code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __lowerCamelCase : Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowerCamelCase_ : Any = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowerCamelCase_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase_ : str = value elif weight_type == "weight_g": lowerCamelCase_ : int = value elif weight_type == "weight_v": lowerCamelCase_ : int = value elif weight_type == "bias": lowerCamelCase_ : Union[str, Any] = value else: lowerCamelCase_ : Union[str, Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Any = fairseq_model.state_dict() lowerCamelCase_ : Optional[int] = hf_model.feature_extractor lowerCamelCase_ : Dict = hf_model.adapter for name, value in fairseq_dict.items(): lowerCamelCase_ : int = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase_ : int = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase_ : Dict = True if "*" in mapped_key: lowerCamelCase_ : str = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] lowerCamelCase_ : Union[str, Any] = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: lowerCamelCase_ : List[str] = '''weight_g''' elif "weight_v" in name: lowerCamelCase_ : Union[str, Any] = '''weight_v''' elif "bias" in name: lowerCamelCase_ : List[Any] = '''bias''' elif "weight" in name: lowerCamelCase_ : Dict = '''weight''' else: lowerCamelCase_ : Dict = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : str = full_name.split('''conv_layers.''' )[-1] lowerCamelCase_ : Any = name.split('''.''' ) lowerCamelCase_ : List[str] = int(items[0] ) lowerCamelCase_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase_ : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase_ : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase_ : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase_ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[str] = full_name.split('''adaptor.''' )[-1] lowerCamelCase_ : Tuple = name.split('''.''' ) if items[1].isdigit(): lowerCamelCase_ : Optional[int] = int(items[1] ) else: lowerCamelCase_ : List[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCamelCase_ : Optional[int] = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCamelCase_ : Tuple = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCamelCase_ : str = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCamelCase_ : List[str] = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCamelCase_ : Dict = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCamelCase_ : Optional[Any] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Dict = emb.weight.shape lowerCamelCase_ : List[Any] = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): """simple docstring""" lowerCamelCase_ : int = WavaVecaConfig.from_pretrained( __UpperCAmelCase , add_adapter=__UpperCAmelCase , adapter_stride=__UpperCAmelCase , adapter_kernel_size=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , output_hidden_size=__UpperCAmelCase , ) lowerCamelCase_ : List[str] = MBartConfig.from_pretrained(__UpperCAmelCase ) # load model lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowerCamelCase_ : List[Any] = model[0].eval() # load feature extractor lowerCamelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(__UpperCAmelCase , use_auth_token=__UpperCAmelCase ) # set weights for wav2vec2 encoder lowerCamelCase_ : int = WavaVecaModel(__UpperCAmelCase ) recursively_load_weights_wavaveca(model.encoder , __UpperCAmelCase ) # load decoder weights lowerCamelCase_ : str = MBartForCausalLM(__UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCAmelCase ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCamelCase_ : str = SpeechEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Optional[int] = MBartaaTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = hf_wavavec.config.to_dict() lowerCamelCase_ : Union[str, Any] = tokenizer.pad_token_id lowerCamelCase_ : Union[str, Any] = tokenizer.bos_token_id lowerCamelCase_ : Optional[int] = tokenizer.eos_token_id lowerCamelCase_ : str = '''mbart50''' lowerCamelCase_ : Union[str, Any] = '''wav2vec2''' lowerCamelCase_ : List[str] = tokenizer.eos_token_id lowerCamelCase_ : Any = 250004 lowerCamelCase_ : Optional[Any] = tokenizer.eos_token_id lowerCamelCase_ : Optional[int] = SpeechEncoderDecoderConfig.from_dict(__UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) feature_extractor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") __lowerCamelCase : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
501
'''simple docstring''' from collections.abc import Callable def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : float = a lowerCamelCase_ : float = b if function(__UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCAmelCase ) == 0: return b elif ( function(__UpperCAmelCase ) * function(__UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowerCamelCase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCAmelCase ) == 0: return mid elif function(__UpperCAmelCase ) * function(__UpperCAmelCase ) < 0: lowerCamelCase_ : List[str] = mid else: lowerCamelCase_ : Any = mid lowerCamelCase_ : int = start + (end - start) / 2.0 return mid def __snake_case (__UpperCAmelCase ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
501
1
def lowerCamelCase( a__): return " ".join( ''''''.join(word[::-1]) if len(a__) > 4 else word for word in sentence.split()) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
191
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ : Any = datasets.utils.logging.get_logger(__name__) snake_case_ : List[Any] = ['''names''', '''prefix'''] snake_case_ : Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ : Dict = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ : Optional[Any] = ['''date_format'''] @dataclass class A__ ( datasets.BuilderConfig ): UpperCAmelCase = "," UpperCAmelCase = None UpperCAmelCase = "infer" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = "." UpperCAmelCase = None UpperCAmelCase = '"' UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = 10000 UpperCAmelCase = None UpperCAmelCase = "strict" UpperCAmelCase = "error" UpperCAmelCase = None def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.delimiter is not None: _SCREAMING_SNAKE_CASE =self.delimiter if self.column_names is not None: _SCREAMING_SNAKE_CASE =self.column_names @property def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): UpperCAmelCase = CsvConfig def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , _a : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _SCREAMING_SNAKE_CASE =data_files if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _SCREAMING_SNAKE_CASE =[] for split_name, files in data_files.items(): if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __UpperCamelCase ( self : Tuple , _a : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if all(not require_storage_cast(_a ) for feature in self.config.features.values() ): # cheaper cast _SCREAMING_SNAKE_CASE =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE =table_cast(_a , _a ) return pa_table def __UpperCamelCase ( self : str , _a : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _SCREAMING_SNAKE_CASE =( { name: dtype.to_pandas_dtype() if not require_storage_cast(_a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): _SCREAMING_SNAKE_CASE =pd.read_csv(_a , iterator=_a , dtype=_a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_a ): _SCREAMING_SNAKE_CASE =pa.Table.from_pandas(_a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(_a )}: {e}" ) raise
191
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = None if token is not None: __lowercase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __lowercase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __lowercase = requests.get(_snake_case , headers=_snake_case ).json() __lowercase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_snake_case ): __lowercase = requests.get(url + F'&page={i + 2}' , headers=_snake_case ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = None if token is not None: __lowercase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __lowercase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __lowercase = requests.get(_snake_case , headers=_snake_case ).json() __lowercase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_snake_case ): __lowercase = requests.get(url + F'&page={i + 2}' , headers=_snake_case ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = None if token is not None: __lowercase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} __lowercase = requests.get(_snake_case , headers=_snake_case , allow_redirects=_snake_case ) __lowercase = result.headers['Location'] __lowercase = requests.get(_snake_case , allow_redirects=_snake_case ) __lowercase = os.path.join(_snake_case , F'{artifact_name}.zip' ) with open(_snake_case , '''wb''' ) as fp: fp.write(response.content ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = None with zipfile.ZipFile(_snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(_snake_case ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_snake_case ) as f: for line in f: __lowercase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __lowercase = line[: line.index(''': ''' )] __lowercase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __lowercase = line[len('''FAILED ''' ) :] failed_tests.append(_snake_case ) elif filename == "job_name.txt": __lowercase = line if len(_snake_case ) != len(_snake_case ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(_snake_case )} for `errors` ' F'and {len(_snake_case )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ''' problem.''' ) __lowercase = None if job_name and job_links: __lowercase = job_links.get(_snake_case , _snake_case ) # A list with elements of the form (line of error, error, failed test) __lowercase = [x + [y] + [job_link] for x, y in zip(_snake_case , _snake_case )] return result def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = [] __lowercase = [os.path.join(_snake_case , _snake_case ) for p in os.listdir(_snake_case ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(_snake_case , job_links=_snake_case ) ) return errors def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = Counter() counter.update([x[1] for x in logs] ) __lowercase = counter.most_common() __lowercase = {} for error, count in counts: if error_filter is None or error not in error_filter: __lowercase = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __lowercase = dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_snake_case ) ) return r def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __lowercase = test.split('''/''' )[2] else: __lowercase = None return test def lowercase_ ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowercase = [(x[0], x[1], get_model(x[2] )) for x in logs] __lowercase = [x for x in logs if x[2] is not None] __lowercase = {x[2] for x in logs} __lowercase = {} for test in tests: __lowercase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __lowercase = counter.most_common() __lowercase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __lowercase = sum(error_counts.values() ) if n_errors > 0: __lowercase = {'count': n_errors, 'errors': error_counts} __lowercase = dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_snake_case ) ) return r def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = '| no. | error | status |' __lowercase = '|-:|:-|:-|' __lowercase = [header, sep] for error in reduced_by_error: __lowercase = reduced_by_error[error]['count'] __lowercase = F'| {count} | {error[:1_00]} | |' lines.append(_snake_case ) return "\n".join(_snake_case ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = '| model | no. of errors | major error | count |' __lowercase = '|-:|-:|-:|-:|' __lowercase = [header, sep] for model in reduced_by_model: __lowercase = reduced_by_model[model]['count'] __lowercase = list(reduced_by_model[model]['''errors'''].items() )[0] __lowercase = F'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_snake_case ) return "\n".join(_snake_case ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') a : List[Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : int = get_job_links(args.workflow_run_id, token=args.token) a : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : List[Any] = k.find(''' / ''') a : int = k[index + len(''' / ''') :] a : Any = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : List[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : Optional[int] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : Any = reduce_by_error(errors) a : Optional[int] = reduce_by_model(errors) a : Union[str, Any] = make_github_table(reduced_by_error) a : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
639
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( lowercase , unittest.TestCase ): UpperCamelCase : Any = KandinskyImgaImgPipeline UpperCamelCase : int = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase : Optional[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase : Union[str, Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase : List[str] = False @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return self.time_input_dim @property def __snake_case ( self ): return self.time_input_dim * 4 @property def __snake_case ( self ): return 100 @property def __snake_case ( self ): UpperCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase__ : Tuple = MultilingualCLIP(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = text_encoder.eval() return text_encoder @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def __snake_case ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase__ : int = self.dummy_tokenizer UpperCAmelCase__ : int = self.dummy_unet UpperCAmelCase__ : Optional[Any] = self.dummy_movq UpperCAmelCase__ : Any = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCAmelCase__ : List[Any] = DDIMScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = 'cpu' UpperCAmelCase__ : Any = self.get_dummy_components() UpperCAmelCase__ : Any = self.pipeline_class(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Dict = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Any = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): UpperCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) UpperCAmelCase__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase__ : Any = 'A red cartoon frog, 4k' UpperCAmelCase__ : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) UpperCAmelCase__ : Any = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Optional[Any] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() UpperCAmelCase__ : Optional[Any] = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
0
'''simple docstring''' import math import random def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase__ = 0.02 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__lowerCAmelCase ): # Forward propagation _UpperCAmelCase : int = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase : int = (expected / 100) - layer_a # Error delta _UpperCAmelCase : Union[str, Any] = layer_1_error * sigmoid_function(__lowerCAmelCase , __lowerCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = int(input('Expected value: ')) lowerCamelCase__ = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
40
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : int , lowerCamelCase__ : str , lowerCamelCase__ : str=13 , lowerCamelCase__ : Dict=7 , lowerCamelCase__ : str=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Tuple=99 , lowerCamelCase__ : Optional[int]=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Any=16 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[Any]=0.0_2 , lowerCamelCase__ : Optional[int]=4 , ) ->List[str]: '''simple docstring''' _UpperCAmelCase : str = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : Dict = is_training _UpperCAmelCase : int = use_attention_mask _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Union[str, Any] = num_choices def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = None if self.use_attention_mask: _UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : int = None if self.use_token_type_ids: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = config_and_inputs _UpperCAmelCase : List[Any] = True _UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Tuple = True lowerCAmelCase : Tuple = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase__ ( self : Optional[int] ) ->int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : Any = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ ) _UpperCAmelCase : str = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) _UpperCAmelCase : Tuple = model(lowerCamelCase__ )[0] _UpperCAmelCase : int = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. _UpperCAmelCase : int = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ ) _UpperCAmelCase : List[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) _UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ )[0] # compare the actual values for a slice. _UpperCAmelCase : str = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
40
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): """simple docstring""" __snake_case = ['onnx'] def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: requires_backends(self , ['''onnx'''] ) @classmethod def a__ ( cls , *_lowercase , **_lowercase ) -> Any: requires_backends(cls , ['''onnx'''] ) @classmethod def a__ ( cls , *_lowercase , **_lowercase ) -> List[str]: requires_backends(cls , ['''onnx'''] )
434
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ) ) ) def lowerCAmelCase( __lowerCamelCase ): if point: if isinstance(__lowerCamelCase , __lowerCamelCase ): for item in point: if not isinstance(__lowerCamelCase , (int, float) ): __a = ( 'Expected a list of numbers as input, found ' f'''{type(__lowerCamelCase ).__name__}''' ) raise TypeError(__lowerCamelCase ) else: __a = f'''Expected a list of numbers as input, found {type(__lowerCamelCase ).__name__}''' raise TypeError(__lowerCamelCase ) else: raise ValueError('Missing an input' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__lowerCamelCase , __lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
559
0
import socket def a__ ( ): '''simple docstring''' __magic_name__ = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) __magic_name__ = socket.gethostname() __magic_name__ = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""", """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: __magic_name__ = sock.recv(1024 ) if not data: break out_file.write(UpperCamelCase__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowercase_ : """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Tuple=None ) -> Any: _A = start _A = end _A = val _A = (start + end) // 2 _A = left _A = right def __repr__( self : str ) -> Optional[int]: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class lowercase_ : """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : Sequence, UpperCamelCase__ : Any ) -> Optional[Any]: _A = collection _A = function if self.collection: _A = self._build_tree(0, len(UpperCamelCase__ ) - 1 ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : str, UpperCamelCase__ : Dict ) -> int: self._update_tree(self.root, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: return self._query_range(self.root, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any] ) -> str: if start == end: return SegmentTreeNode(UpperCamelCase__, UpperCamelCase__, self.collection[start] ) _A = (start + end) // 2 _A = self._build_tree(UpperCamelCase__, UpperCamelCase__ ) _A = self._build_tree(mid + 1, UpperCamelCase__ ) return SegmentTreeNode(UpperCamelCase__, UpperCamelCase__, self.fn(left.val, right.val ), UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int] ) -> Tuple: if node.start == i and node.end == i: _A = val return if i <= node.mid: self._update_tree(node.left, UpperCamelCase__, UpperCamelCase__ ) else: self._update_tree(node.right, UpperCamelCase__, UpperCamelCase__ ) _A = self.fn(node.left.val, node.right.val ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : int ) -> Tuple: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left, UpperCamelCase__, UpperCamelCase__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left, UpperCamelCase__, node.mid ), self._query_range(node.right, node.mid + 1, UpperCamelCase__ ), ) else: # range in right child tree return self._query_range(node.right, UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: if self.root is not None: _A = Queue() queue.put(self.root ) while not queue.empty(): _A = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _UpperCAmelCase : Tuple = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
107
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase =[ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCAmelCase ={ "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase ={f"""funnel-transformer/{name}""": 512 for name in _model_names} UpperCAmelCase ={f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = FunnelTokenizer _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = 2 def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=True ,lowerCamelCase_="<unk>" ,lowerCamelCase_="<sep>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<cls>" ,lowerCamelCase_="<mask>" ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=None ,lowerCamelCase_="##" ,**lowerCamelCase_ ,) -> List[Any]: super().__init__( lowerCamelCase_ ,tokenizer_file=lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,clean_text=lowerCamelCase_ ,tokenize_chinese_chars=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ,wordpieces_prefix=lowerCamelCase_ ,**lowerCamelCase_ ,) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase_ ) != tokenize_chinese_chars ): A = getattr(lowerCamelCase_ ,normalizer_state.pop("""type""" ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**lowerCamelCase_ ) A = do_lower_case def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> List[Any]: A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: A = self._tokenizer.model.save(lowerCamelCase_ ,name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
617
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __UpperCamelCase : Any = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __UpperCamelCase : Tuple = logging.WARNING def A ( ): SCREAMING_SNAKE_CASE : List[Any] = os.getenv('''DATASETS_VERBOSITY''' , _lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def A ( ): return __name__.split('''.''' )[0] def A ( ): return logging.getLogger(_get_library_name() ) def A ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE : Any = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def A ( ): SCREAMING_SNAKE_CASE : List[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def A ( _lowercase = None ): if name is None: SCREAMING_SNAKE_CASE : Tuple = _get_library_name() return logging.getLogger(_lowercase ) def A ( ): return _get_library_root_logger().getEffectiveLevel() def A ( _lowercase ): _get_library_root_logger().setLevel(_lowercase ) def A ( ): return set_verbosity(_lowercase ) def A ( ): return set_verbosity(_lowercase ) def A ( ): return set_verbosity(_lowercase ) def A ( ): return set_verbosity(_lowercase ) def A ( ): SCREAMING_SNAKE_CASE : Any = False def A ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowercase__ : def __init__( self : str , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : int ): # pylint: disable=unused-argument '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = args[0] if args else None def __iter__( self : Any ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' def empty_fn(*UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): '''simple docstring''' return self def __exit__( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ): '''simple docstring''' return __UpperCamelCase : Optional[int] = True class lowercase__ : def __call__( self : List[Any] , *UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=False , **UpperCamelCase__ : str ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase__ , **UpperCamelCase__ ) else: return EmptyTqdm(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __UpperCamelCase : Union[str, Any] = _tqdm_cls() def A ( ): global _tqdm_active return bool(_tqdm_active ) def A ( ): global _tqdm_active SCREAMING_SNAKE_CASE : Dict = True def A ( ): global _tqdm_active SCREAMING_SNAKE_CASE : Union[str, Any] = False
34
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCamelCase : str = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : int = logging.getLogger() def A ( ): SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('''-f''' ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() return args.f def A ( _lowercase , _lowercase="eval" ): SCREAMING_SNAKE_CASE : Dict = os.path.join(_lowercase , f"""{split}_results.json""" ) if os.path.exists(_lowercase ): with open(_lowercase , '''r''' ) as f: return json.load(_lowercase ) raise ValueError(f"""can't find {path}""" ) __UpperCamelCase : Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( UpperCamelCase_): def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Tuple = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_flax_glue.main() SCREAMING_SNAKE_CASE : Union[str, Any] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : str = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_clm_flax.main() SCREAMING_SNAKE_CASE : Dict = get_results(UpperCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_summarization_flax.main() SCREAMING_SNAKE_CASE : Union[str, Any] = get_results(UpperCamelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Dict = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_mlm_flax.main() SCREAMING_SNAKE_CASE : List[Any] = get_results(UpperCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_ta_mlm_flax.main() SCREAMING_SNAKE_CASE : Optional[int] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 7 if get_gpu_count() > 1 else 2 SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Any = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_flax_ner.main() SCREAMING_SNAKE_CASE : List[str] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Union[str, Any] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_qa.main() SCREAMING_SNAKE_CASE : str = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = ConsistencyModelPipeline A__ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A__ : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt A__ : Any = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def __A ( self ) -> List[Any]: _UpperCAmelCase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def __A ( self ) -> str: _UpperCAmelCase = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def __A ( self , snake_case_=False ) -> int: if class_cond: _UpperCAmelCase = self.dummy_cond_unet else: _UpperCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler _UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, } return components def __A ( self , snake_case_ , snake_case_=0 ) -> Any: if str(snake_case_ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case_ ) else: _UpperCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _UpperCAmelCase = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def __A ( self ) -> List[Any]: _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = ConsistencyModelPipeline(**snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> List[str]: _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components(class_cond=snake_case_ ) _UpperCAmelCase = ConsistencyModelPipeline(**snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = 0 _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> int: _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = ConsistencyModelPipeline(**snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = 1 _UpperCAmelCase = None _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self ) -> Any: _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components(class_cond=snake_case_ ) _UpperCAmelCase = ConsistencyModelPipeline(**snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = 1 _UpperCAmelCase = None _UpperCAmelCase = 0 _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , snake_case_=0 , snake_case_=False , snake_case_="cpu" , snake_case_=torch.floataa , snake_case_=(1, 3, 64, 64) ) -> Dict: _UpperCAmelCase = torch.manual_seed(snake_case_ ) _UpperCAmelCase = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: _UpperCAmelCase = self.get_fixed_latents(seed=snake_case_ , device=snake_case_ , dtype=snake_case_ , shape=snake_case_ ) _UpperCAmelCase = latents return inputs def __A ( self , snake_case_=0 , snake_case_="cpu" , snake_case_=torch.floataa , snake_case_=(1, 3, 64, 64) ) -> Optional[Any]: if type(snake_case_ ) == str: _UpperCAmelCase = torch.device(snake_case_ ) _UpperCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) return latents def __A ( self ) -> str: _UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCAmelCase = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ) -> List[str]: _UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCAmelCase = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = 1 _UpperCAmelCase = None _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def __A ( self ) -> int: _UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCAmelCase = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def __A ( self ) -> str: _UpperCAmelCase = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _UpperCAmelCase = ConsistencyModelPipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(torch_device=snake_case_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_inputs(get_fixed_latents=snake_case_ , device=snake_case_ ) _UpperCAmelCase = 1 _UpperCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case_ , enable_math=snake_case_ , enable_mem_efficient=snake_case_ ): _UpperCAmelCase = pipe(**snake_case_ ).images assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
426
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "xglm" A__ : List[Any] = ["past_key_values"] A__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=256008 , snake_case_=2048 , snake_case_=1024 , snake_case_=4096 , snake_case_=24 , snake_case_=16 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> List[str]: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
426
1
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[complex, complex]: if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) __lowerCamelCase : List[str] = b * b - 4 * a * c __lowerCamelCase : Union[str, Any] = (-b + sqrt(lowerCamelCase__ )) / (2 * a) __lowerCamelCase : List[str] = (-b - sqrt(lowerCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
337
import argparse import json import subprocess def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : List[str] = [] __lowerCamelCase : List[str] = ( F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) __lowerCamelCase : Any = subprocess.run(lowerCamelCase__ , shell=lowerCamelCase__ , stdout=subprocess.PIPE ) __lowerCamelCase : List[Any] = output.stdout.decode('utf-8' ) __lowerCamelCase : Optional[Any] = json.loads(lowerCamelCase__ ) __lowerCamelCase : str = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCamelCase__ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Union[str, Any] = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: return values.split(',' ) a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) a =parser.parse_args() get_runner_status(args.target_runners, args.token)
337
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = 0 def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop("feature_extractor_type" ) _lowerCAmelCase = WavaVecaFeatureExtractor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved _lowerCAmelCase = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Tuple: with self.assertRaisesRegex( _lowerCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("bert-base" ) def _snake_case ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _lowerCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , revision="aaaaaa" ) def _snake_case ( self ) -> Union[str, Any]: with self.assertRaisesRegex( _lowerCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def _snake_case ( self ) -> Union[str, Any]: try: AutoConfig.register("custom" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Optional[int]: class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = True try: AutoConfig.register("custom" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(_lowerCAmelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
18
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase__: str = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" UpperCamelCase__: Union[str, Any] = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" UpperCamelCase__: Any = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int ) -> Dict: return float((preds == labels).mean() ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> Tuple: UpperCAmelCase : List[Any] = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : int ) -> List[Any]: UpperCAmelCase : Any = np.array(_lowerCAmelCase ) UpperCAmelCase : Tuple = np.array(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = en_sentvecs.shape[0] # mean centering UpperCAmelCase : str = en_sentvecs - np.mean(_lowerCAmelCase , axis=0 ) UpperCAmelCase : Tuple = in_sentvecs - np.mean(_lowerCAmelCase , axis=0 ) UpperCAmelCase : Optional[int] = cdist(_lowerCAmelCase , _lowerCAmelCase , '''cosine''' ) UpperCAmelCase : str = np.array(range(_lowerCAmelCase ) ) UpperCAmelCase : List[Any] = sim.argsort(axis=1 )[:, :10] UpperCAmelCase : Union[str, Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : int ) -> Any: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def A ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[str] ) -> Optional[int]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__snake_case , __snake_case )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
127
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) UpperCamelCase__ : Optional[int] = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]], dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]], dtype=tf.intaa ), } UpperCamelCase__ : List[Any] = model(__lowerCAmelCase )['''last_hidden_state'''] UpperCamelCase__ : Union[str, Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape, __lowerCAmelCase ) # compare the actual values for a slice. UpperCamelCase__ : int = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ], dtype=tf.floataa, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
707
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=2, __magic_name__=56, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=True, __magic_name__=99, __magic_name__=32, __magic_name__=2, __magic_name__=2, __magic_name__=7, __magic_name__="gelu_new", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=512, __magic_name__=16, __magic_name__=2, __magic_name__=0.02, __magic_name__=4, __magic_name__="block_sparse", __magic_name__=True, __magic_name__=False, __magic_name__=2, __magic_name__=3, ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : List[Any] = batch_size UpperCamelCase__ : str = seq_length UpperCamelCase__ : List[str] = is_training UpperCamelCase__ : List[Any] = use_attention_mask UpperCamelCase__ : Any = use_token_type_ids UpperCamelCase__ : Tuple = use_labels UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Dict = num_choices UpperCamelCase__ : Dict = rescale_embeddings UpperCamelCase__ : Tuple = attention_type UpperCamelCase__ : Union[str, Any] = use_bias UpperCamelCase__ : Union[str, Any] = block_size UpperCamelCase__ : Optional[int] = num_random_blocks def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ : int = None if self.use_attention_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ : str = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__magic_name__, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = config_and_inputs UpperCamelCase__ : Union[str, Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Any = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a : List[str] = False a : str = False def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_hidden_states_output() @slow def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase__ : List[str] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ : Union[str, Any] = self._prepare_for_class(__magic_name__, __magic_name__ ) UpperCamelCase__ : Tuple = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__, __magic_name__=None, **__magic_name__ ): return model(input_ids=__magic_name__, attention_mask=__magic_name__, **__magic_name__ ) with self.subTest('''JIT Enabled''' ): UpperCamelCase__ : str = model_jitted(**__magic_name__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCamelCase__ : Dict = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ), len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__, __magic_name__ ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__=1E-5, __magic_name__="outputs", __magic_name__=None ) -> List[Any]: """simple docstring""" # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ )
369
0
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> list: SCREAMING_SNAKE_CASE__ : List[str] = int(__lowerCAmelCase ) if n_element < 1: SCREAMING_SNAKE_CASE__ : Tuple = ValueError("""a should be a positive number""" ) raise my_error SCREAMING_SNAKE_CASE__ : int = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = (0, 0, 0) SCREAMING_SNAKE_CASE__ : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a :List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") a :str = hamming(int(n)) print("-----------------------------------------------------") print(f'The list with nth numbers is: {hamming_numbers}') print("-----------------------------------------------------")
680
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a :str = logging.getLogger(__name__) def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) SCREAMING_SNAKE_CASE__ : str = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` SCREAMING_SNAKE_CASE__ : str = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE__ : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` SCREAMING_SNAKE_CASE__ : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE__ : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: SCREAMING_SNAKE_CASE__ : int = fp.readlines() logger.info("""Start encoding""" ) logger.info(F'''{len(__lowerCAmelCase )} examples to process.''' ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1_0000 SCREAMING_SNAKE_CASE__ : Dict = time.time() for text in data: SCREAMING_SNAKE_CASE__ : Dict = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) rslt.append(__lowerCAmelCase ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE__ : str = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE__ : Tuple = time.time() logger.info("""Finished binarization""" ) logger.info(F'''{len(__lowerCAmelCase )} examples processed.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE__ : Tuple = [np.uintaa(__lowerCAmelCase ) for d in rslt] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.intaa(__lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(__lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , __lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
680
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __A : Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __A : Dict = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} __A : Dict = '''zero2''' __A : Optional[Any] = '''zero3''' __A : Optional[int] = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : int = parameterized.to_safe_name('_'.join(str(_UpperCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test __A : str = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A ( lowerCAmelCase ): @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ): self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowercase__ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): self.run_and_check( stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ): lowerCAmelCase : Optional[int] = models[model] lowerCAmelCase : Tuple = self.run_trainer( stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , ) self.do_checks(UpperCAmelCase_ ) return output_dir def lowercase__ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ): lowerCAmelCase : str = self.get_auto_remove_tmp_dir('./xxx' , after=UpperCAmelCase_ ) lowerCAmelCase : int = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(UpperCAmelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCAmelCase : Optional[Any] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() lowerCAmelCase : Optional[Any] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] lowerCAmelCase : Optional[Any] = self.get_launcher(UpperCAmelCase_ ) lowerCAmelCase : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() ) return output_dir def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) lowerCAmelCase : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
343
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = KandinskyInpaintPipeline lowerCAmelCase_ : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] lowerCAmelCase_ : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] lowerCAmelCase_ : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ : Tuple = False @property def lowercase__ ( self : List[str] ): return 32 @property def lowercase__ ( self : int ): return 32 @property def lowercase__ ( self : str ): return self.time_input_dim @property def lowercase__ ( self : str ): return self.time_input_dim * 4 @property def lowercase__ ( self : Any ): return 100 @property def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase : int = MultilingualCLIP(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : List[str] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : str = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowercase__ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : str ): lowerCAmelCase : Dict = self.dummy_text_encoder lowerCAmelCase : List[Any] = self.dummy_tokenizer lowerCAmelCase : Optional[int] = self.dummy_unet lowerCAmelCase : Tuple = self.dummy_movq lowerCAmelCase : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , ) lowerCAmelCase : Any = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase__ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=0 ): lowerCAmelCase : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Any = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((256, 256) ) # create mask lowerCAmelCase : Optional[int] = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase : List[Any] = 0 if str(UpperCAmelCase_ ).startswith('mps' ): lowerCAmelCase : List[str] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = 'cpu' lowerCAmelCase : Tuple = self.get_dummy_components() lowerCAmelCase : Tuple = self.pipeline_class(**UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCAmelCase : int = output.images lowerCAmelCase : str = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def lowercase__ ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase : int = 0 lowerCAmelCase : Optional[int] = 'a hat' lowerCAmelCase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase : Union[str, Any] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase : Optional[int] = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
343
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=224 , UpperCAmelCase_ : Tuple=1000 , UpperCAmelCase_ : str=[3, 3, 6, 4] , UpperCAmelCase_ : str=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = layer_depths SCREAMING_SNAKE_CASE__ = embed_dims def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def A_ ( self : Any ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A_ ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A_ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : int ): ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =(SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () A__ : List[Any] =( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) A__ : Tuple =False A__ : List[Any] =False A__ : List[str] =False A__ : Tuple =False A__ : int =False def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A_ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def A_ ( self : Tuple ): pass def A_ ( self : int ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def A_ ( self : Dict ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def A_ ( self : Dict ): pass def A_ ( self : int ): def check_hidden_states_output(UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.hidden_states SCREAMING_SNAKE_CASE__ = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( self : Dict ): def _config_zero_init(UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A_ ( self : Optional[Any] ): pass def _lowercase ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def A_ ( self : int ): return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
709
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : List[Any]=[32, 64, 128] , UpperCAmelCase_ : Tuple=[1, 2, 1] , UpperCAmelCase_ : int=[2, 2, 4] , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=2.0 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : int=["stage1", "stage2"] , UpperCAmelCase_ : Optional[int]=[1, 2] , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = window_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = use_absolute_embeddings SCREAMING_SNAKE_CASE__ = patch_norm SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = encoder_stride SCREAMING_SNAKE_CASE__ = out_features SCREAMING_SNAKE_CASE__ = out_indices def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[int] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = FocalNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A_ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = FocalNetForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FocalNetForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Any =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] =( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Union[str, Any] =False A__ : Dict =False A__ : Optional[Any] =False A__ : str =False A__ : Any =False def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = FocalNetModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 , has_text_modality=UpperCAmelCase_ ) def A_ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Union[str, Any] ): return def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def A_ ( self : Tuple ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def A_ ( self : Dict ): pass def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = outputs.hidden_states SCREAMING_SNAKE_CASE__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # FocalNet has a different seq_length SCREAMING_SNAKE_CASE__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE__ = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) @slow def A_ ( self : int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FocalNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowercase__ ( unittest.TestCase ): @cached_property def A_ ( self : Any ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =(FocalNetBackbone,) if is_torch_available() else () A__ : Tuple =FocalNetConfig A__ : Optional[int] =False def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = FocalNetModelTester(self )
400
0
"""simple docstring""" import sys import turtle def lowerCAmelCase_ ( UpperCamelCase__ : tuple[float, float] , UpperCamelCase__ : tuple[float, float] ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCAmelCase_ ( UpperCamelCase__ : tuple[float, float] , UpperCamelCase__ : tuple[float, float] , UpperCamelCase__ : tuple[float, float] , UpperCamelCase__ : int , ): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) UpperCAmelCase__ =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") UpperCAmelCase__ =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
616
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCamelCase__ , n - 1 , UpperCamelCase__ ) * a) % mod else: __lowercase = binary_exponentiation(UpperCamelCase__ , n / 2 , UpperCamelCase__ ) return (b * b) % mod # a prime number UpperCAmelCase__ =701 UpperCAmelCase__ =10_0000_0000 UpperCAmelCase__ =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
616
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A__ : List[str] = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def _snake_case ( lowerCamelCase__ : Optional[Any] ) -> str: lowerCamelCase_ : Tuple =test_results.split(" " ) lowerCamelCase_ : List[str] =0 lowerCamelCase_ : List[str] =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase_ : Dict =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _snake_case ( lowerCamelCase__ : List[Any] ) -> Union[str, Any]: lowerCamelCase_ : Optional[Any] ={} lowerCamelCase_ : List[str] =None lowerCamelCase_ : Dict =False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]" , lowerCamelCase__ ): lowerCamelCase_ : Any =True lowerCamelCase_ : Optional[Any] =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): lowerCamelCase_ : Union[str, Any] =line lowerCamelCase_ : List[Any] =False return failures class lowercase__ : def __init__( self : Optional[int] , snake_case__ : str , snake_case__ : Dict ): lowerCamelCase_ : Optional[Any] =title lowerCamelCase_ : Optional[int] =doc_test_results["time_spent"].split("," )[0] lowerCamelCase_ : Optional[int] =doc_test_results["success"] lowerCamelCase_ : List[str] =doc_test_results["failures"] lowerCamelCase_ : List[Any] =self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase_ : List[Any] =doc_test_results @property def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : List[str] =[self._time_spent] lowerCamelCase_ : Tuple =0 for time in time_spent: lowerCamelCase_ : Tuple =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(snake_case__ ) == 1: lowerCamelCase_ : Dict =[0, 0, time_parts[0]] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : int =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"""{int(snake_case__ )}h{int(snake_case__ )}m{int(snake_case__ )}s""" @property def UpperCAmelCase__ ( self : Optional[int] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase__ ( self : List[str] ): return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def UpperCAmelCase__ ( self : int ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =40 lowerCamelCase_ : Any ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(snake_case__ , snake_case__ )} lowerCamelCase_ : List[Any] ="" for category, failures in category_failures.items(): if len(snake_case__ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(snake_case__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : List[Any] =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(snake_case__ ) @staticmethod def UpperCAmelCase__ ( ): lowerCamelCase_ : Any =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(snake_case__ )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=snake_case__ , ) def UpperCAmelCase__ ( self : List[Any] ): print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) lowerCamelCase_ : Union[str, Any] =F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed." lowerCamelCase_ : Tuple =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=snake_case__ , ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): lowerCamelCase_ : Optional[Any] ="" for key, value in failures.items(): lowerCamelCase_ : Union[str, Any] =value[:200] + " [Truncated]" if len(snake_case__ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowerCamelCase_ : Dict =job_name lowerCamelCase_ : Optional[int] ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: lowerCamelCase_ : int ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase__ ( self : Union[str, Any] ): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) lowerCamelCase_ : List[Any] =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) lowerCamelCase_ : str =sorted(self.doc_test_results.items() , key=lambda snake_case__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): lowerCamelCase_ : str =F"""*Num failures* :{len(job_result['failed'] )} \n""" lowerCamelCase_ : Optional[int] =job_result["failures"] lowerCamelCase_ : List[str] =self.get_reply_blocks(snake_case__ , snake_case__ , snake_case__ , text=snake_case__ ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F"""Results for {job}""" , blocks=snake_case__ , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def _snake_case ( ) -> List[Any]: lowerCamelCase_ : Optional[Any] =os.environ["GITHUB_RUN_ID"] lowerCamelCase_ : Optional[Any] =F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCamelCase_ : str =requests.get(lowerCamelCase__ ).json() lowerCamelCase_ : List[Any] ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowerCamelCase_ : Optional[int] =math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowerCamelCase__ ): lowerCamelCase_ : int =requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowerCamelCase__ ) return {} def _snake_case ( lowerCamelCase__ : str ) -> Dict: lowerCamelCase_ : List[Any] ={} if os.path.exists(lowerCamelCase__ ): lowerCamelCase_ : Optional[int] =os.listdir(lowerCamelCase__ ) for file in files: try: with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , encoding="utf-8" ) as f: lowerCamelCase_ : Any =f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(lowerCamelCase__ , lowerCamelCase__ )}.""" ) from e return _artifact def _snake_case ( ) -> Optional[Any]: class lowercase__ : def __init__( self : Optional[int] , snake_case__ : str ): lowerCamelCase_ : Tuple =name lowerCamelCase_ : int =[] def __str__( self : Any ): return self.name def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : str ): self.paths.append({"name": self.name, "path": path} ) lowerCamelCase_ : Dict[str, Artifact] ={} lowerCamelCase_ : List[str] =filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase_ : Union[str, Any] =directory if artifact_name not in _available_artifacts: lowerCamelCase_ : Optional[int] =Artifact(lowerCamelCase__ ) _available_artifacts[artifact_name].add_path(lowerCamelCase__ ) return _available_artifacts if __name__ == "__main__": A__ : List[Any] = get_job_links() A__ : str = retrieve_available_artifacts() A__ : List[Any] = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A__ : Dict = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job A__ : Optional[int] = github_actions_job_links.get('run_doctests') A__ : List[str] = available_artifacts['doc_tests_gpu_test_reports'].paths[0] A__ : Dict = retrieve_artifact(artifact_path['name']) if "stats" in artifact: A__ , A__ , A__ : str = handle_test_results(artifact['stats']) A__ : str = failed A__ : int = success A__ : List[str] = time_spent[1:-1] + ', ' A__ : Dict = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): A__ : Tuple = line.replace('FAILED ', '') A__ : str = line.split()[0].replace('\n', '') if "::" in line: A__ , A__ : Any = line.split('::') else: A__ , A__ : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A__ : Any = docs[file_regex] doc_test_results[category]["failed"].append(test) A__ : Optional[Any] = all_failures[test] if test in all_failures else 'N/A' A__ : List[Any] = failure break A__ : int = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
244
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Any , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : Union[str, Any] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[str] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : Optional[int] =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : List[str] =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Tuple =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Optional[int] =self.encoder(snake_case__ ) lowerCamelCase_ : Dict =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : int =self.quantize(snake_case__ ) else: lowerCamelCase_ : Optional[int] =h lowerCamelCase_ : Optional[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : List[str] =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : List[str] =sample lowerCamelCase_ : Any =self.encode(snake_case__ ).latents lowerCamelCase_ : List[Any] =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
244
1
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[float] ): if len(__lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __UpperCAmelCase : Optional[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
63
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a : """simple docstring""" a : int a : Node | None = None a : Node | None = None def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = Node(1 ) __UpperCAmelCase : int = Node(2 ) __UpperCAmelCase : Optional[Any] = Node(3 ) __UpperCAmelCase : Dict = Node(4 ) __UpperCAmelCase : Tuple = Node(5 ) return tree def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase__ ( __lowerCamelCase : Node | None ): __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : Tuple = deque([root] ) while process_queue: __UpperCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None ): if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : int = height(__lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = 0 return output def lowerCamelCase__ ( ): # Main function for testing. __UpperCAmelCase : List[Any] = make_tree() print(f"""In-order Traversal: {inorder(__lowerCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(__lowerCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(__lowerCamelCase )}""" , """\n""" ) print(f"""Height of Tree: {height(__lowerCamelCase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__lowerCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__lowerCamelCase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(__lowerCamelCase , level=__lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( a_ :BertModel , a_ :str , a_ :str) -> str: __a : List[str] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __a : Any = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(a_): os.makedirs(a_) __a : List[Any] = model.state_dict() def to_tf_var_name(a_ :str): for patt, repl in iter(a_): __a : int = name.replace(a_ , a_) return F"""bert/{name}""" def create_tf_var(a_ :np.ndarray , a_ :str , a_ :tf.Session): __a : int = tf.dtypes.as_dtype(tensor.dtype) __a : Optional[int] = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(a_) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a : Any = to_tf_var_name(a_) __a : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): __a : List[Any] = torch_tensor.T __a : Optional[Any] = create_tf_var(tensor=a_ , name=a_ , session=a_) tf.keras.backend.set_value(a_ , a_) __a : int = session.run(a_) print(F"""Successfully created {tf_name}: {np.allclose(a_ , a_)}""") __a : Tuple = tf.train.Saver(tf.trainable_variables()) saver.save(a_ , os.path.join(a_ , model_name.replace('''-''' , '''_''') + '''.ckpt''')) def __A ( a_ :int=None) -> str: __a : str = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , required=a_ , help='''model name e.g. bert-base-uncased''') parser.add_argument( '''--cache_dir''' , type=a_ , default=a_ , required=a_ , help='''Directory containing pytorch model''') parser.add_argument('''--pytorch_model_path''' , type=a_ , required=a_ , help='''/path/to/<pytorch-model-name>.bin''') parser.add_argument('''--tf_cache_dir''' , type=a_ , required=a_ , help='''Directory in which to save tensorflow model''') __a : Optional[Any] = parser.parse_args(a_) __a : Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name) if __name__ == "__main__": main()
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "xlm" _UpperCamelCase : str = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , a__=30145 , a__=2048 , a__=12 , a__=16 , a__=0.1 , a__=0.1 , a__=True , a__=False , a__=False , a__=False , a__=1 , a__=True , a__=512 , a__=2048**-0.5 , a__=1e-12 , a__=0.0_2 , a__=0 , a__=1 , a__=2 , a__=3 , a__=5 , a__=True , a__="first" , a__=True , a__=None , a__=True , a__=0.1 , a__=5 , a__=5 , a__=0 , a__=0 , a__=2 , a__=0 , **a__ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = emb_dim _lowerCAmelCase : Union[str, Any] = n_layers _lowerCAmelCase : str = n_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : Union[str, Any] = attention_dropout _lowerCAmelCase : Optional[Any] = gelu_activation _lowerCAmelCase : Tuple = sinusoidal_embeddings _lowerCAmelCase : Optional[int] = causal _lowerCAmelCase : List[str] = asm _lowerCAmelCase : Dict = n_langs _lowerCAmelCase : str = use_lang_emb _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = bos_index _lowerCAmelCase : int = eos_index _lowerCAmelCase : str = pad_index _lowerCAmelCase : List[str] = unk_index _lowerCAmelCase : Optional[int] = mask_index _lowerCAmelCase : str = is_encoder _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = embed_init_std _lowerCAmelCase : Optional[int] = init_std _lowerCAmelCase : Optional[Any] = summary_type _lowerCAmelCase : Union[str, Any] = summary_use_proj _lowerCAmelCase : List[Any] = summary_activation _lowerCAmelCase : Union[str, Any] = summary_proj_to_labels _lowerCAmelCase : Optional[Any] = summary_first_dropout _lowerCAmelCase : Optional[Any] = start_n_top _lowerCAmelCase : List[Any] = end_n_top _lowerCAmelCase : List[str] = mask_token_id _lowerCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _lowerCAmelCase : Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=a__ , bos_token_id=a__ , **a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
213
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A_ ): """simple docstring""" UpperCAmelCase__ : str = ["torch", "torchsde"] def __init__( self , *A_ , **A_ ) -> Dict: requires_backends(self , ['torch', 'torchsde'] ) @classmethod def _a ( cls , *A_ , **A_ ) -> Dict: requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def _a ( cls , *A_ , **A_ ) -> List[Any]: requires_backends(cls , ['torch', 'torchsde'] )
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : list[tuple[float, float]] ): __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(lowercase__ ) - 1 def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,lowercase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase__ ) ,5 ) == 1 return output_values def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(lowercase__ ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : float = 0.0_1 ): from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(lowercase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( lowercase__ ,lowercase__ ,color='''blue''' ,label='''Curve of Degree ''' + str(self.degree ) ,) plt.scatter(lowercase__ ,lowercase__ ,color='''red''' ,label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """▁""" UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } UpperCamelCase = { """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off UpperCamelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ["input_ids", "attention_mask"] snake_case = [] snake_case = [] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs A_ : Any = legacy_behaviour super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) A_ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : List[str] = 1 A_ : Union[str, Any] = len(self.sp_model ) A_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } A_ : Any = {v: k for k, v in self.lang_code_to_id.items()} A_ : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ : List[Any] = src_lang if src_lang is not None else '''eng_Latn''' A_ : int = self.lang_code_to_id[self._src_lang] A_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self )->Tuple: '''simple docstring''' A_ : Dict = self.__dict__.copy() A_ : Tuple = None A_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self )->int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self )->str: '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : List[str] = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' A_ : Dict = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : Optional[int] = src_lang A_ : List[str] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : Any = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : Any = tgt_lang_id return inputs def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Tuple = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : int = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Any = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A_ : Any = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "eng_Latn" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "fra_Latn" , **_SCREAMING_SNAKE_CASE , )->BatchEncoding: '''simple docstring''' A_ : Optional[Any] = src_lang A_ : List[str] = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Any = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A_ : int = [] A_ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: A_ : Union[str, Any] = [self.cur_lang_code] A_ : Tuple = [self.eos_token_id] def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : List[Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: A_ : Optional[int] = [] A_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: A_ : Optional[Any] = [self.cur_lang_code] A_ : Tuple = [self.eos_token_id]
720
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } UpperCamelCase = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off UpperCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ["input_ids", "attention_mask"] snake_case = MBartTokenizer snake_case = [] snake_case = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' A_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = vocab_file A_ : List[Any] = False if not self.vocab_file else True A_ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) A_ : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ : int = src_lang if src_lang is not None else '''en_XX''' A_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) A_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self )->str: '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' A_ : List[str] = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : str = src_lang A_ : Optional[int] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : Any = tgt_lang_id return inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , )->BatchEncoding: '''simple docstring''' A_ : Optional[int] = src_lang A_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : str = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : int = [] A_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] A_ : int = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : str = [] A_ : Tuple = [self.eos_token_id, self.cur_lang_code] A_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
152
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _UpperCAmelCase = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :torch.nn.Module , SCREAMING_SNAKE_CASE :BnbQuantizationConfig , SCREAMING_SNAKE_CASE :Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE :Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE :Optional[List[str]] = None , SCREAMING_SNAKE_CASE :Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE :bool = False , ) -> Optional[Any]: __lowerCAmelCase : Optional[Any] = bnb_quantization_config.load_in_abit __lowerCAmelCase : List[str] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) __lowerCAmelCase : Optional[Any] = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: __lowerCAmelCase : str = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowerCAmelCase : Any = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Union[str, Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft __lowerCAmelCase : Tuple = load_in_abit __lowerCAmelCase : Dict = load_in_abit __lowerCAmelCase : Tuple = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) __lowerCAmelCase : Dict = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype __lowerCAmelCase : Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowerCAmelCase : List[str] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) __lowerCAmelCase : Tuple = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): __lowerCAmelCase : List[Any] = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowerCAmelCase : List[str] = True __lowerCAmelCase : Tuple = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any=None , SCREAMING_SNAKE_CASE :List[Any]=None , SCREAMING_SNAKE_CASE :Dict=None ) -> Optional[Any]: if device_map is None: if torch.cuda.is_available(): __lowerCAmelCase : Dict = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) __lowerCAmelCase : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : List[str] = special_dtypes __lowerCAmelCase : List[str] = no_split_module_classes __lowerCAmelCase : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowerCAmelCase : Tuple = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == """balanced_low_0""") , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = max_memory __lowerCAmelCase : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu __lowerCAmelCase : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowerCAmelCase : str = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :Any=None ) -> Tuple: if modules_to_not_convert is None: __lowerCAmelCase : Any = [] __lowerCAmelCase , __lowerCAmelCase : str = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Optional[int]=None , ) -> Any: __lowerCAmelCase : Dict = False for name, module in model.named_children(): if current_key_name is None: __lowerCAmelCase : Optional[int] = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowerCAmelCase : Optional[int] = """.""".join(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowerCAmelCase : Any = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowerCAmelCase : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __lowerCAmelCase : Union[str, Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) __lowerCAmelCase : Dict = module.weight.data if module.bias is not None: __lowerCAmelCase : Tuple = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = True if len(list(module.children() ) ) > 0: __lowerCAmelCase , __lowerCAmelCase : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[int]: # Create a copy of the model with init_empty_weights(): __lowerCAmelCase : List[str] = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowerCAmelCase : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowerCAmelCase : List[str] = sum(SCREAMING_SNAKE_CASE , [] ) __lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model __lowerCAmelCase : Dict = False if hasattr(SCREAMING_SNAKE_CASE , """base_model_prefix""" ): __lowerCAmelCase : Tuple = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCAmelCase : List[Any] = list(model.named_children() ) __lowerCAmelCase : Tuple = [list_modules[-1][0]] # add last module together with tied weights __lowerCAmelCase : Union[str, Any] = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys __lowerCAmelCase : Optional[Any] = [""".weight""", """.bias"""] __lowerCAmelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCAmelCase : str = name.replace(SCREAMING_SNAKE_CASE , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict ) -> Tuple: for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :nn.Module ) -> Optional[int]: return next(parameter.parameters() ).device def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = param_name __lowerCAmelCase : Tuple = model if "." in tensor_name: __lowerCAmelCase : str = tensor_name.split(""".""" ) for split in splits[:-1]: __lowerCAmelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) __lowerCAmelCase : Any = new_module __lowerCAmelCase : Union[str, Any] = splits[-1] # offload weights __lowerCAmelCase : Union[str, Any] = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , """meta""" , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
504
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE ) ) return data_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = min(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCAmelCase : int = F'''Invalid weight of {weight:f} provided''' raise ValueError(SCREAMING_SNAKE_CASE ) score_lists.append(SCREAMING_SNAKE_CASE ) return score_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[float]: __lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = final_scores[j] + ele return final_scores def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : str = get_data(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = calculate_each_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = generate_final_scores(SCREAMING_SNAKE_CASE ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE ): source_data[i].append(SCREAMING_SNAKE_CASE ) return source_data
504
1
def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ): __lowercase = len(set_a.intersection(_UpperCamelCase ) ) if alternative_union: __lowercase = len(_UpperCamelCase ) + len(_UpperCamelCase ) else: __lowercase = len(set_a.union(_UpperCamelCase ) ) return intersection / union if isinstance(_UpperCamelCase , (list, tuple) ) and isinstance(_UpperCamelCase , (list, tuple) ): __lowercase = [element for element in set_a if element in set_b] if alternative_union: __lowercase = len(_UpperCamelCase ) + len(_UpperCamelCase ) return len(_UpperCamelCase ) / union else: __lowercase = set_a + [element for element in set_b if element not in set_a] return len(_UpperCamelCase ) / len(_UpperCamelCase ) return len(_UpperCamelCase ) / len(_UpperCamelCase ) return None if __name__ == "__main__": a : List[Any] = {'''a''', '''b''', '''c''', '''d''', '''e'''} a : List[str] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
527
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Any = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "owlvit_text_model" def __init__( self , snake_case_=4_9_4_0_8 , snake_case_=5_1_2 , snake_case_=2_0_4_8 , snake_case_=1_2 , snake_case_=8 , snake_case_=1_6 , snake_case_="quick_gelu" , snake_case_=1e-5 , snake_case_=0.0 , snake_case_=0.0_2 , snake_case_=1.0 , snake_case_=0 , snake_case_=4_9_4_0_6 , snake_case_=4_9_4_0_7 , **snake_case_ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = max_position_embeddings __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def A ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) __lowercase , __lowercase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "owlvit_vision_model" def __init__( self , snake_case_=7_6_8 , snake_case_=3_0_7_2 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3 , snake_case_=7_6_8 , snake_case_=3_2 , snake_case_="quick_gelu" , snake_case_=1e-5 , snake_case_=0.0 , snake_case_=0.0_2 , snake_case_=1.0 , **snake_case_ , ) -> Any: '''simple docstring''' super().__init__(**snake_case_ ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = image_size __lowercase = patch_size __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def A ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) __lowercase , __lowercase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "owlvit" __UpperCAmelCase = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=5_1_2 , snake_case_=2.6_5_9_2 , snake_case_=True , **snake_case_ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case_ ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __lowercase = OwlViTTextConfig(**snake_case_ ) __lowercase = OwlViTVisionConfig(**snake_case_ ) __lowercase = projection_dim __lowercase = logit_scale_init_value __lowercase = return_dict __lowercase = 1.0 @classmethod def A ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) __lowercase , __lowercase = cls.get_config_dict(snake_case_ , **snake_case_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) @classmethod def A ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> int: '''simple docstring''' __lowercase = {} __lowercase = text_config __lowercase = vision_config return cls.from_dict(snake_case_ , **snake_case_ ) def A ( self ) -> Any: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' @property def A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def A ( self ) -> float: '''simple docstring''' return 1e-4 def A ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = None , ) -> Mapping[str, Any]: '''simple docstring''' __lowercase = super().generate_dummy_inputs( processor.tokenizer , batch_size=snake_case_ , seq_length=snake_case_ , framework=snake_case_ ) __lowercase = super().generate_dummy_inputs( processor.image_processor , batch_size=snake_case_ , framework=snake_case_ ) return {**text_input_dict, **image_input_dict} @property def A ( self ) -> int: '''simple docstring''' return 1_4
527
1
from ....utils import logging a_ : str = logging.get_logger(__name__) class lowerCamelCase__ ( lowercase_): """simple docstring""" def __init__(self , __a , __a=None , __a=20_48 ): '''simple docstring''' lowerCamelCase = config.__dict__ lowerCamelCase = modal_hidden_size if num_labels: lowerCamelCase = num_labels
623
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''''' _lowercase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase : str = None # compression type in fsspec. ex: "gzip" _lowercase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , UpperCamelCase__ : str = "" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , **UpperCamelCase__ : List[Any]): '''simple docstring''' super().__init__(self , **UpperCamelCase__) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ = fsspec.open( UpperCamelCase__ , mode="""rb""" , protocol=UpperCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ = os.path.basename(self.file.path.split("""::""")[0]) snake_case__ = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) snake_case__ = None @classmethod def __magic_name__ ( cls : Union[str, Any] , UpperCamelCase__ : List[Any]): '''simple docstring''' return super()._strip_protocol(UpperCamelCase__).lstrip("""/""") def __magic_name__ ( self : Dict): '''simple docstring''' if self.dir_cache is None: snake_case__ = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} snake_case__ = {f["""name"""]: f} def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str): '''simple docstring''' return self.file.open().read() def __magic_name__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' snake_case__ = self._strip_protocol(UpperCamelCase__) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''bz2''' _lowercase : Dict = '''bz2''' _lowercase : Optional[int] = '''.bz2''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''gzip''' _lowercase : List[str] = '''gzip''' _lowercase : Any = '''.gz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = '''lz4''' _lowercase : List[Any] = '''lz4''' _lowercase : Dict = '''.lz4''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''xz''' _lowercase : Union[str, Any] = '''xz''' _lowercase : Optional[int] = '''.xz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''zstd''' _lowercase : Tuple = '''zstd''' _lowercase : Union[str, Any] = '''.zst''' def __init__( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , UpperCamelCase__ : int = DEFAULT_BLOCK_SIZE , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__( fo=UpperCamelCase__ , mode=UpperCamelCase__ , target_protocol=UpperCamelCase__ , target_options=UpperCamelCase__ , block_size=UpperCamelCase__ , **UpperCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = file_ def __enter__( self : List[str]): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any]): '''simple docstring''' self._file.__exit__(*UpperCamelCase__ , **UpperCamelCase__) def __iter__( self : Any): '''simple docstring''' return iter(self._file) def __magic_name__ ( self : List[str]): '''simple docstring''' return next(self._file) def __getattr__( self : Any , UpperCamelCase__ : int): '''simple docstring''' return getattr(self._file , UpperCamelCase__) def fixed_enter(*UpperCamelCase__ : int , **UpperCamelCase__ : int): return WrappedFile(_enter(*UpperCamelCase__ , **UpperCamelCase__)) snake_case__ = fixed_enter
654
0
'''simple docstring''' import requests from bsa import BeautifulSoup def A (__A : Union[str, Any] = "AAPL" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCAmelCase_ = BeautifulSoup(requests.get(_lowerCAmelCase ).text , '''html.parser''' ) UpperCAmelCase_ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
701
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device snake_case_ : Tuple = False class __snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''') pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( image=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
169
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase__ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def _lowerCAmelCase ( __snake_case : Optional[int] ) -> int: for pegasus_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) return k def _lowerCAmelCase ( __snake_case : dict , __snake_case : dict ) -> PegasusForConditionalGeneration: __A : Dict = DEFAULTS.copy() cfg_kwargs.update(__snake_case ) __A : List[Any] = PegasusConfig(**__snake_case ) __A : Dict = PegasusForConditionalGeneration(__snake_case ) __A : Tuple = torch_model.model.state_dict() __A : int = {} for k, v in tf_weights.items(): __A : int = rename_state_dict_key(__snake_case ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: __A : int = v.T __A : Optional[int] = torch.tensor(__snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected __A : Optional[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __A : Tuple = mapping['shared.weight'] __A : Dict = mapping['shared.weight'] __A : int = {k: torch.zeros_like(__snake_case ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**__snake_case ) __A ,__A : List[Any] = torch_model.model.load_state_dict(__snake_case , strict=__snake_case ) __A : int = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def _lowerCAmelCase ( __snake_case : List[Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __A : str = tf.train.list_variables(__snake_case ) __A : List[Any] = {} __A : str = ['Adafactor', 'global_step'] for name, shape in tqdm(__snake_case , desc='converting tf checkpoint to dict' ): __A : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __A : Tuple = tf.train.load_variable(__snake_case , __snake_case ) __A : Dict = array return tf_weights def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Tuple: # save tokenizer first __A : int = Path(__snake_case ).parent.name __A : int = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] __A : str = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__snake_case ) # convert model __A : Dict = get_tf_weights_as_numpy(__snake_case ) __A : List[str] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": __A : str = task_specific_params __A : Any = convert_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) __A : Optional[int] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(__snake_case , Path(__snake_case ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase__ : Any = parser.parse_args() if args.save_dir is None: lowercase__ : Tuple = Path(args.tf_ckpt_path).parent.name lowercase__ : Any = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = sum(lowerCamelCase ) __lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowercase = True for i in range(1 , s + 1 ): __lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowercase = dp[i][j - 1] if arr[i - 1] <= j: __lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowercase = s - 2 * j break return diff
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=UpperCamelCase_ ): _a = ["""flax""", """transformers"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> List[str]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) class __lowercase ( metaclass=UpperCamelCase_ ): _a = ["""flax""", """transformers"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> Dict: requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class __lowercase ( metaclass=UpperCamelCase_ ): _a = ["""flax""", """transformers"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> Tuple: requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) class __lowercase ( metaclass=UpperCamelCase_ ): _a = ["""flax""", """transformers"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> Optional[int]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def UpperCamelCase__ ( cls , *UpperCamelCase , **UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] )
539
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=0 , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : str = seq_length SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_input_mask SCREAMING_SNAKE_CASE__ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE__ : int = use_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Any = type_vocab_size SCREAMING_SNAKE_CASE__ : int = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Any = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : Any = scope SCREAMING_SNAKE_CASE__ : int = projection_dim def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE__ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE__ : str = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFDPRContextEncoder(config=_a ) SCREAMING_SNAKE_CASE__ : Tuple = model(_a , attention_mask=_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE__ : Tuple = model(_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE__ : str = model(_a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFDPRQuestionEncoder(config=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , attention_mask=_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE__ : List[str] = model(_a , token_type_ids=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = TFDPRReader(config=_a ) SCREAMING_SNAKE_CASE__ : Tuple = model(_a , attention_mask=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE :int = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :Dict = False def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[int] = TFDPRContextEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = TFDPRQuestionEncoder.from_pretrained(_a ) self.assertIsNotNone(_a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = TFDPRReader.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_tf class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE__ : Tuple = model(_a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Any = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
680
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def A__ ( __A , __A , __A = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__A ), magnitude * sin(__A )] return [magnitude * cos(radians(__A ) ), magnitude * sin(radians(__A ) )] def A__ ( __A , __A , __A = 10**-1 ): '''simple docstring''' _lowerCamelCase : NDArray[floataa] = cross(__A , __A ) _lowerCamelCase : float = sum(__A ) return abs(__A ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase : List[str] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCAmelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase : Any = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCAmelCase : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase : List[str] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCAmelCase : Any = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: def wrapper(*UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): __lowerCamelCase : Tuple = timeit.default_timer() __lowerCamelCase : List[str] = func(*UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCamelCase : List[str] = timeit.default_timer() - starttime return delta __lowerCamelCase : int = func.__name__ return wrapper def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Any]=1_00 , UpperCAmelCase_ : Union[str, Any]=None ) -> List[str]: __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Any = seq_shapes or {} for i in range(UpperCAmelCase_ ): __lowerCamelCase : Dict = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): __lowerCamelCase : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": __lowerCamelCase : Optional[Any] = 'The small grey turtle was surprisingly fast when challenged.' else: __lowerCamelCase : Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): __lowerCamelCase : Optional[int] = v.feature __lowerCamelCase : Union[str, Any] = seq_shapes[k] __lowerCamelCase : int = np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) __lowerCamelCase : Tuple = data dummy_data.append((i, example) ) return dummy_data def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=1_00 , UpperCAmelCase_ : Tuple=None ) -> Any: __lowerCamelCase : Optional[int] = generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: __lowerCamelCase : Union[str, Any] = features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __lowerCamelCase : Dict = datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
13
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] lowerCAmelCase__ = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = {F"funnel-transformer/{name}": 512 for name in _model_names} lowerCAmelCase__ = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names} class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = 2 def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<sep>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<cls>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_="##" , **lowerCAmelCase_ , ): super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , clean_text=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , wordpieces_prefix=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowercase = getattr(lowerCAmelCase_ , normalizer_state.pop("type" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowerCAmelCase_ ) __lowercase = do_lower_case def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
321
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging SCREAMING_SNAKE_CASE_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase = 'https://pypi.org/pypi/diffusers/json' UpperCAmelCase = json.loads(request.urlopen(lowerCAmelCase ).read() )['releases'].keys() return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : version.Version(lowerCAmelCase ) ) def lowercase__ ( ) -> int: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) UpperCAmelCase = Path(lowerCAmelCase ) / '__init__.py' if not init_path.exists(): init_path.touch() def lowercase__ ( lowerCAmelCase : Union[str, os.PathLike] ) -> Tuple: """simple docstring""" init_hf_modules() UpperCAmelCase = Path(lowerCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) UpperCAmelCase = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def lowercase__ ( lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: UpperCAmelCase = f.read() # Imports of the form `import .xxx` UpperCAmelCase = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase ) ) def lowercase__ ( lowerCAmelCase : str ) -> Tuple: """simple docstring""" UpperCAmelCase = False UpperCAmelCase = [module_file] UpperCAmelCase = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase ) ) UpperCAmelCase = Path(lowerCAmelCase ).parent UpperCAmelCase = [str(module_path / m ) for m in new_imports] UpperCAmelCase = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase = [F"{f}.py" for f in new_import_files] UpperCAmelCase = len(lowerCAmelCase ) == 0 all_relative_imports.extend(lowerCAmelCase ) return all_relative_imports def lowercase__ ( lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: UpperCAmelCase = f.read() # Imports of the form `import xxx` UpperCAmelCase = re.findall('^\s*import\s+(\S+)\s*$' , lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all UpperCAmelCase = list(set(lowerCAmelCase ) ) UpperCAmelCase = [] for imp in imports: try: importlib.import_module(lowerCAmelCase ) except ImportError: missing_packages.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F"{', '.join(lowerCAmelCase )}. Run `pip install {' '.join(lowerCAmelCase )}`" ) return get_relative_imports(lowerCAmelCase ) def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : str ) -> int: """simple docstring""" UpperCAmelCase = module_path.replace(os.path.sep , '.' ) UpperCAmelCase = importlib.import_module(lowerCAmelCase ) if class_name is None: return find_pipeline_class(lowerCAmelCase ) return getattr(lowerCAmelCase , lowerCAmelCase ) def lowercase__ ( lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" from ..pipelines import DiffusionPipeline UpperCAmelCase = dict(inspect.getmembers(lowerCAmelCase , inspect.isclass ) ) UpperCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) UpperCAmelCase = cls return pipeline_class def lowercase__ ( lowerCAmelCase : Union[str, os.PathLike] , lowerCAmelCase : str , lowerCAmelCase : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[Dict[str, str]] = None , lowerCAmelCase : Optional[Union[bool, str]] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = False , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ): UpperCAmelCase = module_file_or_url UpperCAmelCase = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: UpperCAmelCase = get_diffusers_versions() # cut ".dev0" UpperCAmelCase = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: UpperCAmelCase = F"v{revision}" elif revision == "main": UpperCAmelCase = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub UpperCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase , pipeline=lowerCAmelCase ) try: UpperCAmelCase = cached_download( lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , proxies=lowerCAmelCase , resume_download=lowerCAmelCase , local_files_only=lowerCAmelCase , use_auth_token=lowerCAmelCase , ) UpperCAmelCase = 'git' UpperCAmelCase = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase = hf_hub_download( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , proxies=lowerCAmelCase , resume_download=lowerCAmelCase , local_files_only=lowerCAmelCase , use_auth_token=lowerCAmelCase , ) UpperCAmelCase = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment UpperCAmelCase = check_imports(lowerCAmelCase ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase ) UpperCAmelCase = Path(lowerCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase = F"{module_needed}.py" shutil.copy(os.path.join(lowerCAmelCase , lowerCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = use_auth_token elif use_auth_token is True: UpperCAmelCase = HfFolder.get_token() else: UpperCAmelCase = None UpperCAmelCase = model_info(lowerCAmelCase , revision=lowerCAmelCase , token=lowerCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase = submodule_path / commit_hash UpperCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase , F"{module_needed}.py" , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) return os.path.join(lowerCAmelCase , lowerCAmelCase ) def lowercase__ ( lowerCAmelCase : Union[str, os.PathLike] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[Dict[str, str]] = None , lowerCAmelCase : Optional[Union[bool, str]] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = False , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = get_cached_module_file( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) return get_class_in_module(lowerCAmelCase , final_module.replace('.py' , '' ) )
183
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): @staticmethod @abstractmethod def a_ ( lowercase_ ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def a_ ( self ) -> Any: raise NotImplementedError()
183
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __A(lowerCAmelCase ) -> Optional[int]: """simple docstring""" if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(lowerCAmelCase , """_dynamo""" ): return False return isinstance(lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def __A(lowerCAmelCase , lowerCAmelCase = True ) -> Dict: """simple docstring""" _UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCamelCase = is_compiled_module(lowerCAmelCase ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = model.module if not keep_fpaa_wrapper: _UpperCamelCase = getattr(lowerCAmelCase , """forward""" ) _UpperCamelCase = model.__dict__.pop("""_original_forward""" , lowerCAmelCase ) if original_forward is not None: while hasattr(lowerCAmelCase , """__wrapped__""" ): _UpperCamelCase = forward.__wrapped__ if forward == original_forward: break _UpperCamelCase = forward if getattr(lowerCAmelCase , """_converted_to_transformer_engine""" , lowerCAmelCase ): convert_model(lowerCAmelCase , to_transformer_engine=lowerCAmelCase ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = compiled_model return model def __A() -> Any: """simple docstring""" PartialState().wait_for_everyone() def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase , lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase , lowerCAmelCase ) @contextmanager def __A(**lowerCAmelCase ) -> List[str]: """simple docstring""" for key, value in kwargs.items(): _UpperCamelCase = str(lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __A(lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if not hasattr(lowerCAmelCase , """__qualname__""" ) and not hasattr(lowerCAmelCase , """__name__""" ): _UpperCamelCase = getattr(lowerCAmelCase , """__class__""" , lowerCAmelCase ) if hasattr(lowerCAmelCase , """__qualname__""" ): return obj.__qualname__ if hasattr(lowerCAmelCase , """__name__""" ): return obj.__name__ return str(lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase ) -> List[Any]: """simple docstring""" for key, value in source.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = destination.setdefault(lowerCAmelCase , {} ) merge_dicts(lowerCAmelCase , lowerCAmelCase ) else: _UpperCamelCase = value return destination def __A(lowerCAmelCase = None ) -> bool: """simple docstring""" if port is None: _UpperCamelCase = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
612
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Union[str, Any] = "pix2struct_text_model" UpperCamelCase_ : str = ["past_key_values"] UpperCamelCase_ : str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a=5_02_44 , a=7_68 , a=64 , a=20_48 , a=12 , a=12 , a=32 , a=1_28 , a=0.1 , a=1e-6 , a=1.0 , a="gelu_new" , a=0 , a=False , a=0 , a=1 , a=False , a=True , **a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = d_kv _UpperCamelCase = d_ff _UpperCamelCase = num_layers _UpperCamelCase = num_heads _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = dropout_rate _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_factor _UpperCamelCase = use_cache _UpperCamelCase = eos_token_id _UpperCamelCase = decoder_start_token_id # for backwards compatibility _UpperCamelCase = dense_act_fn super().__init__( pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , tie_word_embeddings=a , is_decoder=a , **a , ) @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : int = "pix2struct_vision_model" def __init__( self , a=7_68 , a=7_68 , a=20_48 , a=64 , a=12 , a=12 , a="gelu_new" , a=1e-6 , a=0.0 , a=0.0 , a=1e-10 , a=1.0 , a=40_96 , a=32 , a=1_28 , **a , ) -> Tuple: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = hidden_size _UpperCamelCase = patch_embed_hidden_size _UpperCamelCase = d_ff _UpperCamelCase = dropout_rate _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = initializer_range _UpperCamelCase = initializer_factor _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = dense_act_fn _UpperCamelCase = seq_len _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = d_kv @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = "pix2struct" UpperCamelCase_ : int = True def __init__( self , a=None , a=None , a=1.0 , a=0.02 , a=False , a=False , a=True , **a , ) -> Optional[Any]: '''simple docstring''' super().__init__(tie_word_embeddings=a , is_encoder_decoder=a , **a ) if text_config is None: _UpperCamelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _UpperCamelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _UpperCamelCase = PixaStructTextConfig(**a ) _UpperCamelCase = PixaStructVisionConfig(**a ) _UpperCamelCase = self.text_config.decoder_start_token_id _UpperCamelCase = self.text_config.pad_token_id _UpperCamelCase = self.text_config.eos_token_id _UpperCamelCase = initializer_factor _UpperCamelCase = initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = is_vqa @classmethod def A_ ( cls , a , a , **a ) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
612
1
from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=snake_case__ ): """simple docstring""" lowercase = ["""onnx"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ["onnx"] ) @classmethod def __lowerCAmelCase ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["onnx"] ) @classmethod def __lowerCAmelCase ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" requires_backends(cls , ["onnx"] )
713
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Tuple = logging.get_logger(__name__) __a : List[str] = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """visual_bert""" def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
414
0
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" while b: _a , _a = b, a % b return a def lowerCAmelCase (__A , __A): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b) def lowerCAmelCase (): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5)}''') print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3)}''') print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3)}''') print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6)}''') print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3)}''') print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5)}''') print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3)}''') print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3)}''') print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6)}''') print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3)}''') if __name__ == "__main__": main()
11
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def lowerCAmelCase (__A): """simple docstring""" _a = credit_card_number _a = 0 _a = len(__A) - 2 for i in range(__A , -1 , -2): # double the value of every second digit _a = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _a = cc_number[:i] + str(__A) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCAmelCase (__A): """simple docstring""" _a = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''') return False if not 13 <= len(__A) <= 16: print(F'''{error_message} of its length.''') return False if not validate_initial_digits(__A): print(F'''{error_message} of its first two digits.''') return False if not luhn_validation(__A): print(F'''{error_message} it fails the Luhn check.''') return False print(F'''{credit_card_number} is a valid credit card number.''') return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
11
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=1_6 , lowerCamelCase__=3_6 , lowerCamelCase__=6 , lowerCamelCase__=6 , lowerCamelCase__=6 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = embedding_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_hidden_groups _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope def snake_case__ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = AlbertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = AlbertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , sentence_order_label=lowerCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = AlbertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = AlbertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = AlbertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = AlbertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_choices _lowerCamelCase = AlbertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ : int = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ : str = True def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): _lowerCamelCase = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def snake_case__ ( self ): _lowerCamelCase = AlbertModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 ) def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def snake_case__ ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = AlbertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self ): _lowerCamelCase = AlbertModel.from_pretrained('''albert-base-v2''' ) _lowerCamelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _lowerCamelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCamelCase__ ) _lowerCamelCase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) )
709
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : Dict = random.Random() def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : int=1.0 , lowercase_ : str=None , lowercase_ : Optional[int]=None ) -> Any: if rng is None: _lowerCamelCase = global_rng _lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=4_0_0 , lowerCamelCase__=2_0_0_0 , lowerCamelCase__=1_0 , lowerCamelCase__=1_6_0 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=4_0_0_0 , lowerCamelCase__=False , lowerCamelCase__=True , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = min_seq_length _lowerCamelCase = max_seq_length _lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase = padding_value _lowerCamelCase = sampling_rate _lowerCamelCase = return_attention_mask _lowerCamelCase = do_normalize _lowerCamelCase = feature_size _lowerCamelCase = chunk_length _lowerCamelCase = hop_length def snake_case__ ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , lowerCamelCase__=False , lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def snake_case__ ( self ): _lowerCamelCase = WhisperFeatureExtractionTester(self ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase = feature_extractor(lowerCamelCase__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test batched _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase = np.asarray(lowerCamelCase__ ) _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test truncation required _lowerCamelCase = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] _lowerCamelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs_truncated] _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def snake_case__ ( self ): import torch _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _lowerCamelCase = ds.sort('''id''' ).select(range(lowerCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self ): # fmt: off _lowerCamelCase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on _lowerCamelCase = self._load_datasamples(1 ) _lowerCamelCase = WhisperFeatureExtractor() _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , lowerCamelCase__ , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = self._load_datasamples(1 )[0] _lowerCamelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowerCamelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ) - 1 ) < 1e-3 ) )
623
0
from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' if len(_lowerCAmelCase ) < k or k < 0: raise ValueError("Invalid Input" ) __snake_case = __snake_case = sum(array[:k] ) for i in range(len(_lowerCAmelCase ) - k ): __snake_case = current_sum - array[i] + array[i + k] __snake_case = max(_lowerCAmelCase , _lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A : str = [randint(-1000, 1000) for i in range(100)] A : Union[str, Any] = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
371
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCAmelCase ( ) -> Tuple: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCAmelCase ( ) -> int: '''simple docstring''' assert _test_patching.open is open __snake_case = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , _lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' __snake_case = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , _lowerCAmelCase ): pass def _lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' __snake_case = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , _lowerCAmelCase ) is None with patch_submodule(_test_patching , "len" , _lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' __snake_case = "__test_patch_submodule_start_and_stop_mock__" __snake_case = patch_submodule(_test_patching , "open" , _lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCAmelCase ( ) -> Any: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = "__test_patch_submodule_successive_join__" __snake_case = "__test_patch_submodule_successive_dirname__" __snake_case = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.rename" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCAmelCase ( ) -> str: '''simple docstring''' __snake_case = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , _lowerCAmelCase ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , _lowerCAmelCase ): pass
371
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : List[str] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""ibert""" def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.0_2 , __a=1e-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=False , __a="none" , **__a , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = quant_mode __lowerCAmelCase = force_dequant class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
282
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__a , ) assert hasattr(self , "env" ) def snake_case ( self , __a ): # configuration for running training on smdistributed Model Parallel __lowerCAmelCase = { "enabled": True, "processes_per_host": 8, } __lowerCAmelCase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowerCAmelCase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowerCAmelCase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_00, } , metric_definitions=self.env.metric_definitions , distribution=__a , py_version="py36" , ) def snake_case ( self , __a ): TrainingJobAnalytics(__a ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def snake_case ( self , __a ): # create estimator __lowerCAmelCase = self.create_estimator(__a ) # run training estimator.fit() # result dataframe __lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __a )
282
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> Optional[Any]: '''simple docstring''' if radian_mode: return [magnitude * cos(_UpperCAmelCase ), magnitude * sin(_UpperCAmelCase )] return [magnitude * cos(radians(_UpperCAmelCase ) ), magnitude * sin(radians(_UpperCAmelCase ) )] def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 10**-1 ) -> str: '''simple docstring''' __lowercase = cross(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = sum(_UpperCAmelCase ) return abs(_UpperCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCAmelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase__ = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) lowerCAmelCase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
321
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a: str = 16 __a: Optional[Any] = 32 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = "bert-base-cased" ): lowercase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowercase__ : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Optional[int] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase__ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Initialize accelerator lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config['''lr'''] lowercase__ : Dict = int(config['''num_epochs'''] ) lowercase__ : Optional[Any] = int(config['''seed'''] ) lowercase__ : List[Any] = int(config['''batch_size'''] ) lowercase__ : Tuple = args.model_name_or_path set_seed(UpperCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) # Instantiate optimizer lowercase__ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : int = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase__ : int = 1 lowercase__ : int = (len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=0 , num_training_steps=UpperCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(UpperCAmelCase , total_num_steps=UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : str = 0 # Now we train the model lowercase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowercase__ : Any = 0 lowercase__ : Optional[Any] = {} for epoch in range(UpperCAmelCase , UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): lowercase__ : int = model(**UpperCAmelCase ) lowercase__ : Any = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ : Dict = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**UpperCAmelCase ) lowercase__ : Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ : int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase ) - 1: lowercase__ : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowercase__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase ) lowercase__ : Any = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowercase__ : Tuple = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( ): lowercase__ : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=UpperCAmelCase , default=3 , help='''Number of train epochs.''' , ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : List[str] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
152
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ = logging.get_logger(__name__) class snake_case_ ( _A): lowerCamelCase :List[Any] = "AutoTokenizer" lowerCamelCase :List[str] = ["tokenizer"] lowerCamelCase :Any = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , __lowercase , __lowercase=None ) -> Dict: super().__init__(__lowercase ) lowerCamelCase : Optional[Any] =speaker_embeddings @classmethod def __lowercase ( cls , __lowercase , __lowercase="speaker_embeddings_path.json" , **__lowercase ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: lowerCamelCase : str =get_file_from_repo( __lowercase , __lowercase , subfolder=kwargs.pop('''subfolder''' , __lowercase ) , cache_dir=kwargs.pop('''cache_dir''' , __lowercase ) , force_download=kwargs.pop('''force_download''' , __lowercase ) , proxies=kwargs.pop('''proxies''' , __lowercase ) , resume_download=kwargs.pop('''resume_download''' , __lowercase ) , local_files_only=kwargs.pop('''local_files_only''' , __lowercase ) , use_auth_token=kwargs.pop('''use_auth_token''' , __lowercase ) , revision=kwargs.pop('''revision''' , __lowercase ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(__lowercase , __lowercase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCamelCase : Tuple =None else: with open(__lowercase ) as speaker_embeddings_json: lowerCamelCase : Optional[int] =json.load(__lowercase ) else: lowerCamelCase : Optional[Any] =None lowerCamelCase : int =AutoTokenizer.from_pretrained(__lowercase , **__lowercase ) return cls(tokenizer=__lowercase , speaker_embeddings=__lowercase ) def __lowercase ( self , __lowercase , __lowercase="speaker_embeddings_path.json" , __lowercase="speaker_embeddings" , __lowercase = False , **__lowercase , ) -> List[Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__lowercase , __lowercase , '''v2''' ) , exist_ok=__lowercase ) lowerCamelCase : List[str] ={} lowerCamelCase : List[Any] =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCamelCase : str =self._load_voice_preset(__lowercase ) lowerCamelCase : str ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , __lowercase , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__lowercase , ) lowerCamelCase : Tuple =os.path.join(__lowercase , F"{prompt_key}_{key}.npy" ) lowerCamelCase : Dict =tmp_dict with open(os.path.join(__lowercase , __lowercase ) , '''w''' ) as fp: json.dump(__lowercase , __lowercase ) super().save_pretrained(__lowercase , __lowercase , **__lowercase ) def __lowercase ( self , __lowercase = None , **__lowercase ) -> Union[str, Any]: lowerCamelCase : str =self.speaker_embeddings[voice_preset] lowerCamelCase : Dict ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCamelCase : str =get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __lowercase ) , cache_dir=kwargs.pop('''cache_dir''' , __lowercase ) , force_download=kwargs.pop('''force_download''' , __lowercase ) , proxies=kwargs.pop('''proxies''' , __lowercase ) , resume_download=kwargs.pop('''resume_download''' , __lowercase ) , local_files_only=kwargs.pop('''local_files_only''' , __lowercase ) , use_auth_token=kwargs.pop('''use_auth_token''' , __lowercase ) , revision=kwargs.pop('''revision''' , __lowercase ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCamelCase : Tuple =np.load(__lowercase ) return voice_preset_dict def __lowercase ( self , __lowercase = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , __lowercase=None , __lowercase=None , __lowercase="pt" , __lowercase=2_5_6 , __lowercase=False , __lowercase=True , __lowercase=False , **__lowercase , ) -> Any: if voice_preset is not None and not isinstance(__lowercase , __lowercase ): if ( isinstance(__lowercase , __lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCamelCase : Union[str, Any] =self._load_voice_preset(__lowercase ) else: if isinstance(__lowercase , __lowercase ) and not voice_preset.endswith('''.npz''' ): lowerCamelCase : Union[str, Any] =voice_preset + '''.npz''' lowerCamelCase : List[str] =np.load(__lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(__lowercase , **__lowercase ) lowerCamelCase : Tuple =BatchFeature(data=__lowercase , tensor_type=__lowercase ) lowerCamelCase : Union[str, Any] =self.tokenizer( __lowercase , return_tensors=__lowercase , padding='''max_length''' , max_length=__lowercase , return_attention_mask=__lowercase , return_token_type_ids=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) if voice_preset is not None: lowerCamelCase : str =voice_preset return encoded_text
262
def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis lowerCamelCase : Optional[Any] =[ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] lowerCamelCase : Dict =[2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(SCREAMING_SNAKE_CASE_ , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase : Any =primes[:idx] break lowerCamelCase , lowerCamelCase : Any =n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase : Union[str, Any] =False for r in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : List[str] =pow(SCREAMING_SNAKE_CASE_ , d * 2**r , SCREAMING_SNAKE_CASE_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase : List[str] =True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A__ ( ) -> None: assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
262
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : list[list[str]] = [[] for _ in range(UpperCamelCase )] __UpperCAmelCase : Union[str, Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(UpperCamelCase ) <= key: return input_string for position, character in enumerate(UpperCamelCase ): __UpperCAmelCase : Dict = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : List[str] = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = ["".join(UpperCamelCase ) for row in temp_grid] __UpperCAmelCase : Any = "".join(UpperCamelCase ) return output_string def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __UpperCAmelCase : list[list[str]] = [[] for _ in range(UpperCamelCase )] # generates template for position in range(len(UpperCamelCase ) ): __UpperCAmelCase : Optional[int] = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : str = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __UpperCAmelCase : Union[str, Any] = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase : Tuple = input_string[counter : counter + len(UpperCamelCase )] grid.append(list(UpperCamelCase ) ) counter += len(UpperCamelCase ) __UpperCAmelCase : List[str] = "" # reads as zigzag for position in range(len(UpperCamelCase ) ): __UpperCAmelCase : Dict = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : Union[str, Any] = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _UpperCamelCase ( UpperCamelCase ) -> dict[int, str]: """simple docstring""" __UpperCAmelCase : Tuple = {} for key_guess in range(1 , len(UpperCamelCase ) ): # tries every key __UpperCAmelCase : str = decrypt(UpperCamelCase , UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
77
from pathlib import Path import fire def lowerCAmelCase_ ( lowercase: str , lowercase: str , lowercase: int ) -> int: '''simple docstring''' _UpperCamelCase: Any = Path(lowercase ) _UpperCamelCase: int = Path(lowercase ) dest_dir.mkdir(exist_ok=lowercase ) for path in src_dir.iterdir(): _UpperCamelCase: List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] _UpperCamelCase: int = dest_dir.joinpath(path.name ) print(lowercase ) dest_path.open('''w''' ).write('''\n'''.join(lowercase ) ) if __name__ == "__main__": fire.Fire(minify)
271
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> bool: _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCamelCase = True for i in range(lowercase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCamelCase = True if a[i].islower(): _lowerCamelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
623
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : Dict = random.Random() def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : int=1.0 , lowercase_ : str=None , lowercase_ : Optional[int]=None ) -> Any: if rng is None: _lowerCamelCase = global_rng _lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=4_0_0 , lowerCamelCase__=2_0_0_0 , lowerCamelCase__=1_0 , lowerCamelCase__=1_6_0 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=4_0_0_0 , lowerCamelCase__=False , lowerCamelCase__=True , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = min_seq_length _lowerCamelCase = max_seq_length _lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase = padding_value _lowerCamelCase = sampling_rate _lowerCamelCase = return_attention_mask _lowerCamelCase = do_normalize _lowerCamelCase = feature_size _lowerCamelCase = chunk_length _lowerCamelCase = hop_length def snake_case__ ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , lowerCamelCase__=False , lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: _lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def snake_case__ ( self ): _lowerCamelCase = WhisperFeatureExtractionTester(self ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCamelCase__ ) _lowerCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase = feature_extractor(lowerCamelCase__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test batched _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase = np.asarray(lowerCamelCase__ ) _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test truncation required _lowerCamelCase = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] _lowerCamelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs_truncated] _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def snake_case__ ( self ): import torch _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _lowerCamelCase = ds.sort('''id''' ).select(range(lowerCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self ): # fmt: off _lowerCamelCase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on _lowerCamelCase = self._load_datasamples(1 ) _lowerCamelCase = WhisperFeatureExtractor() _lowerCamelCase = feature_extractor(lowerCamelCase__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , lowerCamelCase__ , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = self._load_datasamples(1 )[0] _lowerCamelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowerCamelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ ) - 1 ) < 1e-3 ) )
623
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename a_ : Optional[Any] = """http://www.mocksite.com/file1.txt""" a_ : List[str] = """\"text\": [\"foo\", \"foo\"]""" a_ : Optional[Any] = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __UpperCamelCase : lowercase : int =2_00 lowercase : Union[str, Any] ={'Content-Length': '100'} lowercase : Optional[int] ={} def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return [bytes(lowerCAmelCase, '''utf-8''' )] def a_ ( *__snake_case : Optional[int] , **__snake_case : List[Any] ) -> List[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def a_ ( __snake_case : Any , __snake_case : int , __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" import requests monkeypatch.setattr(__snake_case , '''request''' , __snake_case ) lowerCamelCase_ =URL if issubclass(__snake_case , __snake_case ): lowerCamelCase_ =url elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ =[url] elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ ={'''train''': url} lowerCamelCase_ ='''dummy''' lowerCamelCase_ ='''downloads''' lowerCamelCase_ =tmp_path lowerCamelCase_ =DownloadConfig( cache_dir=os.path.join(__snake_case , __snake_case ) , use_etag=__snake_case , ) lowerCamelCase_ =DownloadManager(dataset_name=__snake_case , download_config=__snake_case ) lowerCamelCase_ =dl_manager.download(__snake_case ) lowerCamelCase_ =urls for downloaded_paths in [downloaded_paths]: if isinstance(__snake_case , __snake_case ): lowerCamelCase_ =[downloaded_paths] lowerCamelCase_ =[urls] elif isinstance(__snake_case , __snake_case ): assert "train" in downloaded_paths.keys() lowerCamelCase_ =downloaded_paths.values() lowerCamelCase_ =urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__snake_case , __snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase_ =Path(__snake_case ) lowerCamelCase_ =downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase_ =downloaded_path.read_text() assert content == CONTENT lowerCamelCase_ =downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowerCamelCase_ =json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def a_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ =str(__snake_case ) if issubclass(__snake_case , __snake_case ): lowerCamelCase_ =filename elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ =[filename] elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ ={'''train''': filename} lowerCamelCase_ ='''dummy''' lowerCamelCase_ =xz_file.parent lowerCamelCase_ ='''extracted''' lowerCamelCase_ =DownloadConfig( cache_dir=__snake_case , use_etag=__snake_case , ) lowerCamelCase_ =DownloadManager(dataset_name=__snake_case , download_config=__snake_case ) lowerCamelCase_ =dl_manager.extract(__snake_case ) lowerCamelCase_ =paths for extracted_paths in [extracted_paths]: if isinstance(__snake_case , __snake_case ): lowerCamelCase_ =[extracted_paths] lowerCamelCase_ =[paths] elif isinstance(__snake_case , __snake_case ): assert "train" in extracted_paths.keys() lowerCamelCase_ =extracted_paths.values() lowerCamelCase_ =paths.values() assert extracted_paths for extracted_path, input_path in zip(__snake_case , __snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase_ =Path(__snake_case ) lowerCamelCase_ =extracted_path.parts assert parts[-1] == hash_url_to_filename(__snake_case , etag=__snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase_ =extracted_path.read_text() lowerCamelCase_ =text_file.read_text() assert extracted_file_content == expected_file_content def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] ) -> str: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__snake_case , start=1 ): lowerCamelCase_ =json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def a_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =request.getfixturevalue(__snake_case ) lowerCamelCase_ =DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ) , start=1 ): _test_jsonl(__snake_case , __snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def a_ ( __snake_case : Dict , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =request.getfixturevalue(__snake_case ) lowerCamelCase_ =DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__snake_case ) , start=1 ): _test_jsonl(__snake_case , __snake_case ) assert num_tar == 1 assert num_jsonl == 2 def a_ ( __snake_case : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ =DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__snake_case ) , start=1 ): assert os.path.basename(__snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
676
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : torch.FloatTensor lowercase : torch.FloatTensor class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : Tuple =1 @register_to_config def __init__( self, lowerCAmelCase = 2_000, lowerCAmelCase = 0.1_5, lowerCAmelCase = 0.0_1, lowerCAmelCase = 1_3_4_8.0, lowerCAmelCase = 1e-5, lowerCAmelCase = 1, ): """simple docstring""" lowerCamelCase_ =sigma_max # setable values lowerCamelCase_ =None self.set_sigmas(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" return sample def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCamelCase_ =torch.linspace(1, lowerCAmelCase, lowerCAmelCase, device=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =sigma_min if sigma_min is not None else self.config.sigma_min lowerCamelCase_ =sigma_max if sigma_max is not None else self.config.sigma_max lowerCamelCase_ =sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCamelCase_ =torch.exp(torch.linspace(math.log(lowerCAmelCase ), math.log(lowerCAmelCase ), lowerCAmelCase ) ) lowerCamelCase_ =torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = True, ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowerCamelCase_ =timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCamelCase_ =(timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCamelCase_ =timesteps.to(self.discrete_sigmas.device ) lowerCamelCase_ =self.discrete_sigmas[timesteps].to(sample.device ) lowerCamelCase_ =self.get_adjacent_sigma(lowerCAmelCase, lowerCAmelCase ).to(sample.device ) lowerCamelCase_ =torch.zeros_like(lowerCAmelCase ) lowerCamelCase_ =(sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCamelCase_ =diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCamelCase_ =diffusion.unsqueeze(-1 ) lowerCamelCase_ =drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCamelCase_ =randn_tensor( sample.shape, layout=sample.layout, generator=lowerCAmelCase, device=sample.device, dtype=sample.dtype ) lowerCamelCase_ =sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCamelCase_ =prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase, prev_sample_mean=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = True, ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCamelCase_ =randn_tensor(sample.shape, layout=sample.layout, generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCamelCase_ =torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowerCamelCase_ =torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowerCamelCase_ =(self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCamelCase_ =step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCamelCase_ =step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCamelCase_ =step_size.unsqueeze(-1 ) lowerCamelCase_ =sample + step_size * model_output lowerCamelCase_ =prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =timesteps.to(original_samples.device ) lowerCamelCase_ =self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCamelCase_ =( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) lowerCamelCase_ =noise + original_samples return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
676
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = """trajectory_transformer""" _SCREAMING_SNAKE_CASE : Optional[Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Optional[Any] = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :Any , __magic_name__ :List[str]=100 , __magic_name__ :List[Any]=5 , __magic_name__ :Optional[int]=1 , __magic_name__ :Optional[Any]=1 , __magic_name__ :Optional[Any]=249 , __magic_name__ :Tuple=6 , __magic_name__ :Any=17 , __magic_name__ :str=25 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :List[str]=4 , __magic_name__ :Optional[Any]=128 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :str=0.1 , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :str=0.0006 , __magic_name__ :Optional[int]=512 , __magic_name__ :Tuple=0.02 , __magic_name__ :Dict=1E-12 , __magic_name__ :Dict=1 , __magic_name__ :Dict=True , __magic_name__ :Optional[Any]=1 , __magic_name__ :Optional[int]=50_256 , __magic_name__ :Optional[int]=50_256 , **__magic_name__ :Optional[Any] , ) ->Optional[int]: lowercase : int = vocab_size lowercase : Optional[int] = action_weight lowercase : Union[str, Any] = reward_weight lowercase : Any = value_weight lowercase : Union[str, Any] = max_position_embeddings lowercase : List[str] = block_size lowercase : int = action_dim lowercase : Any = observation_dim lowercase : List[Any] = transition_dim lowercase : Optional[int] = learning_rate lowercase : Any = n_layer lowercase : Any = n_head lowercase : Dict = n_embd lowercase : List[str] = embd_pdrop lowercase : List[Any] = attn_pdrop lowercase : Dict = resid_pdrop lowercase : Optional[int] = initializer_range lowercase : int = layer_norm_eps lowercase : str = kaiming_initializer_range lowercase : List[Any] = use_cache super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
706
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : Union[str, Any] = sin(_A ) lowercase : Tuple = cos(_A ) lowercase : Any = _sin / (2 * q_factor) lowercase : Any = (1 - _cos) / 2 lowercase : List[str] = 1 - _cos lowercase : int = 1 + alpha lowercase : Optional[int] = -2 * _cos lowercase : str = 1 - alpha lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Union[str, Any] = tau * frequency / samplerate lowercase : Dict = sin(_A ) lowercase : List[Any] = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : Any = (1 + _cos) / 2 lowercase : Dict = -1 - _cos lowercase : Tuple = 1 + alpha lowercase : Tuple = -2 * _cos lowercase : Any = 1 - alpha lowercase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : Optional[int] = sin(_A ) lowercase : Any = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : Optional[int] = _sin / 2 lowercase : Dict = 0 lowercase : Any = -ba lowercase : Any = 1 + alpha lowercase : Union[str, Any] = -2 * _cos lowercase : Any = 1 - alpha lowercase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A = 1 / sqrt(2 ) ) -> IIRFilter: lowercase : Optional[int] = tau * frequency / samplerate lowercase : List[Any] = sin(_A ) lowercase : Tuple = cos(_A ) lowercase : Any = _sin / (2 * q_factor) lowercase : Dict = 1 - alpha lowercase : int = -2 * _cos lowercase : Optional[Any] = 1 + alpha lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : Optional[int] = sin(_A ) lowercase : Dict = cos(_A ) lowercase : Optional[Any] = _sin / (2 * q_factor) lowercase : int = 10 ** (gain_db / 40) lowercase : str = 1 + alpha * big_a lowercase : str = -2 * _cos lowercase : Optional[int] = 1 - alpha * big_a lowercase : Optional[Any] = 1 + alpha / big_a lowercase : Tuple = -2 * _cos lowercase : List[Any] = 1 - alpha / big_a lowercase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : str = sin(_A ) lowercase : str = cos(_A ) lowercase : Optional[int] = _sin / (2 * q_factor) lowercase : List[Any] = 10 ** (gain_db / 40) lowercase : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos lowercase : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos lowercase : List[Any] = (big_a - 1) - (big_a + 1) * _cos lowercase : Dict = (big_a - 1) + (big_a + 1) * _cos lowercase : int = 2 * sqrt(_A ) * alpha lowercase : Union[str, Any] = big_a * (pmc + aaa) lowercase : int = 2 * big_a * mpc lowercase : Optional[Any] = big_a * (pmc - aaa) lowercase : Tuple = ppmc + aaa lowercase : int = -2 * pmpc lowercase : Optional[int] = ppmc - aaa lowercase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase ( _A , _A , _A , _A = 1 / sqrt(2 ) , ) -> IIRFilter: lowercase : Optional[Any] = tau * frequency / samplerate lowercase : Union[str, Any] = sin(_A ) lowercase : List[Any] = cos(_A ) lowercase : str = _sin / (2 * q_factor) lowercase : List[str] = 10 ** (gain_db / 40) lowercase : str = (big_a + 1) - (big_a - 1) * _cos lowercase : List[Any] = (big_a + 1) + (big_a - 1) * _cos lowercase : str = (big_a - 1) - (big_a + 1) * _cos lowercase : str = (big_a - 1) + (big_a + 1) * _cos lowercase : int = 2 * sqrt(_A ) * alpha lowercase : int = big_a * (ppmc + aaa) lowercase : Optional[Any] = -2 * big_a * pmpc lowercase : Tuple = big_a * (ppmc - aaa) lowercase : Union[str, Any] = pmc + aaa lowercase : List[Any] = 2 * mpc lowercase : Optional[Any] = pmc - aaa lowercase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
348
0
"""simple docstring""" class UpperCamelCase_ (__A ): pass class UpperCamelCase_ (__A ): pass class UpperCamelCase_ : def __init__( self : List[str] ) -> Tuple: UpperCAmelCase_ : int = [ [], [], [], ] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : int ) -> str: return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class UpperCamelCase_ : def __init__( self : int ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> None: if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: if not self.queue: raise UnderFlowError("The queue is empty" ) else: UpperCAmelCase_ : Union[str, Any] = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Dict ) -> str: return str(self.queue ) def snake_case ( ): UpperCAmelCase_ : Dict = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,1_00 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,1_28 ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case ( ): UpperCAmelCase_ : Dict = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
95
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _A ( __magic_name__): SCREAMING_SNAKE_CASE : int = '''gpt_neo''' SCREAMING_SNAKE_CASE : Tuple = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_layers SCREAMING_SNAKE_CASE_ : List[str] = num_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = window_size SCREAMING_SNAKE_CASE_ : int = activation_function SCREAMING_SNAKE_CASE_ : Union[str, Any] = resid_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = embed_dropout SCREAMING_SNAKE_CASE_ : int = attention_dropout SCREAMING_SNAKE_CASE_ : int = classifier_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_types SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.expand_attention_types_params(_SCREAMING_SNAKE_CASE ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def A_ ( a , a , a , a ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : List[Any] = input.size() SCREAMING_SNAKE_CASE_ : str = len(a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = shape[dimension] SCREAMING_SNAKE_CASE_ : List[Any] = torch.arange(0 , a , a ) SCREAMING_SNAKE_CASE_ : List[str] = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1 SCREAMING_SNAKE_CASE_ : Tuple = torch.arange(a ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [slice(a )] * rank SCREAMING_SNAKE_CASE_ : int = indices SCREAMING_SNAKE_CASE_ : int = input[s] SCREAMING_SNAKE_CASE_ : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def A_ ( a , a ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : str = torch.arange(1 , a ) SCREAMING_SNAKE_CASE_ : List[str] = torch.remainder(a , a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = remainders == 0 SCREAMING_SNAKE_CASE_ : Any = candidates[divisor_indices] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='floor' ) class _A ( __magic_name__): @property def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase ( self ): """simple docstring""" return self._config.num_heads def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ : Any = seqlen + 2 SCREAMING_SNAKE_CASE_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_ : List[Any] = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ : Tuple = common_inputs['attention_mask'] if self.use_past: SCREAMING_SNAKE_CASE_ : Any = ordered_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase ( self ): """simple docstring""" return 13
511
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case : Dict = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case : Tuple = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case : List[str] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowercase ( __lowerCAmelCase : str ): def remove_articles(__lowerCAmelCase : Optional[Any] ): a__ = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__lowerCAmelCase , ' ' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : int ): a__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Any ): a__ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 1_0_0 def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): a__ = [rgram for rgrams in rgramslist for rgram in rgrams] a__ = Counter(__lowerCAmelCase ) a__ = Counter(__lowerCAmelCase ) a__ = Counter() for sgram, scount in sgramcounter.items(): a__ = scount * numref a__ = Counter(__lowerCAmelCase ) a__ = Counter() for cgram, ccount in cgramcounter.items(): a__ = ccount * numref # KEEP a__ = sgramcounter_rep & cgramcounter_rep a__ = keepgramcounter_rep & rgramcounter a__ = sgramcounter_rep & rgramcounter a__ = 0 a__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: a__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a__ = sgramcounter_rep - cgramcounter_rep a__ = delgramcounter_rep - rgramcounter a__ = sgramcounter_rep - rgramcounter a__ = 0 a__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) a__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) a__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: a__ = addtmpscore / len(__lowerCAmelCase ) a__ = 0 if addscore_precision > 0 or addscore_recall > 0: a__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): a__ = len(__lowerCAmelCase ) a__ = ssent.split(' ' ) a__ = csent.split(' ' ) a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] for rsent in rsents: a__ = rsent.split(' ' ) a__ = [] a__ = [] a__ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: a__ = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: a__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((a__) , (a__) , (a__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a__ = sum([delascore, delascore, delascore, delascore] ) / 4 a__ = sum([addascore, addascore, addascore, addascore] ) / 4 a__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "13a" , __lowerCAmelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: a__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a__ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: a__ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": a__ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": a__ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: a__ = sentence if not return_str: a__ = normalized_sent.split() return normalized_sent def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) a__ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) a__ = sari_score / len(__lowerCAmelCase ) return 1_0_0 * sari_score def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]="exp" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : str=False , __lowerCAmelCase : Union[str, Any]=False , ): a__ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) a__ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] a__ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Any ) -> Optional[int]: a__ = {} result.update({'sari': compute_sari(sources=__snake_case ,predictions=__snake_case ,references=__snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__snake_case ,references=__snake_case )} ) result.update({'exact': compute_em(predictions=__snake_case ,references=__snake_case )} ) return result
718
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] ): # This function is recursive a__ = len(__lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a__ = array[0] a__ = False a__ = 1 a__ = [] while not is_found and i < array_length: if array[i] < pivot: a__ = True a__ = [element for element in array[i:] if element >= array[i]] a__ = longest_subsequence(__lowerCAmelCase ) if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): a__ = temp_array else: i += 1 a__ = [element for element in array[1:] if element >= pivot] a__ = [pivot, *longest_subsequence(__lowerCAmelCase )] if len(__lowerCAmelCase ) > len(__lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
657
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : int = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class UpperCAmelCase ( a_ ): """simple docstring""" A__ : Dict = 'timesformer' def __init__( self , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=8 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-6 , _snake_case=True , _snake_case="divided_space_time" , _snake_case=0 , **_snake_case , ) -> str: super().__init__(**_snake_case ) _UpperCamelCase : Dict = image_size _UpperCamelCase : Tuple = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Tuple = num_frames _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Optional[int] = qkv_bias _UpperCamelCase : str = attention_type _UpperCamelCase : Optional[Any] = drop_path_rate
683
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCAmelCase : Tuple = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
683
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase__ :Union[str, Any] = logging.getLogger(__name__) def __lowercase (_lowercase, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = False, ) -> int: """simple docstring""" __lowerCamelCase : List[Any] = bnb_quantization_config.load_in_abit __lowerCamelCase : Optional[int] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) __lowerCamelCase : Union[str, Any] = [] # custom device map if isinstance(_lowercase, _lowercase ) and len(device_map.keys() ) > 1: __lowerCamelCase : Optional[int] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowerCamelCase : Optional[Any] = get_keys_to_not_convert(_lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowercase ) __lowerCamelCase : Dict = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowerCamelCase : List[str] = [] __lowerCamelCase : str = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowercase ) # compatibility with peft __lowerCamelCase : Optional[Any] = load_in_abit __lowerCamelCase : Tuple = load_in_abit __lowerCamelCase : Union[str, Any] = get_parameter_device(_lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) __lowerCamelCase : Optional[Any] = replace_with_bnb_layers(_lowercase, _lowercase, modules_to_not_convert=_lowercase ) # convert param to the right dtype __lowerCamelCase : Optional[int] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowerCamelCase : List[Any] = name.replace(""".weight""", """""" ).replace(""".bias""", """""" ) __lowerCamelCase : int = getattr(_lowercase, _lowercase, _lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowercase ): param.to(_lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"The model device type is {model_device.type}. However, cuda is needed for quantization." """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): __lowerCamelCase : str = replace_with_bnb_layers( _lowercase, _lowercase, modules_to_not_convert=_lowercase ) __lowerCamelCase : Optional[int] = get_quantized_model_device_map( _lowercase, _lowercase, _lowercase, max_memory=_lowercase, no_split_module_classes=_lowercase, ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowerCamelCase : str = True __lowerCamelCase : Optional[int] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _lowercase, _lowercase, _lowercase, dtype=bnb_quantization_config.torch_dtype, offload_folder=_lowercase, offload_state_dict=_lowercase, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, ) return dispatch_model(_lowercase, device_map=_lowercase, offload_dir=_lowercase ) def __lowercase (_lowercase, _lowercase, _lowercase=None, _lowercase=None, _lowercase=None ) -> Optional[Any]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): __lowerCamelCase : str = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_lowercase, _lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) __lowerCamelCase : Any = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowerCamelCase : str = {} __lowerCamelCase : int = special_dtypes __lowerCamelCase : Union[str, Any] = no_split_module_classes __lowerCamelCase : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowerCamelCase : List[str] = get_balanced_memory( _lowercase, low_zero=(device_map == """balanced_low_0"""), max_memory=_lowercase, **_lowercase, ) __lowerCamelCase : List[str] = max_memory __lowerCamelCase : str = infer_auto_device_map(_lowercase, **_lowercase ) if isinstance(_lowercase, _lowercase ): # check if don't have any quantized module on the cpu __lowerCamelCase : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowerCamelCase : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowercase (_lowercase, _lowercase, _lowercase=None, _lowercase=None ) -> Tuple: """simple docstring""" if modules_to_not_convert is None: __lowerCamelCase : List[Any] = [] __lowerCamelCase : Dict = _replace_with_bnb_layers( _lowercase, _lowercase, _lowercase, _lowercase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowercase (_lowercase, _lowercase, _lowercase=None, _lowercase=None, ) -> List[str]: """simple docstring""" __lowerCamelCase : Tuple = False for name, module in model.named_children(): if current_key_name is None: __lowerCamelCase : str = [] current_key_name.append(_lowercase ) if isinstance(_lowercase, nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowerCamelCase : List[Any] = """.""".join(_lowercase ) __lowerCamelCase : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowerCamelCase : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowerCamelCase : Dict = bnb.nn.LinearabitLt( module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=_lowercase, threshold=bnb_quantization_config.llm_inta_threshold, ) elif bnb_quantization_config.load_in_abit: __lowerCamelCase : str = bnb.nn.Linearabit( module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) __lowerCamelCase : List[str] = module.weight.data if module.bias is not None: __lowerCamelCase : Tuple = module.bias.data bnb_module.requires_grad_(_lowercase ) setattr(_lowercase, _lowercase, _lowercase ) __lowerCamelCase : Dict = True if len(list(module.children() ) ) > 0: __lowerCamelCase : Optional[int] = _replace_with_bnb_layers( _lowercase, _lowercase, _lowercase, _lowercase ) __lowerCamelCase : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" # Create a copy of the model with init_empty_weights(): __lowerCamelCase : Optional[Any] = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowerCamelCase : str = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase, _lowercase ): __lowerCamelCase : Tuple = sum(list(tied_params.values() ), [] ) + list(tied_params.keys() ) else: __lowerCamelCase : Any = sum(_lowercase, [] ) __lowerCamelCase : Optional[int] = len(_lowercase ) > 0 # Check if it is a base model __lowerCamelCase : Optional[int] = False if hasattr(_lowercase, """base_model_prefix""" ): __lowerCamelCase : Any = not hasattr(_lowercase, model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCamelCase : Dict = list(model.named_children() ) __lowerCamelCase : List[str] = [list_modules[-1][0]] # add last module together with tied weights __lowerCamelCase : str = set(_lowercase ) - set(_lowercase ) __lowerCamelCase : Optional[Any] = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys __lowerCamelCase : Union[str, Any] = [""".weight""", """.bias"""] __lowerCamelCase : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCamelCase : Optional[int] = name.replace(_lowercase, """""" ) filtered_module_names.append(_lowercase ) return filtered_module_names def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" for m in model.modules(): if isinstance(_lowercase, bnb.nn.Linearabit ): return True return False def __lowercase (_lowercase ) -> List[str]: """simple docstring""" return next(parameter.parameters() ).device def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> Any: """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_lowercase, _lowercase, 0, dtype=_lowercase, value=_lowercase ) __lowerCamelCase : str = param_name __lowerCamelCase : Tuple = model if "." in tensor_name: __lowerCamelCase : Dict = tensor_name.split(""".""" ) for split in splits[:-1]: __lowerCamelCase : Union[str, Any] = getattr(_lowercase, _lowercase ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) __lowerCamelCase : str = new_module __lowerCamelCase : Union[str, Any] = splits[-1] # offload weights __lowerCamelCase : List[Any] = False offload_weight(module._parameters[tensor_name], _lowercase, _lowercase, index=_lowercase ) if hasattr(module._parameters[tensor_name], """SCB""" ): offload_weight( module._parameters[tensor_name].SCB, param_name.replace("""weight""", """SCB""" ), _lowercase, index=_lowercase, ) else: offload_weight(_lowercase, _lowercase, _lowercase, index=_lowercase ) offload_weight(_lowercase, param_name.replace("""weight""", """SCB""" ), _lowercase, index=_lowercase ) set_module_tensor_to_device(_lowercase, _lowercase, """meta""", dtype=_lowercase, value=torch.empty(*param.size() ) )
701
'''simple docstring''' from statistics import mean import numpy as np def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase ) -> list: """simple docstring""" __lowerCamelCase : str = 0 # Number of processes finished __lowerCamelCase : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCamelCase : int = [0] * no_of_process # List to include calculation results __lowerCamelCase : Optional[int] = [0] * no_of_process # Sort by arrival time. __lowerCamelCase : int = [burst_time[i] for i in np.argsort(_lowercase )] __lowerCamelCase : Union[str, Any] = [process_name[i] for i in np.argsort(_lowercase )] arrival_time.sort() while no_of_process > finished_process_count: __lowerCamelCase : Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCamelCase : List[str] = arrival_time[i] __lowerCamelCase : Dict = 0 # Index showing the location of the process being performed __lowerCamelCase : Optional[Any] = 0 # Saves the current response ratio. __lowerCamelCase : List[str] = 0 for i in range(0, _lowercase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCamelCase : Optional[int] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCamelCase : List[Any] = temp __lowerCamelCase : str = i # Calculate the turn around time __lowerCamelCase : Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCamelCase : Optional[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase ) -> list: """simple docstring""" __lowerCamelCase : List[Any] = [0] * no_of_process for i in range(0, _lowercase ): __lowerCamelCase : Tuple = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCAmelCase__ :List[Any] = 5 UpperCAmelCase__ :Tuple = ["""A""", """B""", """C""", """D""", """E"""] UpperCAmelCase__ :Tuple = [1, 2, 3, 4, 5] UpperCAmelCase__ :List[Any] = [1, 2, 3, 4, 5] UpperCAmelCase__ :Union[str, Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCAmelCase__ :Optional[int] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
483
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def UpperCAmelCase_ ( self ): lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = LlamaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) lowerCAmelCase_ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCAmelCase_ = True lowerCAmelCase_ = LlamaModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCAmelCase_ = LlamaForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = LlamaForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase , ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] lowerCAmelCase_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __a , __a , __a , unittest.TestCase ): __A : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __A : Tuple = (LlamaForCausalLM,) if is_torch_available() else () __A : str = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __A : str = False __A : Optional[int] = False def UpperCAmelCase_ ( self ): lowerCAmelCase_ = LlamaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = input_dict['''input_ids'''] lowerCAmelCase_ = input_ids.ne(1 ).to(_lowerCamelCase ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = LlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = '''single_label_classification''' lowerCAmelCase_ = input_dict['''input_ids'''] lowerCAmelCase_ = input_ids.ne(1 ).to(_lowerCamelCase ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = LlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = '''multi_label_classification''' lowerCAmelCase_ = input_dict['''input_ids'''] lowerCAmelCase_ = input_ids.ne(1 ).to(_lowerCamelCase ) lowerCAmelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ = LlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase_ ( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = LlamaModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() lowerCAmelCase_ = original_model(_lowerCamelCase ).last_hidden_state lowerCAmelCase_ = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase_ = LlamaModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() lowerCAmelCase_ = scaled_model(_lowerCamelCase ).last_hidden_state lowerCAmelCase_ = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-5 ) ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase_ = model(torch.tensor(_lowerCamelCase ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase_ = model(torch.tensor(_lowerCamelCase ) ) # Expected mean on dim = -1 lowerCAmelCase_ = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase_ = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowerCAmelCase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase_ = model(torch.tensor(_lowerCamelCase ) ) lowerCAmelCase_ = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase_ = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase_ = '''Simply put, the theory of relativity states that ''' lowerCAmelCase_ = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase_ = tokenizer.encode(_lowerCamelCase , return_tensors='''pt''' ) lowerCAmelCase_ = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=_lowerCamelCase ) # greedy generation outputs lowerCAmelCase_ = model.generate(_lowerCamelCase , max_new_tokens=64 , top_p=_lowerCamelCase , temperature=1 , do_sample=_lowerCamelCase ) lowerCAmelCase_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
274
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A_ : Optional[Any] =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A_ : Tuple ='''main''' # Default branch name A_ : Dict ='''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) A_ : int ='''aaaaaaa''' # This commit does not exist, so we should 404. A_ : List[str] ='''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes A_ : List[str] ='''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def snake_case_ ( ) -> Tuple: print('''Welcome!''') yield print('''Bye!''') @contextlib.contextmanager def snake_case_ ( ) -> str: print('''Bonjour!''') yield print('''Au revoir!''') class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class __UpperCAmelCase ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def UpperCAmelCase_ ( self , _lowerCamelCase ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def UpperCAmelCase_ ( self ): self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) @require_tf def UpperCAmelCase_ ( self ): self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] ) @require_flax def UpperCAmelCase_ ( self ): # Flax models don't have labels self.assertEqual(find_labels(_lowerCamelCase ) , [] ) self.assertEqual(find_labels(_lowerCamelCase ) , [] ) self.assertEqual(find_labels(_lowerCamelCase ) , [] ) class __UpperCAmelCase ( __a ): pass self.assertEqual(find_labels(_lowerCamelCase ) , [] )
274
1
"""simple docstring""" def lowercase ( a__ : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = [0] * len(a__ ) _UpperCamelCase = [] _UpperCamelCase = [1] * len(a__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a__ ) ): if indegree[i] == 0: queue.append(a__ ) while queue: _UpperCamelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _UpperCamelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a__ ) print(max(a__ ) ) # Adjacency list of Graph UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCAmelCase = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') UpperCAmelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image UpperCAmelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] UpperCAmelCase = requests.get(image_url).content UpperCAmelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
342
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ :Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ :int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ :int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ :Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ :Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCamelCase__ :int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: """simple docstring""" if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] A__ = [] def generate(lowercase_ , lowercase_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowercase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , lowercase_ ) generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": _lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() _lowerCamelCase : str = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
87
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : Dict = """efficientformer""" def __init__( self , _SCREAMING_SNAKE_CASE = [3, 2, 6, 4] , _SCREAMING_SNAKE_CASE = [48, 96, 224, 448] , _SCREAMING_SNAKE_CASE = [True, True, True, True] , _SCREAMING_SNAKE_CASE = 448 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 7 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1E-5 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 1E-12 , _SCREAMING_SNAKE_CASE = 224 , _SCREAMING_SNAKE_CASE = 1E-05 , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_SCREAMING_SNAKE_CASE ) a_ = hidden_act a_ = hidden_dropout_prob a_ = hidden_sizes a_ = num_hidden_layers a_ = num_attention_heads a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = num_channels a_ = depths a_ = mlp_expansion_ratio a_ = downsamples a_ = dim a_ = key_dim a_ = attention_ratio a_ = resolution a_ = pool_size a_ = downsample_patch_size a_ = downsample_stride a_ = downsample_pad a_ = drop_path_rate a_ = num_metaad_blocks a_ = distillation a_ = use_layer_scale a_ = layer_scale_init_value a_ = image_size a_ = batch_norm_eps
403
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" a_ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a_ = json.loads(UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a_ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a_ = json.loads(UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __magic_name__ ( self ): super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def __magic_name__ ( self ): logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: a_ = torch.device("""cpu""" ) a_ = 0 elif is_sagemaker_model_parallel_available(): a_ = smp.local_rank() a_ = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) a_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) a_ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def __magic_name__ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __magic_name__ ( self ): return not is_sagemaker_model_parallel_available() @property def __magic_name__ ( self ): return False
403
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Dict = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = self.vocab_size - 1 def snake_case__ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): _lowerCamelCase = OpenAIGPTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): _lowerCamelCase = OpenAIGPTLMHeadModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): _lowerCamelCase = OpenAIGPTDoubleHeadsModel(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = OpenAIGPTForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase__ : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase__ : Union[str, Any] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): _lowerCamelCase = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ , ) _lowerCamelCase = inputs_dict['''labels'''] _lowerCamelCase = inputs_dict['''labels'''] _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase__ , ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def snake_case__ ( self ): _lowerCamelCase = OpenAIGPTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , n_embd=3_7 ) def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase__ ) @slow def snake_case__ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = OpenAIGPTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self ): _lowerCamelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCamelCase__ ) _lowerCamelCase = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=lowerCamelCase__ ) # the president is _lowerCamelCase = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCamelCase = model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase__ )
713
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
623
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _A : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=13 , __SCREAMING_SNAKE_CASE : List[str]=30 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Any=37 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=10 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : int=2 , ) -> Optional[int]: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =image_size __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =is_training __UpperCAmelCase =use_labels __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =initializer_range __UpperCAmelCase =scope __UpperCAmelCase =encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __UpperCAmelCase =(image_size // patch_size) ** 2 __UpperCAmelCase =num_patches + 2 def _a ( self : Optional[int] ) -> str: __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase =self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> Optional[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: __UpperCAmelCase =DeiTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: __UpperCAmelCase =DeiTForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase =1 __UpperCAmelCase =DeiTForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Any: __UpperCAmelCase =self.type_sequence_label_size __UpperCAmelCase =DeiTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase =1 __UpperCAmelCase =DeiTForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Any ) -> Optional[Any]: __UpperCAmelCase =self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =config_and_inputs __UpperCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase : Optional[int] = False lowerCamelCase : Dict = False lowerCamelCase : List[str] = False def _a ( self : str ) -> List[str]: __UpperCAmelCase =DeiTModelTester(self ) __UpperCAmelCase =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _a ( self : Optional[int] ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _a ( self : List[str] ) -> Tuple: pass def _a ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _a ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> int: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> int: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> Dict: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Tuple: __UpperCAmelCase =super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : Union[str, Any] ) -> str: if not self.model_tester.is_training: return __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__SCREAMING_SNAKE_CASE ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() __UpperCAmelCase =self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def _a ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCAmelCase =False __UpperCAmelCase =True for model_class in self.all_model_classes: if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(__SCREAMING_SNAKE_CASE ) model.train() __UpperCAmelCase =self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def _a ( self : List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =[ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__SCREAMING_SNAKE_CASE ), *get_values(__SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): __UpperCAmelCase =problem_type["""title"""] __UpperCAmelCase =problem_type["""num_labels"""] __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() __UpperCAmelCase =self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: __UpperCAmelCase =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __UpperCAmelCase =inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as warning_list: __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _a ( self : Tuple ) -> Dict: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =DeiTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowercase__ ( ) -> Any: """simple docstring""" __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Any ) -> Any: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[int] ) -> int: __UpperCAmelCase =DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) # verify the logits __UpperCAmelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _a ( self : List[str] ) -> int: __UpperCAmelCase =DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __UpperCAmelCase =inputs.pixel_values.to(__SCREAMING_SNAKE_CASE ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE )
68
from torch import nn class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): super().__init__() __lowercase : Any = class_size __lowercase : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : Dict = nn.Linear(_snake_case , _snake_case ) def snake_case_ ( self : Any , _snake_case : str ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __lowercase : Any = self.mlp(_snake_case ) return logits
509
0
from math import isqrt def _A ( __snake_case :int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = False return [i for i in range(2 , UpperCAmelCase__ ) if is_prime[i]] def _A ( __snake_case :int = 10**8 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2 ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
710
from typing import List import numpy as np def _A ( __snake_case :dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = {key: len(__snake_case ) for key, value in gen_kwargs.items() if isinstance(__snake_case , __snake_case )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) __SCREAMING_SNAKE_CASE = max(lists_lengths.values() , default=0 ) return max(1 , __snake_case ) def _A ( __snake_case :int , __snake_case :int ) -> List[range]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for group_idx in range(__snake_case ): __SCREAMING_SNAKE_CASE = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __SCREAMING_SNAKE_CASE = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __SCREAMING_SNAKE_CASE = range(__snake_case , start + num_shards_to_add ) shards_indices_per_group.append(__snake_case ) return shards_indices_per_group def _A ( __snake_case :dict , __snake_case :int ) -> List[dict]: """simple docstring""" __SCREAMING_SNAKE_CASE = _number_of_shards_in_gen_kwargs(__snake_case ) if num_shards == 1: return [dict(__snake_case )] else: __SCREAMING_SNAKE_CASE = _distribute_shards(num_shards=__snake_case , max_num_jobs=__snake_case ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__snake_case , __snake_case ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__snake_case ) ) ] def _A ( __snake_case :List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __snake_case ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _A ( __snake_case :np.random.Generator , __snake_case :dict ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {len(__snake_case ) for value in gen_kwargs.values() if isinstance(__snake_case , __snake_case )} __SCREAMING_SNAKE_CASE = {} for size in list_sizes: __SCREAMING_SNAKE_CASE = list(range(__snake_case ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __SCREAMING_SNAKE_CASE = dict(__snake_case ) for key, value in shuffled_kwargs.items(): if isinstance(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [value[i] for i in indices_per_size[len(__snake_case )]] return shuffled_kwargs
214
0
"""simple docstring""" import sys def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : int = len(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] lowerCAmelCase_ : List[Any] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] for chain_length in range(2 , __UpperCamelCase ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase_ : Optional[Any] = a + chain_length - 1 lowerCAmelCase_ : List[Any] = sys.maxsize for c in range(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : List[str] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase_ : Optional[Any] = cost lowerCAmelCase_ : Tuple = c return matrix, sol def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" if i == j: print("A" + str(__UpperCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase ) print(")" , end=" " ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Tuple = [30, 35, 15, 5, 10, 20, 25] lowerCAmelCase_ : List[str] = len(__UpperCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase_ , lowerCAmelCase_ : Dict = matrix_chain_order(__UpperCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
610
"""simple docstring""" # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"""([A-Z]+)([A-Z][a-z])""") lowercase__ = re.compile(r"""([a-z\d])([A-Z])""") lowercase__ = re.compile(r"""(?<!_)_(?!_)""") lowercase__ = re.compile(r"""(_{2,})""") lowercase__ = r"""^\w+(\.\w+)*$""" lowercase__ = r"""<>:/\|?*""" def __lowerCamelCase ( __UpperCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase_ : Tuple = _uppercase_uppercase_re.sub(r"\1_\2" , __UpperCamelCase ) lowerCAmelCase_ : Dict = _lowercase_uppercase_re.sub(r"\1_\2" , __UpperCamelCase ) return name.lower() def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = _single_underscore_re.split(__UpperCamelCase ) lowerCAmelCase_ : str = [_multiple_underscores_re.split(__UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__UpperCamelCase ) if n != "" ) def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]: """simple docstring""" if os.path.basename(__UpperCamelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: """simple docstring""" if os.path.basename(__UpperCamelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __UpperCamelCase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(__UpperCamelCase )}-{split}''' def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : str = filename_prefix_for_split(__UpperCamelCase , __UpperCamelCase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' lowerCAmelCase_ : List[str] = os.path.join(__UpperCamelCase , __UpperCamelCase ) return f'''{filepath}*''' def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ) -> Tuple: """simple docstring""" lowerCAmelCase_ : int = filename_prefix_for_split(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : List[Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) if shard_lengths: lowerCAmelCase_ : List[Any] = len(__UpperCamelCase ) lowerCAmelCase_ : Any = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__UpperCamelCase )] if filetype_suffix: lowerCAmelCase_ : Dict = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowerCAmelCase_ : Any = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
610
1
'''simple docstring''' from typing import Any class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Union[str, Any] = None class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> int: SCREAMING_SNAKE_CASE : int = None def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = self.head while temp is not None: print(temp.data , end=' ' ) SCREAMING_SNAKE_CASE : Dict = temp.next print() def _UpperCamelCase ( self , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = Node(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = self.head SCREAMING_SNAKE_CASE : List[str] = new_node def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> Dict: if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Dict = node_a.next SCREAMING_SNAKE_CASE : int = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Dict = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = node_a.data, node_a.data if __name__ == "__main__": _lowerCAmelCase :int = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
179
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : str = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : str = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowercase__ ) , torch_builtin(lowercase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowercase__ ) , gelu_new(lowercase__ ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : str = get_activation('gelu' ) SCREAMING_SNAKE_CASE : Dict = get_activation('gelu_10' ) SCREAMING_SNAKE_CASE : Optional[int] = torch_builtin(lowercase__ ) SCREAMING_SNAKE_CASE : str = geluaa(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(lowercase__ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _UpperCamelCase ( self ) -> Optional[Any]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowercase__ ): get_activation('bogus' ) with self.assertRaises(lowercase__ ): get_activation(lowercase__ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = get_activation('gelu' ) SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : List[str] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE : Dict = acta.a
179
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( lowerCamelCase_) -> int: if is_torch_version('<' , '2.0.0') or not hasattr(lowerCamelCase_ , '_dynamo'): return False return isinstance(lowerCamelCase_ , torch._dynamo.eval_frame.OptimizedModule) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = True) -> List[str]: UpperCamelCase__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase__ : List[Any] = is_compiled_module(lowerCamelCase_) if is_compiled: UpperCamelCase__ : Union[str, Any] = model UpperCamelCase__ : Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : str = model.module if not keep_fpaa_wrapper: UpperCamelCase__ : Tuple = getattr(lowerCamelCase_ , 'forward') UpperCamelCase__ : Tuple = model.__dict__.pop('_original_forward' , lowerCamelCase_) if original_forward is not None: while hasattr(lowerCamelCase_ , '__wrapped__'): UpperCamelCase__ : Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase__ : Dict = forward if getattr(lowerCamelCase_ , '_converted_to_transformer_engine' , lowerCamelCase_): convert_model(lowerCamelCase_ , to_transformer_engine=lowerCamelCase_) if is_compiled: UpperCamelCase__ : List[str] = model UpperCamelCase__ : List[str] = compiled_model return model def __UpperCAmelCase ( ) -> int: PartialState().wait_for_everyone() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase_ , lowerCamelCase_) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase_ , lowerCamelCase_) @contextmanager def __UpperCAmelCase ( **lowerCamelCase_) -> Any: for key, value in kwargs.items(): UpperCamelCase__ : str = str(lowerCamelCase_) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if not hasattr(lowerCamelCase_ , '__qualname__') and not hasattr(lowerCamelCase_ , '__name__'): UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , '__class__' , lowerCamelCase_) if hasattr(lowerCamelCase_ , '__qualname__'): return obj.__qualname__ if hasattr(lowerCamelCase_ , '__name__'): return obj.__name__ return str(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: for key, value in source.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : List[Any] = destination.setdefault(lowerCamelCase_ , {}) merge_dicts(lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = value return destination def __UpperCAmelCase ( lowerCamelCase_ = None) -> bool: if port is None: UpperCamelCase__ : List[Any] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s: return s.connect_ex(('localhost', port)) == 0
596
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Any = state_dict.pop(UpperCAmelCase ) snake_case__ : Tuple = val def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : int = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) snake_case__ : Optional[Any] = value else: snake_case__ : Optional[int] = value return new_state_dict def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase=False ): """simple docstring""" snake_case__ : int = """""" if is_panoptic: snake_case__ : List[Any] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : str = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[:256, :] snake_case__ : List[str] = in_proj_bias[:256] snake_case__ : List[str] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : str = in_proj_weight[-256:, :] snake_case__ : Optional[Any] = in_proj_bias[-256:] def lowerCAmelCase__ ( ): """simple docstring""" snake_case__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Union[str, Any] = """resnet101""" if "dc5" in model_name: snake_case__ : Union[str, Any] = True snake_case__ : List[Any] = """panoptic""" in model_name if is_panoptic: snake_case__ : Any = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Dict = """huggingface/label-files""" snake_case__ : List[str] = """coco-detection-id2label.json""" snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : Dict = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : str = """coco_panoptic""" if is_panoptic else """coco_detection""" snake_case__ : List[str] = ConditionalDetrImageProcessor(format=UpperCAmelCase ) # prepare image snake_case__ : Optional[int] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) snake_case__ : List[str] = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : List[str] = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCAmelCase , pretrained=UpperCAmelCase ).eval() snake_case__ : Union[str, Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : Dict = """conditional_detr.""" + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case__ : Any = rename_backbone_keys(UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): snake_case__ : Optional[int] = state_dict.pop(UpperCAmelCase ) snake_case__ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : Optional[Any] = state_dict.pop(UpperCAmelCase ) snake_case__ : List[str] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: snake_case__ : Dict = state_dict.pop(UpperCAmelCase ) snake_case__ : Tuple = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case__ : Union[str, Any] = state_dict.pop(UpperCAmelCase ) snake_case__ : str = val # finally, create HuggingFace model and load state dict snake_case__ : Any = ConditionalDetrForSegmentation(UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=UpperCAmelCase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion snake_case__ : Optional[int] = conditional_detr(UpperCAmelCase ) snake_case__ : int = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
711
'''simple docstring''' def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(UpperCAmelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
172
0
from __future__ import annotations def lowerCamelCase_ ( _lowercase ) -> bool: __A : str = len(_lowercase ) # We need to create solution object to save path. __A : Union[str, Any] = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )] __A : Tuple = run_maze(_lowercase , 0 , 0 , _lowercase ) if solved: print("\n".join(str(_lowercase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: __A : List[str] = len(_lowercase ) # Final check point. if i == j == (size - 1): __A : List[Any] = 1 return True __A : int = (not i < 0) and (not j < 0) # Check lower bounds __A : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __A : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __A : Tuple = 1 # check for directions if ( run_maze(_lowercase , i + 1 , _lowercase , _lowercase ) or run_maze(_lowercase , _lowercase , j + 1 , _lowercase ) or run_maze(_lowercase , i - 1 , _lowercase , _lowercase ) or run_maze(_lowercase , _lowercase , j - 1 , _lowercase ) ): return True __A : Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
520
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCamelCase = random.Random() def lowerCamelCase_ ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> List[Any]: if rng is None: __A : Union[str, Any] = global_rng __A : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=400 , __UpperCAmelCase=2_000 , __UpperCAmelCase=24 , __UpperCAmelCase=24 , __UpperCAmelCase=0.0 , __UpperCAmelCase=16_000 , __UpperCAmelCase=True , __UpperCAmelCase=True , ): __A : Dict = parent __A : Optional[int] = batch_size __A : Any = min_seq_length __A : Optional[int] = max_seq_length __A : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A : List[str] = feature_size __A : List[str] = num_mel_bins __A : List[Any] = padding_value __A : Union[str, Any] = sampling_rate __A : Optional[Any] = return_attention_mask __A : int = do_normalize def __UpperCAmelCase( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): def _flatten(__UpperCAmelCase ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: __A : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __A : List[str] = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCAmelCase( self ): __A : str = SpeechaTextFeatureExtractionTester(self ) def __UpperCAmelCase( self , __UpperCAmelCase ): self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __UpperCAmelCase( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Tuple = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __A : Dict = feature_extractor(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __A : Dict = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __A : int = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched __A : str = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features __A : str = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __A : Optional[Any] = np.asarray(__UpperCAmelCase ) __A : Dict = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features __A : List[str] = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __UpperCAmelCase( self ): __A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Optional[int] = ["longest", "max_length", "do_not_pad"] __A : int = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __A : List[Any] = feature_extractor( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) __A : Dict = inputs.input_features __A : str = inputs.attention_mask __A : Union[str, Any] = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCAmelCase( self ): __A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : List[Any] = ["longest", "max_length", "do_not_pad"] __A : Tuple = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __A : Optional[int] = feature_extractor( __UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase ) __A : Any = inputs.input_features __A : Any = inputs.attention_mask __A : Dict = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCAmelCase( self ): __A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Dict = feature_extractor( __UpperCAmelCase , padding="max_length" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) __A : List[str] = inputs.input_features __A : Union[str, Any] = inputs.attention_mask __A : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __UpperCAmelCase( self ): __A : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Optional[Any] = feature_extractor( __UpperCAmelCase , padding="longest" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) __A : Optional[Any] = inputs.input_features __A : Dict = inputs.attention_mask __A : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __A : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Optional[int] = feature_extractor( __UpperCAmelCase , padding="longest" , max_length=16 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) __A : List[str] = inputs.input_features __A : str = inputs.attention_mask __A : Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __UpperCAmelCase( self ): import torch __A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : str = np.random.rand(100 , 32 ).astype(np.floataa ) __A : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A : str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __A : int = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase( self , __UpperCAmelCase ): from datasets import load_dataset __A : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __A : Tuple = ds.sort("id" ).select(range(__UpperCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCAmelCase( self ): # fmt: off __A : Optional[int] = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on __A : str = self._load_datasamples(1 ) __A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __UpperCAmelCase , atol=1e-4 ) )
520
1
def a__ ( a ) -> str: return "".join([hex(a )[2:].zfill(2 ).upper() for byte in list(a )] ) def a__ ( a ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(a ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(a ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
236
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def a__ ( a , a , a ) -> Any: A_ : List[Any] = WavaVecaForSequenceClassification.from_pretrained(a , config=a ) A_ : str = downstream_dict['''projector.weight'''] A_ : Dict = downstream_dict['''projector.bias'''] A_ : str = downstream_dict['''model.post_net.linear.weight'''] A_ : Optional[Any] = downstream_dict['''model.post_net.linear.bias'''] return model def a__ ( a , a , a ) -> Optional[int]: A_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(a , config=a ) A_ : Any = downstream_dict['''model.linear.weight'''] A_ : str = downstream_dict['''model.linear.bias'''] return model def a__ ( a , a , a ) -> Optional[int]: A_ : Union[str, Any] = WavaVecaForXVector.from_pretrained(a , config=a ) A_ : Any = downstream_dict['''connector.weight'''] A_ : Dict = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A_ : Dict = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] A_ : List[str] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] A_ : Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] A_ : str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] A_ : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] A_ : List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] A_ : Union[str, Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def a__ ( a , a , a , a ) -> str: A_ : List[Any] = torch.load(a , map_location='''cpu''' ) A_ : int = checkpoint['''Downstream'''] A_ : Union[str, Any] = WavaVecaConfig.from_pretrained(a ) A_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) A_ : List[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): A_ : str = convert_classification(a , a , a ) elif arch.endswith('''ForAudioFrameClassification''' ): A_ : Tuple = convert_diarization(a , a , a ) elif arch.endswith('''ForXVector''' ): A_ : Dict = convert_xvector(a , a , a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: A_ : List[Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
236
1
'''simple docstring''' def lowerCAmelCase__ ( ): _A : Dict = 0 for i in range(1 ,1001 ): total += i**i return str(lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
128
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a_ ) , "Tatoeba directory does not exist." ) class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : List[str]): _A : List[str] = tempfile.mkdtemp() return TatoebaConverter(save_dir=SCREAMING_SNAKE_CASE) @slow def A ( self : Any): self.resolver.convert_models(['heb-eng']) @slow def A ( self : Any): _A , _A : Dict = self.resolver.write_model_card('opus-mt-he-en' , dry_run=SCREAMING_SNAKE_CASE) assert mmeta["long_pair"] == "heb-eng"
128
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) def A_( A , A , A ): UpperCAmelCase_ = WavaVecaForSequenceClassification.from_pretrained(A , config=A ) UpperCAmelCase_ = downstream_dict["""projector.weight"""] UpperCAmelCase_ = downstream_dict["""projector.bias"""] UpperCAmelCase_ = downstream_dict["""model.post_net.linear.weight"""] UpperCAmelCase_ = downstream_dict["""model.post_net.linear.bias"""] return model def A_( A , A , A ): UpperCAmelCase_ = WavaVecaForAudioFrameClassification.from_pretrained(A , config=A ) UpperCAmelCase_ = downstream_dict["""model.linear.weight"""] UpperCAmelCase_ = downstream_dict["""model.linear.bias"""] return model def A_( A , A , A ): UpperCAmelCase_ = WavaVecaForXVector.from_pretrained(A , config=A ) UpperCAmelCase_ = downstream_dict["""connector.weight"""] UpperCAmelCase_ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCAmelCase_ = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCAmelCase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] UpperCAmelCase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] UpperCAmelCase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] UpperCAmelCase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] UpperCAmelCase_ = downstream_dict["""objective.W"""] return model @torch.no_grad() def A_( A , A , A , A ): UpperCAmelCase_ = torch.load(A , map_location="""cpu""" ) UpperCAmelCase_ = checkpoint["""Downstream"""] UpperCAmelCase_ = WavaVecaConfig.from_pretrained(A ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( A , return_attention_mask=A , do_normalize=A ) UpperCAmelCase_ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCAmelCase_ = convert_classification(A , A , A ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCAmelCase_ = convert_diarization(A , A , A ) elif arch.endswith("""ForXVector""" ): UpperCAmelCase_ = convert_xvector(A , A , A ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(A ) hf_model.save_pretrained(A ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") UpperCamelCase__ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
486
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
486
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase ( snake_case__ ): snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def _lowerCamelCase ( self , a_ ): return self.pre_processor(_A , return_tensors="pt" , truncation=_A ) def _lowerCamelCase ( self , a_ ): return self.model.generate(**_A )[0] def _lowerCamelCase ( self , a_ ): return self.pre_processor.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )
525
def _SCREAMING_SNAKE_CASE ( a ) -> list: if len(a ) <= 1: return lst __A : Any = 1 while i < len(a ): if lst[i - 1] <= lst[i]: i += 1 else: __A , __A : str = lst[i], lst[i - 1] i -= 1 if i == 0: __A : Optional[int] = 1 return lst if __name__ == "__main__": UpperCAmelCase : Tuple = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
239
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase__ : List[str] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __lowercase ( _a ): snake_case_ : List[str] = {} state_dict.pop('''pixel_mean''' , _a ) state_dict.pop('''pixel_std''' , _a ) snake_case_ : Union[str, Any] = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ : Optional[int] = key.replace(_a , _a ) if re.match(_a , _a ): snake_case_ : Union[str, Any] = int(re.match(_a , _a ).group(2 ) ) if layer_nb == 0: snake_case_ : Optional[int] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: snake_case_ : Union[str, Any] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: snake_case_ : List[Any] = key.replace('''layers.2''' , '''proj_out''' ) snake_case_ : Optional[Any] = value snake_case_ : Tuple = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase ( _a , _a , _a , _a="ybelkada/segment-anything" ): snake_case_ : Optional[Any] = hf_hub_download(_a , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: snake_case_ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case_ : Optional[Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ : Union[str, Any] = SamConfig( vision_config=_a , ) elif "sam_vit_h" in model_name: snake_case_ : Tuple = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ : List[str] = SamConfig( vision_config=_a , ) snake_case_ : Tuple = torch.load(_a , map_location='''cpu''' ) snake_case_ : Optional[Any] = replace_keys(_a ) snake_case_ : Any = SamImageProcessor() snake_case_ : Optional[Any] = SamProcessor(image_processor=_a ) snake_case_ : Tuple = SamModel(_a ) hf_model.load_state_dict(_a ) snake_case_ : Tuple = hf_model.to('''cuda''' ) snake_case_ : Union[str, Any] = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' snake_case_ : Union[str, Any] = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) snake_case_ : Tuple = [[[400, 650]]] snake_case_ : List[str] = [[1]] snake_case_ : Optional[int] = processor(images=np.array(_a ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case_ : Optional[Any] = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case_ : Tuple = ((75, 275, 1_725, 850),) snake_case_ : Optional[Any] = processor(images=np.array(_a ) , input_boxes=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case_ : Union[str, Any] = [[[400, 650], [800, 650]]] snake_case_ : Optional[int] = [[1, 1]] snake_case_ : Tuple = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() lowercase__ : Any = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) lowercase__ : Tuple = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
485
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( _a , _a , _a ): snake_case_ : Tuple = AutoConfig.from_pretrained(_a ) snake_case_ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=_a ) snake_case_ : Union[str, Any] = checkpoints.load_tax_checkpoint(_a ) snake_case_ : Optional[int] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": snake_case_ : str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Any = f"layers_{str(_a )}" # Self-Attention snake_case_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Optional[Any] = flax_model.params['''encoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : List[str] = tax_attention_key snake_case_ : Optional[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : str = tax_attention_value snake_case_ : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: snake_case_ : Any = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : Union[str, Any] = tax_mlp_wi snake_case_ : List[Any] = tax_mlp_wo snake_case_ : int = tax_mlp_layer_norm snake_case_ : Any = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T snake_case_ : Tuple = tax_encoder_global_rel_embedding # Assigning snake_case_ : Dict = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] snake_case_ : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : Tuple = f"layers_{str(_a )}" # Self-Attention snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention snake_case_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] snake_case_ : str = tax_enc_dec_attention_module['''out''']['''kernel'''] snake_case_ : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] snake_case_ : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Dict = flax_model.params['''decoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : int = tax_attention_key snake_case_ : List[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : Dict = tax_attention_value snake_case_ : str = tax_pre_attention_layer_norm snake_case_ : Any = tax_enc_dec_attention_key snake_case_ : str = tax_enc_dec_attention_out snake_case_ : int = tax_enc_dec_attention_query snake_case_ : Any = tax_enc_dec_attention_value snake_case_ : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: snake_case_ : Tuple = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : List[Any] = tax_mlp_wi snake_case_ : Dict = tax_mlp_wo snake_case_ : List[Any] = txa_mlp_layer_norm snake_case_ : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : str = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] snake_case_ : Tuple = txa_decoder_norm # Only for layer 0: snake_case_ : str = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Optional[Any] = tax_decoder_rel_embedding # Token Embeddings snake_case_ : Union[str, Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] snake_case_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowercase__ : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
485
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A = GPTSwaTokenizer _A = False _A = True _A = False def _UpperCAmelCase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing _a = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ): _a = 'This is a test' _a = 'This is a test' return input_text, output_text def _UpperCAmelCase ( self : Dict ): _a = '<s>' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2_0_0_0 ) def _UpperCAmelCase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def _UpperCAmelCase ( self : int ): _a = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) _a = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) _a = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on _a = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) _a = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _UpperCAmelCase ( self : Tuple ): _a = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) _a = ['This is a test', 'I was born in 92000, and this is falsé.'] _a = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Test that decode_fast returns the input text for text, token_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @slow def _UpperCAmelCase ( self : Optional[Any] ): _a = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _a = {'input_ids': [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=SCREAMING_SNAKE_CASE_ , )
562
lowercase_ = 9.80665 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
562
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __snake_case = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(snake_case): os.makedirs(snake_case) __snake_case = model.state_dict() def to_tf_var_name(snake_case): for patt, repl in iter(snake_case): __snake_case = name.replace(snake_case, snake_case) return f"bert/{name}" def create_tf_var(snake_case, snake_case, snake_case): __snake_case = tf.dtypes.as_dtype(tensor.dtype) __snake_case = tf.get_variable(dtype=snake_case, shape=tensor.shape, name=snake_case, initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(snake_case) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __snake_case = to_tf_var_name(snake_case) __snake_case = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): __snake_case = torch_tensor.T __snake_case = create_tf_var(tensor=snake_case, name=snake_case, session=snake_case) tf.keras.backend.set_value(snake_case, snake_case) __snake_case = session.run(snake_case) print(f"Successfully created {tf_name}: {np.allclose(snake_case, snake_case)}") __snake_case = tf.train.Saver(tf.trainable_variables()) saver.save(snake_case, os.path.join(snake_case, model_name.replace('''-''', '''_''') + '''.ckpt''')) def SCREAMING_SNAKE_CASE ( snake_case=None): __snake_case = argparse.ArgumentParser() parser.add_argument('''--model_name''', type=snake_case, required=snake_case, help='''model name e.g. bert-base-uncased''') parser.add_argument( '''--cache_dir''', type=snake_case, default=snake_case, required=snake_case, help='''Directory containing pytorch model''') parser.add_argument('''--pytorch_model_path''', type=snake_case, required=snake_case, help='''/path/to/<pytorch-model-name>.bin''') parser.add_argument('''--tf_cache_dir''', type=snake_case, required=snake_case, help='''Directory in which to save tensorflow model''') __snake_case = parser.parse_args(snake_case) __snake_case = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=snake_case, ckpt_dir=args.tf_cache_dir, model_name=args.model_name) if __name__ == "__main__": main()
93
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case): return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = 0 __snake_case = number while duplicate > 0: __snake_case , __snake_case = divmod(snake_case, 10) fact_sum += factorial(snake_case) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") __lowercase : Optional[int] = int(input("Enter number: ").strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
93
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ ( lowerCAmelCase_ ): '''simple docstring''' def a ( self ): _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = 5 # Realm tok _UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(A_ , exist_ok=A_ ) _UpperCamelCase = os.path.join(A_ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(A_ , exist_ok=A_ ) def a ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def a ( self ): shutil.rmtree(self.tmpdirname ) def a ( self ): _UpperCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def a ( self ): _UpperCamelCase = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def a ( self ): _UpperCamelCase = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=A_ , ) return block_records def a ( self ): _UpperCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a ( self ): _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3] , dtype="long" ) _UpperCamelCase = tokenizer(["Test question"] ).input_ids _UpperCamelCase = tokenizer( ["the fourth"] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="np" ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def a ( self ): _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase = tokenizer(["Test question"] ).input_ids _UpperCamelCase = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="np" ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def a ( self ): _UpperCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
138
0
from __future__ import annotations import requests __SCREAMING_SNAKE_CASE = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "new" , _lowerCamelCase = None ): A : int = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowerCamelCase ) - valid_terms ) ): A : Optional[Any] = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(_lowerCamelCase ) A : List[str] = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError A : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowerCamelCase )} A : Tuple = {} for id_ in range(_lowerCamelCase ): A : Union[str, Any] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
716
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Dict=3 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : str=[8, 16, 32, 64] , __lowerCamelCase : Dict=[1, 1, 2, 1] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]="relu" , __lowerCamelCase : str=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : Any=1 , ) -> int: A : Optional[int] = parent A : List[str] = batch_size A : Tuple = image_size A : List[str] = num_channels A : List[str] = embeddings_size A : List[str] = hidden_sizes A : str = depths A : Optional[Any] = is_training A : int = use_labels A : Optional[int] = hidden_act A : List[Any] = num_labels A : List[str] = scope A : str = len(__lowerCamelCase ) A : Optional[int] = out_features A : str = out_indices A : Optional[int] = num_groups def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[int] = None if self.use_labels: A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[int]: A : Any = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Dict ) -> Tuple: A : Union[str, Any] = self.num_labels A : List[str] = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : str = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ) -> List[Any]: A : Dict = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Optional[Any] = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A : Optional[Any] = None A : Optional[int] = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: A : List[str] = self.prepare_config_and_inputs() A , A , A : Tuple = config_and_inputs A : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ): '''simple docstring''' a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: A : Any = BitModelTester(self ) A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: return @unittest.skip(reason="Bit does not output attentions" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: pass def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: A , A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Dict = model_class(__lowerCamelCase ) A : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Optional[Any] = [*signature.parameters.keys()] A : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Optional[int] = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): A : Dict = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) A : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : List[Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A , A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: A : Dict = layer_type A : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[Any] = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase ( ): A : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: A : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) A : List[Any] = self.default_image_processor A : List[Any] = prepare_img() A : Tuple = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): A : Union[str, Any] = model(**__lowerCamelCase ) # verify the logits A : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) A : Optional[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class lowerCamelCase_ ( _A ,unittest.TestCase ): '''simple docstring''' a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: A : Union[str, Any] = BitModelTester(self )
17
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = CustomTokenizer pass
36
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = StableDiffusionXLImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_a , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase_ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowerCAmelCase_ = CLIPTextModelWithProjection(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Dict: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image / 2 + 0.5 if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.7_5, } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_a ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = sd_pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __a ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> str: pass def __a ( self ) -> int: lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_a ) lowerCAmelCase_ = sd_pipe.to(_a ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) # forward without prompt embeds lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * ["this is a negative prompt"] lowerCAmelCase_ = negative_prompt lowerCAmelCase_ = 3 * [inputs["prompt"]] lowerCAmelCase_ = sd_pipe(**_a ) lowerCAmelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * ["this is a negative prompt"] lowerCAmelCase_ = 3 * [inputs.pop("prompt" )] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = sd_pipe.encode_prompt(_a , negative_prompt=_a ) lowerCAmelCase_ = sd_pipe( **_a , prompt_embeds=_a , negative_prompt_embeds=_a , pooled_prompt_embeds=_a , negative_pooled_prompt_embeds=_a , ) lowerCAmelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Optional[int]: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[int]: lowerCAmelCase_ = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
122
0
'''simple docstring''' import qiskit def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> qiskit.result.counts.Counts: _a : Union[str, Any] =qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register _a : int =qiskit.QuantumCircuit(_UpperCAmelCase ,_UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] ,[0, 1] ) # Execute the circuit on the qasm simulator _a : Optional[Any] =qiskit.execute(_UpperCAmelCase ,_UpperCAmelCase ,shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
506
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str = " " ) -> list: _a : int =[] _a : Tuple =0 for index, char in enumerate(_UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _a : Union[str, Any] =index + 1 elif index + 1 == len(_UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
506
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( snake_case__ ): snake_case__ = (IPNDMScheduler,) snake_case__ = (('num_inference_steps', 50),) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Dict ) -> Any: a_ : Any = {'num_train_timesteps': 1000} config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: a_ : Tuple = dict(self.forward_default_kwargs ) a_ : str = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) a_ : int = self.dummy_sample a_ : List[Any] = 0.1 * sample a_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ : int = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) a_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals a_ : Optional[Any] = dummy_past_residuals[:] if time_step is None: a_ : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals a_ : int = dummy_past_residuals[:] a_ : Dict = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : str = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" a_ : List[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : List[str] = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : str ) -> int: pass def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=0 , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: a_ : Any = dict(self.forward_default_kwargs ) a_ : str = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = self.dummy_sample a_ : Tuple = 0.1 * sample a_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ : List[str] = self.get_scheduler_config() a_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) a_ : Optional[int] = dummy_past_residuals[:] if time_step is None: a_ : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) a_ : Tuple = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) a_ : Any = dummy_past_residuals[:] a_ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : Any = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" a_ : List[str] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : Dict = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: a_ : List[Any] = self.scheduler_classes[0] a_ : str = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) a_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE ) a_ : Tuple = 10 a_ : List[Any] = self.dummy_model() a_ : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): a_ : List[str] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): a_ : int = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: a_ : str = dict(self.forward_default_kwargs ) a_ : Any = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: a_ : Tuple = self.get_scheduler_config() a_ : Union[str, Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) a_ : Dict = self.dummy_sample a_ : str = 0.1 * sample if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): a_ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ : int = dummy_past_residuals[:] a_ : Union[str, Any] = scheduler.timesteps[5] a_ : Tuple = scheduler.timesteps[6] a_ : Dict = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : Tuple = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a_ : str = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample a_ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE , time_step=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : List[str] = self.full_loop() a_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 254_0529 ) < 10
466
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Any =False @skip_mps class UpperCamelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[int] = StableDiffusionAttendAndExcitePipeline _a : Union[str, Any] = False _a : Dict = TEXT_TO_IMAGE_PARAMS _a : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls : Tuple ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : Tuple ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) lowerCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCamelCase_ : Any = CLIPTextModel(lowerCamelCase ) lowerCamelCase_ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=0 ): if str(lowerCamelCase ).startswith('mps' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase ) else: lowerCamelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase_ : Dict = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __a ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] = 'cpu' lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : List[str] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase_ : List[Any] = self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase_ : List[str] = pipe(**lowerCamelCase ).images lowerCamelCase_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ : Dict = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __a ( self : Tuple ): super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : List[str] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : Optional[Any] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self : Tuple ): super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): @classmethod def __a ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : List[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(51 ) lowerCamelCase_ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ : List[Any] = 'a painting of an elephant with glasses' lowerCamelCase_ : Tuple = [5, 7] lowerCamelCase_ : List[str] = pipe( prompt=lowerCamelCase , token_indices=lowerCamelCase , guidance_scale=7.5 , generator=lowerCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
364
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a = """Wav2Vec2FeatureExtractor""" _a = """AutoTokenizer""" def __init__( self , A , A ) -> str: '''simple docstring''' super().__init__(_a , _a ) __magic_name__ = self.feature_extractor __magic_name__ = False @classmethod def __A ( cls , A , **A ) -> Any: '''simple docstring''' try: return super().from_pretrained(_a , **_a ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _a , ) __magic_name__ = WavaVecaFeatureExtractor.from_pretrained(_a , **_a ) __magic_name__ = WavaVecaCTCTokenizer.from_pretrained(_a , **_a ) return cls(feature_extractor=_a , tokenizer=_a ) def __call__( self , *A , **A ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __magic_name__ = kwargs.pop('''raw_speech''' ) else: __magic_name__ = kwargs.pop('''audio''' , _a ) __magic_name__ = kwargs.pop('''sampling_rate''' , _a ) __magic_name__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: __magic_name__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ = encodings["""input_ids"""] return inputs def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) __magic_name__ = kwargs.pop('''input_features''' , _a ) __magic_name__ = kwargs.pop('''labels''' , _a ) if len(_a ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if input_features is not None: __magic_name__ = self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: __magic_name__ = self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: __magic_name__ = labels["""input_ids"""] return input_features def __A ( self , *A , **A ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @contextmanager def __A ( self ) -> int: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.feature_extractor __magic_name__ = False
705
import re def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(snake_case_ , snake_case_ ) ) if __name__ == "__main__": a_ : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
678
0
"""simple docstring""" def snake_case ( A__ ): return "".join(chr(ord(A__ ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
95
import requests from bsa import BeautifulSoup def __lowerCamelCase ( A__ : str = "https://www.worldometers.info/coronavirus" ) -> dict: lowerCamelCase_ : List[str] = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) lowerCamelCase_ : Tuple = soup.findAll("""h1""" ) lowerCamelCase_ : Tuple = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
278
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE( __UpperCamelCase = "laptop" ) -> str: a__ : List[str] = F'https://www.amazon.in/laptop/s?k={product}' a__ : int = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } a__ : str = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles a__ : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: a__ : Any = item.ha.text a__ : Optional[Any] = 'https://www.amazon.in/' + item.ha.a['href'] a__ : Optional[int] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: a__ : Any = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: a__ : Optional[int] = 'Not available' try: a__ : Optional[Any] = ( '₹' + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: a__ : Optional[int] = '' try: a__ : List[str] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 1_00 ) except ValueError: a__ : Optional[int] = float("nan" ) except AttributeError: pass a__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a__ : Optional[Any] = ' ' a__ : Tuple = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase = """headphones""" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
716
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) @dataclass class _a : '''simple docstring''' A :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A :Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A :Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to log verbose messages or not."} , ) A :Optional[float] = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) A :Optional[float] = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) A :Optional[float] = field( default=0.99_9995 , metadata={"help": "Decay of gumbel temperature during training."} ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Any: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) a__ : int = logging.WARNING if model_args.verbose_logging: a__ : List[Any] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): a__ : Union[str, Any] = logging.INFO logger.setLevel(__UpperCamelCase ) @dataclass class _a : '''simple docstring''' A :str = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A :Optional[str] = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) A :Optional[str] = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) A :Optional[str] = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A :Optional[int] = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) A :Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , ) A :Optional[float] = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _a : '''simple docstring''' A :WavaVecaForPreTraining A :WavaVecaFeatureExtractor A :Union[bool, str] = "longest" A :Optional[int] = None A :Optional[int] = None def __call__( self , __UpperCAmelCase ): """simple docstring""" a__ : Dict = self.feature_extractor.pad( __UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) a__ : Optional[int] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) a__ : Optional[int] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula a__ : Any = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) a__ : List[str] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to a__ : List[Any] = 1 a__ : Optional[int] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices a__ : Union[str, Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__UpperCAmelCase , min_masks=2 , ) return batch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=1.0 , **__UpperCAmelCase ): """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) a__ : Optional[Any] = 0 a__ : Tuple = max_gumbel_temp a__ : str = min_gumbel_temp a__ : List[Any] = gumbel_temp_decay def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" model.train() a__ : Optional[Any] = self._prepare_inputs(__UpperCAmelCase ) if self.use_amp: with autocast(): a__ : List[Any] = self.compute_loss(__UpperCAmelCase , __UpperCAmelCase ) else: a__ : List[Any] = self.compute_loss(__UpperCAmelCase , __UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": a__ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": a__ : List[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: a__ : Optional[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(__UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a__ , a__ , a__ : str = parser.parse_args_into_dataclasses() configure_logger(__UpperCamelCase , __UpperCamelCase ) # Downloading and loading a dataset from the hub. a__ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" a__ : Tuple = DatasetDict() a__ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) a__ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" a__ : List[Any] = DatasetDict() a__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) a__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported a__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__UpperCamelCase ) def prepare_dataset(__UpperCamelCase ): # check that all files have the correct sampling rate a__ , a__ : List[str] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays a__ : Optional[Any] = datasets.map( __UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long a__ : Tuple = vectorized_datasets.filter( lambda __UpperCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__UpperCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` a__ : Tuple = vectorized_datasets.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 a__ : List[Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) a__ : Optional[Any] = WavaVecaForPreTraining(__UpperCamelCase ) a__ : Dict = DataCollatorForWavaVecaPretraining(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) a__ : Optional[int] = WavaVecaPreTrainer( model=__UpperCamelCase , data_collator=__UpperCamelCase , args=__UpperCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
207
0
'''simple docstring''' import qiskit def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCamelCase_ = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": a_ : int = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
675
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a_ : Any = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] a_ : Optional[Any] = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def __snake_case ( ): lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , bootstrap_aggregation=UpperCAmelCase_ , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def __snake_case ( ): lowerCamelCase_ = "rougeLsum" lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=[k] )[k] assert score > score_no_sep def __snake_case ( ): lowerCamelCase_ = ["rouge1", "rouge2", "rougeL"] lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ , rouge_keys=UpperCAmelCase_ ) assert score_sep == score_no_sep def __snake_case ( ): lowerCamelCase_ = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCamelCase_ = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) == calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , newline_sep=UpperCAmelCase_ ) def __snake_case ( ): lowerCamelCase_ = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCamelCase_ = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["rougeLsum"] , newline_sep=UpperCAmelCase_ )["rougeLsum"] lowerCamelCase_ = calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def __snake_case ( ): lowerCamelCase_ = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCamelCase_ = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=UpperCAmelCase_ ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
675
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowercase ( A_ )-> tuple: '''simple docstring''' return (data["data"], data["target"]) def lowercase ( A_ , A_ )-> XGBClassifier: '''simple docstring''' a : Optional[Any] = XGBClassifier() classifier.fit(A_ , A_ ) return classifier def lowercase ( )-> None: '''simple docstring''' a : Dict = load_iris() a : Dict = data_handling(A_ ) a : Optional[int] = train_test_split( A_ , A_ , test_size=0.2_5 ) a : int = iris["target_names"] # Create an XGBoost Classifier from the training data a : int = xgboost(A_ , A_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A_ , A_ , A_ , display_labels=A_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
708
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( _a ): """simple docstring""" UpperCAmelCase : Any = (IPNDMScheduler,) UpperCAmelCase : Optional[int] = (("""num_inference_steps""", 5_0),) def __snake_case ( self : Dict , **__UpperCAmelCase : Optional[Any]): a : str = {"num_train_timesteps": 1000} config.update(**__UpperCAmelCase) return config def __snake_case ( self : int , __UpperCAmelCase : Optional[Any]=0 , **__UpperCAmelCase : Union[str, Any]): a : List[Any] = dict(self.forward_default_kwargs) a : int = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a : int = self.dummy_sample a : str = 0.1 * sample a : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a : List[Any] = self.get_scheduler_config(**__UpperCAmelCase) a : List[str] = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a : List[Any] = dummy_past_residuals[:] if time_step is None: a : Any = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a : List[Any] = scheduler_class.from_pretrained(__UpperCAmelCase) new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals a : Optional[Any] = dummy_past_residuals[:] a : int = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Dict = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a : Optional[int] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : str = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : int): pass def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str=0 , **__UpperCAmelCase : List[Any]): a : List[str] = dict(self.forward_default_kwargs) a : Any = kwargs.pop("num_inference_steps" , __UpperCAmelCase) a : Tuple = self.dummy_sample a : str = 0.1 * sample a : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a : Optional[int] = self.get_scheduler_config() a : List[str] = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residuals (must be after setting timesteps) a : Optional[int] = dummy_past_residuals[:] if time_step is None: a : Any = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase) a : List[Any] = scheduler_class.from_pretrained(__UpperCAmelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase) # copy over dummy past residual (must be after setting timesteps) a : str = dummy_past_residuals[:] a : List[str] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Tuple = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a : Dict = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : List[str] = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self : str , **__UpperCAmelCase : Dict): a : Tuple = self.scheduler_classes[0] a : Optional[Any] = self.get_scheduler_config(**__UpperCAmelCase) a : Any = scheduler_class(**__UpperCAmelCase) a : int = 10 a : Union[str, Any] = self.dummy_model() a : List[str] = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): a : Union[str, Any] = model(__UpperCAmelCase , __UpperCAmelCase) a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample for i, t in enumerate(scheduler.timesteps): a : Tuple = model(__UpperCAmelCase , __UpperCAmelCase) a : Union[str, Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample return sample def __snake_case ( self : Optional[Any]): a : List[Any] = dict(self.forward_default_kwargs) a : List[str] = kwargs.pop("num_inference_steps" , __UpperCAmelCase) for scheduler_class in self.scheduler_classes: a : Tuple = self.get_scheduler_config() a : Any = scheduler_class(**__UpperCAmelCase) a : Dict = self.dummy_sample a : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , "set_timesteps"): scheduler.set_timesteps(__UpperCAmelCase) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , "set_timesteps"): a : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a : Dict = dummy_past_residuals[:] a : Optional[int] = scheduler.timesteps[5] a : List[Any] = scheduler.timesteps[6] a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : List[str] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a : Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample a : Dict = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __snake_case ( self : Tuple): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase , time_step=__UpperCAmelCase) def __snake_case ( self : int): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : Optional[int] = self.full_loop() a : List[str] = torch.mean(torch.abs(__UpperCAmelCase)) assert abs(result_mean.item() - 2540529) < 10
135
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 100 , ) -> float: """simple docstring""" __UpperCAmelCase : Optional[int] = x_start __UpperCAmelCase : List[str] = fnc(UpperCamelCase ) __UpperCAmelCase : Tuple = 0.0 for _ in range(UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCAmelCase : int = (x_end - x_start) / steps + xa __UpperCAmelCase : Tuple = fnc(UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCAmelCase : List[Any] = xa __UpperCAmelCase : Dict = fxa return area if __name__ == "__main__": def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
77
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A = """ Human: <<task>> Assistant: """ A = """huggingface-tools/default-prompts""" A = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase="run" ) -> List[str]: """simple docstring""" if prompt_or_repo_id is None: __UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCamelCase ) is not None: return prompt_or_repo_id __UpperCAmelCase : str = cached_file( UpperCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
77
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def UpperCamelCase ( lowercase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' lowercase , lowercase , lowercase =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def UpperCamelCase ( lowercase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' return (gray > 1_2_7) & (gray <= 2_5_5) def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ) -> np.ndarray: '''simple docstring''' lowercase =np.zeros_like(lowercase_ ) lowercase =np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase =image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase =( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase =int(summation > 0 ) return output if __name__ == "__main__": # read original image _UpperCAmelCase : int = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' _UpperCAmelCase : Optional[Any] = np.array(Image.open(lena_path)) # kernel to be applied _UpperCAmelCase : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _UpperCAmelCase : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _UpperCAmelCase : Any = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
720
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : List[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] ) -> List[Any]: '''simple docstring''' lowercase =to_pil_image(lowercase_ ) lowercase , lowercase =pil_image.size lowercase =pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) lowercase , lowercase , lowercase , lowercase , lowercase =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase =[idx for idx, word in enumerate(lowercase_ ) if not word.strip()] lowercase =[word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase =[] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase =[x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes lowercase =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = 1 / 2_55 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase =get_size_dict(snake_case_ ) lowercase =do_resize lowercase =size lowercase =resample lowercase =do_rescale lowercase =rescale_value lowercase =do_normalize lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase =apply_ocr lowercase =ocr_lang lowercase =tesseract_config def _A( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): lowercase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase =(size['''height'''], size['''width''']) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): lowercase =do_resize if do_resize is not None else self.do_resize lowercase =size if size is not None else self.size lowercase =get_size_dict(snake_case_ ) lowercase =resample if resample is not None else self.resample lowercase =do_rescale if do_rescale is not None else self.do_rescale lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase =do_normalize if do_normalize is not None else self.do_normalize lowercase =image_mean if image_mean is not None else self.image_mean lowercase =image_std if image_std is not None else self.image_std lowercase =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase =[to_numpy_array(snake_case_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase =[] lowercase =[] for image in images: lowercase , lowercase =apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: lowercase =[self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: lowercase =[self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] lowercase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] lowercase =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case_ ) if apply_ocr: lowercase =words_batch lowercase =boxes_batch return data
145
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" def run_func(_lowerCamelCase ): @wraps(_lowerCamelCase ) def run_in_eager_mode(*_lowerCamelCase , **_lowerCamelCase ): return func(*_lowerCamelCase , **_lowerCamelCase ) @wraps(_lowerCamelCase ) @tf.function(experimental_compile=_lowerCamelCase ) def run_in_graph_mode(*_lowerCamelCase , **_lowerCamelCase ): return func(*_lowerCamelCase , **_lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> ["tf.Tensor"]: """simple docstring""" __snake_case : Dict = random.Random() __snake_case : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _A ( __lowercase ): lowercase__: TensorFlowBenchmarkArguments lowercase__: PretrainedConfig lowercase__: str = "TensorFlow" @property def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return tf.__version__ def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : Any = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_inference ) def lowercase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : List[Any] = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_speed(_train ) def lowercase__ ( self : int , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) __snake_case : List[Any] = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : Optional[Any] = self._prepare_inference_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_inference ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __magic_name__ ) __snake_case : Tuple = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) __snake_case : List[str] = self._prepare_train_func(__magic_name__ , __magic_name__ , __magic_name__ ) return self._measure_memory(_train ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Callable[[], None]: """simple docstring""" __snake_case : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __snake_case : str = ( hasattr(__magic_name__ , """architectures""" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : List[Any] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : Any = __import__("""transformers""" , fromlist=[model_class] ) __snake_case : Union[str, Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Dict = model_cls(__magic_name__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __snake_case : int = TF_MODEL_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently __snake_case : Optional[int] = config.vocab_size if hasattr(__magic_name__ , """vocab_size""" ) else config.encoder.vocab_size __snake_case : str = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__magic_name__ , decoder_input_ids=__magic_name__ , training=__magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__magic_name__ , training=__magic_name__ ) __snake_case : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> Callable[[], None]: """simple docstring""" __snake_case : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) __snake_case : Optional[int] = ( hasattr(__magic_name__ , """architectures""" ) and isinstance(config.architectures , __magic_name__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : Optional[int] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : Dict = __import__("""transformers""" , fromlist=[model_class] ) __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Tuple = model_cls(__magic_name__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: __snake_case : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__magic_name__ ) # encoder-decoder has vocab size saved differently __snake_case : Optional[Any] = config.vocab_size if hasattr(__magic_name__ , """vocab_size""" ) else config.encoder.vocab_size __snake_case : List[str] = random_input_ids(__magic_name__ , __magic_name__ , __magic_name__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case : Tuple = model(__magic_name__ , decoder_input_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] __snake_case : Dict = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case : Optional[Any] = model(__magic_name__ , labels=__magic_name__ , training=__magic_name__ )[0] __snake_case : Optional[int] = tf.gradients(__magic_name__ , model.trainable_variables ) return gradients __snake_case : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowercase__ ( self : str , __magic_name__ : Tuple ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__magic_name__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case : Optional[int] = timeit.repeat( __magic_name__ , repeat=self.args.repeat , number=10 , ) return min(__magic_name__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowercase__ ( self : Tuple , __magic_name__ : Callable[[], None] ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) __snake_case : Dict = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) __snake_case : int = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() __snake_case : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(__magic_name__ ) __snake_case : Union[str, Any] = meminfo.used __snake_case : List[Any] = Memory(__magic_name__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) __snake_case : int = None else: __snake_case : Dict = measure_peak_memory_cpu(__magic_name__ ) __snake_case : Union[str, Any] = Memory(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case : Tuple = stop_memory_tracing(__magic_name__ ) if memory is None: __snake_case : Any = summary.total else: __snake_case : Any = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
26
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor snake_case_ : str = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : List[Any] , *_snake_case : int , **_snake_case : Tuple): """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
169
def A (__A : int ) -> bool: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 0: return False UpperCAmelCase_ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
169
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = 'ssube/stable-diffusion-x4-upscaler-onnx' def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str=0 ): a__ : List[str] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) a__ : Optional[int] = torch.manual_seed(lowerCamelCase__ ) a__ : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _UpperCamelCase( self : List[str] ): a__ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[Any] = self.get_dummy_inputs() a__ : Any = pipe(**lowerCamelCase__ ).images a__ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) a__ : Union[str, Any] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : List[Any] = self.get_dummy_inputs() a__ : Optional[Any] = pipe(**lowerCamelCase__ ).images a__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ : Tuple = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase( self : List[Any] ): a__ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : List[Any] = self.get_dummy_inputs() a__ : Dict = pipe(**lowerCamelCase__ ).images a__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ : Optional[int] = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase( self : List[str] ): a__ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Any = self.get_dummy_inputs() a__ : List[Any] = pipe(**lowerCamelCase__ ).images a__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ : Optional[int] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase( self : Any ): a__ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : int = pipe(**lowerCamelCase__ ).images a__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ : Optional[int] = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" @property def _UpperCamelCase( self : Any ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase( self : Any ): a__ : Any = ort.SessionOptions() a__ : Tuple = False return options def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) a__ : int = init_image.resize((128, 128) ) # using the PNDM scheduler by default a__ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Any = "A fantasy landscape, trending on artstation" a__ : Dict = torch.manual_seed(0 ) a__ : Tuple = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type="np" , ) a__ : Any = output.images a__ : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) a__ : List[str] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase( self : Optional[int] ): a__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) a__ : Optional[Any] = init_image.resize((128, 128) ) a__ : Optional[int] = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) a__ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[int] = "A fantasy landscape, trending on artstation" a__ : Optional[int] = torch.manual_seed(0 ) a__ : Tuple = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type="np" , ) a__ : Dict = output.images a__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) a__ : Tuple = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
37
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = ["input_features", "attention_mask"] def __init__( self , A_=80 , A_=16_000 , A_=0.0 , A_=10 , A_=25 , A_="hamming_window" , A_=32_768.0 , A_=0.97 , A_=1.0 , A_=True , A_=True , A_=False , **A_ , ) -> Optional[int]: """simple docstring""" super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) UpperCamelCase = feature_size UpperCamelCase = sampling_rate UpperCamelCase = padding_value UpperCamelCase = hop_length UpperCamelCase = win_length UpperCamelCase = frame_signal_scale UpperCamelCase = preemphasis_coeff UpperCamelCase = mel_floor UpperCamelCase = normalize_means UpperCamelCase = normalize_vars UpperCamelCase = win_function UpperCamelCase = return_attention_mask UpperCamelCase = win_length * sampling_rate // 1_000 UpperCamelCase = hop_length * sampling_rate // 1_000 UpperCamelCase = optimal_fft_length(self.sample_size ) UpperCamelCase = (self.n_fft // 2) + 1 def __UpperCamelCase ( self , A_ ) -> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=A_ ) else: UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCamelCase = spectrogram( one_waveform * self.frame_signal_scale , window=A_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A_ , preemphasis=self.preemphasis_coeff , mel_filters=A_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" # make sure we normalize float32 arrays if self.normalize_means: UpperCamelCase = x[:input_length].mean(axis=0 ) UpperCamelCase = np.subtract(A_ , A_ ) if self.normalize_vars: UpperCamelCase = x[:input_length].std(axis=0 ) UpperCamelCase = np.divide(A_ , A_ ) if input_length < x.shape[0]: UpperCamelCase = padding_value # make sure array is in float32 UpperCamelCase = x.astype(np.floataa ) return x def __UpperCamelCase ( self , A_ , A_ = None ) -> List[np.ndarray]: """simple docstring""" UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A_ , A_ , self.padding_value ) for x, n in zip(A_ , A_ )] def __call__( self , A_ , A_ = False , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [raw_speech] # extract fbank features UpperCamelCase = [self._extract_mfsc_features(A_ ) for one_waveform in raw_speech] # convert into correct format for padding UpperCamelCase = BatchFeature({'input_features': features} ) UpperCamelCase = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , A_ ): UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: UpperCamelCase = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCamelCase = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=A_ ) if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer A : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A : Tuple = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } A : List[str] = { """unc-nlp/lxmert-base-uncased""": 512, } A : List[Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class lowerCAmelCase ( a_ ): '''simple docstring''' A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = LxmertTokenizer def __init__( self :Optional[Any] , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Optional[int]="[UNK]" , lowerCamelCase_ :Optional[int]="[SEP]" , lowerCamelCase_ :Tuple="[PAD]" , lowerCamelCase_ :Optional[int]="[CLS]" , lowerCamelCase_ :List[Any]="[MASK]" , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :Optional[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowercase ) != tokenize_chinese_chars ): UpperCamelCase__ = getattr(_lowercase , normalizer_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = tokenize_chinese_chars UpperCamelCase__ = normalizer_class(**_lowercase ) UpperCamelCase__ = do_lower_case def lowerCamelCase__ ( self :str , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int]=None ) -> Dict: """simple docstring""" UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any = None ) -> List[int]: """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
516
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __snake_case : Optional[int] = logging.getLogger(__name__) class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> Tuple: a_ : str = self.layer[current_layer](_lowercase , _lowercase , head_mask[current_layer] ) a_ : str = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''', a_, ) class A__(a_ ): """simple docstring""" def __init__( self , _lowercase ) -> List[str]: super().__init__(_lowercase ) a_ : Tuple = BertEncoderWithPabee(_lowercase ) self.init_weights() a_ : int = 0 a_ : Any = 0 a_ : Tuple = 0 a_ : Optional[int] = 0 def UpperCamelCase__ ( self , _lowercase ) -> Tuple: a_ : Dict = threshold def UpperCamelCase__ ( self , _lowercase ) -> List[Any]: a_ : Optional[int] = patience def UpperCamelCase__ ( self ) -> Dict: a_ : str = 0 a_ : Optional[int] = 0 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Union[str, Any] = self.inference_layers_num / self.inference_instances_num a_ : Optional[int] = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_lowercase ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: a_ : Dict = input_ids.size() elif inputs_embeds is not None: a_ : Dict = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) a_ : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a_ : Tuple = torch.ones(_lowercase , device=_lowercase ) if token_type_ids is None: a_ : List[str] = torch.zeros(_lowercase , dtype=torch.long , device=_lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a_ : torch.Tensor = self.get_extended_attention_mask(_lowercase , _lowercase , _lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: a_ , a_ , a_ : int = encoder_hidden_states.size() a_ : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: a_ : Tuple = torch.ones(_lowercase , device=_lowercase ) a_ : List[Any] = self.invert_attention_mask(_lowercase ) else: a_ : Optional[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a_ : List[Any] = self.get_head_mask(_lowercase , self.config.num_hidden_layers ) a_ : List[str] = self.embeddings( input_ids=_lowercase , position_ids=_lowercase , token_type_ids=_lowercase , inputs_embeds=_lowercase ) a_ : List[Any] = embedding_output if self.training: a_ : Any = [] for i in range(self.config.num_hidden_layers ): a_ : int = self.encoder.adaptive_forward( _lowercase , current_layer=_lowercase , attention_mask=_lowercase , head_mask=_lowercase ) a_ : List[Any] = self.pooler(_lowercase ) a_ : Optional[int] = output_layers[i](output_dropout(_lowercase ) ) res.append(_lowercase ) elif self.patience == 0: # Use all layers for inference a_ : Union[str, Any] = self.encoder( _lowercase , attention_mask=_lowercase , head_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) a_ : Union[str, Any] = self.pooler(encoder_outputs[0] ) a_ : List[str] = [output_layers[self.config.num_hidden_layers - 1](_lowercase )] else: a_ : Any = 0 a_ : Dict = None a_ : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 a_ : Optional[Any] = self.encoder.adaptive_forward( _lowercase , current_layer=_lowercase , attention_mask=_lowercase , head_mask=_lowercase ) a_ : Optional[int] = self.pooler(_lowercase ) a_ : int = output_layers[i](_lowercase ) if regression: a_ : Dict = logits.detach() if patient_result is not None: a_ : Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: a_ : Optional[Any] = 0 else: a_ : str = logits.detach().argmax(dim=1 ) if patient_result is not None: a_ : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowercase ) ): patient_counter += 1 else: a_ : Tuple = 0 a_ : Union[str, Any] = logits if patient_counter == self.patience: break a_ : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''', a_, ) class A__(a_ ): """simple docstring""" def __init__( self , _lowercase ) -> str: super().__init__(_lowercase ) a_ : str = config.num_labels a_ : Optional[Any] = BertModelWithPabee(_lowercase ) a_ : int = nn.Dropout(config.hidden_dropout_prob ) a_ : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowercase ) def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Tuple: a_ : Optional[Any] = self.bert( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) a_ : Optional[Any] = (logits[-1],) if labels is not None: a_ : int = None a_ : Union[str, Any] = 0 for ix, logits_item in enumerate(_lowercase ): if self.num_labels == 1: # We are doing regression a_ : Any = MSELoss() a_ : Union[str, Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: a_ : Any = CrossEntropyLoss() a_ : int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: a_ : str = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 a_ : Any = (total_loss / total_weights,) + outputs return outputs
540
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A (__magic_name__ ): snake_case :str = ["image_processor", "tokenizer"] snake_case :Union[str, Any] = "LayoutLMv3ImageProcessor" snake_case :List[str] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): __UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) __UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __UpperCAmelCase : str = self.image_processor(images=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Dict = features["words"] __UpperCAmelCase : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) # add pixel values __UpperCAmelCase : Tuple = features.pop("pixel_values" ) if return_overflowing_tokens is True: __UpperCAmelCase : List[str] = self.get_overflowing_images(UpperCamelCase_ , encoded_inputs["overflow_to_sample_mapping"] ) __UpperCAmelCase : List[str] = images return encoded_inputs def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f""" {len(UpperCamelCase_ )} and {len(UpperCamelCase_ )}""" ) return images_with_overflow def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def _snake_case ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _snake_case ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase_ , ) return self.image_processor_class @property def _snake_case ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase_ , ) return self.image_processor
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = BertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ = BertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
205
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self : List[str] , snake_case : int , snake_case : Optional[int]=1_3 , snake_case : List[str]=3_0 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=3 , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : List[Any]=3_2 , snake_case : int=5 , snake_case : int=4 , snake_case : List[str]=3_7 , snake_case : Union[str, Any]="gelu" , snake_case : int=0.1 , snake_case : Dict=0.1 , snake_case : Any=1_0 , snake_case : Any=0.02 , snake_case : int=3 , snake_case : int=0.6 , snake_case : str=None , ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : Optional[int] = batch_size UpperCamelCase_ : Optional[Any] = image_size UpperCamelCase_ : Optional[int] = patch_size UpperCamelCase_ : List[str] = num_channels UpperCamelCase_ : Optional[int] = is_training UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : str = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : Optional[Any] = intermediate_size UpperCamelCase_ : Optional[int] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = type_sequence_label_size UpperCamelCase_ : List[str] = initializer_range UpperCamelCase_ : Union[str, Any] = mask_ratio UpperCamelCase_ : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ : int = (image_size // patch_size) ** 2 UpperCamelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = None if self.use_labels: UpperCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : Optional[int] , snake_case : str ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[Any] , snake_case : Tuple , snake_case : Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[str] = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Optional[int] = model(snake_case ) UpperCamelCase_ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ : List[str] = 1 UpperCamelCase_ : Tuple = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ : Optional[Any] = model(snake_case ) UpperCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = config_and_inputs UpperCamelCase_ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : Tuple = ViTMAEModelTester(self ) UpperCamelCase_ : List[str] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[str] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class(snake_case ) UpperCamelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Tuple ) -> int: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ : Optional[Any] = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ : Optional[int] = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : str = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs[0].cpu().numpy() UpperCamelCase_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_ : Any = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Optional[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans UpperCamelCase_ : int = after_outputs[0].cpu().numpy() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Tuple = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Dict = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) UpperCamelCase_ : str = self.default_image_processor UpperCamelCase_ : int = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ : Optional[Any] = ViTMAEConfig() UpperCamelCase_ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ : Tuple = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits UpperCamelCase_ : Optional[int] = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
417
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =parent def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return {} def _A ( ): """simple docstring""" __lowercase ='<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' __lowercase ='\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MarkupLMFeatureExtractor if is_bsa_available() else None def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =MarkupLMFeatureExtractionTester(self) @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.feature_extraction_class() # Test not batched input __lowercase =get_html_strings()[0] __lowercase =feature_extractor(_lowerCAmelCase) # fmt: off __lowercase =[['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] __lowercase =[['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , _lowerCAmelCase) self.assertEqual(encoding.xpaths , _lowerCAmelCase) # Test batched __lowercase =get_html_strings() __lowercase =feature_extractor(_lowerCAmelCase) # fmt: off __lowercase =expected_nodes + [['My First Heading', 'My first paragraph.']] __lowercase =expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , _lowerCAmelCase) self.assertEqual(encoding.xpaths , _lowerCAmelCase)
454
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = BartTokenizer def __init__( self : Optional[int] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : str="replace" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Dict="</s>" , _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Dict="<mask>" , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : str=True , **_lowerCAmelCase : Tuple , ): '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase) != add_prefix_space: __lowercase =getattr(_lowerCAmelCase , pre_tok_state.pop('type')) __lowercase =add_prefix_space __lowercase =pre_tok_class(**_lowerCAmelCase) __lowercase =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowercase ='post_processor' __lowercase =getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase) if tokenizer_component_instance: __lowercase =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase =tuple(state['sep']) if "cls" in state: __lowercase =tuple(state['cls']) __lowercase =False if state.get('add_prefix_space' , _lowerCAmelCase) != add_prefix_space: __lowercase =add_prefix_space __lowercase =True if state.get('trim_offsets' , _lowerCAmelCase) != trim_offsets: __lowercase =trim_offsets __lowercase =True if changes_to_apply: __lowercase =getattr(_lowerCAmelCase , state.pop('type')) __lowercase =component_class(**_lowerCAmelCase) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase) @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else value __lowercase =value def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : str): '''simple docstring''' __lowercase =kwargs.get('is_split_into_words' , _lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =kwargs.get('is_split_into_words' , _lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' __lowercase =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase) return tuple(_lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=None): '''simple docstring''' __lowercase =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
454
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=a__ ): '''simple docstring''' lowercase__ : List[str] = ["transformers", "torch", "note_seq"] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Any: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
90
"""simple docstring""" from timeit import timeit def UpperCAmelCase ( snake_case : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) _lowerCAmelCase:str = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase ( snake_case : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) _lowerCAmelCase:Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase ( ): def do_benchmark(snake_case : int ) -> None: _lowerCAmelCase:Optional[int] = '''import __main__ as z''' print(F'Benchmark when {number = }:' ) print(F'{get_set_bits_count_using_modulo_operator(snake_case ) = }' ) _lowerCAmelCase:List[Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=snake_case ) print(F'timeit() runs in {timing} seconds' ) print(F'{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }' ) _lowerCAmelCase:List[str] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=snake_case , ) print(F'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
227
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( a : Optional[int] , a : str=False ): a__ = OmegaConf.load(a ) if display: print(yaml.dump(OmegaConf.to_container(a ) ) ) return config def lowerCAmelCase_ ( a : str , a : Optional[Any]=None , a : Any=None ): if conf_path is None: a__ = './model_checkpoints/vqgan_only.yaml' a__ = load_config(a , display=a ) a__ = VQModel(**config.model.params ) if ckpt_path is None: a__ = './model_checkpoints/vqgan_only.pt' a__ = torch.load(a , map_location=a ) if ".ckpt" in ckpt_path: a__ = sd['state_dict'] model.load_state_dict(a , strict=a ) model.to(a ) del sd return model def lowerCAmelCase_ ( a : Union[str, Any] , a : Tuple ): a__ , a__ , a__ = model.encode(a ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) a__ = model.decode(a ) return xrec def lowerCAmelCase_ ( a : int , a : Any=False ): a__ , a__ = string.rsplit('.' , 1 ) if reload: a__ = importlib.import_module(a ) importlib.reload(a ) return getattr(importlib.import_module(a , package=a ) , cls ) def lowerCAmelCase_ ( a : List[str] ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowerCAmelCase_ ( a : Any , a : Union[str, Any] , a : Optional[int]=True , a : Optional[Any]=True ): a__ = instantiate_from_config(a ) if sd is not None: model.load_state_dict(a ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( a : int , a : List[str] , a : Dict , a : List[str] ): # load the specified checkpoint if ckpt: a__ = torch.load(a , map_location='cpu' ) a__ = pl_sd['global_step'] print(f'''loaded model from global step {global_step}.''' ) else: a__ = {'state_dict': None} a__ = None a__ = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=a , eval_mode=a )['model'] return model, global_step
719
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Any = 'pt' elif is_tf_available(): __A : List[str] = 'tf' else: __A : Union[str, Any] = 'jax' class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = PerceiverTokenizer SCREAMING_SNAKE_CASE:Optional[int] = False def lowercase__ ( self ): """simple docstring""" super().setUp() a__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self , **_a ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def lowercase__ ( self , _a , _a=False , _a=20 , _a=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a__ = [] for i in range(len(_a ) ): try: a__ = tokenizer.decode([i] , clean_up_tokenization_spaces=_a ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ = list(filter(lambda _a : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _a ) ) a__ = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: a__ = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: a__ = toks + toks # toks_str = [t[1] for t in toks] a__ = [t[0] for t in toks] # Ensure consistency a__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: a__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: a__ = ' ' + output_txt a__ = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = 'Unicode €.' a__ = tokenizer(_a ) a__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]Unicode €.[SEP]' ) a__ = tokenizer('e è é ê ë' ) a__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off a__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on a__ = tokenizer(_a , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) if FRAMEWORK != "jax": a__ = list(batch.input_ids.numpy()[0] ) else: a__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = tokenizer(_a , padding=_a , return_tensors=_a ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _a ) self.assertIn('attention_mask' , _a ) self.assertNotIn('decoder_input_ids' , _a ) self.assertNotIn('decoder_attention_mask' , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = [ 'Summary of the text.', 'Another summary.', ] a__ = tokenizer( text_target=_a , max_length=32 , padding='max_length' , truncation=_a , return_tensors=_a ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self ): """simple docstring""" # safety check on max_len default value so we are sure the test works a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) a__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) a__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a__ = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def lowercase__ ( self ): """simple docstring""" a__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) a__ = [F'''<extra_id_{i}>''' for i in range(125 )] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_a , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ = tokenizer_class.from_pretrained( _a , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_a )] a__ = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a__ = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a__ = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] a__ = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(_a , _a )
126
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off __SCREAMING_SNAKE_CASE = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = ['input_ids', 'attention_mask'] _lowercase = [] _lowercase = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Tuple =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE_ : str ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ : Dict =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Tuple ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : str =1 SCREAMING_SNAKE_CASE_ : Tuple =len(self.sp_model ) SCREAMING_SNAKE_CASE_ : Tuple ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } SCREAMING_SNAKE_CASE_ : List[str] ={v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ : int =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ : List[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ : Optional[Any] =src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCamelCase ( self ): return self._src_lang @src_lang.setter def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Any =None return state def __setstate__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Any ={} SCREAMING_SNAKE_CASE_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : List[Any] =self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self , __UpperCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =[] SCREAMING_SNAKE_CASE_ : str ='' SCREAMING_SNAKE_CASE_ : List[str] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Dict =[] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ : str =os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ : List[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE_ : List[str] =src_lang SCREAMING_SNAKE_CASE_ : Dict =self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =self.convert_tokens_to_ids(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =tgt_lang_id return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Dict =src_lang SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id] def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE_ : int =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id]
220
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=False , ) -> str: """simple docstring""" __magic_name__ : List[str] = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ : List[str] = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : List[str] = num_channels __magic_name__ : str = image_size __magic_name__ : Union[str, Any] = min_resolution __magic_name__ : Optional[int] = max_resolution __magic_name__ : List[Any] = do_resize __magic_name__ : Tuple = size __magic_name__ : int = do_center_crop __magic_name__ : Optional[Any] = crop_size __magic_name__ : Tuple = do_normalize __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Any = do_reduce_labels def lowercase ( self ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase ( ) ->List[Any]: """simple docstring""" __magic_name__ : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) __magic_name__ : int = Image.open(dataset[0]['''file'''] ) __magic_name__ : Union[str, Any] = Image.open(dataset[1]['''file'''] ) return image, map def lowerCAmelCase ( ) ->Dict: """simple docstring""" __magic_name__ : Optional[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) __magic_name__ : Any = Image.open(ds[0]['''file'''] ) __magic_name__ : Tuple = Image.open(ds[1]['''file'''] ) __magic_name__ : Optional[Any] = Image.open(ds[2]['''file'''] ) __magic_name__ : Optional[int] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class A__ ( snake_case__ , unittest.TestCase ): lowerCamelCase__ : List[str] =BeitImageProcessor if is_vision_available() else None def lowercase ( self ) -> Optional[Any]: """simple docstring""" __magic_name__ : Tuple = BeitImageProcessingTester(self ) @property def lowercase ( self ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ) -> List[str]: """simple docstring""" __magic_name__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , '''image_std''' ) ) def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ ) __magic_name__ : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" pass def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input __magic_name__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : Tuple = image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input __magic_name__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : List[Any] = image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input __magic_name__ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : List[Any] = image_processing(UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) __magic_name__ : Optional[Any] = [] for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ : Any = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ : Union[str, Any] = prepare_semantic_single_inputs() __magic_name__ : List[Any] = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ : Optional[Any] = prepare_semantic_batch_inputs() __magic_name__ : Tuple = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ : Optional[Any] = prepare_semantic_single_inputs() __magic_name__ : Optional[int] = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ : Tuple = True __magic_name__ : List[str] = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
702
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, ) ->Tuple: """simple docstring""" if config_name_or_path is None: __magic_name__ : Dict = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __magic_name__ : int = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ : Union[str, Any] = question_encoder_name_or_path __magic_name__ : Dict = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __magic_name__ : str = RagConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : Dict = AutoConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : str = AutoConfig.from_pretrained(UpperCAmelCase ) __magic_name__ : Tuple = gen_config __magic_name__ : str = question_encoder_config __magic_name__ : str = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase, UpperCAmelCase, config=UpperCAmelCase ) rag_model.save_pretrained(UpperCAmelCase ) # Sanity check. model_class.from_pretrained(UpperCAmelCase ) # Save tokenizers. __magic_name__ : Any = AutoTokenizer.from_pretrained(UpperCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) __magic_name__ : List[str] = AutoTokenizer.from_pretrained(UpperCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowercase_ = parser.parse_args() lowercase_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
336
0
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''image_processor''', '''feature_extractor'''] UpperCamelCase_ : Union[str, Any] = '''TvltImageProcessor''' UpperCamelCase_ : Optional[Any] = '''TvltFeatureExtractor''' def __init__( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): super().__init__(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor SCREAMING_SNAKE_CASE : str = feature_extractor def __call__( self : Tuple , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=False , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] , ): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if images is not None: SCREAMING_SNAKE_CASE : int = self.image_processor(UpperCAmelCase_ , mask_pixel=UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if images_mixed is not None: SCREAMING_SNAKE_CASE : Dict = self.image_processor(UpperCAmelCase_ , is_mixed=UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if audio is not None: SCREAMING_SNAKE_CASE : Any = self.feature_extractor( UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , mask_audio=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = {} if audio is not None: output_dict.update(UpperCAmelCase_ ) if images is not None: output_dict.update(UpperCAmelCase_ ) if images_mixed_dict is not None: output_dict.update(UpperCAmelCase_ ) return output_dict @property def _A ( self : int ): SCREAMING_SNAKE_CASE : Any = self.image_processor.model_input_names SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
62
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase__ = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } lowerCAmelCase__ = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase=False , lowercase=False , lowercase=False , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase = None , **lowercase , ) -> None: '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) A__ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A__ = "<|endoftext|>" if eos_token is None else eos_token A__ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A__ = unk_token if pad_token is None else pad_token A__ = eos_token if bos_token is None else bos_token else: A__ = "<pad>" if pad_token is None else pad_token A__ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # Used for whitespace normalization in input texts # fmt : off A__ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A__ = re.compile( F'[{"".join(map(lowercase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , lowercase ) -> List[Any]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = self.non_printing_characters_re.sub("" , lowercase ) # Normalize whitespaces A__ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization A__ = unicodedata.normalize("NFC" , lowercase ) return text def UpperCamelCase ( self , lowercase , **lowercase ) -> List[str]: '''simple docstring''' A__ = self.preprocess_text(lowercase ) return self.sp_model.encode(lowercase , out_type=lowercase ) def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return self.sp_model.PieceToId(lowercase ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(lowercase ) @staticmethod def UpperCamelCase ( lowercase ) -> str: '''simple docstring''' return out_string def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = [] A__ = "" A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A__ = True A__ = [] else: current_sub_tokens.append(lowercase ) A__ = False out_string += self.sp_model.decode(lowercase ) return out_string def UpperCamelCase ( self ) -> Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def UpperCamelCase ( self , lowercase , lowercase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = self.preprocess_text(lowercase ) A__ = self.sp_model.encode(lowercase ) else: A__ = [self.preprocess_text(lowercase ) for t in text] A__ = self.sp_model.encode(lowercase ) if return_tensors is True or return_tensors == "pt": A__ = torch.tensor(lowercase ) return token_ids def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.sp_model.decode(lowercase ) def UpperCamelCase ( self , lowercase ) -> List[int]: '''simple docstring''' A__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] A__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowercase ) + F'{self.bos_token}Bot:' ) return self.encode(text=lowercase )
514
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : str = 'sew-d' def __init__( self : List[str] , lowercase__ : int=32 , lowercase__ : Tuple=7_68 , lowercase__ : Any=12 , lowercase__ : Any=12 , lowercase__ : Union[str, Any]=30_72 , lowercase__ : str=2 , lowercase__ : Any=5_12 , lowercase__ : str=2_56 , lowercase__ : Tuple=True , lowercase__ : Dict=True , lowercase__ : Optional[Any]=("p2c", "c2p") , lowercase__ : str="layer_norm" , lowercase__ : int="gelu_python" , lowercase__ : Tuple=0.1 , lowercase__ : List[Any]=0.1 , lowercase__ : Optional[int]=0.1 , lowercase__ : Dict=0.0 , lowercase__ : Tuple=0.1 , lowercase__ : List[str]=0.02 , lowercase__ : Optional[Any]=1e-7 , lowercase__ : Optional[Any]=1e-5 , lowercase__ : int="group" , lowercase__ : Any="gelu" , lowercase__ : int=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowercase__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__ : str=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__ : List[str]=False , lowercase__ : Any=1_28 , lowercase__ : Optional[Any]=16 , lowercase__ : Optional[Any]=True , lowercase__ : Dict=0.05 , lowercase__ : Union[str, Any]=10 , lowercase__ : List[Any]=2 , lowercase__ : Optional[Any]=0.0 , lowercase__ : str=10 , lowercase__ : List[str]=0 , lowercase__ : Tuple="mean" , lowercase__ : Dict=False , lowercase__ : Tuple=False , lowercase__ : Optional[int]=2_56 , lowercase__ : Optional[int]=0 , lowercase__ : Optional[Any]=1 , lowercase__ : Union[str, Any]=2 , **lowercase__ : List[str] , ) ->List[Any]: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) _lowercase = hidden_size _lowercase = feat_extract_norm _lowercase = feat_extract_activation _lowercase = list(lowercase__) _lowercase = list(lowercase__) _lowercase = list(lowercase__) _lowercase = conv_bias _lowercase = num_conv_pos_embeddings _lowercase = num_conv_pos_embedding_groups _lowercase = len(self.conv_dim) _lowercase = num_hidden_layers _lowercase = intermediate_size _lowercase = squeeze_factor _lowercase = max_position_embeddings _lowercase = position_buckets _lowercase = share_att_key _lowercase = relative_attention _lowercase = norm_rel_ebd _lowercase = list(lowercase__) _lowercase = hidden_act _lowercase = num_attention_heads _lowercase = hidden_dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = feat_proj_dropout _lowercase = final_dropout _lowercase = layer_norm_eps _lowercase = feature_layer_norm_eps _lowercase = initializer_range _lowercase = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase = apply_spec_augment _lowercase = mask_time_prob _lowercase = mask_time_length _lowercase = mask_time_min_masks _lowercase = mask_feature_prob _lowercase = mask_feature_length _lowercase = mask_feature_min_masks # ctc loss _lowercase = ctc_loss_reduction _lowercase = ctc_zero_infinity # sequence classification _lowercase = use_weighted_layer_sum _lowercase = classifier_proj_size @property def _UpperCAmelCase ( self : Any) ->Tuple: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1)
572
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ = 100 ): _lowercase = set() _lowercase = 0 _lowercase = n + 1 # maximum limit for a in range(2 , snake_case_ ): for b in range(2 , snake_case_ ): _lowercase = a**b # calculates the current power collect_powers.add(snake_case_ ) # adds the result to the set return len(snake_case_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
572
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=3, A=4, A=[10, 20, 30, 40], A=[2, 2, 3, 2], A=True, A=True, A=37, A="gelu", A=10, A=0.02, A=["stage2", "stage3", "stage4"], A=[2, 3, 4], A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : str = num_stages SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Any = out_indices SCREAMING_SNAKE_CASE : Dict = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=A, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ConvNextVaModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : int = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A : List[str] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A : Any = False A : Tuple = False A : Union[str, Any] = False A : Any = False A : List[Any] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ConvNextVaModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Tuple = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue SCREAMING_SNAKE_CASE : Optional[int] = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : int = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : List[Any] = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(A ) SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(A ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = preprocessor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
28
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self : List[Any] , A_ : Optional[Any] , A_ : str=1_3 , A_ : Optional[Any]=3_2 , A_ : Tuple=3 , A_ : Optional[int]=4 , A_ : List[Any]=[1_0, 2_0, 3_0, 4_0] , A_ : List[str]=[2, 2, 3, 2] , A_ : str=True , A_ : Optional[Any]=True , A_ : str=3_7 , A_ : Any="gelu" , A_ : Tuple=1_0 , A_ : Optional[int]=0.02 , A_ : int=["stage2", "stage3", "stage4"] , A_ : Optional[Any]=[2, 3, 4] , A_ : Any=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : List[Any] , A_ : int , A_ : int ): '''simple docstring''' __lowercase = ConvNextModel(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : Tuple , A_ : List[str] ): '''simple docstring''' __lowercase = ConvNextForImageClassification(A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : Optional[int] , A_ : List[str] , A_ : Union[str, Any] ): '''simple docstring''' __lowercase = ConvNextBackbone(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=A_ ) model.to(A_ ) model.eval() __lowercase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a : str = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) a : str = True a : List[str] = False a : str = False a : Optional[int] = False a : str = False def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(A_ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(A_ : Union[str, Any] , A_ : Optional[int] , A_ : int ): __lowercase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(A_ , A_ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(A_ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): __lowercase = model(**A_ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A_ ) __lowercase = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase , _a ): a : List[Any] = (ConvNextBackbone,) if is_torch_available() else () a : Dict = ConvNextConfig a : List[str] = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = ConvNextModelTester(self )
706
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ =OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase__ =OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase__ =OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase__ =OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase__ =OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase__ =OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase__ =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : List[Any] = FLAX_MODEL_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModel) class lowerCamelCase__ ( _BaseAutoModelClass ): a : int = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowerCamelCase__ ( _BaseAutoModelClass ): a : Tuple = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowerCamelCase__ ( _BaseAutoModelClass ): a : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowerCamelCase__ ( _BaseAutoModelClass ): a : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : str = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowerCamelCase__ ( _BaseAutoModelClass ): a : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowerCamelCase__ ( _BaseAutoModelClass ): a : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowerCamelCase__ ( _BaseAutoModelClass ): a : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase__ =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowerCamelCase__ ( _BaseAutoModelClass ): a : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase__ =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
442
0
"""simple docstring""" def snake_case_ ( A_ : str = 2_00 ): '''simple docstring''' _lowerCamelCase : Dict = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _lowerCamelCase : Union[str, Any] = [0] * (pence + 1) _lowerCamelCase : List[str] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCAmelCase, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
83
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Tuple = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) lowerCamelCase__ : Any = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : Tuple = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) # compare the actual values for a slice. lowerCamelCase__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
295
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : jnp.ndarray __lowerCamelCase : jnp.ndarray class _A ( nn.Module ): '''simple docstring''' __lowerCamelCase : int __lowerCamelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) __lowerCamelCase : jnp.dtype = jnp.floataa def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) snake_case : str = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case : List[str] = self.block_out_channels[i] snake_case : str = self.block_out_channels[i + 1] snake_case : List[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(SCREAMING_SNAKE_CASE_ ) snake_case : str = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = blocks snake_case : Dict = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : str = self.conv_in(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = nn.silu(SCREAMING_SNAKE_CASE_ ) for block in self.blocks: snake_case : List[Any] = block(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = nn.silu(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = self.conv_out(SCREAMING_SNAKE_CASE_ ) return embedding @flax_register_to_config class _A ( nn.Module , snake_case , snake_case ): '''simple docstring''' __lowerCamelCase : int = 3_2 __lowerCamelCase : int = 4 __lowerCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __lowerCamelCase : Union[bool, Tuple[bool]] = False __lowerCamelCase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __lowerCamelCase : int = 2 __lowerCamelCase : Union[int, Tuple[int]] = 8 __lowerCamelCase : Optional[Union[int, Tuple[int]]] = None __lowerCamelCase : int = 1_2_8_0 __lowerCamelCase : float = 0.0 __lowerCamelCase : bool = False __lowerCamelCase : jnp.dtype = jnp.floataa __lowerCamelCase : bool = True __lowerCamelCase : int = 0 __lowerCamelCase : str = "rgb" __lowerCamelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # init input tensors snake_case : Any = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(SCREAMING_SNAKE_CASE_ ,dtype=jnp.floataa ) snake_case : List[str] = jnp.ones((1,) ,dtype=jnp.intaa ) snake_case : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) snake_case : int = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case : Tuple = jnp.zeros(SCREAMING_SNAKE_CASE_ ,dtype=jnp.floataa ) snake_case , snake_case : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )["params"] def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = self.block_out_channels snake_case : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Union[str, Any] = self.num_attention_heads or self.attention_head_dim # input snake_case : Dict = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time snake_case : Dict = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) snake_case : Union[str, Any] = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE_ ,dtype=self.dtype ) snake_case : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) snake_case : str = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : Any = [] snake_case : Any = [] snake_case : str = block_out_channels[0] snake_case : str = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) for i, down_block_type in enumerate(self.down_block_types ): snake_case : Optional[Any] = output_channel snake_case : Optional[int] = block_out_channels[i] snake_case : Dict = i == len(SCREAMING_SNAKE_CASE_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : Dict = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE_ ,out_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: snake_case : int = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE_ ,out_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(SCREAMING_SNAKE_CASE_ ) for _ in range(self.layers_per_block ): snake_case : Dict = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) if not is_final_block: snake_case : Optional[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = down_blocks snake_case : List[Any] = controlnet_down_blocks # mid snake_case : Optional[int] = block_out_channels[-1] snake_case : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) snake_case : Optional[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 1.0 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = False ,): '''simple docstring''' snake_case : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case : Union[str, Any] = jnp.flip(SCREAMING_SNAKE_CASE_ ,axis=1 ) # 1. time if not isinstance(SCREAMING_SNAKE_CASE_ ,jnp.ndarray ): snake_case : Any = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE_ ,jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : int = timesteps.astype(dtype=jnp.floataa ) snake_case : Optional[int] = jnp.expand_dims(SCREAMING_SNAKE_CASE_ ,0 ) snake_case : List[Any] = self.time_proj(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = self.time_embedding(SCREAMING_SNAKE_CASE_ ) # 2. pre-process snake_case : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE_ ,(0, 2, 3, 1) ) snake_case : Union[str, Any] = self.conv_in(SCREAMING_SNAKE_CASE_ ) snake_case : str = jnp.transpose(SCREAMING_SNAKE_CASE_ ,(0, 2, 3, 1) ) snake_case : Optional[int] = self.controlnet_cond_embedding(SCREAMING_SNAKE_CASE_ ) sample += controlnet_cond # 3. down snake_case : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case , snake_case : str = down_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) else: snake_case , snake_case : Dict = down_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case : Optional[int] = self.mid_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) # 5. contronet blocks snake_case : int = () for down_block_res_sample, controlnet_block in zip(SCREAMING_SNAKE_CASE_ ,self.controlnet_down_blocks ): snake_case : List[Any] = controlnet_block(SCREAMING_SNAKE_CASE_ ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case : Any = controlnet_down_block_res_samples snake_case : Optional[int] = self.controlnet_mid_block(SCREAMING_SNAKE_CASE_ ) # 6. scaling snake_case : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=SCREAMING_SNAKE_CASE_ ,mid_block_res_sample=SCREAMING_SNAKE_CASE_ )
315
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = TextToVideoSDPipeline __lowerCamelCase : Dict = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowerCamelCase : str = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) snake_case : int = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="""scaled_linear""" ,clip_sample=SCREAMING_SNAKE_CASE_ ,set_alpha_to_one=SCREAMING_SNAKE_CASE_ ,) torch.manual_seed(0 ) snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) snake_case : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) snake_case : List[str] = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): snake_case : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: snake_case : int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) snake_case : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def snake_case_ ( self ): '''simple docstring''' snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : str = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ ) snake_case : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = """np""" snake_case : List[str] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames snake_case : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case : Optional[Any] = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def snake_case_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ,expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case : Optional[int] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case : List[str] = pipe.to("""cuda""" ) snake_case : Optional[Any] = """Spiderman is surfing""" snake_case : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : str = pipe(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=25 ,output_type="""pt""" ).frames snake_case : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case : str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : Dict = pipe.to("""cuda""" ) snake_case : Tuple = """Spiderman is surfing""" snake_case : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Any = pipe(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=2 ,output_type="""pt""" ).frames snake_case : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
315
1