenizer=UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tokenizer(UpperCamelCase__ , return_tensors='''tf''' , padding='''longest''' ) lowerCamelCase_ = tf_tokenizer(UpperCamelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf_tokenizer(self.paired_sentences ) lowerCamelCase_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.function(UpperCamelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tf.constant(UpperCamelCase__ ) lowerCamelCase_ = compiled_tokenizer(UpperCamelCase__ ) lowerCamelCase_ = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = ModelToSave(tokenizer=UpperCamelCase__ ) lowerCamelCase_ = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase_ = model(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(UpperCamelCase__ ) / '''saved.model''' model.save(UpperCamelCase__ ) lowerCamelCase_ = tf.keras.models.load_model(UpperCamelCase__ ) lowerCamelCase_ = loaded_model(UpperCamelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
66
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = EsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.empty(2 , 4 , 30 ) lowerCamelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowerCamelCase_ = 33 lowerCamelCase_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Tuple: '''simple docstring''' with torch.no_grad(): lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = LxmertTokenizer _a = LxmertTokenizerFast _a = True _a = True def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ :Any = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase__ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''UNwant\u00E9d,running''' UpperCamelCase__ :Union[str, Any] = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.tokenizer_class(self.vocab_file ) UpperCamelCase__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase__ :int = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ :Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) UpperCamelCase__ :str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :int = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.get_rust_tokenizer() UpperCamelCase__ :Any = tokenizer.encode(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
189
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "speech_to_text_2" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=1_0000 , __SCREAMING_SNAKE_CASE : Tuple=6 , __SCREAMING_SNAKE_CASE : Any=2048 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : str=256 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1024 , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> str: a_ : str = vocab_size a_ : Dict = d_model a_ : Union[str, Any] = decoder_ffn_dim a_ : str = decoder_layers a_ : Dict = decoder_attention_heads a_ : int = dropout a_ : int = attention_dropout a_ : str = activation_dropout a_ : List[str] = activation_function a_ : str = init_std a_ : List[str] = decoder_layerdrop a_ : Optional[Any] = use_cache a_ : Union[str, Any] = decoder_layers a_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True a_ : Optional[int] = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
466
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowerCAmelCase = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names __lowerCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowerCAmelCase = 'allenai' def _UpperCAmelCase ( __A : Union[str, Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} a_ : Union[str, Any] = dict((re.sub(R'''@@$''' , '''''' , __A ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , __A ), v) for k, v in d.items() ) a_ : str = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] a_ : str = d[k] # restore return da def _UpperCAmelCase ( __A : List[Any] , __A : List[str] ): # prep assert os.path.exists(__A ) os.makedirs(__A , exist_ok=__A ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models a_ : Union[str, Any] = basename(__A ) a_ : Optional[Any] = dirname(__A ) a_ : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel a_ : str = cls.hub_models() a_ : List[str] = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} a_ : str = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) a_ : Any = hub_utils.from_pretrained( __A , __A , __A , archive_map=__A , **__A ) a_ : Optional[int] = vars(chkpt['''args''']['''model'''] ) a_ : Any = args['''source_lang'''] a_ : List[Any] = args['''target_lang'''] a_ : Union[str, Any] = dirname(__A ) a_ : int = basename(__A ) # dicts a_ : Optional[Any] = os.path.join(__A , f'dict.{src_lang}.txt' ) a_ : int = os.path.join(__A , f'dict.{tgt_lang}.txt' ) a_ : Any = Dictionary.load(__A ) a_ : Any = rewrite_dict_keys(src_dict.indices ) a_ : List[Any] = len(__A ) a_ : Optional[Any] = os.path.join(__A , '''vocab-src.json''' ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab a_ : Tuple = True for k in src_vocab.keys(): if not k.islower(): a_ : Dict = False break a_ : Any = Dictionary.load(__A ) a_ : List[Any] = rewrite_dict_keys(tgt_dict.indices ) a_ : int = len(__A ) a_ : Any = os.path.join(__A , '''vocab-tgt.json''' ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # merges_file (bpecodes) a_ : Optional[int] = os.path.join(__A , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" a_ : Optional[Any] = os.path.join(__A , __A ) if os.path.exists(__A ): break with open(__A , encoding='''utf-8''' ) as fin: a_ : Dict = fin.read() a_ : Any = re.sub(R''' \d+$''' , '''''' , __A , 0 , re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as fout: fout.write(__A ) # model config a_ : List[Any] = os.path.join(__A , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' a_ : int = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with a_ : List[Any] = 5 a_ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: a_ : Optional[int] = best_score_hparams[model_dir]['''length_penalty'''] else: a_ : Union[str, Any] = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # tokenizer config a_ : Dict = os.path.join(__A , __A ) a_ : List[str] = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # model a_ : Any = chkpt['''models'''][0] a_ : Optional[int] = model.state_dict() # rename keys to start with 'model.' a_ : Tuple = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys a_ : Optional[Any] = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(__A , __A ) a_ : str = FSMTConfig.from_pretrained(__A ) a_ : Optional[int] = FSMTForConditionalGeneration(__A ) # check that it loads ok model_new.load_state_dict(__A , strict=__A ) # save a_ : List[str] = os.path.join(__A , __A ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(__A , __A ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
466
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase :List[Any] = logging.get_logger(__name__) __lowercase :Optional[int] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "longformer" def __init__( self : List[str] , a : Union[List[int], int] = 5_12 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 3_05_22 , a : int = 7_68 , a : int = 12 , a : int = 12 , a : int = 30_72 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 5_12 , a : int = 2 , a : float = 0.02 , a : float = 1E-12 , a : bool = False , **a : Dict , ) ->Tuple: super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE__ : int = attention_window SCREAMING_SNAKE_CASE__ : Any = sep_token_id SCREAMING_SNAKE_CASE__ : str = bos_token_id SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = onnx_export class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None ) ->str: super().__init__(a , a , a ) SCREAMING_SNAKE_CASE__ : Any = True @property def A_ ( self : int ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def A_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ : List[str] = {0: "batch"} return outputs @property def A_ ( self : str ) ->float: return 1E-4 @property def A_ ( self : Any ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : str , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE__ : str = 1 return inputs
26
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase_ = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def A__ ( A : str): '''simple docstring''' UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : int = inspect.getsource(A) UpperCamelCase : List[str] = _re_checkpoint.findall(A) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/"): UpperCamelCase : int = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Tuple = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCamelCase : Tuple = ckpt_name break return checkpoint def A__ ( ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : str = get_checkpoint_from_config_class(A) UpperCamelCase : List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A) if len(A) > 0: UpperCamelCase : Any = "\n".join(sorted(A)) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''') if __name__ == "__main__": check_config_docstrings_have_checkpoints()
173
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowerCamelCase = 20_00 , lowerCamelCase = 0.15 , lowerCamelCase = 0.01 , lowerCamelCase = 1348.0 , lowerCamelCase = 1e-5 , lowerCamelCase = 1 , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Tuple = sigma_max # setable values UpperCamelCase : Tuple = None self.set_sigmas(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Any: '''simple docstring''' UpperCamelCase : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase : List[str] = torch.linspace(1 , lowerCamelCase , lowerCamelCase , device=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase : List[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase , lowerCamelCase ) UpperCamelCase : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase : str = torch.exp(torch.linspace(math.log(lowerCamelCase ) , math.log(lowerCamelCase ) , lowerCamelCase ) ) UpperCamelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> str: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) UpperCamelCase : Union[str, Any] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase : Union[str, Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase : str = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase : List[str] = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase : Union[str, Any] = self.get_adjacent_sigma(lowerCamelCase , lowerCamelCase ).to(sample.device ) UpperCamelCase : str = torch.zeros_like(lowerCamelCase ) UpperCamelCase : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase : Optional[Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase : Optional[Any] = diffusion.unsqueeze(-1 ) UpperCamelCase : Union[str, Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase : Union[str, Any] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCamelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase : List[str] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase , prev_sample_mean=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase : Dict = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase : Union[str, Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase : int = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase : Optional[Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase : str = step_size.unsqueeze(-1 ) UpperCamelCase : List[str] = sample + step_size * model_output UpperCamelCase : Union[str, Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> torch.FloatTensor: '''simple docstring''' UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : int = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase ) * sigmas[:, None, None, None] ) UpperCamelCase : Optional[Any] = noise + original_samples return noisy_samples def __len__( self ) -> str: '''simple docstring''' return self.config.num_train_timesteps
173
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] , snake_case : Tuple )-> List[Any]: # ===== initialization ===== _lowerCamelCase = Mock() _lowerCamelCase = conn, Mock() _lowerCamelCase = iter([1, None] ) _lowerCamelCase = lambda snake_case : next(snake_case ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=snake_case ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
701
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = IFInpaintingPipeline SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ): return self._get_dummy_components() def snake_case_ ( self , a__ , a__=0 ): if str(a__ ).startswith('mps' ): _lowerCamelCase = torch.manual_seed(a__ ) else: _lowerCamelCase = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case_ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case_ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case_ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ): self._test_save_load_local() def snake_case_ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> List[str]: if not head: return True # split the list to two parts __snake_case , __snake_case = head.next, head while fast and fast.next: __snake_case = fast.next.next __snake_case = slow.next __snake_case = slow.next __snake_case = None # Don't forget here! But forget still works! # reverse the second part __snake_case = None while second: __snake_case = second.next __snake_case = node __snake_case = second __snake_case = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __snake_case = node.next __snake_case = head.next return True def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Tuple: if not head or not head.next: return True # 1. Get the midpoint (slow) __snake_case = __snake_case = __snake_case = head while fast and fast.next: __snake_case , __snake_case = fast.next.next, slow.next # 2. Push the second half into the stack __snake_case = [slow.val] while slow.next: __snake_case = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __snake_case = cur.next return True def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if not head or not head.next: return True __snake_case = {} __snake_case = 0 while head: if head.val in d: d[head.val].append(_UpperCAmelCase ) else: __snake_case = [pos] __snake_case = head.next pos += 1 __snake_case = pos - 1 __snake_case = 0 for v in d.values(): if len(_UpperCAmelCase ) % 2 != 0: middle += 1 else: __snake_case = 0 for i in range(0 , len(_UpperCAmelCase ) ): if v[i] + v[len(_UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
69
'''simple docstring''' def lowerCamelCase__ ( a ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
356
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :Dict = (PNDMScheduler,) snake_case :List[Any] = (("num_inference_steps", 50),) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : int = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**UpperCamelCase_ ) return config def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : Any = dict(self.forward_default_kwargs ) __UpperCAmelCase : Dict = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : str = self.dummy_sample __UpperCAmelCase : Optional[Any] = 0.1 * sample __UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[Any] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : int = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : Any = dummy_past_residuals[:] __UpperCAmelCase : Any = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Dict = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : List[str] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ): pass def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : str = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : int = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : Optional[int] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase : Optional[int] = dummy_past_residuals[:] __UpperCAmelCase : str = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : str = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : Any = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : List[str] = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = 10 __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): __UpperCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __UpperCAmelCase : Any = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _snake_case ( self ): __UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[int] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase : str = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = self.dummy_sample __UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , "set_timesteps" ): __UpperCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __UpperCAmelCase : Optional[Any] = dummy_past_residuals[:] __UpperCAmelCase : Dict = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase : Optional[int] = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Union[str, Any] = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : str = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def _snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_ ) def _snake_case ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ ) def _snake_case ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __UpperCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[Any] = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample def _snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _snake_case ( self ): __UpperCAmelCase : Any = self.full_loop() __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : str = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : Dict = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Optional[int] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1 , lowerCamelCase=False , **lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__(**lowerCamelCase ) __magic_name__ : Any = vocab_size __magic_name__ : str = d_embed __magic_name__ : Union[str, Any] = d_proj __magic_name__ : Dict = cutoffs + [vocab_size] __magic_name__ : Tuple = [0] + self.cutoffs __magic_name__ : Tuple = div_val __magic_name__ : List[Any] = self.cutoffs[0] __magic_name__ : Tuple = len(self.cutoffs ) - 1 __magic_name__ : Optional[Any] = self.shortlist_size + self.n_clusters __magic_name__ : Tuple = keep_order __magic_name__ : Optional[int] = [] __magic_name__ : List[str] = [] def lowercase ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" if self.n_clusters > 0: __magic_name__ : Optional[Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase , name='''cluster_weight''' ) __magic_name__ : int = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=lowerCamelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __magic_name__ : Optional[Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_projs_._{i}''' , ) self.out_projs.append(lowerCamelCase ) else: self.out_projs.append(lowerCamelCase ) __magic_name__ : Tuple = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) __magic_name__ : Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __magic_name__ , __magic_name__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] __magic_name__ : Tuple = self.d_embed // (self.div_val**i) __magic_name__ : List[str] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_projs_._{i}''' ) self.out_projs.append(lowerCamelCase ) __magic_name__ : str = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) __magic_name__ : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase ) @staticmethod def lowercase ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Optional[Any]: """simple docstring""" __magic_name__ : Dict = x if proj is not None: __magic_name__ : Union[str, Any] = tf.einsum('''ibd,ed->ibe''' , lowerCamelCase , lowerCamelCase ) return tf.einsum('''ibd,nd->ibn''' , lowerCamelCase , lowerCamelCase ) + b @staticmethod def lowercase ( lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" __magic_name__ : Tuple = shape_list(lowerCamelCase ) __magic_name__ : List[str] = tf.range(lp_size[0] , dtype=target.dtype ) __magic_name__ : Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase , lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=False ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Optional[Any] = 0 if self.n_clusters == 0: __magic_name__ : Optional[Any] = self._logit(lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __magic_name__ : List[str] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase , logits=lowerCamelCase ) __magic_name__ : List[Any] = tf.nn.log_softmax(lowerCamelCase , axis=-1 ) else: __magic_name__ : List[str] = shape_list(lowerCamelCase ) __magic_name__ : Tuple = [] __magic_name__ : List[str] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __magic_name__ , __magic_name__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __magic_name__ : List[str] = (target >= l_idx) & (target < r_idx) __magic_name__ : Union[str, Any] = tf.where(lowerCamelCase ) __magic_name__ : Optional[Any] = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) - l_idx if self.div_val == 1: __magic_name__ : Tuple = self.out_layers[0][0][l_idx:r_idx] __magic_name__ : Tuple = self.out_layers[0][1][l_idx:r_idx] else: __magic_name__ : Tuple = self.out_layers[i][0] __magic_name__ : Tuple = self.out_layers[i][1] if i == 0: __magic_name__ : Optional[Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) __magic_name__ : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) __magic_name__ : Optional[Any] = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[0] ) __magic_name__ : Tuple = tf.nn.log_softmax(lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __magic_name__ : Dict = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) __magic_name__ : Optional[Any] = self._gather_logprob(lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[i] ) __magic_name__ : List[str] = tf.nn.log_softmax(lowerCamelCase ) __magic_name__ : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster __magic_name__ : Optional[int] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase ) if target is not None: __magic_name__ : Dict = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) __magic_name__ : List[str] = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) __magic_name__ : str = self._gather_logprob(lowerCamelCase , lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase , -cur_logprob , shape_list(lowerCamelCase ) ) __magic_name__ : Any = tf.concat(lowerCamelCase , axis=-1 ) if target is not None: if return_mean: __magic_name__ : Tuple = tf.reduce_mean(lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
154
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="openai/whisper-base" lowerCamelCase__ : Any =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) lowerCamelCase__ : Union[str, Any] ="transcriber" lowerCamelCase__ : List[str] =WhisperProcessor lowerCamelCase__ : Tuple =WhisperForConditionalGeneration lowerCamelCase__ : Tuple =["audio"] lowerCamelCase__ : List[str] =["text"] def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(lowerCamelCase , return_tensors='''pt''' ).input_features def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" return self.model.generate(inputs=lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
154
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A ( A_ , unittest.TestCase ): UpperCamelCase :int = AlbertTokenizer UpperCamelCase :Optional[int] = AlbertTokenizerFast UpperCamelCase :Tuple = True UpperCamelCase :Any = True UpperCamelCase :Optional[int] = True def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Dict = AlbertTokenizer(__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self , __magic_name__ ): lowerCamelCase__ : Optional[Any] = """this is a test""" lowerCamelCase__ : str = """this is a test""" return input_text, output_text def _snake_case (self ): lowerCamelCase__ : Any = """<pad>""" lowerCamelCase__ : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__magic_name__ ) , 30000 ) def _snake_case (self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case (self ): if not self.test_rust_tokenizer: return lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase__ : str = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Optional[Any] = tokenizer.tokenize(__magic_name__ ) lowerCamelCase__ : Any = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCamelCase__ : Any = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) lowerCamelCase__ : Optional[int] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCamelCase__ : List[Any] = self.get_rust_tokenizer() lowerCamelCase__ : Any = tokenizer.encode(__magic_name__ ) lowerCamelCase__ : Any = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : List[Any] = AlbertTokenizer(__magic_name__ , keep_accents=__magic_name__ ) lowerCamelCase__ : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [48, 25, 21, 1289] ) lowerCamelCase__ : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowerCamelCase__ : Dict = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCamelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _snake_case (self ): lowerCamelCase__ : Any = AlbertTokenizer(__magic_name__ ) lowerCamelCase__ : Any = tokenizer.encode("""sequence builders""" ) lowerCamelCase__ : Any = tokenizer.encode("""multi-sequence build""" ) lowerCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) lowerCamelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _snake_case (self ): # fmt: off lowerCamelCase__ : str = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
96
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _A (UpperCamelCase : str ) ->None: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ : List[str] = analyze_text(UpperCamelCase ) lowerCamelCase__ : Any = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : str = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : List[Any] = single_char_strings[ch] lowerCamelCase__ : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string lowerCamelCase__ : str = sum(two_char_strings.values() ) lowerCamelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : str = cha + cha if sequence in two_char_strings: lowerCamelCase__ : str = two_char_strings[sequence] lowerCamelCase__ : int = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def _A (UpperCamelCase : str ) ->tuple[dict, dict]: '''simple docstring''' lowerCamelCase__ : Optional[int] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _A () ->List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
96
1
from __future__ import annotations class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : int = data SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def lowerCamelCase__ ( lowercase ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase__ ( lowercase ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase__ ( ): # Main function for testing. """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = Node(1 ) SCREAMING_SNAKE_CASE : Dict = Node(2 ) SCREAMING_SNAKE_CASE : List[Any] = Node(3 ) SCREAMING_SNAKE_CASE : List[Any] = Node(4 ) SCREAMING_SNAKE_CASE : Tuple = Node(5 ) SCREAMING_SNAKE_CASE : str = Node(6 ) SCREAMING_SNAKE_CASE : List[Any] = Node(7 ) SCREAMING_SNAKE_CASE : str = Node(8 ) SCREAMING_SNAKE_CASE : Any = Node(9 ) print(is_full_binary_tree(lowercase ) ) print(depth_of_tree(lowercase ) ) print("Tree is: " ) display(lowercase ) if __name__ == "__main__": main()
62
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
296
0
from __future__ import annotations from collections import deque class UpperCAmelCase_ : '''simple docstring''' def __init__( self : str , a : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(A_ ) self.set_fail_transitions() def _UpperCAmelCase ( self : Optional[Any] , a : Dict , a : List[str] ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _UpperCAmelCase ( self : Optional[int] , a : List[str] ) -> None: SCREAMING_SNAKE_CASE = 0 for character in keyword: SCREAMING_SNAKE_CASE = self.find_next_state(A_ , A_ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) SCREAMING_SNAKE_CASE = len(self.adlist ) - 1 else: SCREAMING_SNAKE_CASE = next_state self.adlist[current_state]["output"].append(A_ ) def _UpperCAmelCase ( self : Union[str, Any] ) -> None: SCREAMING_SNAKE_CASE = deque() for node in self.adlist[0]["next_states"]: q.append(A_ ) SCREAMING_SNAKE_CASE = 0 while q: SCREAMING_SNAKE_CASE = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A_ ) SCREAMING_SNAKE_CASE = self.adlist[r]["""fail_state"""] while ( self.find_next_state(A_ , self.adlist[child]["""value"""] ) is None and state != 0 ): SCREAMING_SNAKE_CASE = self.adlist[state]["""fail_state"""] SCREAMING_SNAKE_CASE = self.find_next_state( A_ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _UpperCAmelCase ( self : Dict , a : Any ) -> dict[str, list[int]]: SCREAMING_SNAKE_CASE = {} # returns a dict with keywords and list of its occurrences SCREAMING_SNAKE_CASE = 0 for i in range(len(A_ ) ): while ( self.find_next_state(A_ , string[i] ) is None and current_state != 0 ): SCREAMING_SNAKE_CASE = self.adlist[current_state]["""fail_state"""] SCREAMING_SNAKE_CASE = self.find_next_state(A_ , string[i] ) if next_state is None: SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = next_state for key in self.adlist[current_state]["output"]: if key not in result: SCREAMING_SNAKE_CASE = [] result[key].append(i - len(A_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
703
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase_ ( ): '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_00_00 , globals=globals() , ) ) benchmark()
450
0
"""simple docstring""" import itertools import math def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = 2 while True: if is_prime(UpperCamelCase__ ): yield num num += 1 def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , UpperCamelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
389
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _snake_case = get_logger(__name__) class UpperCamelCase ( enum.Enum ): UpperCamelCase : str = '''all_checks''' UpperCamelCase : Any = '''basic_checks''' UpperCamelCase : Union[str, Any] = '''no_checks''' class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _a : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _a : List[str] = """ for """ + verification_name if verification_name is not None else """""" if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _a : List[Any] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info("""All the splits matched successfully.""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' if record_checksum: _a : int = shaaaa() with open(UpperCamelCase__ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"""""" ): m.update(UpperCamelCase__ ) _a : List[Any] = m.hexdigest() else: _a : Any = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
389
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Any = 16 lowerCAmelCase : Dict = 32 def A_ ( a , a = 1_6 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : Tuple = datasets.map( a , batched=a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : str = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : int = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : List[Any] = 8 else: SCREAMING_SNAKE_CASE_ : Dict = None return tokenizer.pad( a , padding='longest' , max_length=a , pad_to_multiple_of=a , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=a , collate_fn=a , batch_size=a ) SCREAMING_SNAKE_CASE_ : int = DataLoader( tokenized_datasets['validation'] , shuffle=a , collate_fn=a , batch_size=a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Tuple = mocked_dataloaders # noqa: F811 def A_ ( a , a ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , a ) == "1": SCREAMING_SNAKE_CASE_ : str = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : List[str] = config['lr'] SCREAMING_SNAKE_CASE_ : int = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ : Dict = int(config['seed'] ) SCREAMING_SNAKE_CASE_ : int = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ : Any = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=a ) def inner_training_loop(a ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : int = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(params=model.parameters() , lr=a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = get_dataloaders(a , a ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : List[Any] = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=1_0_0 , num_training_steps=(len(a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = accelerator.prepare( a , a , a , a , a ) # Now we train the model for epoch in range(a ): model.train() for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**a ) SCREAMING_SNAKE_CASE_ : int = outputs.loss accelerator.backward(a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**a ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a , references=a , ) SCREAMING_SNAKE_CASE_ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , a ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a , default=a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() SCREAMING_SNAKE_CASE_ : List[str] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(a , a ) if __name__ == "__main__": main()
353
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[str] = (PNDMScheduler,) SCREAMING_SNAKE_CASE : Dict = (('''num_inference_steps''', 50),) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = self.dummy_sample SCREAMING_SNAKE_CASE_ : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Any = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Union[str, Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : Any = new_scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step_plms(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : int = new_scheduler.step_plms(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : str = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : List[str] = new_scheduler.step_plms(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = 10 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE_ : Any = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE_ : List[Any] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : int = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): SCREAMING_SNAKE_CASE_ : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : str = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_plms(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : int = self.dummy_sample SCREAMING_SNAKE_CASE_ : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample def UpperCAmelCase ( self ): """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.full_loop() SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
353
1
'''simple docstring''' from timeit import timeit _lowerCAmelCase = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" lowercase__ = 0 lowercase__ = len(lowercase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" lowercase__ = len(lowercase ) // 2 lowercase__ = len(lowercase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowercase ) ) def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" if len(lowercase ) <= 2: return True if s[0] == s[len(lowercase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" return s == s[::-1] def _lowerCAmelCase ( lowercase : str ) ->None: """simple docstring""" lowercase__ = F'''all({name}(key) is value for key, value in test_data.items())''' lowercase__ = F'''from __main__ import test_data, {name}''' lowercase__ = 5_0_0_0_0_0 lowercase__ = timeit(stmt=lowercase , setup=lowercase , number=lowercase ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
161
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCAmelCase ( lowercase : Union[dict, list, tuple, torch.Tensor] ) ->List[Tuple[int, ...]]: """simple docstring""" lowercase__ = [] if isinstance(lowercase , lowercase ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase ) ) elif isinstance(lowercase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase ) ) elif isinstance(lowercase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _lowerCAmelCase ( lowercase : int , lowercase : Tuple[int, ...] ) ->Tuple[int, ...]: """simple docstring""" lowercase__ = [] for d in reversed(lowercase ): idx.append(flat_idx % d ) lowercase__ = flat_idx // d return tuple(reversed(lowercase ) ) @torch.jit.ignore def _lowerCAmelCase ( lowercase : Sequence[int] , lowercase : Sequence[int] , lowercase : Sequence[int] , lowercase : Optional[Sequence[bool]] = None , lowercase : Optional[Sequence[bool]] = None , ) ->List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(lowercase : List[bool] ) -> None: lowercase__ = True for i in range(len(lowercase ) ): lowercase__ = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ = l[reversed_idx] if start_edges is None: lowercase__ = [s == 0 for s in start] reduce_edge_list(lowercase ) if end_edges is None: lowercase__ = [e == (d - 1) for e, d in zip(lowercase , lowercase )] reduce_edge_list(lowercase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase ) == 0: return [()] elif len(lowercase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowercase__ = [] lowercase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase , lowercase ): if s == e: path_list.append(slice(lowercase , s + 1 ) ) else: break lowercase__ = tuple(lowercase ) lowercase__ = len(lowercase ) # start == end, and we're done if divergence_idx == len(lowercase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = start[divergence_idx] return tuple( path + (slice(lowercase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = end[divergence_idx] return tuple( path + (slice(lowercase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowercase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCAmelCase ( lowercase : torch.Tensor , lowercase : int , lowercase : int , lowercase : int ) ->torch.Tensor: """simple docstring""" lowercase__ = t.shape[:no_batch_dims] lowercase__ = list(_flat_idx_to_idx(lowercase , lowercase ) ) # _get_minimal_slice_set is inclusive lowercase__ = list(_flat_idx_to_idx(flat_end - 1 , lowercase ) ) # Get an ordered list of slices to perform lowercase__ = _get_minimal_slice_set( lowercase , lowercase , lowercase , ) lowercase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCAmelCase ( lowercase : Callable , lowercase : Dict[str, Any] , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : Any = None , lowercase : bool = False , ) ->Any: """simple docstring""" if not (len(lowercase ) > 0): raise ValueError('''Must provide at least one input''' ) lowercase__ = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase )] lowercase__ = tuple([max(lowercase ) for s in zip(*lowercase )] ) def _prep_inputs(lowercase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowercase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowercase__ = tensor_tree_map(_prep_inputs , lowercase ) lowercase__ = None if _out is not None: lowercase__ = tensor_tree_map(lambda lowercase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowercase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ = 0 lowercase__ = prepped_outputs for _ in range(lowercase ): # Chunk the input if not low_mem: lowercase__ = _select_chunk else: lowercase__ = partial( _chunk_slice , flat_start=lowercase , flat_end=min(lowercase , i + chunk_size ) , no_batch_dims=len(lowercase ) , ) lowercase__ = tensor_tree_map(lowercase , lowercase ) # Run the layer on the chunk lowercase__ = layer(**lowercase ) # Allocate space for the output if out is None: lowercase__ = tensor_tree_map(lambda lowercase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowercase ) # Put the chunk in its pre-allocated space if isinstance(lowercase , lowercase ): def assign(lowercase : dict , lowercase : dict ) -> None: for k, v in da.items(): if isinstance(lowercase , lowercase ): assign(lowercase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ = da[k] assign(lowercase , lowercase ) elif isinstance(lowercase , lowercase ): for xa, xa in zip(lowercase , lowercase ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ = xa elif isinstance(lowercase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size lowercase__ = tensor_tree_map(lambda lowercase : t.view(orig_batch_dims + t.shape[1:] ) , lowercase ) return out class __A : """simple docstring""" def __init__( self , _lowerCamelCase = 5_1_2 , )-> Optional[Any]: lowercase__ = max_chunk_size lowercase__ = None lowercase__ = None def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> int: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ = [c for c in candidates if c > min_chunk_size] lowercase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCamelCase ) -> bool: try: with torch.no_grad(): fn(*_lowerCamelCase , chunk_size=_lowerCamelCase ) return True except RuntimeError: return False lowercase__ = 0 lowercase__ = len(_lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: lowercase__ = test_chunk_size(candidates[i] ) if not viable: lowercase__ = (min_viable_chunk_size_index + i) // 2 else: lowercase__ = i lowercase__ = (i + len(_lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> bool: lowercase__ = True for aa, aa in zip(_lowerCamelCase , _lowerCamelCase ): assert type(_lowerCamelCase ) == type(_lowerCamelCase ) if isinstance(_lowerCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _lowerCamelCase : x[0] )] lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _lowerCamelCase : x[0] )] consistent &= self._compare_arg_caches(_lowerCamelCase , _lowerCamelCase ) else: consistent &= aa == aa return consistent def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , )-> int: lowercase__ = True lowercase__ = tree_map(lambda _lowerCamelCase : a.shape if isinstance(_lowerCamelCase , torch.Tensor ) else a , _lowerCamelCase , _lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_lowerCamelCase ) lowercase__ = self._compare_arg_caches(self.cached_arg_data , _lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value lowercase__ = False if not consistent: lowercase__ = self._determine_favorable_chunk_size( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) lowercase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
161
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = ["pixel_values"] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = 1 / 255 , lowercase__ = True , lowercase__ = None , lowercase__ = True , **lowercase__ , ): """simple docstring""" super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : List[str] = resample SCREAMING_SNAKE_CASE_ : Dict = do_rescale SCREAMING_SNAKE_CASE_ : List[Any] = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_center_crop SCREAMING_SNAKE_CASE_ : Dict = crop_size SCREAMING_SNAKE_CASE_ : str = do_flip_channel_order def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = PIL.Image.BILINEAR , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE_ : List[Any] = get_resize_output_image_size(lowercase__ , size=size["shortest_edge"] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase__ , size=(size["height"], size["width"]) , data_format=lowercase__ , **lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): """simple docstring""" return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = None ): """simple docstring""" return flip_channel_order(lowercase__ , data_format=lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE_ : Tuple = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) SCREAMING_SNAKE_CASE_ : str = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any = [to_numpy_array(lowercase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : int = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : str = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.flip_channel_order(image=lowercase__ ) for image in images] SCREAMING_SNAKE_CASE_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] SCREAMING_SNAKE_CASE_ : int = {"pixel_values": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def __lowerCamelCase ( self , lowercase__ , lowercase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase__ ): SCREAMING_SNAKE_CASE_ : int = target_sizes.numpy() SCREAMING_SNAKE_CASE_ : List[Any] = [] for idx in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: SCREAMING_SNAKE_CASE_ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
704
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.48145466, 0.4578275, 0.40821073] , lowercase__=[0.26862954, 0.26130258, 0.27577711] , lowercase__=True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = num_channels SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Tuple = min_resolution SCREAMING_SNAKE_CASE_ : Optional[Any] = max_resolution SCREAMING_SNAKE_CASE_ : Tuple = do_resize SCREAMING_SNAKE_CASE_ : List[str] = size SCREAMING_SNAKE_CASE_ : str = do_center_crop SCREAMING_SNAKE_CASE_ : List[str] = crop_size SCREAMING_SNAKE_CASE_ : int = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean SCREAMING_SNAKE_CASE_ : Dict = image_std SCREAMING_SNAKE_CASE_ : List[Any] = do_convert_rgb def __lowerCamelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __lowerCamelCase ( self , lowercase__=False , lowercase__=False , lowercase__=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: SCREAMING_SNAKE_CASE_ : str = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] if torchify: SCREAMING_SNAKE_CASE_ : List[str] = [torch.from_numpy(lowercase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,unittest.TestCase ): _A = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ ) @property def __lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_resize" ) ) self.assertTrue(hasattr(lowercase__ , "size" ) ) self.assertTrue(hasattr(lowercase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "image_mean" ) ) self.assertTrue(hasattr(lowercase__ , "image_std" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __lowerCamelCase ( self ): """simple docstring""" pass def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : int = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,unittest.TestCase ): _A = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3 @property def __lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_resize" ) ) self.assertTrue(hasattr(lowercase__ , "size" ) ) self.assertTrue(hasattr(lowercase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "image_mean" ) ) self.assertTrue(hasattr(lowercase__ , "image_std" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def __lowerCamelCase ( self ): """simple docstring""" pass def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
68
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") __a : Optional[int] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __a : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "A folder containing the training data."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "A folder containing the validation data."} ) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) SCREAMING_SNAKE_CASE = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) SCREAMING_SNAKE_CASE = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = {} if self.train_dir is not None: __A = self.train_dir if self.validation_dir is not None: __A = self.validation_dir __A = data_files if data_files else None @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase_ )} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Stride to use for the encoder."} , ) class __lowercase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[int]=192 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : int=4 , UpperCamelCase_ : List[Any]=0.6 ): """simple docstring""" __A = input_size __A = mask_patch_size __A = model_patch_size __A = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) __A = self.input_size // self.mask_patch_size __A = self.mask_patch_size // self.model_patch_size __A = self.rand_size**2 __A = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[Any] ): """simple docstring""" __A = np.random.permutation(self.token_count )[: self.mask_count] __A = np.zeros(self.token_count , dtype=UpperCamelCase_ ) __A = 1 __A = mask.reshape((self.rand_size, self.rand_size) ) __A = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] ) -> Optional[int]: """simple docstring""" __A = torch.stack([example["""pixel_values"""] for example in examples] ) __A = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __A = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: __A = ds["""train"""].train_test_split(data_args.train_val_split ) __A = split["""train"""] __A = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __A = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase ) elif model_args.model_name_or_path: __A = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: __A = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowercase , """decoder_type""" ): __A = """simmim""" # adapt config __A = model_args.image_size if model_args.image_size is not None else config.image_size __A = model_args.patch_size if model_args.patch_size is not None else config.patch_size __A = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __A = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase ) elif model_args.model_name_or_path: __A = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: __A = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __A = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __A = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __A = AutoModelForMaskedImageModeling.from_config(__lowercase ) if training_args.do_train: __A = ds["""train"""].column_names else: __A = ds["""validation"""].column_names if data_args.image_column_name is not None: __A = data_args.image_column_name elif "image" in column_names: __A = """image""" elif "img" in column_names: __A = """img""" else: __A = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __A = Compose( [ Lambda(lambda __lowercase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __A = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__lowercase : Optional[Any] ): __A = [transforms(__lowercase ) for image in examples[image_column_name]] __A = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __A = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __A = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowercase ) # Initialize our trainer __A = Trainer( model=__lowercase , args=__lowercase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: __A = None if training_args.resume_from_checkpoint is not None: __A = training_args.resume_from_checkpoint elif last_checkpoint is not None: __A = last_checkpoint __A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __A = trainer.evaluate() trainer.log_metrics("""eval""" , __lowercase ) trainer.save_metrics("""eval""" , __lowercase ) # Write model card and (optionally) push to hub __A = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
637
from ....configuration_utils import PretrainedConfig from ....utils import logging __a : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS __a : Union[str, Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "retribert" def __init__( self : Any , UpperCamelCase_ : int=30_522 , UpperCamelCase_ : Optional[int]=768 , UpperCamelCase_ : Union[str, Any]=8 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : List[Any]=3_072 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[str]=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=128 , UpperCamelCase_ : Union[str, Any]=0 , **UpperCamelCase_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = share_encoders __A = projection_dim
637
1
"""simple docstring""" from __future__ import annotations def snake_case (A_ :list[int] ): '''simple docstring''' if len(A_ ) == 0: return array a, a : Any = min(A_ ), max(A_ ) # Compute the variables a : int = _max - _min + 1 a, a : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: a : List[str] = i - _min a : Optional[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. a : List[Any] = 0 for i in range(A_ ): while holes_repeat[i] > 0: a : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : Optional[int] = input('Enter numbers separated by comma:\n') _UpperCamelCase : Union[str, Any] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
118
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
118
1
def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Optional[Any]: """simple docstring""" UpperCamelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> int: """simple docstring""" UpperCamelCase = 0 while b > 0: if b & 1: UpperCamelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
280
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( SCREAMING_SNAKE_CASE ): # A local function to see if a dot lands in the circle. def is_in_circle(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) -> bool: UpperCAmelCase__: Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase__: Optional[int] = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase__: Optional[int] = proportion * 4 print(f"The estimated value of pi is {pi_estimate}" ) print(f"The numpy value of pi is {pi}" ) print(f"The total error is {abs(pi - pi_estimate )}" ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE = 0.0 ,SCREAMING_SNAKE_CASE = 1.0 ,): return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE = 0.0 ,SCREAMING_SNAKE_CASE = 1.0 ): def identity_function(SCREAMING_SNAKE_CASE ) -> float: return x UpperCAmelCase__: Tuple = area_under_curve_estimator( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Optional[Any] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {expected_value}" ) print(f"Total error is {abs(estimated_value - expected_value )}" ) print("******************" ) def _A ( SCREAMING_SNAKE_CASE ): def function_to_integrate(SCREAMING_SNAKE_CASE ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase__: Union[str, Any] = area_under_curve_estimator( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,0.0 ,2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {pi}" ) print(f"Total error is {abs(estimated_value - pi )}" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
113
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
535
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """spiece.model"""} snake_case = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } snake_case = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,__A : Tuple ,__A : Any=False ,__A : int=False ,__A : List[str]=False ,__A : List[str]=None ,__A : Dict=None ,__A : Dict=None ,__A : Union[str, Any]=None ,__A : Optional[Dict[str, Any]] = None ,**__A : Tuple ,) -> None: _lowercase = {} if sp_model_kwargs is None else sp_model_kwargs _lowercase = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) _lowercase = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowercase = '<|endoftext|>' if eos_token is None else eos_token _lowercase = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowercase = unk_token if pad_token is None else pad_token _lowercase = eos_token if bos_token is None else bos_token else: _lowercase = '<pad>' if pad_token is None else pad_token _lowercase = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=__A ,remove_space=__A ,keep_accents=__A ,bos_token=__A ,eos_token=__A ,unk_token=__A ,pad_token=__A ,sp_model_kwargs=self.sp_model_kwargs ,**__A ,) _lowercase = do_lower_case _lowercase = remove_space _lowercase = keep_accents _lowercase = vocab_file _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowercase = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowercase = re.compile( F"""[{"".join(map(__A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self : List[Any] ) -> List[str]: _lowercase = self.__dict__.copy() _lowercase = None return state def __setstate__( self : Optional[Any] ,__A : Dict ) -> str: _lowercase = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowercase = {} _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __UpperCAmelCase ( self : List[Any] ) -> int: return len(self.sp_model ) def __UpperCAmelCase ( self : Optional[Any] ,__A : str ) -> str: _lowercase = self.non_printing_characters_re.sub('' ,__A ) # Normalize whitespaces _lowercase = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization _lowercase = unicodedata.normalize('NFC' ,__A ) return text def __UpperCAmelCase ( self : Optional[Any] ,__A : str ,**__A : Optional[int] ) -> List[str]: _lowercase = self.preprocess_text(__A ) return self.sp_model.encode(__A ,out_type=__A ) def __UpperCAmelCase ( self : List[Any] ,__A : str ) -> int: return self.sp_model.PieceToId(__A ) def __UpperCAmelCase ( self : Any ,__A : int ) -> str: return self.sp_model.IdToPiece(__A ) @staticmethod def __UpperCAmelCase ( __A : str ) -> str: return out_string def __UpperCAmelCase ( self : Tuple ,__A : List[str] ) -> str: _lowercase = [] _lowercase = '' _lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowercase = True _lowercase = [] else: current_sub_tokens.append(__A ) _lowercase = False out_string += self.sp_model.decode(__A ) return out_string def __UpperCAmelCase ( self : Optional[Any] ) -> Dict[str, int]: _lowercase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : Optional[int] ,__A : str ,__A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase = os.path.join( __A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A ,'wb' ) as fi: _lowercase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def __UpperCAmelCase ( self : str ,__A : Union[str, List[str]] ,__A : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__A ,__A ): _lowercase = self.preprocess_text(__A ) _lowercase = self.sp_model.encode(__A ) else: _lowercase = [self.preprocess_text(__A ) for t in text] _lowercase = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowercase = torch.tensor(__A ) return token_ids def __UpperCAmelCase ( self : Optional[Any] ,__A : Union[int, List[int]] ) -> str: return self.sp_model.decode(__A ) def __UpperCAmelCase ( self : str ,__A : "Conversation" ) -> List[int]: _lowercase = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] _lowercase = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__A ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__A )
535
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = VideoToVideoSDPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} A_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} A_ : Dict = False # No `output_type`. A_ : Optional[Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __magic_name__ : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __magic_name__ : Dict = CLIPTextModel(_A ) __magic_name__ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __magic_name__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCAmelCase ( self : List[Any] , _A : Dict , _A : Union[str, Any]=0 ) -> Dict: # 3 frames __magic_name__ : str = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): __magic_name__ : Dict = torch.manual_seed(_A ) else: __magic_name__ : List[Any] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __lowerCAmelCase ( self : str ) -> Optional[int]: __magic_name__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Optional[int] = VideoToVideoSDPipeline(**_A ) __magic_name__ : Any = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Dict = self.get_dummy_inputs(_A ) __magic_name__ : Optional[int] = 'np' __magic_name__ : List[str] = sd_pipe(**_A ).frames __magic_name__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __magic_name__ : int = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCAmelCase ( self : str ) -> Tuple: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: pass def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : List[str] = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __magic_name__ : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) __magic_name__ : Union[str, Any] = torch.randn((1, 10, 3, 1024, 576) , generator=_A ) __magic_name__ : Optional[Any] = video.to('cuda' ) __magic_name__ : Dict = 'Spiderman is surfing' __magic_name__ : Tuple = pipe(_A , video=_A , generator=_A , num_inference_steps=3 , output_type='pt' ).frames __magic_name__ : Dict = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
561
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase :Dict = datasets.utils.logging.get_logger(__name__) class _lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ : bool = None A_ : bool = None class _lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ : Union[str, Any] = datasets.Audio() A_ : Tuple = """audio""" A_ : Optional[Any] = AudioFolderConfig A_ : List[str] # definition at the bottom of the script A_ : Any = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowerCAmelCase :List[str] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase :str = AUDIO_EXTENSIONS
561
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : Any = 'umt5' __SCREAMING_SNAKE_CASE : Optional[int] = ['past_key_values'] def __init__( self : Union[str, Any] , lowercase__ : Optional[int]=25_01_12 , lowercase__ : int=5_12 , lowercase__ : List[Any]=64 , lowercase__ : Optional[Any]=10_24 , lowercase__ : List[Any]=8 , lowercase__ : Any=None , lowercase__ : Any=6 , lowercase__ : List[str]=32 , lowercase__ : Union[str, Any]=1_28 , lowercase__ : Optional[Any]=0.1 , lowercase__ : Union[str, Any]=1e-6 , lowercase__ : int=1.0 , lowercase__ : str="gated-gelu" , lowercase__ : Optional[int]=True , lowercase__ : int=True , lowercase__ : Optional[int]="T5Tokenizer" , lowercase__ : Optional[Any]=True , lowercase__ : List[Any]=0 , lowercase__ : Tuple=1 , lowercase__ : Dict=0 , **lowercase__ : Optional[int] , ) ->Optional[int]: """simple docstring""" super().__init__( is_encoder_decoder=lowercase__ , tokenizer_class=lowercase__ , tie_word_embeddings=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) _lowercase = vocab_size _lowercase = d_model _lowercase = d_kv _lowercase = d_ff _lowercase = num_layers _lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowercase = num_heads _lowercase = relative_attention_num_buckets _lowercase = relative_attention_max_distance _lowercase = dropout_rate _lowercase = layer_norm_epsilon _lowercase = initializer_factor _lowercase = feed_forward_proj _lowercase = use_cache _lowercase = self.feed_forward_proj.split("""-""") _lowercase = act_info[-1] _lowercase = act_info[0] == """gated""" if len(lowercase__) > 1 and act_info[0] != "gated" or len(lowercase__) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""") if feed_forward_proj == "gated-gelu": _lowercase = """gelu_new""" @property def _UpperCAmelCase ( self : Tuple) ->str: """simple docstring""" return self.d_model @property def _UpperCAmelCase ( self : str) ->List[Any]: """simple docstring""" return self.num_heads @property def _UpperCAmelCase ( self : List[str]) ->str: """simple docstring""" return self.num_layers class __a ( _snake_case ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _UpperCAmelCase ( self : Optional[Any]) ->Mapping[str, Mapping[int, str]]: """simple docstring""" _lowercase = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: _lowercase = """past_encoder_sequence + sequence""" _lowercase = {0: """batch"""} _lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowercase = {0: """batch""", 1: """decoder_sequence"""} _lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="""inputs""") return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _UpperCAmelCase ( self : Optional[int]) ->int: """simple docstring""" return 13 @property def _UpperCAmelCase ( self : Dict) ->float: """simple docstring""" return 5e-4
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['GLPNFeatureExtractor'] _lowerCamelCase = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
572
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase ( nn.Module ): def __init__( self ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(3 , 4 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad(4 ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(4 , 5 ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(snake_case__ ) ) ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __SCREAMING_SNAKE_CASE ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" return output + 1 class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = ModelForTest() _SCREAMING_SNAKE_CASE : Tuple = ModelHook() add_hook_to_module(snake_case__ , snake_case__ ) self.assertEqual(test_model._hf_hook , snake_case__ ) self.assertTrue(hasattr(snake_case__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(snake_case__ ) self.assertFalse(hasattr(snake_case__ , "_hf_hook" ) ) self.assertFalse(hasattr(snake_case__ , "_old_forward" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = ModelForTest() _SCREAMING_SNAKE_CASE : Optional[Any] = ModelHook() add_hook_to_module(snake_case__ , snake_case__ ) add_hook_to_module(snake_case__ , snake_case__ , append=snake_case__ ) self.assertEqual(isinstance(test_model._hf_hook , snake_case__ ) , snake_case__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(snake_case__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(snake_case__ ) self.assertFalse(hasattr(snake_case__ , "_hf_hook" ) ) self.assertFalse(hasattr(snake_case__ , "_old_forward" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = ModelForTest() _SCREAMING_SNAKE_CASE : Any = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Any = test_model(x + 1 ) _SCREAMING_SNAKE_CASE : List[str] = test_model(x + 2 ) _SCREAMING_SNAKE_CASE : Any = PreForwardHook() add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = test_model(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _SCREAMING_SNAKE_CASE : Any = PreForwardHook() add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : str = test_model(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _SCREAMING_SNAKE_CASE : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = test_model(snake_case__ ) assert torch.allclose(snake_case__ , snake_case__ , atol=1E-5 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = ModelForTest() _SCREAMING_SNAKE_CASE : Any = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = test_model(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = PostForwardHook() add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = test_model(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _SCREAMING_SNAKE_CASE : Tuple = PostForwardHook() add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = test_model(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _SCREAMING_SNAKE_CASE : Tuple = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = test_model(snake_case__ ) assert torch.allclose(snake_case__ , output + 2 , atol=1E-5 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = ModelForTest() _SCREAMING_SNAKE_CASE : str = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = test_model(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = PostForwardHook() add_hook_to_module(snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = test_model(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : Any = test_model(snake_case__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _SCREAMING_SNAKE_CASE : Tuple = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : str = model(snake_case__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(snake_case__ , AlignDevicesHook(io_same_device=snake_case__ ) ) _SCREAMING_SNAKE_CASE : Tuple = torch.randn(2 , 3 ).to(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case__ ) self.assertEqual(output.device , torch.device(0 ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _SCREAMING_SNAKE_CASE : int = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _SCREAMING_SNAKE_CASE : Any = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : List[Any] = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload _SCREAMING_SNAKE_CASE : Union[str, Any] = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _SCREAMING_SNAKE_CASE : List[str] = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _SCREAMING_SNAKE_CASE : Optional[Any] = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(snake_case__ , execution_device=snake_case__ , offload=snake_case__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _SCREAMING_SNAKE_CASE : List[str] = torch.device(snake_case__ ) self.assertEqual(model.batchnorm.running_mean.device , snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(snake_case__ , execution_device=snake_case__ , offload=snake_case__ , offload_buffers=snake_case__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _SCREAMING_SNAKE_CASE : Dict = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices _SCREAMING_SNAKE_CASE : Dict = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( snake_case__ , execution_device=snake_case__ , offload=snake_case__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _SCREAMING_SNAKE_CASE : str = torch.device(snake_case__ ) self.assertEqual(model.batchnorm.running_mean.device , snake_case__ ) _SCREAMING_SNAKE_CASE : str = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : str = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( snake_case__ , execution_device=snake_case__ , offload=snake_case__ , weights_map=model.state_dict() , offload_buffers=snake_case__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn(2 , 3 ) _SCREAMING_SNAKE_CASE : Tuple = model(snake_case__ ) self.assertEqual(output.device , snake_case__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
572
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
572
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = prime_factors(__A ) if is_square_free(__A ): return -1 if len(__A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import socket def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =socket.socket(socket.AF_INET ,socket.SOCK_STREAM) _SCREAMING_SNAKE_CASE =socket.gethostname() _SCREAMING_SNAKE_CASE =1_2312 sock.connect((host, port)) sock.send(b'''Hello server!''') with open('''Received_file''' ,'''wb''') as out_file: print('''File opened''') print('''Receiving data...''') while True: _SCREAMING_SNAKE_CASE =sock.recv(1024) if not data: break out_file.write(a__) print('''Successfully received the file''') sock.close() print('''Connection closed''') if __name__ == "__main__": main()
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'trocr' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCamelCase=50265 , lowerCamelCase=1024 , lowerCamelCase=12 , lowerCamelCase=16 , lowerCamelCase=4096 , lowerCamelCase="gelu" , lowerCamelCase=512 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = vocab_size snake_case__ : List[Any] = d_model snake_case__ : Optional[int] = decoder_layers snake_case__ : List[str] = decoder_attention_heads snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Optional[int] = activation_function snake_case__ : Any = max_position_embeddings snake_case__ : List[Any] = dropout snake_case__ : Any = attention_dropout snake_case__ : Tuple = activation_dropout snake_case__ : Optional[int] = init_std snake_case__ : int = decoder_layerdrop snake_case__ : Any = use_cache snake_case__ : Optional[int] = scale_embedding snake_case__ : Optional[Any] = use_learned_position_embeddings snake_case__ : List[str] = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , decoder_start_token_id=lowerCamelCase , **lowerCamelCase , )
719
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def __UpperCamelCase ( a : Tuple , a : List[str]=BITS ) ->str: snake_case = x.device snake_case = (x * 255).int().clamp(0 , 255 ) snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a ) snake_case = rearrange(a , '''d -> d 1 1''' ) snake_case = rearrange(a , '''b c h w -> b c 1 h w''' ) snake_case = ((x & mask) != 0).float() snake_case = rearrange(a , '''b c d h w -> b (c d) h w''' ) snake_case = bits * 2 - 1 return bits def __UpperCamelCase ( a : Dict , a : str=BITS ) ->Optional[Any]: snake_case = x.device snake_case = (x > 0).int() snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a , dtype=torch.intaa ) snake_case = rearrange(a , '''d -> d 1 1''' ) snake_case = rearrange(a , '''b (c d) h w -> b c d h w''' , d=8 ) snake_case = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def __UpperCamelCase ( self : Optional[int] , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : float = 0.0 , a : bool = True , a : Dict=None , a : bool = True , ) ->Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case = self.alphas_cumprod[timestep] snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(a , -scale , a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case = self._get_variance(a , a ) snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case = model_output.device if torch.is_tensor(a ) else '''cpu''' snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a ).to(a ) snake_case = self._get_variance(a , a ) ** 0.5 * eta * noise snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a , pred_original_sample=a ) def __UpperCamelCase ( self : Any , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : Optional[int]="epsilon" , a : str=None , a : bool = True , ) ->Union[DDPMSchedulerOutput, Tuple]: snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case , snake_case = torch.split(a , sample.shape[1] , dim=1 ) else: snake_case = None # 1. compute alphas, betas snake_case = self.alphas_cumprod[t] snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case = 1 - alpha_prod_t snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" snake_case = self.bit_scale if self.config.clip_sample: snake_case = torch.clamp(a , -scale , a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case = 0 if t > 0: snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a ).to(model_output.device ) snake_case = (self._get_variance(a , predicted_variance=a ) ** 0.5) * noise snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a , pred_original_sample=a ) class _lowercase ( __a ): def __init__( self , A__ , A__ , A__ = 1.0 , ) -> Dict: super().__init__() snake_case = bit_scale snake_case = ( ddim_bit_scheduler_step if isinstance(A__ , A__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self , A__ = 2_56 , A__ = 2_56 , A__ = 50 , A__ = None , A__ = 1 , A__ = "pil" , A__ = True , **A__ , ) -> Union[Tuple, ImagePipelineOutput]: snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A__ , ) snake_case = decimal_to_bits(A__ ) * self.bit_scale snake_case = latents.to(self.device ) self.scheduler.set_timesteps(A__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(A__ , A__ , A__ ).prev_sample snake_case = bits_to_decimal(A__ ) if output_type == "pil": snake_case = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
342
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : Union[tf.Tensor, np.ndarray] ) ->List[int]: if isinstance(a , np.ndarray ): return list(tensor.shape ) snake_case = tf.shape(a ) if tensor.shape == tf.TensorShape(a ): return dynamic snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a )] def __UpperCamelCase ( a : tf.Tensor , a : Optional[int] = None , a : Optional[str] = None ) ->tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a ) def __UpperCamelCase ( a : List[str] , a : Union[str, Any] , a : Tuple , a : List[str]=1e-5 , a : Any=-1 ) ->Dict: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized snake_case , snake_case = tf.nn.moments(a , axes=[axis] , keepdims=a ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case = [1] * inputs.shape.rank snake_case = shape_list(a )[axis] snake_case = tf.reshape(a , a ) snake_case = tf.reshape(a , a ) # Compute layer normalization using the batch_normalization # function. snake_case = tf.nn.batch_normalization( a , a , a , offset=a , scale=a , variance_epsilon=a , ) return outputs def __UpperCamelCase ( a : Tuple , a : Union[str, Any]=0 , a : List[str]=-1 ) ->int: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case = tf.shape(a ) snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a , a ) def __UpperCamelCase ( a : tf.Tensor ) ->tf.Tensor: if not isinstance(a , tf.Tensor ): snake_case = tf.convert_to_tensor(a ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCamelCase ( a : tf.Tensor , a : int , a : str = "input_ids" ) ->None: tf.debugging.assert_less( a , tf.cast(a , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __UpperCamelCase ( a : Tuple , a : List[str] , a : Tuple ) ->Dict: snake_case = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) snake_case = np.asarray(a ) snake_case = 1 snake_case = np.array_split(a , a ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case = np.array_split(a , a ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a ): snake_case = chunk_data else: snake_case = data def __UpperCamelCase ( a : Optional[int] , a : Tuple ) ->Tuple: if name in group.attrs: snake_case = [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs[name]] else: snake_case = [] snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCamelCase ( a : Any ) ->List[Any]: def _expand_single_ad_tensor(a : List[Any] ): if isinstance(a , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a )
342
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowerCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ = "dpr" def __init__( self , _SCREAMING_SNAKE_CASE=30_522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3_072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE = 0 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = projection_dim __UpperCamelCase = position_embedding_type
718
def _a ( __lowercase , __lowercase = 0 ) -> list: """simple docstring""" __UpperCamelCase = length or len(__lowercase ) __UpperCamelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCamelCase , __UpperCamelCase = list_data[i + 1], list_data[i] __UpperCamelCase = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
567
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _A ( A__ , A__ ): """simple docstring""" __lowercase = int(A__ ) assert noofclusters < len(A__ ) # Find out the dimensionality __lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowercase = list(range(len(A__ ) ) ) shuffle(A__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowercase = tf.placeholder('''float64''' , [dim] ) __lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(A__ , A__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowercase = [tf.Variable(0 ) for i in range(len(A__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowercase = tf.placeholder('''int32''' ) __lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A__ , A__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowercase = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowercase = tf.reduce_mean(A__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.placeholder('''float''' , [dim] ) __lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowercase = tf.placeholder('''float''' , [noofclusters] ) __lowercase = tf.argmin(A__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(A__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowercase = 100 for _ in range(A__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A__ ) ): __lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowercase = [ sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowercase = sess.run( A__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A__ ): # Collect all the vectors assigned to this cluster __lowercase = [ vectors[i] for i in range(len(A__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowercase = sess.run( A__ , feed_dict={mean_input: array(A__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowercase = sess.run(A__ ) __lowercase = sess.run(A__ ) return centroids, assignments
41
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () A_ : int =np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). A_ : Tuple =[0, 2_5, 5_0] A_ : int =[2_5, 5_0, 7_5] A_ : List[str] =fuzz.membership.trimf(X, abca) A_ : Any =fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. A_ : Optional[Any] =np.ones(7_5) A_ : int =np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) A_ : Optional[Any] =fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) A_ : Union[str, Any] =fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) A_ : List[Any] =fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) A_ : int =fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] A_ : Optional[Any] =young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) A_ : List[Any] =young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] A_ : Union[str, Any] =fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] A_ : Optional[Any] =fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
650
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowercase_ = logging.get_logger(__name__) class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , *snake_case_ : str , **snake_case_ : List[str])-> None: warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_)
712
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_ = logging.get_logger(__name__) class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any])-> None: warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_)
456
0
def lowerCAmelCase_ ( _snake_case : Dict ) -> Any: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCAmelCase_ ( _snake_case : dict[int, list[int]] ) -> list[tuple[int, int]]: '''simple docstring''' __magic_name__ : List[Any] = 0 __magic_name__ : Tuple = len(_snake_case ) # No of vertices in graph __magic_name__ : Union[str, Any] = [0] * n __magic_name__ : int = [False] * n def dfs(_snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Dict ): __magic_name__ : Dict = True __magic_name__ : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_snake_case , _snake_case , _snake_case , id_ ) __magic_name__ : List[str] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __magic_name__ : Any = min(low[at] , low[to] ) __magic_name__ : list[tuple[int, int]] = [] for i in range(_snake_case ): if not visited[i]: dfs(_snake_case , -1 , _snake_case , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
124
from __future__ import annotations from typing import Any class _snake_case ( snake_case ): pass class _snake_case : def __init__( self , _a ): __magic_name__ : Any = data __magic_name__ : Node | None = None def __iter__( self ): __magic_name__ : Any = self __magic_name__ : Union[str, Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(_a ) yield node.data __magic_name__ : Any = node.next_node @property def SCREAMING_SNAKE_CASE ( self ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case : str = Node(1) snake_case : Dict = Node(2) snake_case : List[str] = Node(3) snake_case : Union[str, Any] = Node(4) print(root_node.has_loop) # False snake_case : List[Any] = root_node.next_node print(root_node.has_loop) # True snake_case : Union[str, Any] = Node(5) snake_case : Any = Node(6) snake_case : Any = Node(5) snake_case : Optional[int] = Node(6) print(root_node.has_loop) # False snake_case : str = Node(1) print(root_node.has_loop) # False
124
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A__: Union[str, Any] = 3 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: print("""Generating primitive root of p""" ) while True: _a : List[str] =random.randrange(3 ,__A ) if pow(__A ,2 ,__A ) == 1: continue if pow(__A ,__A ,__A ) == 1: continue return g def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) _a : Any =rabin_miller.generate_large_prime(__A ) # select large prime number. _a : List[str] =primitive_root(__A ) # one primitive root on modulo p. _a : List[str] =random.randrange(3 ,__A ) # private_key -> have to be greater than 2 for safety. _a : List[str] =cryptomath.find_mod_inverse(pow(__A ,__A ,__A ) ,__A ) _a : Union[str, Any] =(key_size, e_a, e_a, p) _a : Optional[Any] =(key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> None: if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("""\nWARNING:""" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" """Use a different name or delete these files and re-run this program.""" ) sys.exit() _a : str =generate_key(__A ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" ,"""w""" ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" ,"""w""" ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def SCREAMING_SNAKE_CASE_ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
708
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str = " " ) -> list: _a : int =[] _a : Tuple =0 for index, char in enumerate(_UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _a : Union[str, Any] =index + 1 elif index + 1 == len(_UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
506
0
SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] SCREAMING_SNAKE_CASE : int = tuple[float, float, float] def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Vectorad: _lowercase : int = end_pointa[0] - end_pointa[0] _lowercase : List[Any] = end_pointa[1] - end_pointa[1] _lowercase : Optional[int] = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Vectorad: _lowercase : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowercase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowercase : Tuple = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> bool: return tuple(round(lowerCamelCase_ , lowerCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 10 ) -> bool: _lowercase : int = create_vector(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Any = create_vector(lowerCamelCase_ , lowerCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
89
class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = set_counts __a = max(__A ) __a = len(__A ) __a = [1] * num_sets __a = list(range(__A ) ) def snake_case_ ( self , __A , __A ): __a = self.get_parent(__A ) __a = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __a = 0 __a = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __a = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __a = 0 __a = src_parent __a = self.set_counts[src_parent] __a = max(self.max_set , __A ) return True def snake_case_ ( self , __A ): if self.parents[disj_set] == disj_set: return disj_set __a = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
99
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase ( _lowerCAmelCase : Optional[int] ): __a = SwinvaConfig() __a = swinva_name.split("""_""" ) __a = name_split[1] if "to" in name_split[3]: __a = int(name_split[3][-3:] ) else: __a = int(name_split[3] ) if "to" in name_split[2]: __a = int(name_split[2][-2:] ) else: __a = int(name_split[2][6:] ) if model_size == "tiny": __a = 96 __a = (2, 2, 6, 2) __a = (3, 6, 12, 24) elif model_size == "small": __a = 96 __a = (2, 2, 18, 2) __a = (3, 6, 12, 24) elif model_size == "base": __a = 128 __a = (2, 2, 18, 2) __a = (4, 8, 16, 32) else: __a = 192 __a = (2, 2, 18, 2) __a = (6, 12, 24, 48) if "to" in swinva_name: __a = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __a = 21841 __a = '''huggingface/label-files''' __a = '''imagenet-22k-id2label.json''' __a = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) __a = {int(a_ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} else: __a = 1000 __a = '''huggingface/label-files''' __a = '''imagenet-1k-id2label.json''' __a = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) __a = {int(a_ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = img_size __a = num_classes __a = embed_dim __a = depths __a = num_heads __a = window_size return config def UpperCamelCase ( _lowerCAmelCase : List[str] ): if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __a = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __a = '''encoder.''' + name if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __a = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __a = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __a = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __a = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": __a = '''layernorm.weight''' if name == "norm.bias": __a = '''layernorm.bias''' if "head" in name: __a = name.replace("""head""" , """classifier""" ) else: __a = '''swinv2.''' + name return name def UpperCamelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(a_ ) if "mask" in key: continue elif "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[1] ) __a = int(key_split[3] ) __a = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[ dim : dim * 2 ] __a = val[-dim:] else: __a = val return orig_state_dict def UpperCamelCase ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ): __a = timm.create_model(a_ , pretrained=a_ ) timm_model.eval() __a = get_swinva_config(a_ ) __a = SwinvaForImageClassification(a_ ) model.eval() __a = convert_state_dict(timm_model.state_dict() , a_ ) model.load_state_dict(a_ ) __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) __a = Image.open(requests.get(a_ , stream=a_ ).raw ) __a = image_processor(images=a_ , return_tensors="""pt""" ) __a = timm_model(inputs["""pixel_values"""] ) __a = model(**a_ ).logits assert torch.allclose(a_ , a_ , atol=1E-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a_ ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __A = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
718
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A = """scheduler_config.json""" class a ( A_ ): A_ : int = 1 A_ : Any = 2 A_ : List[str] = 3 A_ : int = 4 A_ : List[str] = 5 A_ : Optional[int] = 6 A_ : Optional[int] = 7 A_ : int = 8 A_ : Union[str, Any] = 9 A_ : int = 10 A_ : Dict = 11 A_ : Union[str, Any] = 12 A_ : Tuple = 13 A_ : Optional[Any] = 14 @dataclass class a ( A_ ): A_ : torch.FloatTensor class a : A_ : str = SCHEDULER_CONFIG_NAME A_ : Union[str, Any] = [] A_ : Any = True @classmethod def lowerCAmelCase_ ( cls : Dict , lowerCamelCase_ : Dict[str, Any] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : List[str]=False , **lowerCamelCase_ : Union[str, Any] , ) -> Any: __a , __a , __a = cls.load_config( pretrained_model_name_or_path=lowerCamelCase_ , subfolder=lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , return_commit_hash=lowerCamelCase_ , **lowerCamelCase_ , ) return cls.from_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Any ) -> Dict: self.save_config(save_directory=lowerCamelCase_ , push_to_hub=lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCAmelCase_ ( self : List[str] ) -> Any: return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] ) -> str: __a = list(set([cls.__name__] + cls._compatibles ) ) __a = importlib.import_module(__name__.split(""".""" )[0] ) __a = [ getattr(lowerCamelCase_ , lowerCamelCase_ ) for c in compatible_classes_str if hasattr(lowerCamelCase_ , lowerCamelCase_ ) ] return compatible_classes
173
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowerCAmelCase = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } __lowerCAmelCase = { "169M": 7_68, "430M": 10_24, "1B5": 20_48, "3B": 25_60, "7B": 40_96, "14B": 51_20, } def __UpperCamelCase ( lowercase_ : str ): """simple docstring""" a_ = list(state_dict.keys() ) for name in state_dict_keys: a_ = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('emb.' ): a_ = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): a_ = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention a_ = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowerCamelCase_ ) # ffn -> feed_forward a_ = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): a_ = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): a_ = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): a_ = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": a_ = "rwkv." + name a_ = weight return state_dict def __UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int]=None , lowercase_ : str=None , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) a_ = 50_277 a_ = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: a_ = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) a_ = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config a_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: a_ = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) a_ = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict a_ = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) a_ = torch.load(lowerCamelCase_ , map_location='cpu' ) a_ = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save a_ = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: a_ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: a_ = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + "\n" f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) a_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: a_ = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) a_ = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='2GB' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) __lowerCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
536
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging A = logging.get_logger(__name__) A = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = """bloom""" __magic_name__ = ["""past_key_values"""] __magic_name__ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , _lowercase : List[Any]=250880 , _lowercase : int=64 , _lowercase : Optional[Any]=2 , _lowercase : Dict=8 , _lowercase : List[str]=1E-5 , _lowercase : List[Any]=0.02 , _lowercase : Optional[Any]=True , _lowercase : Dict=1 , _lowercase : Union[str, Any]=2 , _lowercase : str=False , _lowercase : List[Any]=0.0 , _lowercase : Tuple=0.0 , _lowercase : Dict=1 , _lowercase : int=False , **_lowercase : int , ) -> List[str]: snake_case : Any = vocab_size # Backward compatibility with n_embed kwarg snake_case : Any = kwargs.pop("n_embed" , _lowercase ) snake_case : Tuple = hidden_size if n_embed is None else n_embed snake_case : Optional[Any] = n_layer snake_case : Optional[Any] = n_head snake_case : Union[str, Any] = layer_norm_epsilon snake_case : int = initializer_range snake_case : int = use_cache snake_case : int = pretraining_tp snake_case : Tuple = apply_residual_connection_post_layernorm snake_case : Union[str, Any] = hidden_dropout snake_case : Optional[Any] = attention_dropout snake_case : List[Any] = bos_token_id snake_case : Any = eos_token_id snake_case : Optional[Any] = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = version.parse("""1.12""") def __init__( self : int , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ) -> Dict: super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , "pad_token_id" , _lowercase ): # TODO: how to do that better? snake_case : int = 0 @property def __lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: snake_case : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction="inputs" , inverted_values_shape=_lowercase ) snake_case : Optional[int] = {0: "batch", 1: "past_sequence + sequence"} else: snake_case : Dict = {0: "batch", 1: "sequence"} return common_inputs @property def __lowercase ( self : int ) -> int: return self._config.n_layer @property def __lowercase ( self : Dict ) -> int: return self._config.n_head @property def __lowercase ( self : Union[str, Any] ) -> float: return 1E-3 def __lowercase ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: snake_case : int = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() snake_case : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case , snake_case : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case : Optional[Any] = seqlen + 2 snake_case : Optional[int] = self._config.hidden_size // self.num_attention_heads snake_case : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case : Dict = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] snake_case : Tuple = common_inputs["attention_mask"] if self.use_past: snake_case : Any = ordered_inputs["attention_mask"].dtype snake_case : List[str] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def __lowercase ( self : str ) -> int: return 13
449
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__ : str = tau * frequency / samplerate lowercase__ : Dict = sin(lowerCamelCase__ ) lowercase__ : Optional[Any] = cos(lowerCamelCase__ ) lowercase__ : Optional[int] = _sin / (2 * q_factor) lowercase__ : List[str] = (1 - _cos) / 2 lowercase__ : Union[str, Any] = 1 - _cos lowercase__ : Dict = 1 + alpha lowercase__ : Dict = -2 * _cos lowercase__ : Tuple = 1 - alpha lowercase__ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__ : Union[str, Any] = tau * frequency / samplerate lowercase__ : Any = sin(lowerCamelCase__ ) lowercase__ : Tuple = cos(lowerCamelCase__ ) lowercase__ : int = _sin / (2 * q_factor) lowercase__ : Optional[Any] = (1 + _cos) / 2 lowercase__ : Optional[Any] = -1 - _cos lowercase__ : str = 1 + alpha lowercase__ : str = -2 * _cos lowercase__ : int = 1 - alpha lowercase__ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__ : Union[str, Any] = tau * frequency / samplerate lowercase__ : Tuple = sin(lowerCamelCase__ ) lowercase__ : List[Any] = cos(lowerCamelCase__ ) lowercase__ : Tuple = _sin / (2 * q_factor) lowercase__ : Tuple = _sin / 2 lowercase__ : Dict = 0 lowercase__ : Optional[Any] = -ba lowercase__ : List[Any] = 1 + alpha lowercase__ : Optional[int] = -2 * _cos lowercase__ : List[Any] = 1 - alpha lowercase__ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__ : int = tau * frequency / samplerate lowercase__ : List[str] = sin(lowerCamelCase__ ) lowercase__ : List[str] = cos(lowerCamelCase__ ) lowercase__ : Dict = _sin / (2 * q_factor) lowercase__ : Optional[Any] = 1 - alpha lowercase__ : str = -2 * _cos lowercase__ : List[Any] = 1 + alpha lowercase__ : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__ : List[Any] = tau * frequency / samplerate lowercase__ : List[str] = sin(lowerCamelCase__ ) lowercase__ : Optional[int] = cos(lowerCamelCase__ ) lowercase__ : str = _sin / (2 * q_factor) lowercase__ : Optional[int] = 10 ** (gain_db / 40) lowercase__ : Tuple = 1 + alpha * big_a lowercase__ : List[str] = -2 * _cos lowercase__ : int = 1 - alpha * big_a lowercase__ : Optional[int] = 1 + alpha / big_a lowercase__ : Optional[int] = -2 * _cos lowercase__ : str = 1 - alpha / big_a lowercase__ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__ : str = tau * frequency / samplerate lowercase__ : Any = sin(lowerCamelCase__ ) lowercase__ : Any = cos(lowerCamelCase__ ) lowercase__ : Dict = _sin / (2 * q_factor) lowercase__ : Tuple = 10 ** (gain_db / 40) lowercase__ : Any = (big_a + 1) - (big_a - 1) * _cos lowercase__ : Dict = (big_a + 1) + (big_a - 1) * _cos lowercase__ : Dict = (big_a - 1) - (big_a + 1) * _cos lowercase__ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos lowercase__ : Optional[int] = 2 * sqrt(lowerCamelCase__ ) * alpha lowercase__ : int = big_a * (pmc + aaa) lowercase__ : List[str] = 2 * big_a * mpc lowercase__ : Optional[Any] = big_a * (pmc - aaa) lowercase__ : Tuple = ppmc + aaa lowercase__ : Any = -2 * pmpc lowercase__ : Optional[int] = ppmc - aaa lowercase__ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__ : Tuple = tau * frequency / samplerate lowercase__ : Any = sin(lowerCamelCase__ ) lowercase__ : Optional[int] = cos(lowerCamelCase__ ) lowercase__ : Any = _sin / (2 * q_factor) lowercase__ : Dict = 10 ** (gain_db / 40) lowercase__ : List[str] = (big_a + 1) - (big_a - 1) * _cos lowercase__ : Dict = (big_a + 1) + (big_a - 1) * _cos lowercase__ : Any = (big_a - 1) - (big_a + 1) * _cos lowercase__ : Tuple = (big_a - 1) + (big_a + 1) * _cos lowercase__ : int = 2 * sqrt(lowerCamelCase__ ) * alpha lowercase__ : Optional[Any] = big_a * (ppmc + aaa) lowercase__ : Tuple = -2 * big_a * pmpc lowercase__ : List[Any] = big_a * (ppmc - aaa) lowercase__ : Optional[Any] = pmc + aaa lowercase__ : Tuple = 2 * mpc lowercase__ : int = pmc - aaa lowercase__ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
706
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:int = 1.5 SCREAMING_SNAKE_CASE:Optional[Any] = int(factor * num_class_images ) SCREAMING_SNAKE_CASE:Any = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=snake_case , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=snake_case ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE:Any = client.query(text=snake_case ) if len(snake_case ) >= factor * num_class_images or num_images > 1e4: break else: SCREAMING_SNAKE_CASE:Union[str, Any] = int(factor * num_images ) SCREAMING_SNAKE_CASE:List[Any] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=snake_case , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Optional[int] = tqdm(desc="downloading real regularization images" , total=snake_case ) with open(F'''{class_data_dir}/caption.txt''' , "w" ) as fa, open(F'''{class_data_dir}/urls.txt''' , "w" ) as fa, open( F'''{class_data_dir}/images.txt''' , "w" ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE:List[str] = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE:List[Any] = requests.get(images["url"] ) if img.status_code == 200: SCREAMING_SNAKE_CASE:Optional[int] = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def A_ ( ): SCREAMING_SNAKE_CASE:List[Any] = argparse.ArgumentParser("" , add_help=snake_case ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=snake_case , type=snake_case ) parser.add_argument("--class_data_dir" , help="path to save images" , required=snake_case , type=snake_case ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=snake_case ) return parser.parse_args() if __name__ == "__main__": A_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
143
'''simple docstring''' import argparse import os import re import packaging.version A_ = "examples/" A_ = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A_ = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A_ = "README.md" def A_ ( snake_case , snake_case , snake_case ): with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[str] = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE:Tuple = replace.replace("VERSION" , snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = re_pattern.sub(snake_case , snake_case ) with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(snake_case ) def A_ ( snake_case ): for folder, directories, fnames in os.walk(snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(snake_case , snake_case ) , snake_case , pattern="examples" ) def A_ ( snake_case , snake_case=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case , snake_case , snake_case ) if not patch: update_version_in_examples(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:int = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE:int = "1. Want to contribute a new model?" with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE:Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE:str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE:Optional[Any] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(snake_case ) def A_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE:str = f.read() SCREAMING_SNAKE_CASE:Tuple = REPLACE_PATTERNS["init"][0].search(snake_case ).groups()[0] return packaging.version.parse(snake_case ) def A_ ( snake_case=False ): SCREAMING_SNAKE_CASE:Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE:Any = default_version.base_version elif patch: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE:Optional[int] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case , patch=snake_case ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def A_ ( ): SCREAMING_SNAKE_CASE:int = get_version() SCREAMING_SNAKE_CASE:int = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE:Optional[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE:Any = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Union[str, Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
143
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCamelCase = AltDiffusionPipeline __lowerCamelCase = TEXT_TO_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCamelCase__: Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowerCamelCase__: List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCamelCase__: Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowerCamelCase__: List[Any] = CLIPTextModel(lowerCamelCase__ ) lowerCamelCase__: List[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase__: Tuple = 77 lowerCamelCase__: Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self : Tuple , __a : Optional[int] , __a : Tuple=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): lowerCamelCase__: Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: lowerCamelCase__: Dict = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowerCamelCase__: Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self : int ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) lowerCamelCase__: str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase__: int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) lowerCamelCase__: Any = text_encoder lowerCamelCase__: Dict = AltDiffusionPipeline(**lowerCamelCase__ ) lowerCamelCase__: Any = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCamelCase__: Dict = self.get_dummy_inputs(lowerCamelCase__ ) lowerCamelCase__: Optional[int] = '''A photo of an astronaut''' lowerCamelCase__: int = alt_pipe(**lowerCamelCase__ ) lowerCamelCase__: Tuple = output.images lowerCamelCase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__: List[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Optional[Any] = self.get_dummy_components() lowerCamelCase__: Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) lowerCamelCase__: Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase__: int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) lowerCamelCase__: str = text_encoder lowerCamelCase__: str = AltDiffusionPipeline(**lowerCamelCase__ ) lowerCamelCase__: Optional[Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCamelCase__: List[Any] = self.get_dummy_inputs(lowerCamelCase__ ) lowerCamelCase__: Tuple = alt_pipe(**lowerCamelCase__ ) lowerCamelCase__: int = output.images lowerCamelCase__: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__: List[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: int = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=lowerCamelCase__ ) lowerCamelCase__: Union[str, Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCamelCase__: Any = '''A painting of a squirrel eating a burger''' lowerCamelCase__: Optional[int] = torch.manual_seed(0 ) lowerCamelCase__: Optional[Any] = alt_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) lowerCamelCase__: Union[str, Any] = output.images lowerCamelCase__: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__: int = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Any = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) lowerCamelCase__: Optional[int] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) lowerCamelCase__: Dict = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCamelCase__: Optional[int] = '''A painting of a squirrel eating a burger''' lowerCamelCase__: Dict = torch.manual_seed(0 ) lowerCamelCase__: List[str] = alt_pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type="""numpy""" ) lowerCamelCase__: Optional[int] = output.images lowerCamelCase__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__: str = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
718
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( _UpperCamelCase ) -> int: '''simple docstring''' for param in module.parameters(): lowerCamelCase__: Optional[int] = False def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Any = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase__: Dict = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __lowerCAmelCase ( _UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' lowerCamelCase__: List[Any] = datetime.now() lowerCamelCase__: int = current_time.strftime("""%H:%M:%S""" ) return timestamp
242
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ : str = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a (self , **_lowerCamelCase ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self , **_lowerCamelCase ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : str = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ : int = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) UpperCAmelCase__ : str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.get_image_processor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) UpperCAmelCase__ : int = self.prepare_image_inputs() UpperCAmelCase__ : Optional[int] = image_processor(_lowerCamelCase , return_tensors="""np""" ) UpperCAmelCase__ : Tuple = processor(images=_lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.get_image_processor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) UpperCAmelCase__ : List[str] = """lower newer""" UpperCAmelCase__ : str = processor(text=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.get_image_processor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) UpperCAmelCase__ : int = """lower newer""" UpperCAmelCase__ : Dict = self.prepare_image_inputs() UpperCAmelCase__ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_lowerCamelCase ): processor() def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Dict = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ : str = processor.batch_decode(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.get_image_processor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) UpperCAmelCase__ : str = """lower newer""" UpperCAmelCase__ : Any = self.prepare_image_inputs() UpperCAmelCase__ : Union[str, Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
182
"""simple docstring""" import cmath import math def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> complex: UpperCAmelCase__ : str = math.radians(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = math.radians(lowerCAmelCase ) # Convert voltage and current to rectangular form UpperCAmelCase__ : Union[str, Any] = cmath.rect(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = cmath.rect(lowerCAmelCase , lowerCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
182
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[Any] =logging.get_logger(__name__) def a__ (__lowercase :str , __lowercase :Union[str, Any]=False ) -> Union[str, Any]: _A : Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _A : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a__ (__lowercase :Optional[Any] , __lowercase :Optional[int] , __lowercase :Optional[int]=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _A : Any = '''''' else: _A : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A : int = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _A : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _A : Any = in_proj_weight[ : config.hidden_size, : ] _A : Optional[Any] = in_proj_bias[: config.hidden_size] _A : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A : Any = in_proj_weight[ -config.hidden_size :, : ] _A : List[Any] = in_proj_bias[-config.hidden_size :] def a__ (__lowercase :Union[str, Any] ) -> Union[str, Any]: _A : List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ (__lowercase :Union[str, Any] , __lowercase :Union[str, Any] , __lowercase :int ) -> Tuple: _A : Any = dct.pop(__lowercase ) _A : int = val def a__ () -> Optional[Any]: _A : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A : Tuple = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a__ (__lowercase :List[Any] , __lowercase :Optional[int] , __lowercase :Optional[int]=False ) -> Union[str, Any]: _A : Optional[Any] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__lowercase , ) _A : Tuple = ViTHybridConfig(backbone_config=__lowercase , image_size=384 , num_labels=1000 ) _A : Dict = False # load original model from timm _A : Tuple = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _A : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__lowercase ) _A : Union[str, Any] = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase , __lowercase ) _A : Union[str, Any] = '''huggingface/label-files''' _A : List[str] = '''imagenet-1k-id2label.json''' _A : List[str] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) _A : int = {int(__lowercase ): v for k, v in idalabel.items()} _A : Optional[Any] = idalabel _A : Dict = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _A : str = ViTHybridModel(__lowercase ).eval() else: _A : Union[str, Any] = ViTHybridForImageClassification(__lowercase ).eval() model.load_state_dict(__lowercase ) # create image processor _A : Optional[Any] = create_transform(**resolve_data_config({} , model=__lowercase ) ) _A : Tuple = transform.transforms _A : List[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } _A : List[str] = ViTHybridImageProcessor( do_resize=__lowercase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowercase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _A : List[str] = prepare_img() _A : Dict = transform(__lowercase ).unsqueeze(0 ) _A : List[Any] = processor(__lowercase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__lowercase , __lowercase ) # verify logits with torch.no_grad(): _A : Optional[int] = model(__lowercase ) _A : List[str] = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: _A : Tuple = timm_model.forward_features(__lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowercase , outputs.pooler_output , atol=1e-3 ) else: _A : Optional[Any] = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": _UpperCamelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _UpperCamelCase : int =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
def a__ (__lowercase :str , __lowercase :str ) -> bool: _A : Dict = len(__lowercase ) + 1 _A : Optional[int] = len(__lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _A : Optional[Any] = [[0 for i in range(__lowercase )] for j in range(__lowercase )] # since string of zero length match pattern of zero length _A : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowercase ): _A : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowercase ): _A : List[str] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _A : Tuple = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _A : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _A : List[Any] = dp[i - 1][j] else: _A : Optional[int] = 0 else: _A : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase : Union[str, Any] ='aab' _UpperCamelCase : Any ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
332
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase = 256 class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["melgan"] def __init__( self :List[Any] , __A :SpectrogramNotesEncoder , __A :SpectrogramContEncoder , __A :TaFilmDecoder , __A :DDPMScheduler , __A :OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN SCREAMING_SNAKE_CASE__ = math.log(1E-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE__ = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE__ = 128 self.register_modules( notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , ) def _snake_case ( self :str , __A :List[Any] , __A :Optional[int]=(-1.0, 1.0) , __A :Optional[Any]=False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = output_range if clip: SCREAMING_SNAKE_CASE__ = torch.clip(__A , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self :Dict , __A :Tuple , __A :str=(-1.0, 1.0) , __A :List[str]=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input_range SCREAMING_SNAKE_CASE__ = torch.clip(__A , __A , __A ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self :Union[str, Any] , __A :Any , __A :List[Any] , __A :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = input_tokens > 0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.notes_encoder( encoder_input_tokens=__A , encoder_inputs_mask=__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.continuous_encoder( encoder_inputs=__A , encoder_inputs_mask=__A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self :Any , __A :int , __A :str , __A :Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = noise_time if not torch.is_tensor(__A ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ = self.decoder( encodings_and_masks=__A , decoder_input_tokens=__A , decoder_noise_time=__A ) return logits @torch.no_grad() def __call__( self :Dict , __A :List[List[int]] , __A :Optional[torch.Generator] = None , __A :int = 100 , __A :bool = True , __A :str = "numpy" , __A :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A :int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__A )}.''' ) SCREAMING_SNAKE_CASE__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) for i, encoder_input_tokens in enumerate(__A ): if i == 0: SCREAMING_SNAKE_CASE__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE__ = ones SCREAMING_SNAKE_CASE__ = self.scale_features( __A , output_range=[-1.0, 1.0] , clip=__A ) SCREAMING_SNAKE_CASE__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__A , continuous_mask=__A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE__ = self.decode( encodings_and_masks=__A , input_tokens=__A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , generator=__A ).prev_sample SCREAMING_SNAKE_CASE__ = self.scale_to_features(__A , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE__ = mel[:1] SCREAMING_SNAKE_CASE__ = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A ) logger.info("""Generated segment""" , __A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": SCREAMING_SNAKE_CASE__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__A )
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase = { '''facebook/nllb-large-en-ro''': 10_24, '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off __lowerCAmelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __a ( __UpperCamelCase ): __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = ['input_ids', 'attention_mask'] __lowercase : Dict = NllbTokenizer __lowercase : List[int] = [] __lowercase : List[int] = [] def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> str: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase__: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowercase__: Dict = legacy_behaviour super().__init__( vocab_file=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Optional[int] = vocab_file lowercase__: Optional[Any] = False if not self.vocab_file else True lowercase__: Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase__: List[Any] = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__: Optional[int] = src_lang if src_lang is not None else 'eng_Latn' lowercase__: Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase__: List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: int = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase__: int = src_lang lowercase__: Union[str, Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: List[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) lowercase__: Union[str, Any] = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: '''simple docstring''' lowercase__: int = src_lang lowercase__: str = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: Union[str, Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) if self.legacy_behaviour: lowercase__: int = [] lowercase__: Tuple = [self.eos_token_id, self.cur_lang_code] else: lowercase__: Tuple = [self.cur_lang_code] lowercase__: List[Any] = [self.eos_token_id] lowercase__: Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: Any = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: List[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) if self.legacy_behaviour: lowercase__: Optional[Any] = [] lowercase__: Any = [self.eos_token_id, self.cur_lang_code] else: lowercase__: Union[str, Any] = [self.cur_lang_code] lowercase__: Tuple = [self.eos_token_id] lowercase__: Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowercase__: Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
335
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __a ( __UpperCamelCase ): __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] __lowercase : Any = GPTaTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Optional[Any] = kwargs.pop('add_bos_token' , lowerCAmelCase__ ) lowercase__: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: Optional[int] = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase__: Union[str, Any] = add_prefix_space lowercase__: Tuple = pre_tok_class(**lowerCAmelCase__ ) lowercase__: Optional[int] = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: List[str] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Union[str, Any] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__: Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' lowercase__: List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: lowercase__: Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
335
1
import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , *UpperCAmelCase__ , **UpperCAmelCase__ ): super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = {} def __A ( self , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ): A__ = super().add_tokens(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def __A ( self , UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__=1 , **UpperCAmelCase__ ): A__ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) output.append(UpperCAmelCase__ ) else: A__ = [] for i in range(UpperCAmelCase__ ): A__ = placeholder_token + F"""_{i}""" self.try_adding_tokens(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) output.append(UpperCAmelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) A__ = output def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=1.0 ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = [] for i in range(len(UpperCAmelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A__ = self.token_map[placeholder_token] A__ = tokens[: 1 + int(len(UpperCAmelCase__ ) * prop_tokens_to_load )] if vector_shuffle: A__ = copy.copy(UpperCAmelCase__ ) random.shuffle(UpperCAmelCase__ ) A__ = text.replace(UpperCAmelCase__ , " ".join(UpperCAmelCase__ ) ) return text def __call__( self , UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=1.0 , **UpperCAmelCase__ ): return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase__ , vector_shuffle=UpperCAmelCase__ , prop_tokens_to_load=UpperCAmelCase__ ) , *UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self , UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__=False , UpperCAmelCase__=1.0 , **UpperCAmelCase__ ): return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase__ , vector_shuffle=UpperCAmelCase__ , prop_tokens_to_load=UpperCAmelCase__ ) , *UpperCAmelCase__ , **UpperCAmelCase__ , )
491
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=768 ): super().__init__(UpperCAmelCase__ ) A__ = proj_size A__ = CLIPVisionModel(UpperCAmelCase__ ) A__ = PaintByExampleMapper(UpperCAmelCase__ ) A__ = nn.LayerNorm(config.hidden_size ) A__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False ): A__ = self.model(pixel_values=UpperCAmelCase__ ) A__ = clip_output.pooler_output A__ = self.mapper(latent_states[:, None] ) A__ = self.final_layer_norm(UpperCAmelCase__ ) A__ = self.proj_out(UpperCAmelCase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ ): super().__init__() A__ = (config.num_hidden_layers + 1) // 5 A__ = config.hidden_size A__ = 1 A__ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , activation_fn="gelu" , attention_bias=UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ] ) def __A ( self , UpperCAmelCase__ ): for block in self.blocks: A__ = block(UpperCAmelCase__ ) return hidden_states
491
1
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : Tuple = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowerCamelCase : Tuple = 1_0 lowerCamelCase : str = 2_5_6 def A__ ( UpperCamelCase__ ): '''simple docstring''' if len(UpperCamelCase__ ) < MIN_NUM_TOKENS: return None _SCREAMING_SNAKE_CASE = MinHash(num_perm=UpperCamelCase__ ) for token in set(UpperCamelCase__ ): min_hash.update(token.encode() ) return min_hash def A__ ( UpperCamelCase__ ): '''simple docstring''' return {t for t in NON_ALPHA.split(UpperCamelCase__ ) if len(t.strip() ) > 0} class __snake_case: def __init__( self , *, A_ = 0.85 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = duplication_jaccard_threshold _SCREAMING_SNAKE_CASE = NUM_PERM _SCREAMING_SNAKE_CASE = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _SCREAMING_SNAKE_CASE = defaultdict(A_ ) def A ( self , A_ , A_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._index.query(A_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(A_ , A_ ) if len(A_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for base, duplicates in self._duplicate_clusters.items(): _SCREAMING_SNAKE_CASE = [base] + list(A_ ) # reformat the cluster to be a list of dict _SCREAMING_SNAKE_CASE = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A_ ) return duplicate_clusters def A ( self , A_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_duplicate_clusters() with open(A_ , '''w''' ) as f: json.dump(A_ , A_ ) def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = element _SCREAMING_SNAKE_CASE = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def A__ ( UpperCamelCase__ ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase__ , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase__ ) ) , max_queue_size=100 ) ): di.add(UpperCamelCase__ , UpperCamelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_tokens(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = get_tokens(UpperCamelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[Any] = None def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for elementa in cluster: _SCREAMING_SNAKE_CASE = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _SCREAMING_SNAKE_CASE = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(UpperCamelCase__ , UpperCamelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _SCREAMING_SNAKE_CASE = 1 extremes.append(UpperCamelCase__ ) return extremes def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global _shared_dataset _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase__ , UpperCamelCase__ , ) , total=len(UpperCamelCase__ ) , ): extremes_list.append(UpperCamelCase__ ) return extremes_list def A__ ( UpperCamelCase__ , UpperCamelCase__ = 0.85 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = make_duplicate_clusters(UpperCamelCase__ , UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = find_extremes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for extremes in extremes_clusters: for element in extremes: _SCREAMING_SNAKE_CASE = element _SCREAMING_SNAKE_CASE = duplicate_indices - set(extreme_dict.keys() ) _SCREAMING_SNAKE_CASE = dataset.filter(lambda UpperCamelCase__ , UpperCamelCase__ : idx not in remove_indices , with_indices=UpperCamelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _SCREAMING_SNAKE_CASE = element['''base_index'''] in extreme_dict if element["is_extreme"]: _SCREAMING_SNAKE_CASE = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(UpperCamelCase__ )}''' ) print(F'''Number of duplicate clusters: {len(UpperCamelCase__ )}''' ) print(F'''Files in duplicate cluster: {len(UpperCamelCase__ )}''' ) print(F'''Unique files in duplicate cluster: {len(UpperCamelCase__ )}''' ) print(F'''Filtered dataset size: {len(UpperCamelCase__ )}''' ) return ds_filter, duplicate_clusters
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Tuple = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ["""DeiTFeatureExtractor"""] lowerCamelCase : int = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
168
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' SCREAMING_SNAKE_CASE = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' SCREAMING_SNAKE_CASE = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : int ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=1 , UpperCAmelCase : List[Any]="binary" , UpperCAmelCase : str=None ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =fa_score( UpperCAmelCase , UpperCAmelCase , labels=UpperCAmelCase , pos_label=UpperCAmelCase , average=UpperCAmelCase , sample_weight=UpperCAmelCase ) return {"f1": float(UpperCAmelCase ) if score.size == 1 else score}
94
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } SCREAMING_SNAKE_CASE = '▁' # Segments (not really needed) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = '''left''' UpperCamelCase_ = XLNetTokenizer def __init__( self : int , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : str=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Optional[Any]="<sep>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Optional[Any]="<cls>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : int=["<eop>", "<eod>"] , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : Dict =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =3 lowercase : Union[str, Any] =do_lower_case lowercase : Any =remove_space lowercase : int =keep_accents lowercase : int =vocab_file lowercase : Union[str, Any] =False if not self.vocab_file else True def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[int] =[self.sep_token_id] lowercase : Union[str, Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Dict =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
94
1
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = "M-CLIP" def __init__( self : List[Any] , snake_case__ : Tuple=1024 , snake_case__ : Any=768 , **snake_case__ : List[Any] ): lowerCamelCase_ : str =transformerDimSize lowerCamelCase_ : List[Any] =imageDimSize super().__init__(**snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :int = MCLIPConfig def __init__( self : List[Any] , snake_case__ : Optional[Any] , *snake_case__ : Any , **snake_case__ : int ): super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCamelCase_ : Optional[Any] =XLMRobertaModel(snake_case__ ) lowerCamelCase_ : Optional[Any] =torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str ): lowerCamelCase_ : List[str] =self.transformer(input_ids=snake_case__ , attention_mask=snake_case__ )[0] lowerCamelCase_ : Dict =(embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case__ ), embs
244
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer A__ : List[str] = logging.get_logger(__name__) A__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[str] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } A__ : List[Any] = {'mobilebert-uncased': 512} A__ : List[Any] = {} class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Dict = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = MobileBertTokenizer def __init__( self : Tuple , snake_case__ : Any=None , snake_case__ : Any=None , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]="[UNK]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : Any="[PAD]" , snake_case__ : int="[CLS]" , snake_case__ : int="[MASK]" , snake_case__ : Optional[Any]=True , snake_case__ : int=None , **snake_case__ : List[Any] , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[int] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): lowerCamelCase_ : str =getattr(snake_case__ , normalizer_state.pop("type" ) ) lowerCamelCase_ : Union[str, Any] =do_lower_case lowerCamelCase_ : List[Any] =strip_accents lowerCamelCase_ : List[Any] =tokenize_chinese_chars lowerCamelCase_ : Optional[Any] =normalizer_class(**snake_case__ ) lowerCamelCase_ : int =do_lower_case def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Dict=None ): lowerCamelCase_ : Optional[int] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : Optional[Any] =[self.sep_token_id] lowerCamelCase_ : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCamelCase_ : Optional[Any] =self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
244
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ _UpperCamelCase = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ _UpperCamelCase = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def lowerCAmelCase__( lowercase : Tuple , lowercase : Dict ) -> int: return float((preds == labels).mean() ) def lowerCAmelCase__( lowercase : str , lowercase : Dict , lowercase : Tuple="binary" ) -> Dict: __snake_case : str = simple_accuracy(lowercase , lowercase ) __snake_case : Dict = float(fa_score(y_true=lowercase , y_pred=lowercase , average=lowercase ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase__( lowercase : Dict , lowercase : Tuple ) -> List[str]: __snake_case : Optional[int] = {} for id_pred, label in zip(lowercase , lowercase ): __snake_case : List[Any] = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" __snake_case : Dict = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __snake_case : Tuple = [(pred, label)] __snake_case , __snake_case : Any = [], [] for question, preds_labels in question_map.items(): __snake_case , __snake_case : List[Any] = zip(*lowercase ) __snake_case : int = fa_score(y_true=lowercase , y_pred=lowercase , average="macro" ) fas.append(lowercase ) __snake_case : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase ) ) ems.append(lowercase ) __snake_case : Optional[Any] = float(sum(lowercase ) / len(lowercase ) ) __snake_case : List[str] = sum(lowercase ) / len(lowercase ) __snake_case : Optional[int] = float(fa_score(y_true=lowercase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase , UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase , UpperCAmelCase , fa_avg="macro" ) elif self.config_name == "record": __snake_case : Dict = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] __snake_case : Tuple = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(UpperCAmelCase , UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase , UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
243
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE__:Dict = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
528
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = "Hello world! cécé herlolip" SCREAMING_SNAKE_CASE__ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = BertAbsConfig( temp_dir="." , finetune_bert=__A , large=__A , share_emb=__A , use_bert_emb=__A , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowercase_ = torch.load(__A , lambda __lowerCamelCase , __lowerCamelCase : storage ) lowercase_ = AbsSummarizer(__A , torch.device("cpu" ) , __A ) original.eval() lowercase_ = BertAbsSummarizer(__A , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) lowercase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs lowercase_ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__A )) ) lowercase_ = torch.tensor(__A ).unsqueeze(0 ) lowercase_ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__A )) ) lowercase_ = torch.tensor(__A ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowercase_ = encoder_input_ids lowercase_ = decoder_input_ids lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowercase_ = original(__A , __A , __A , __A , __A , __A , __A )[0] lowercase_ = original.generator(__A ) lowercase_ = new_model( __A , __A , __A , __A , __A )[0] lowercase_ = new_model.generator(__A ) lowercase_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__A ) ) lowercase_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(__A ) ) lowercase_ = torch.allclose(__A , __A , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
715
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class __lowerCamelCase ( enum.Enum ): """simple docstring""" lowerCAmelCase__ = "all_checks" lowerCAmelCase__ = "basic_checks" lowerCAmelCase__ = "no_checks" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict , __lowerCamelCase: Optional[int]=None ): '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) lowercase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowercase_ = " for " + verification_name if verification_name is not None else "" if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" class __lowerCamelCase ( snake_case_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict ): '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) lowercase_ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info("All the splits matched successfully." ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: bool = True ): '''simple docstring''' if record_checksum: lowercase_ = shaaaa() with open(__lowerCamelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(__lowerCamelCase ) lowercase_ = m.hexdigest() else: lowercase_ = None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
601
0