code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Tuple ) -> List[str]: __UpperCamelCase : str = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_2_8, "min_length": 1_2, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_4_2, "min_length": 5_6, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 6_2, "min_length": 1_1, "num_beams": 6}, } } __UpperCamelCase : List[Any] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_2_8, "task_specific_params.summarization.min_length": 1_2, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_4_2, "task_specific_params.summarization_cnn.min_length": 5_6, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 6_2, "task_specific_params.summarization_xsum.min_length": 1_1, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) __UpperCamelCase : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self :List[str] ) -> str: __UpperCamelCase : Union[str, Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) __UpperCamelCase : Dict = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Tuple = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Optional[int] = np.random.randn(3 , 4 ) __UpperCamelCase : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) __UpperCamelCase : List[Any] = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : List[str] = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self :int ) -> Tuple: __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : Dict = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) __UpperCamelCase : List[str] = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Any = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self :Any ) -> Dict: __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (1_2, 5) ) , np.reshape(a , (1_2, 5) ) ) ) @require_torch def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) __UpperCamelCase : Any = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Optional[Any] = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (1_2, 5) ) , reshape(a , (1_2, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self :Optional[int] ) -> int: __UpperCamelCase : List[Any] = np.random.randn(3 , 4 ) __UpperCamelCase : str = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) __UpperCamelCase : int = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : Optional[int] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (1_2, 5) ) , reshape(a , (1_2, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self :List[Any] ) -> str: __UpperCamelCase : List[str] = np.random.randn(3 , 4 ) __UpperCamelCase : Any = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) __UpperCamelCase : Optional[int] = np.random.randn(3 , 4 , 5 ) __UpperCamelCase : List[Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (1_2, 5) ) , np.asarray(reshape(a , (1_2, 5) ) ) ) ) def _lowerCamelCase ( self :Dict ) -> List[str]: __UpperCamelCase : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) __UpperCamelCase : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : Any = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) __UpperCamelCase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : str = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : List[str] = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) __UpperCamelCase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : Union[str, Any] = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self :Dict ) -> int: __UpperCamelCase : int = np.random.randn(1 , 3 , 4 ) __UpperCamelCase : Tuple = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) __UpperCamelCase : int = np.random.randn(1 , 4 , 1 , 5 ) __UpperCamelCase : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self :Any ) -> List[str]: __UpperCamelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self :Optional[Any] ) -> Optional[int]: __UpperCamelCase : Any = np.random.randn(3 , 4 ) __UpperCamelCase : Dict = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : str = np.random.randn(3 , 4 ) __UpperCamelCase : Dict = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self :Any ) -> Any: __UpperCamelCase : Any = np.random.randn(3 , 4 ) __UpperCamelCase : Optional[int] = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
232
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = '▁' lowercase : Tuple = {'vocab_file': 'spiece.model'} lowercase : Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } lowercase : Any = { 'google/reformer-crime-and-punishment': 524288, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :int , a :List[Any] , a :Tuple="</s>" , a :str="<unk>" , a :Dict=[] , a :Optional[Dict[str, Any]] = None , **a :Union[str, Any] , ) -> None: __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _lowerCamelCase ( self :Optional[Any] ) -> Any: return self.sp_model.get_piece_size() def _lowerCamelCase ( self :Optional[int] ) -> Dict[str, int]: __UpperCamelCase : str = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :int , a :List[str] ) -> int: __UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : int = {} __UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :Optional[int] , a :Optional[Any] ) -> str: return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self :Dict , a :Union[str, Any] ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __UpperCamelCase : Optional[int] = self.sp_model.IdToPiece(a ) return token def _lowerCamelCase ( self :Dict , a :List[Any] ) -> Dict: __UpperCamelCase : Optional[int] = [] __UpperCamelCase : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
232
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ :Any = get_logger(__name__) lowercase__ :Tuple = Path(__file__).parent / "model_card_template.md" lowercase__ :Optional[int] = uuida().hex lowercase__ :Union[str, Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES lowercase__ :Union[str, Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES lowercase__ :List[str] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def UpperCamelCase ( lowerCAmelCase__ = None ): '''simple docstring''' lowercase = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): ua += "; " + user_agent return ua def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ): '''simple docstring''' if token is None: lowercase = HfFolder.get_token() if organization is None: lowercase = whoami(lowerCAmelCase__ )['''name'''] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(lowerCAmelCase__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase = args.hub_token if hasattr(lowerCAmelCase__ , '''hub_token''' ) else None lowercase = get_full_repo_name(lowerCAmelCase__ , token=lowerCAmelCase__ ) lowercase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCAmelCase__ , model_name=lowerCAmelCase__ , repo_name=lowerCAmelCase__ , dataset_name=args.dataset_name if hasattr(lowerCAmelCase__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCAmelCase__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(lowerCAmelCase__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase = os.path.join(args.output_dir , '''README.md''' ) model_card.save(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase = str(Path(lowerCAmelCase__ ).as_posix() ) lowercase = re.search(R'''snapshots/([^/]+)/''' , lowerCAmelCase__ ) if search is None: return None lowercase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ :int = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) lowercase__ :Any = os.path.join(hf_cache_home, "diffusers") def UpperCamelCase ( lowerCAmelCase__ = None , lowerCAmelCase__ = None ): '''simple docstring''' if new_cache_dir is None: lowercase = DIFFUSERS_CACHE if old_cache_dir is None: lowercase = old_diffusers_cache lowercase = Path(lowerCAmelCase__ ).expanduser() lowercase = Path(lowerCAmelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase__ ) new_blob_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) os.replace(lowerCAmelCase__ , lowerCAmelCase__ ) try: os.symlink(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ :List[str] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): lowercase__ :List[str] = 0 else: with open(cache_version_file) as f: try: lowercase__ :str = int(f.read()) except ValueError: lowercase__ :str = 0 if cache_version < 1: lowercase__ :str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: lowercase__ :str = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = None ): '''simple docstring''' if variant is not None: lowercase = weights_name.split('''.''' ) lowercase = splits[:-1] + [variant] + splits[-1:] lowercase = '''.'''.join(lowerCAmelCase__ ) return weights_name def UpperCamelCase ( lowerCAmelCase__ , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ): '''simple docstring''' lowercase = str(lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCAmelCase__ ): if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ): # Load from a PyTorch checkpoint lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ): lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase = hf_hub_download( lowerCAmelCase__ , filename=_add_variant(lowerCAmelCase__ , lowerCAmelCase__ ) , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , lowerCAmelCase__ , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase__ , lowerCAmelCase__ )}\' so that the correct variant file can be added.' , lowerCAmelCase__ , ) try: # 2. Load model file as usual lowercase = hf_hub_download( lowerCAmelCase__ , filename=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , user_agent=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' '''this model name. Check the model page at ''' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
97
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self ,A__ ,A__=1_3 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=1_6 ,A__=3_6 ,A__=6 ,A__=6 ,A__=6 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=3 ,A__=4 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = embedding_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_hidden_groups lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def A__ ( self): lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels) lowercase = ids_tensor([self.batch_size] ,self.num_choices) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertModel(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__) lowercase = model(A__ ,token_type_ids=A__) lowercase = model(A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForPreTraining(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,sentence_order_label=A__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForMaskedLM(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = AlbertForQuestionAnswering(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = AlbertForSequenceClassification(A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = AlbertForTokenClassification(config=A__) model.to(A__) model.eval() lowercase = model(A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_choices lowercase = AlbertForMultipleChoice(config=A__) model.to(A__) model.eval() lowercase = input_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = token_type_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = input_mask.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() lowercase = model( A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Union[str, Any] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : int =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : str =True def A__ ( self ,A__ ,A__ ,A__=False): lowercase = super()._prepare_for_class(A__ ,A__ ,return_labels=A__) if return_labels: if model_class in get_values(A__): lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=A__) lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) return inputs_dict def A__ ( self): lowercase = AlbertModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,hidden_size=3_7) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*A__) @slow def A__ ( self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AlbertModel.from_pretrained(A__) self.assertIsNotNone(A__) @require_torch class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = AlbertModel.from_pretrained('''albert-base-v2''') lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): lowercase = model(A__ ,attention_mask=A__)[0] lowercase = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape ,A__) lowercase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,A__ ,atol=1E-4))
97
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __SCREAMING_SNAKE_CASE : int = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __SCREAMING_SNAKE_CASE : Tuple = """▁""" class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = VOCAB_FILES_NAMES __UpperCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , A : Optional[int] , A : Any=True , A : List[Any]=True , A : Optional[Any]=False , A : Any="[CLS]" , A : List[str]="[SEP]" , A : str="<unk>" , A : Any="[SEP]" , A : int="<pad>" , A : Union[str, Any]="[CLS]" , A : List[str]="[MASK]" , A : Optional[Dict[str, Any]] = None , **A : int , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase : Any = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : List[Any] = do_lower_case _UpperCAmelCase : str = remove_space _UpperCAmelCase : Optional[Any] = keep_accents _UpperCAmelCase : Optional[int] = vocab_file _UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def _A ( self : str ): return len(self.sp_model ) def _A ( self : Any ): _UpperCAmelCase : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): _UpperCAmelCase : int = self.__dict__.copy() _UpperCAmelCase : List[str] = None return state def __setstate__( self : List[str] , A : int ): _UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : List[Any] , A : Optional[int] ): if self.remove_space: _UpperCAmelCase : int = " ".join(inputs.strip().split() ) else: _UpperCAmelCase : Tuple = inputs _UpperCAmelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _UpperCAmelCase : Union[str, Any] = unicodedata.normalize("NFKD" , A ) _UpperCAmelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: _UpperCAmelCase : int = outputs.lower() return outputs def _A ( self : str , A : str ): _UpperCAmelCase : Union[str, Any] = self.preprocess_text(A ) _UpperCAmelCase : Optional[int] = self.sp_model.encode(A , out_type=A ) _UpperCAmelCase : int = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _UpperCAmelCase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase : Optional[Any] = cur_pieces[1:] else: _UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def _A ( self : Union[str, Any] , A : Optional[Any] ): return self.sp_model.PieceToId(A ) def _A ( self : int , A : Optional[Any] ): return self.sp_model.IdToPiece(A ) def _A ( self : int , A : Tuple ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = "" _UpperCAmelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(A ) _UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def _A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : List[str] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self : Tuple , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def _A ( self : int , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : Union[str, Any] , A : str , A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , "wb" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
31
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "efficientformer" def __init__( self , _UpperCAmelCase = [3, 2, 6, 4] , _UpperCAmelCase = [48, 96, 224, 448] , _UpperCAmelCase = [True, True, True, True] , _UpperCAmelCase = 448 , _UpperCAmelCase = 32 , _UpperCAmelCase = 4 , _UpperCAmelCase = 7 , _UpperCAmelCase = 5 , _UpperCAmelCase = 8 , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 16 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.02 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = 224 , _UpperCAmelCase = 1e-0_5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: List[str] = hidden_act lowercase__: Union[str, Any] = hidden_dropout_prob lowercase__: Union[str, Any] = hidden_sizes lowercase__: Any = num_hidden_layers lowercase__: int = num_attention_heads lowercase__: Dict = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = patch_size lowercase__: int = num_channels lowercase__: str = depths lowercase__: List[str] = mlp_expansion_ratio lowercase__: List[str] = downsamples lowercase__: List[str] = dim lowercase__: Optional[Any] = key_dim lowercase__: Union[str, Any] = attention_ratio lowercase__: Any = resolution lowercase__: Any = pool_size lowercase__: List[Any] = downsample_patch_size lowercase__: Optional[int] = downsample_stride lowercase__: Union[str, Any] = downsample_pad lowercase__: List[Any] = drop_path_rate lowercase__: Optional[Any] = num_metaad_blocks lowercase__: Any = distillation lowercase__: Optional[int] = use_layer_scale lowercase__: List[str] = layer_scale_init_value lowercase__: Dict = image_size lowercase__: List[str] = batch_norm_eps
177
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : Optional[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Optional[Any] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : List[str] = {'''facebook/blenderbot_small-90M''': 512} def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->Optional[Any]: '''simple docstring''' a : Optional[Any] = set() a : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a : Tuple = char a : int = set(_lowercase ) return pairs class __UpperCamelCase ( a__ ): lowerCamelCase : Dict =VOCAB_FILES_NAMES lowerCamelCase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="__start__" , lowerCAmelCase__="__end__" , lowerCAmelCase__="__unk__" , lowerCAmelCase__="__null__" , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: a : int = json.load(lowerCAmelCase__ ) a : Tuple = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: a : int = merges_handle.read().split("\n" )[1:-1] a : List[str] = [tuple(merge.split() ) for merge in merges] a : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a : int = {} @property def __a ( self ) -> int: return len(self.encoder ) def __a ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] a : Dict = re.sub("([.,!?()])" , R" \1" , lowerCAmelCase__ ) a : Optional[Any] = re.sub("(')" , R" \1 " , lowerCAmelCase__ ) a : Tuple = re.sub(R"\s{2,}" , " " , lowerCAmelCase__ ) if "\n" in token: a : Dict = token.replace("\n" , " __newln__" ) a : Tuple = token.split(" " ) a : Optional[int] = [] for token in tokens: if not len(lowerCAmelCase__ ): continue a : Tuple = token.lower() a : List[Any] = tuple(lowerCAmelCase__ ) a : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) a : Tuple = get_pairs(lowerCAmelCase__ ) if not pairs: words.append(lowerCAmelCase__ ) continue while True: a : Any = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a : Union[str, Any] = bigram a : Optional[Any] = [] a : int = 0 while i < len(lowerCAmelCase__ ): try: a : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) new_word.extend(word[i:j] ) a : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a : List[str] = tuple(lowerCAmelCase__ ) a : Dict = new_word if len(lowerCAmelCase__ ) == 1: break else: a : Dict = get_pairs(lowerCAmelCase__ ) a : List[Any] = "@@ ".join(lowerCAmelCase__ ) a : str = word[:-4] a : Optional[Any] = word words.append(lowerCAmelCase__ ) return " ".join(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> List[str]: a : Tuple = [] a : int = re.findall(R"\S+\n?" , lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(" " ) ) ) return split_tokens def __a ( self , lowerCAmelCase__ ) -> int: a : Dict = token.lower() return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __a ( self , lowerCAmelCase__ ) -> str: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def __a ( self , lowerCAmelCase__ ) -> str: a : Tuple = " ".join(lowerCAmelCase__ ).replace("@@ " , "" ).strip() return out_string def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) a : List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) a : Any = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file
353
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a : Dict = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a : List[str] = 10 a : Optional[int] = 256 def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[MinHash]: '''simple docstring''' if len(_lowercase ) < MIN_NUM_TOKENS: return None a : Any = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class __UpperCamelCase : def __init__( self , *, lowerCAmelCase__ = 0.85 , ) -> Any: a : Any = duplication_jaccard_threshold a : Dict = NUM_PERM a : Dict = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a : List[str] = defaultdict(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : Any = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __a ( self ) -> List[List[Dict]]: a : Any = [] for base, duplicates in self._duplicate_clusters.items(): a : Any = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict a : Optional[int] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __a ( self , lowerCAmelCase__ ) -> None: a : Optional[int] = self.get_duplicate_clusters() with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[Any]: '''simple docstring''' a, a : Optional[Any] = element a : Any = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] ) ->Optional[int]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float ) ->Dict: '''simple docstring''' a : Optional[int] = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=100 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->float: '''simple docstring''' a : Any = get_tokens(_lowercase ) a : List[str] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a : Dict = None def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Dict ) ->Tuple: '''simple docstring''' a : Union[str, Any] = [] for elementa in cluster: a : List[Any] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: a : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: a : Optional[Any] = 1 extremes.append(_lowercase ) return extremes def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Any , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' global _shared_dataset a : Tuple = dataset a : List[Any] = [] a : int = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' a : str = make_duplicate_clusters(_lowercase , _lowercase ) a : List[Any] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} a : List[Any] = {} a : str = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: a : Optional[Any] = element a : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) a : Union[str, Any] = dataset.filter(lambda _lowercase , _lowercase : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a : Union[str, Any] = element["base_index"] in extreme_dict if element["is_extreme"]: a : Optional[int] = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(_lowercase )}""" ) print(F"""Number of duplicate clusters: {len(_lowercase )}""" ) print(F"""Files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Filtered dataset size: {len(_lowercase )}""" ) return ds_filter, duplicate_clusters
79
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any]=0 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[str] =np.random.RandomState(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.7_5, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: Dict =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Optional[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: Optional[int] =np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE_: int =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: Union[str, Any] =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: Optional[int] =np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE_: Any =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE_: Optional[int] =pipe(**self.get_dummy_inputs() ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: str =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: str =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] =np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE_: Tuple =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: Optional[Any] =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: Optional[int] =np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE_: Optional[int] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: Optional[Any] =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: Dict =np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self.get_dummy_inputs() SCREAMING_SNAKE_CASE_: int =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_: List[Any] =np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =ort.SessionOptions() SCREAMING_SNAKE_CASE_: List[str] =False return options def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) SCREAMING_SNAKE_CASE_: List[str] =init_image.resize((768, 512) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_: Optional[int] =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int ="""A fantasy landscape, trending on artstation""" SCREAMING_SNAKE_CASE_: List[Any] =np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_: int =pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase , output_type="""np""" , ) SCREAMING_SNAKE_CASE_: int =output.images SCREAMING_SNAKE_CASE_: List[str] =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_: List[str] =np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) SCREAMING_SNAKE_CASE_: List[str] =init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_: Any =LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) SCREAMING_SNAKE_CASE_: Optional[int] =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] ="""A fantasy landscape, trending on artstation""" SCREAMING_SNAKE_CASE_: List[Any] =np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_: Dict =pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase , output_type="""np""" , ) SCREAMING_SNAKE_CASE_: Optional[int] =output.images SCREAMING_SNAKE_CASE_: int =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_: Dict =np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
173
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCAmelCase = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ={prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} SCREAMING_SNAKE_CASE_: Tuple =[ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_: str =evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase ) return score
173
1
from __future__ import annotations def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: Tuple = len(lowerCamelCase ) // 2 # choose the middle 3 elements UpperCamelCase_: Union[str, Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
223
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ : List[str] = False lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = """ybelkada/fonts""" def A__ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: requires_backends(lowerCamelCase , ["""torch"""] ) _check_torch_version() UpperCamelCase_: Tuple = image_tensor.unsqueeze(0 ) UpperCamelCase_: Any = torch.nn.functional.unfold(lowerCamelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_: int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase , lowerCamelCase , -1 ) UpperCamelCase_: Any = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def A__ ( lowerCamelCase , lowerCamelCase = 36 , lowerCamelCase = "black" , lowerCamelCase = "white" , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = None , lowerCamelCase = None , ) -> Image.Image: requires_backends(lowerCamelCase , """vision""" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_: List[str] = textwrap.TextWrapper(width=80 ) UpperCamelCase_: Optional[int] = wrapper.wrap(text=lowerCamelCase ) UpperCamelCase_: List[str] = """\n""".join(lowerCamelCase ) if font_bytes is not None and font_path is None: UpperCamelCase_: List[Any] = io.BytesIO(lowerCamelCase ) elif font_path is not None: UpperCamelCase_: List[Any] = font_path else: UpperCamelCase_: Tuple = hf_hub_download(lowerCamelCase , """Arial.TTF""" ) UpperCamelCase_: Optional[Any] = ImageFont.truetype(lowerCamelCase , encoding="""UTF-8""" , size=lowerCamelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_: str = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , lowerCamelCase ) ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = temp_draw.textbbox((0, 0) , lowerCamelCase , lowerCamelCase ) # Create the actual image with a bit of padding around the text. UpperCamelCase_: Optional[int] = text_width + left_padding + right_padding UpperCamelCase_: List[str] = text_height + top_padding + bottom_padding UpperCamelCase_: Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) , lowerCamelCase ) UpperCamelCase_: Optional[Any] = ImageDraw.Draw(lowerCamelCase ) draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase , fill=lowerCamelCase , font=lowerCamelCase ) return image def A__ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> List[str]: requires_backends(lowerCamelCase , """vision""" ) # Convert to PIL image if necessary UpperCamelCase_: List[str] = to_pil_image(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = render_text(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_: Tuple = max(header_image.width , image.width ) UpperCamelCase_: Tuple = int(image.height * (new_width / image.width) ) UpperCamelCase_: Dict = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_: str = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_: Optional[Any] = to_numpy_array(lowerCamelCase ) if infer_channel_dimension_format(lowerCamelCase ) == ChannelDimension.LAST: UpperCamelCase_: Tuple = to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""flattened_patches"""] def __init__( self : int , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : int = 2048 , snake_case_ : bool = False , **snake_case_ : Any , ): super().__init__(**snake_case_ ) UpperCamelCase_: int = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} UpperCamelCase_: Tuple = do_normalize UpperCamelCase_: List[Any] = do_convert_rgb UpperCamelCase_: Tuple = max_patches UpperCamelCase_: Tuple = is_vqa def lowerCAmelCase__ ( self : int , snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : dict , **snake_case_ : Tuple ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch UpperCamelCase_: int = to_channel_dimension_format(snake_case_ , ChannelDimension.FIRST ) UpperCamelCase_: List[str] = torch.from_numpy(snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[Any] = patch_size["""height"""], patch_size["""width"""] UpperCamelCase_, UpperCamelCase_: Tuple = get_image_size(snake_case_ ) # maximize scale s.t. UpperCamelCase_: List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_: Any = max(min(math.floor(scale * image_height / patch_height ) , snake_case_ ) , 1 ) UpperCamelCase_: List[str] = max(min(math.floor(scale * image_width / patch_width ) , snake_case_ ) , 1 ) UpperCamelCase_: int = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_: Optional[Any] = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_: str = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=snake_case_ , antialias=snake_case_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_: List[str] = torch_extract_patches(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = patches.shape UpperCamelCase_: List[str] = patches_shape[1] UpperCamelCase_: Optional[Any] = patches_shape[2] UpperCamelCase_: List[str] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_: Union[str, Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_: Optional[Any] = torch.arange(snake_case_ ).reshape([rows, 1] ).repeat(1 , snake_case_ ).reshape([rows * columns, 1] ) UpperCamelCase_: Optional[int] = torch.arange(snake_case_ ).reshape([1, columns] ).repeat(snake_case_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_: Union[str, Any] = row_ids.to(torch.floataa ) UpperCamelCase_: str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Optional[Any] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Tuple = torch.nn.functional.pad(snake_case_ , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_: List[Any] = to_numpy_array(snake_case_ ) return result def lowerCAmelCase__ ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple ): if image.dtype == np.uinta: UpperCamelCase_: List[str] = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_: str = np.mean(snake_case_ ) UpperCamelCase_: str = np.std(snake_case_ ) UpperCamelCase_: str = max(snake_case_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : ImageInput , snake_case_ : Optional[str] = None , snake_case_ : bool = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_: Optional[Any] = patch_size if patch_size is not None else self.patch_size UpperCamelCase_: Optional[int] = max_patches if max_patches is not None else self.max_patches UpperCamelCase_: Tuple = self.is_vqa if kwargs.get("""data_format""" , snake_case_ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) UpperCamelCase_: Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_: str = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(snake_case_ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) UpperCamelCase_: List[Any] = kwargs.pop("""font_bytes""" , snake_case_ ) UpperCamelCase_: List[Any] = kwargs.pop("""font_path""" , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [header_text] * len(snake_case_ ) UpperCamelCase_: str = [ render_header(snake_case_ , header_text[i] , font_bytes=snake_case_ , font_path=snake_case_ ) for i, image in enumerate(snake_case_ ) ] if do_normalize: UpperCamelCase_: Union[str, Any] = [self.normalize(image=snake_case_ ) for image in images] # convert to torch tensor and permute UpperCamelCase_: str = [ self.extract_flattened_patches(image=snake_case_ , max_patches=snake_case_ , patch_size=snake_case_ ) for image in images ] # create attention mask in numpy UpperCamelCase_: List[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_: Optional[Any] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=snake_case_ ) return encoded_outputs
223
1
"""simple docstring""" import torch from torch import nn class UpperCamelCase ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=False ) -> Union[str, Any]: super().__init__() _a : Union[str, Any] = n_token _a : Optional[Any] = d_embed _a : Optional[Any] = d_proj _a : Dict = cutoffs + [n_token] _a : Union[str, Any] = [0] + self.cutoffs _a : Any = div_val _a : List[str] = self.cutoffs[0] _a : List[str] = len(self.cutoffs ) - 1 _a : Optional[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _a : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _a : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) _a : Optional[Any] = nn.ModuleList() _a : str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) else: self.out_projs.append(UpperCAmelCase__ ) self.out_layers.append(nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: for i in range(len(self.cutoffs ) ): _a , _a : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase__ , r_idx - l_idx ) ) _a : List[Any] = keep_order def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> List[str]: if proj is None: _a : Optional[Any] = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _a : str = nn.functional.linear(UpperCAmelCase__ , proj.t().contiguous() ) _a : Tuple = nn.functional.linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=False ) -> Dict: if labels is not None: # Shift so that tokens < n predict n _a : Dict = hidden[..., :-1, :].contiguous() _a : Dict = labels[..., 1:].contiguous() _a : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) _a : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _a : Optional[int] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _a : Any = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _a : Dict = labels != -100 _a : Tuple = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device ) _a : List[Any] = ( -nn.functional.log_softmax(UpperCAmelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _a : Tuple = nn.functional.log_softmax(UpperCAmelCase__ , dim=-1 ) else: # construct weights and biases _a , _a : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Tuple = self.out_layers[0].weight[l_idx:r_idx] _a : Any = self.out_layers[0].bias[l_idx:r_idx] else: _a : Tuple = self.out_layers[i].weight _a : Dict = self.out_layers[i].bias if i == 0: _a : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase__ ) biases.append(UpperCAmelCase__ ) _a , _a , _a : List[Any] = weights[0], biases[0], self.out_projs[0] _a : Optional[int] = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = nn.functional.log_softmax(UpperCAmelCase__ , dim=1 ) if labels is None: _a : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _a : List[Any] = torch.zeros_like(UpperCAmelCase__ , dtype=hidden.dtype , device=hidden.device ) _a : List[Any] = 0 _a : Any = [0] + self.cutoffs for i in range(len(UpperCAmelCase__ ) - 1 ): _a , _a : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _a : List[str] = (labels >= l_idx) & (labels < r_idx) _a : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _a : Optional[Any] = labels.index_select(0 , UpperCAmelCase__ ) - l_idx _a : str = head_logprob.index_select(0 , UpperCAmelCase__ ) _a : Dict = hidden.index_select(0 , UpperCAmelCase__ ) else: _a : Tuple = hidden if i == 0: if labels is not None: _a : Optional[int] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _a : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a : int = weights[i], biases[i], self.out_projs[i] _a : Optional[int] = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = nn.functional.log_softmax(UpperCAmelCase__ , dim=1 ) _a : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _a : Optional[int] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _a : str = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _a : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowercase ( self : int , UpperCAmelCase__ : Tuple ) -> int: if self.n_clusters == 0: _a : Tuple = self._compute_logit(UpperCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase__ , dim=-1 ) else: # construct weights and biases _a , _a : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _a , _a : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _a : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] _a : Any = self.out_layers[0].bias[l_idx:r_idx] else: _a : Optional[int] = self.out_layers[i].weight _a : Optional[int] = self.out_layers[i].bias if i == 0: _a : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _a : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase__ ) biases.append(UpperCAmelCase__ ) _a , _a , _a : Tuple = weights[0], biases[0], self.out_projs[0] _a : Dict = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _a : Optional[Any] = nn.functional.log_softmax(UpperCAmelCase__ , dim=1 ) _a : Optional[int] = [0] + self.cutoffs for i in range(len(UpperCAmelCase__ ) - 1 ): _a , _a : Tuple = cutoff_values[i], cutoff_values[i + 1] if i == 0: _a : Any = head_logprob[:, : self.cutoffs[0]] else: _a , _a , _a : Optional[Any] = weights[i], biases[i], self.out_projs[i] _a : Union[str, Any] = self._compute_logit(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = nn.functional.log_softmax(UpperCAmelCase__ , dim=1 ) _a : List[Any] = head_logprob[:, -i] + tail_logprob_i _a : Optional[Any] = logprob_i return out
294
"""simple docstring""" import unittest import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): '''simple docstring''' _a : List[Any] = np.shape(UpperCamelCase__ ) _a : Any = np.shape(UpperCamelCase__ ) _a : Union[str, Any] = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: _a : int = ( """Expected the same number of rows for A and B. """ F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: _a : Tuple = ( """Expected the same number of columns for B and C. """ F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(UpperCamelCase__ ) _a : int = pseudo_inv if a_inv is None: try: _a : Optional[int] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> None: _a : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Optional[int] = np.array([[2, 1], [6, 3]] ) _a : Optional[Any] = schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = np.block([[a, b], [b.T, c]] ) _a : int = np.linalg.det(UpperCAmelCase__ ) _a : Union[str, Any] = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s ) def _lowercase ( self : int ) -> None: _a : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> None: _a : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) _a : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
294
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
def snake_case (UpperCAmelCase__ ) -> int: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: UpperCamelCase_: List[Any] = F'''The input value of [n={number}] has to be > 0''' raise ValueError(UpperCAmelCase__ ) else: UpperCamelCase_: str = sylvester(number - 1 ) UpperCamelCase_: str = num - 1 UpperCamelCase_: Any = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
292
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ = logging.getLogger(__name__) def _a( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ): '''simple docstring''' return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case_ = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case_ = field( default=_lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case_ = field( default=_lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case_ = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case_ = field( default=_lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', snake_case_ ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE__ : Dict =processors[data_args.task_name]() SCREAMING_SNAKE_CASE__ : Any =processor.get_labels() SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(snake_case_ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : str =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=snake_case_, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE__ : Dict =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) SCREAMING_SNAKE_CASE__ : int =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=snake_case_, cache_dir=model_args.cache_dir, ) # Get datasets SCREAMING_SNAKE_CASE__ : Any =( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=snake_case_, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE__ : Dict =( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=snake_case_, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =np.argmax(p.predictions, axis=1 ) return {"acc": simple_accuracy(snake_case_, p.label_ids )} # Data collator SCREAMING_SNAKE_CASE__ : int =DataCollatorWithPadding(snake_case_, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE__ : Optional[int] =Trainer( model=snake_case_, args=snake_case_, train_dataset=snake_case_, eval_dataset=snake_case_, compute_metrics=snake_case_, data_collator=snake_case_, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Any ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE__ : List[Any] =trainer.evaluate() SCREAMING_SNAKE_CASE__ : Tuple =os.path.join(training_args.output_dir, '''eval_results.txt''' ) if trainer.is_world_master(): with open(snake_case_, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''', snake_case_, snake_case_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(snake_case_ ) return results def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' main() if __name__ == "__main__": main()
152
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) ) @slow def a ( self : str ): __UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __UpperCAmelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
332
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _A ( snake_case , snake_case , snake_case ) -> int: def get_masked_lm_array(snake_case ): _lowercase : Tuple = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Union[str, Any] = tf.train.load_variable(snake_case , snake_case ) if "kernel" in name: _lowercase : Dict = array.transpose() return torch.from_numpy(snake_case ) def get_encoder_array(snake_case ): _lowercase : Union[str, Any] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : Union[str, Any] = tf.train.load_variable(snake_case , snake_case ) if "kernel" in name: _lowercase : Optional[Any] = array.transpose() return torch.from_numpy(snake_case ) def get_encoder_layer_array(snake_case , snake_case ): _lowercase : Tuple = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : List[str] = tf.train.load_variable(snake_case , snake_case ) if "kernel" in name: _lowercase : Tuple = array.transpose() return torch.from_numpy(snake_case ) def get_encoder_attention_layer_array(snake_case , snake_case , snake_case ): _lowercase : Tuple = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _lowercase : int = tf.train.load_variable(snake_case , snake_case ) _lowercase : List[str] = array.reshape(snake_case ) if "kernel" in name: _lowercase : Optional[Any] = array.transpose() return torch.from_numpy(snake_case ) print(F'''Loading model based on config from {config_path}...''' ) _lowercase : Dict = BertConfig.from_json_file(snake_case ) _lowercase : str = BertForMaskedLM(snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowercase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _lowercase : BertSelfAttention = layer.attention.self _lowercase : str = get_encoder_attention_layer_array( snake_case , "_query_dense/kernel" , self_attn.query.weight.data.shape ) _lowercase : Dict = get_encoder_attention_layer_array( snake_case , "_query_dense/bias" , self_attn.query.bias.data.shape ) _lowercase : List[str] = get_encoder_attention_layer_array( snake_case , "_key_dense/kernel" , self_attn.key.weight.data.shape ) _lowercase : List[str] = get_encoder_attention_layer_array( snake_case , "_key_dense/bias" , self_attn.key.bias.data.shape ) _lowercase : List[str] = get_encoder_attention_layer_array( snake_case , "_value_dense/kernel" , self_attn.value.weight.data.shape ) _lowercase : Union[str, Any] = get_encoder_attention_layer_array( snake_case , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output _lowercase : BertSelfOutput = layer.attention.output _lowercase : int = get_encoder_attention_layer_array( snake_case , "_output_dense/kernel" , self_output.dense.weight.data.shape ) _lowercase : Dict = get_encoder_attention_layer_array( snake_case , "_output_dense/bias" , self_output.dense.bias.data.shape ) _lowercase : Dict = get_encoder_layer_array(snake_case , "_attention_layer_norm/gamma" ) _lowercase : Optional[Any] = get_encoder_layer_array(snake_case , "_attention_layer_norm/beta" ) # Intermediate _lowercase : BertIntermediate = layer.intermediate _lowercase : int = get_encoder_layer_array(snake_case , "_intermediate_dense/kernel" ) _lowercase : str = get_encoder_layer_array(snake_case , "_intermediate_dense/bias" ) # Output _lowercase : BertOutput = layer.output _lowercase : Optional[int] = get_encoder_layer_array(snake_case , "_output_dense/kernel" ) _lowercase : int = get_encoder_layer_array(snake_case , "_output_dense/bias" ) _lowercase : List[Any] = get_encoder_layer_array(snake_case , "_output_layer_norm/gamma" ) _lowercase : Union[str, Any] = get_encoder_layer_array(snake_case , "_output_layer_norm/beta" ) # Embeddings _lowercase : Tuple = get_encoder_array("_position_embedding_layer/embeddings" ) _lowercase : Dict = get_encoder_array("_type_embedding_layer/embeddings" ) _lowercase : Optional[int] = get_encoder_array("_embedding_norm_layer/gamma" ) _lowercase : Optional[int] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head _lowercase : Any = model.cls.predictions.transform _lowercase : int = get_masked_lm_array("dense/kernel" ) _lowercase : Any = get_masked_lm_array("dense/bias" ) _lowercase : Optional[int] = get_masked_lm_array("layer_norm/gamma" ) _lowercase : Any = get_masked_lm_array("layer_norm/beta" ) _lowercase : Optional[int] = get_masked_lm_array("embedding_table" ) # Pooling _lowercase : int = BertPooler(config=snake_case ) _lowercase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) _lowercase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(snake_case ) # Integration test - should load without any errors ;) _lowercase : Dict = BertForMaskedLM.from_pretrained(snake_case ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) _snake_case = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
199
'''simple docstring''' from __future__ import annotations def _A ( snake_case , snake_case = None , snake_case = None ) -> None: if start is None: _lowercase : Dict = 0 if end is None: _lowercase : List[Any] = len(snake_case ) - 1 if start >= end: return _lowercase : int = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: _lowercase , _lowercase : Any = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
199
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCAmelCase : str = logging.get_logger(__name__) # General docstring __lowerCAmelCase : List[str] = '''ResNetConfig''' # Base docstring __lowerCAmelCase : Tuple = '''microsoft/resnet-50''' __lowerCAmelCase : List[str] = [1, 2_048, 7, 7] # Image classification docstring __lowerCAmelCase : str = '''microsoft/resnet-50''' __lowerCAmelCase : List[str] = '''tiger cat''' __lowerCAmelCase : Dict = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , _snake_case : int , _snake_case : int , _snake_case : int = 3 , _snake_case : int = 1 , _snake_case : str = "relu" ): super().__init__() __lowercase : Optional[Any] = nn.Convad( A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_ ) __lowercase : Any = nn.BatchNormad(A_ ) __lowercase : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case_ ( self : Union[str, Any] , _snake_case : Tensor ): __lowercase : Tuple = self.convolution(A_ ) __lowercase : str = self.normalization(A_ ) __lowercase : Tuple = self.activation(A_ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : ResNetConfig ): super().__init__() __lowercase : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowercase : Any = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowercase : Dict = config.num_channels def snake_case_ ( self : Any , _snake_case : Tensor ): __lowercase : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __lowercase : int = self.embedder(A_ ) __lowercase : List[str] = self.pooler(A_ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : int = 2 ): super().__init__() __lowercase : Optional[Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_ ) __lowercase : int = nn.BatchNormad(A_ ) def snake_case_ ( self : Any , _snake_case : Tensor ): __lowercase : str = self.convolution(A_ ) __lowercase : Optional[int] = self.normalization(A_ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , _snake_case : int , _snake_case : int , _snake_case : int = 1 , _snake_case : str = "relu" ): super().__init__() __lowercase : Tuple = in_channels != out_channels or stride != 1 __lowercase : str = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) __lowercase : str = nn.Sequential( ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , activation=A_ ) , ) __lowercase : List[Any] = ACTaFN[activation] def snake_case_ ( self : Union[str, Any] , _snake_case : Dict ): __lowercase : Optional[int] = hidden_state __lowercase : Any = self.layer(A_ ) __lowercase : Optional[int] = self.shortcut(A_ ) hidden_state += residual __lowercase : Tuple = self.activation(A_ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : int , _snake_case : int , _snake_case : int = 1 , _snake_case : str = "relu" , _snake_case : int = 4 ): super().__init__() __lowercase : Union[str, Any] = in_channels != out_channels or stride != 1 __lowercase : List[str] = out_channels // reduction __lowercase : Union[str, Any] = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) __lowercase : List[Any] = nn.Sequential( ResNetConvLayer(A_ , A_ , kernel_size=1 ) , ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_ ) , ) __lowercase : int = ACTaFN[activation] def snake_case_ ( self : Union[str, Any] , _snake_case : Dict ): __lowercase : List[str] = hidden_state __lowercase : Optional[Any] = self.layer(A_ ) __lowercase : Optional[Any] = self.shortcut(A_ ) hidden_state += residual __lowercase : Dict = self.activation(A_ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , _snake_case : ResNetConfig , _snake_case : int , _snake_case : int , _snake_case : int = 2 , _snake_case : int = 2 , ): super().__init__() __lowercase : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer __lowercase : int = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , stride=A_ , activation=config.hidden_act ) , *[layer(A_ , A_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case_ ( self : Tuple , _snake_case : Tensor ): __lowercase : Union[str, Any] = input for layer in self.layers: __lowercase : List[str] = layer(A_ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _snake_case : ResNetConfig ): super().__init__() __lowercase : Union[str, Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ , config.depths[1:] ): self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_ ) ) def snake_case_ ( self : Union[str, Any] , _snake_case : Tensor , _snake_case : bool = False , _snake_case : bool = True ): __lowercase : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase : int = hidden_states + (hidden_state,) __lowercase : int = stage_module(A_ ) if output_hidden_states: __lowercase : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ , hidden_states=A_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" A__ : Union[str, Any] = ResNetConfig A__ : Optional[int] = '''resnet''' A__ : int = '''pixel_values''' A__ : str = True def snake_case_ ( self : Optional[Any] , _snake_case : Any ): if isinstance(A_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case_ ( self : str , _snake_case : int , _snake_case : Union[str, Any]=False ): if isinstance(A_ , A_ ): __lowercase : Union[str, Any] = value __lowerCAmelCase : Any = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowerCAmelCase : Union[str, Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Any , _snake_case : Any ): super().__init__(A_ ) __lowercase : str = config __lowercase : Union[str, Any] = ResNetEmbeddings(A_ ) __lowercase : Dict = ResNetEncoder(A_ ) __lowercase : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_ ( self : Optional[int] , _snake_case : Tensor , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None ): __lowercase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : Tuple = self.embedder(A_ ) __lowercase : Tuple = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ ) __lowercase : List[Any] = encoder_outputs[0] __lowercase : str = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : List[str] ): super().__init__(A_ ) __lowercase : Optional[Any] = config.num_labels __lowercase : Union[str, Any] = ResNetModel(A_ ) # classification head __lowercase : List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_ ( self : int , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[torch.LongTensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , ): __lowercase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : Dict = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_ ) __lowercase : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] __lowercase : List[str] = self.classifier(A_ ) __lowercase : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase : Optional[Any] = '''single_label_classification''' else: __lowercase : str = '''multi_label_classification''' if self.config.problem_type == "regression": __lowercase : List[str] = MSELoss() if self.num_labels == 1: __lowercase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase : Dict = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": __lowercase : int = CrossEntropyLoss() __lowercase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase : List[str] = BCEWithLogitsLoss() __lowercase : Tuple = loss_fct(A_ , A_ ) if not return_dict: __lowercase : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCamelCase_ , ) class __lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : int ): super().__init__(A_ ) super()._init_backbone(A_ ) __lowercase : List[Any] = [config.embedding_size] + config.hidden_sizes __lowercase : Dict = ResNetEmbeddings(A_ ) __lowercase : Any = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self : List[str] , _snake_case : Tensor , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None ): __lowercase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowercase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase : Any = self.embedder(A_ ) __lowercase : str = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_ ) __lowercase : Union[str, Any] = outputs.hidden_states __lowercase : List[Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowercase : Any = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
156
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Optional[Any] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A__ : Dict = logging.get_logger(__name__) class __snake_case ( UpperCamelCase_ ): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , A_ : Optional[Dict] = None , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 1_0_2_4 , A_ : str = "relu" , A_ : int = 6 , A_ : int = 1_0 , A_ : int = 8 , A_ : float = 0.0 , A_ : int = 2_0_4_8 , A_ : bool = False , A_ : bool = False , A_ : int = 4 , A_ : int = 2_5_5 , A_ : int = 1_0_0 , A_ : float = 0.1 , A_ : float = 2.0 , A_ : float = 5.0 , A_ : float = 5.0 , A_ : int = 1_2_5_4_4 , A_ : float = 3.0 , A_ : float = 0.75 , A_ : float = 0.02 , A_ : float = 1.0 , A_ : bool = True , A_ : List[int] = [4, 8, 1_6, 3_2] , A_ : bool = None , **A_ : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') lowerCAmelCase_ : int = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=A_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(A_ , A_): lowerCAmelCase_ : List[Any] = backbone_config.pop('''model_type''') lowerCAmelCase_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(A_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported)}""") lowerCAmelCase_ : List[Any] = backbone_config lowerCAmelCase_ : str = feature_size lowerCAmelCase_ : Optional[Any] = mask_feature_size lowerCAmelCase_ : int = hidden_dim lowerCAmelCase_ : int = encoder_feedforward_dim lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Any = encoder_layers lowerCAmelCase_ : Optional[Any] = decoder_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : List[str] = dim_feedforward lowerCAmelCase_ : Optional[Any] = pre_norm lowerCAmelCase_ : List[str] = enforce_input_projection lowerCAmelCase_ : Tuple = common_stride lowerCAmelCase_ : Optional[Any] = ignore_value lowerCAmelCase_ : Optional[Any] = num_queries lowerCAmelCase_ : int = no_object_weight lowerCAmelCase_ : Tuple = class_weight lowerCAmelCase_ : int = mask_weight lowerCAmelCase_ : Dict = dice_weight lowerCAmelCase_ : str = train_num_points lowerCAmelCase_ : Dict = oversample_ratio lowerCAmelCase_ : Tuple = importance_sample_ratio lowerCAmelCase_ : List[str] = init_std lowerCAmelCase_ : List[str] = init_xavier_std lowerCAmelCase_ : Optional[Any] = use_auxiliary_loss lowerCAmelCase_ : List[Any] = feature_strides lowerCAmelCase_ : int = output_auxiliary_logits lowerCAmelCase_ : Optional[Any] = decoder_layers super().__init__(**A_) @classmethod def UpperCAmelCase__ ( cls : List[str] , A_ : PretrainedConfig , **A_ : List[Any]): return cls( backbone_config=A_ , **A_ , ) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Dict = self.backbone_config.to_dict() lowerCAmelCase_ : Optional[int] = self.__class__.model_type return output
103
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""PerceiverFeatureExtractor"""] __a = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Dict=7 , snake_case_ : str=3 , snake_case_ : List[str]=18 , snake_case_ : Tuple=30 , snake_case_ : int=400 , snake_case_ : Any=True , snake_case_ : List[str]=None , snake_case_ : List[str]=True , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=True , ): snake_case__ : List[str] = size if size is not None else {"""shortest_edge""": 20} snake_case__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case__ : Tuple = parent snake_case__ : Tuple = batch_size snake_case__ : List[str] = num_channels snake_case__ : Any = image_size snake_case__ : str = min_resolution snake_case__ : Dict = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : int = size snake_case__ : List[Any] = do_center_crop snake_case__ : int = crop_size snake_case__ : Dict = do_flip_channel_order def lowerCamelCase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = MobileViTImageProcessingTester(self ) @property def lowerCamelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """do_flip_channel_order""" ) ) def lowerCamelCase ( self : List[str] ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase ( self : str ): pass def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : str = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : List[Any] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : Optional[Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
43
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __snake_case : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ) __snake_case : List[Any] = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase__ , os.listdir(UpperCAmelCase__ )[0] , "snapshots" ) )] __snake_case : List[str] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case , __snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase__ ) __snake_case : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : Union[str, Any] = 4 __snake_case : List[str] = jax.device_count() __snake_case : Dict = num_samples * [prompt] __snake_case : Optional[Any] = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Optional[int] = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __snake_case : Optional[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase__ ) == num_samples def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case , __snake_case : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=UpperCAmelCase__ ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : int = jax.random.PRNGKey(0 ) __snake_case : Union[str, Any] = 50 __snake_case : Tuple = jax.device_count() __snake_case : List[Any] = num_samples * [prompt] __snake_case : Tuple = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : Dict = replicate(UpperCAmelCase__ ) __snake_case : Optional[Any] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Any = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case , __snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : str = jax.random.PRNGKey(0 ) __snake_case : Tuple = 50 __snake_case : str = jax.device_count() __snake_case : Union[str, Any] = num_samples * [prompt] __snake_case : int = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : List[Any] = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : List[Any] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) __snake_case : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : Any = 50 __snake_case : Any = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : Dict = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[Any] = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : Union[str, Any] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Any = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) __snake_case , __snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , ) __snake_case : Tuple = scheduler.create_state() __snake_case : List[Any] = scheduler_state __snake_case : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : Any = jax.random.PRNGKey(0 ) __snake_case : Any = 50 __snake_case : Tuple = jax.device_count() __snake_case : Tuple = num_samples * [prompt] __snake_case : Optional[Any] = pipeline.prepare_inputs(UpperCAmelCase__ ) # shard inputs and rng __snake_case : Tuple = replicate(UpperCAmelCase__ ) __snake_case : int = jax.random.split(UpperCAmelCase__ , UpperCAmelCase__ ) __snake_case : int = shard(UpperCAmelCase__ ) __snake_case : List[str] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase__ , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __snake_case : List[str] = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : int = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase__ ) __snake_case , __snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ , ) __snake_case : int = replicate(UpperCAmelCase__ ) __snake_case : Optional[int] = pipeline.prepare_inputs(UpperCAmelCase__ ) __snake_case : Union[str, Any] = shard(UpperCAmelCase__ ) __snake_case : Optional[int] = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) __snake_case : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase__ , use_memory_efficient_attention=UpperCAmelCase__ , ) __snake_case : str = replicate(UpperCAmelCase__ ) __snake_case : Tuple = pipeline.prepare_inputs(UpperCAmelCase__ ) __snake_case : Dict = shard(UpperCAmelCase__ ) __snake_case : Dict = pipeline(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __snake_case : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
326
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _a = datasets.utils.logging.get_logger(__name__) _a = ['names', 'prefix'] _a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _a = ['encoding_errors', 'on_bad_lines'] _a = ['date_format'] @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0_0_0_0 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def _lowercase ( self : Tuple ): if self.delimiter is not None: __lowercase = self.delimiter if self.column_names is not None: __lowercase = self.column_names @property def _lowercase ( self : Union[str, Any] ): __lowercase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), UpperCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def _lowercase ( self : List[str] ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__, (str, list, tuple) ): __lowercase = data_files if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] __lowercase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [files] __lowercase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__, gen_kwargs={"files": files} ) ) return splits def _lowercase ( self : Dict, UpperCAmelCase__ : pa.Table ): if self.config.features is not None: __lowercase = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast __lowercase = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=UpperCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase = table_cast(UpperCAmelCase__, UpperCAmelCase__ ) return pa_table def _lowercase ( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase__ ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): __lowercase = pd.read_csv(UpperCAmelCase__, iterator=UpperCAmelCase__, dtype=UpperCAmelCase__, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase__ ): __lowercase = pa.Table.from_pandas(UpperCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase__ )}: {e}""" ) raise
17
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowerCamelCase : Any , ): UpperCamelCase :Union[str, Any] = parent UpperCamelCase :Optional[Any] = 13 UpperCamelCase :Any = 7 UpperCamelCase :str = True UpperCamelCase :int = True UpperCamelCase :Tuple = True UpperCamelCase :Union[str, Any] = True UpperCamelCase :int = True UpperCamelCase :Union[str, Any] = False UpperCamelCase :str = False UpperCamelCase :str = False UpperCamelCase :Dict = 2 UpperCamelCase :int = 99 UpperCamelCase :str = 0 UpperCamelCase :List[Any] = 32 UpperCamelCase :Any = 2 UpperCamelCase :Optional[Any] = 4 UpperCamelCase :Any = 0.1 UpperCamelCase :int = 0.1 UpperCamelCase :Optional[Any] = 512 UpperCamelCase :Dict = 16 UpperCamelCase :Any = 2 UpperCamelCase :Any = 0.02 UpperCamelCase :Any = 3 UpperCamelCase :Union[str, Any] = 4 UpperCamelCase :str = '''last''' UpperCamelCase :Tuple = True UpperCamelCase :Any = None UpperCamelCase :Dict = 0 def _A ( self : Dict ): UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :List[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase :str = None if self.use_input_lengths: UpperCamelCase :Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase :int = None if self.use_token_type_ids: UpperCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase :Dict = None UpperCamelCase :List[Any] = None UpperCamelCase :Dict = None if self.use_labels: UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , ): UpperCamelCase :Union[str, Any] = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase :Union[str, Any] = model(lowerCamelCase__ ) UpperCamelCase :List[str] = [input_ids, input_mask] UpperCamelCase :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , ): UpperCamelCase :List[Any] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase :Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : int , ): UpperCamelCase :List[Any] = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase :str = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , ): UpperCamelCase :Union[str, Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any , ): UpperCamelCase :Any = self.num_labels UpperCamelCase :Optional[Any] = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , ): UpperCamelCase :List[str] = self.num_choices UpperCamelCase :int = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase :List[str] = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :Tuple = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :int = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase :Union[str, Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : List[Any] ): UpperCamelCase :str = self.prepare_config_and_inputs() ( UpperCamelCase ) :Dict = config_and_inputs UpperCamelCase :Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case__ : Any = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) snake_case__ : str = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case__ : List[str] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : List[Any] = False snake_case__ : str = False def _A ( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A ( self : List[str] ): UpperCamelCase :Optional[Any] = TFFlaubertModelTester(self ) UpperCamelCase :List[str] = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def _A ( self : List[Any] ): self.config_tester.run_common_tests() def _A ( self : Any ): UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def _A ( self : Tuple ): UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def _A ( self : Tuple ): UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def _A ( self : Union[str, Any] ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def _A ( self : Dict ): UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def _A ( self : List[str] ): UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def _A ( self : List[Any] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :int = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : List[Any] ): UpperCamelCase :Any = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase :str = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase :int = model(lowerCamelCase__ )[0] UpperCamelCase :List[str] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase :Optional[int] = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
357
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , __magic_name__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
62
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class a__ ( snake_case_ , unittest.TestCase ): lowerCamelCase : Dict =XLMProphetNetTokenizer lowerCamelCase : str =False lowerCamelCase : List[str] =True def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLMProphetNetTokenizer(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = '''[PAD]''' __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(a ) , 10_12 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = XLMProphetNetTokenizer(a , keep_accents=a ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [3_53_89, 66_72, 49, 2] self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
67
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='''Enter the base and the power separated by a comma: ''' __A, __A =map(int, input(prompt).split(''',''')) __A, __A =map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any]="attention" ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] __lowerCamelCase : List[Any] = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] __lowerCamelCase : Optional[Any] = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] __lowerCamelCase : str = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: Dict , _lowerCamelCase: List[Any]=False ) -> Union[str, Any]: '''simple docstring''' if split_mlp_wi: __lowerCamelCase : Dict = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] __lowerCamelCase : Optional[Any] = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] __lowerCamelCase : Optional[Any] = (wi_a, wi_a) else: __lowerCamelCase : List[str] = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] __lowerCamelCase : str = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def lowercase_ ( _lowerCamelCase: dict , *, _lowerCamelCase: int , _lowerCamelCase: bool ) -> str: '''simple docstring''' __lowerCamelCase : Optional[Any] = traverse_util.flatten_dict(variables["target"] ) __lowerCamelCase : Tuple = {'''/'''.join(lowerCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase : int = '''encoder/layers_0/mlp/wi_0/kernel''' in old print("Split MLP:" , lowerCamelCase_ ) __lowerCamelCase : int = collections.OrderedDict() # Shared embeddings. __lowerCamelCase : Union[str, Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). __lowerCamelCase : Optional[int] = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , "encoder" , "pre_attention_layer_norm" ) __lowerCamelCase : Optional[int] = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , "encoder" , "attention" ) __lowerCamelCase : str = layer_norm __lowerCamelCase : Any = k.T __lowerCamelCase : List[str] = o.T __lowerCamelCase : Tuple = q.T __lowerCamelCase : List[str] = v.T # Block i, layer 1 (MLP). __lowerCamelCase : Tuple = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , "encoder" , "pre_mlp_layer_norm" ) __lowerCamelCase : List[Any] = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , "encoder" , lowerCamelCase_ ) __lowerCamelCase : Optional[int] = layer_norm if split_mlp_wi: __lowerCamelCase : Any = wi[0].T __lowerCamelCase : str = wi[1].T else: __lowerCamelCase : List[str] = wi.T __lowerCamelCase : str = wo.T __lowerCamelCase : Dict = old[ '''encoder/relpos_bias/rel_embedding''' ].T __lowerCamelCase : Any = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). __lowerCamelCase : Dict = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , "pre_self_attention_layer_norm" ) __lowerCamelCase : Tuple = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , "self_attention" ) __lowerCamelCase : Optional[Any] = layer_norm __lowerCamelCase : Dict = k.T __lowerCamelCase : str = o.T __lowerCamelCase : int = q.T __lowerCamelCase : Dict = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase : List[str] = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , "pre_cross_attention_layer_norm" ) __lowerCamelCase : int = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , "encoder_decoder_attention" ) __lowerCamelCase : str = layer_norm __lowerCamelCase : Tuple = k.T __lowerCamelCase : Union[str, Any] = o.T __lowerCamelCase : Tuple = q.T __lowerCamelCase : Dict = v.T # Block i, layer 2 (MLP). __lowerCamelCase : int = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , "pre_mlp_layer_norm" ) __lowerCamelCase : Tuple = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , "decoder" , lowerCamelCase_ ) __lowerCamelCase : List[Any] = layer_norm if split_mlp_wi: __lowerCamelCase : List[Any] = wi[0].T __lowerCamelCase : Tuple = wi[1].T else: __lowerCamelCase : int = wi.T __lowerCamelCase : Union[str, Any] = wo.T __lowerCamelCase : str = old['''decoder/decoder_norm/scale'''] __lowerCamelCase : Any = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase : Dict = old['''decoder/logits_dense/kernel'''].T return new def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: bool ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase : Tuple = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase : Optional[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __lowerCamelCase : Optional[int] = state_dict['''shared.weight'''] return state_dict def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: Union[str, Any] ) -> List[Any]: '''simple docstring''' __lowerCamelCase : str = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) __lowerCamelCase : Tuple = convert_tax_to_pytorch(lowerCamelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase_ ) __lowerCamelCase : Optional[int] = make_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: str , _lowerCamelCase: bool = False ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[Any] = TaConfig.from_json_file(lowerCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase : Any = TaEncoderModel(lowerCamelCase_ ) else: __lowerCamelCase : List[str] = TaForConditionalGeneration(lowerCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase_ ) print("Done" ) if __name__ == "__main__": __A = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __A = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
355
"""simple docstring""" def lowercase_ ( _lowerCamelCase: int ) -> int: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Input value must be an 'int' type" ) __lowerCamelCase : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
64
0
'''simple docstring''' import argparse __SCREAMING_SNAKE_CASE : List[str] = """docs/source/_static/js/custom.js""" def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" with open(_UpperCAmelCase , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : List[Any] = f.readlines() _UpperCAmelCase : Union[str, Any] = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 _UpperCAmelCase : List[str] = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(_UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() update_custom_js(args.version)
31
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , A : Dict , A : Optional[Any]=13 , A : Optional[Any]=7 , A : Union[str, Any]=True , A : Optional[Any]=True , A : int=False , A : str=True , A : Optional[Any]=99 , A : Union[str, Any]=32 , A : int=5 , A : Tuple=4 , A : Union[str, Any]=37 , A : Dict="gelu" , A : Union[str, Any]=0.1 , A : str=0.1 , A : Union[str, Any]=512 , A : int=16 , A : List[str]=2 , A : Tuple=0.02 , A : int=3 , A : List[str]=4 , A : str=None , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : int = seq_length _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : str = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : List[str] = num_choices _UpperCAmelCase : List[str] = scope def _A ( self : Optional[int] ): _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Dict ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def _A ( self : int , A : List[Any] , A : Any , A : int , A : Union[str, Any] , A : Dict , A : List[Any] , A : Dict ): _UpperCAmelCase : List[str] = BioGptModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A ) _UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : List[Any] , A : str , A : List[Any] , A : Dict , A : List[Any] , A : List[str] , A : Union[str, Any] , A : int , A : List[str] , A : Dict , ): _UpperCAmelCase : Optional[int] = BioGptForCausalLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[Any] , A : str , A : str , A : str , A : Any , A : List[str] , *A : Optional[int] ): _UpperCAmelCase : str = BioGptModel(config=A ) model.to(A ) model.eval() # create attention mask _UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) _UpperCAmelCase : Optional[int] = self.seq_length // 2 _UpperCAmelCase : List[Any] = 0 # first forward pass _UpperCAmelCase , _UpperCAmelCase : List[str] = model(A , attention_mask=A ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase : List[str] = ids_tensor((1,) , A ).item() + 1 _UpperCAmelCase : str = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase : Any = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Optional[int] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A )] , dim=1 , ) # get two different outputs _UpperCAmelCase : List[Any] = model(A , attention_mask=A )["last_hidden_state"] _UpperCAmelCase : Optional[Any] = model(A , past_key_values=A , attention_mask=A )["last_hidden_state"] # select random slice _UpperCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def _A ( self : int , A : Dict , A : str , A : Dict , A : Union[str, Any] , A : Any , *A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = BioGptModel(config=A ).to(A ).eval() _UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) # first forward pass _UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , use_cache=A ) _UpperCAmelCase , _UpperCAmelCase : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Dict = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase : Any = model(A , attention_mask=A )["last_hidden_state"] _UpperCAmelCase : Dict = model(A , attention_mask=A , past_key_values=A )[ "last_hidden_state" ] # select random slice _UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def _A ( self : Optional[Any] , A : Tuple , A : List[str] , A : Tuple , A : Dict , A : List[Any] , *A : Tuple , A : List[str]=False ): _UpperCAmelCase : Optional[int] = BioGptForCausalLM(A ) model.to(A ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase : Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _A ( self : Optional[Any] , A : Any , *A : Optional[Any] ): _UpperCAmelCase : Tuple = BioGptModel(A ) _UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _A ( self : Optional[int] , A : Dict , A : Tuple , A : Optional[int] , A : int , A : List[str] , *A : Dict ): _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Any = BioGptForTokenClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : int ): _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = config_and_inputs _UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: List[str] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __UpperCamelCase: List[str] = (BioGptForCausalLM,) if is_torch_available() else () __UpperCamelCase: str = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase: Union[str, Any] = False def _A ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = BioGptModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=A , hidden_size=37 ) def _A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _A ( self : Any ): _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _A ( self : Any ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*A ) def _A ( self : int ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A , gradient_checkpointing=A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A ) def _A ( self : Dict ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A ) def _A ( self : Dict ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A ) @slow def _A ( self : List[str] ): _UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) _UpperCAmelCase : Tuple = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : str = "left" # Define PAD Token = EOS Token = 50256 _UpperCAmelCase : Any = tokenizer.eos_token _UpperCAmelCase : int = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase : Any = [ "Hello, my dog is a little", "Today, I", ] _UpperCAmelCase : Tuple = tokenizer(A , return_tensors="pt" , padding=A ) _UpperCAmelCase : Optional[Any] = inputs["input_ids"].to(A ) _UpperCAmelCase : Any = model.generate( input_ids=A , attention_mask=inputs["attention_mask"].to(A ) , ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(A ) _UpperCAmelCase : List[Any] = model.generate(input_ids=A ) _UpperCAmelCase : List[Any] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _UpperCAmelCase : int = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(A ) _UpperCAmelCase : int = model.generate(input_ids=A , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase : Dict = tokenizer.batch_decode(A , skip_special_tokens=A ) _UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A ) _UpperCAmelCase : Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=A ) _UpperCAmelCase : str = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(A , A ) self.assertListEqual(A , [non_padded_sentence, padded_sentence] ) @slow def _A ( self : str ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = BioGptModel.from_pretrained(A ) self.assertIsNotNone(A ) def _A ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = 3 _UpperCAmelCase : List[str] = input_dict["input_ids"] _UpperCAmelCase : Dict = input_ids.ne(1 ).to(A ) _UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : List[str] = BioGptForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : List[str] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A ( self : int ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = 3 _UpperCAmelCase : Dict = "multi_label_classification" _UpperCAmelCase : Optional[Any] = input_dict["input_ids"] _UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(A ) _UpperCAmelCase : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : Optional[Any] = BioGptForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @slow def _A ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : List[str] = torch.tensor([[2, 4805, 9, 656, 21]] ) _UpperCAmelCase : List[Any] = model(A )[0] _UpperCAmelCase : int = 42384 _UpperCAmelCase : int = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , A ) _UpperCAmelCase : Any = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4 ) ) @slow def _A ( self : Any ): _UpperCAmelCase : str = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : Tuple = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = tokenizer("COVID-19 is" , return_tensors="pt" ).to(A ) _UpperCAmelCase : Dict = model.generate( **A , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=A , ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=A ) _UpperCAmelCase : List[str] = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(A , A )
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase: Optional[Any] = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __lowercase: Optional[int] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __lowercase: str = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __lowercase: List[Any] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
0
"""simple docstring""" def __lowercase ( _a , _a ): snake_case_ : Any = (boundary[1] - boundary[0]) / steps snake_case_ : Tuple = boundary[0] snake_case_ : Tuple = boundary[1] snake_case_ : str = make_points(__a , __a , __a ) snake_case_ : Optional[int] = 0.0 y += (h / 2.0) * f(__a ) for i in x_i: # print(i) y += h * f(__a ) y += (h / 2.0) * f(__a ) return y def __lowercase ( _a , _a , _a ): snake_case_ : Any = a + h while x < (b - h): yield x snake_case_ : Any = x + h def __lowercase ( _a ): # enter your function here snake_case_ : Optional[int] = (x - 0) * (x - 0) return y def __lowercase ( ): snake_case_ : List[str] = 0.0 # Lower bound of integration snake_case_ : Dict = 1.0 # Upper bound of integration snake_case_ : Union[str, Any] = 10.0 # define number of steps or resolution snake_case_ : Any = [a, b] # define boundary of integration snake_case_ : Dict = method_a(__a , __a ) print(f"y = {y}" ) if __name__ == "__main__": main()
264
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for rt in rc.restypes: UpperCamelCase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase__ = {name: i for i, name in enumerate(__a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) UpperCamelCase__ = torch.tensor( __a , dtype=torch.floataa , device=protein["""aatype"""].device , ) UpperCamelCase__ = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase__ = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase__ = rc.restype_atoa[restype_letter] UpperCamelCase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase__ = rc.atom_order[atom_name] UpperCamelCase__ = 1 UpperCamelCase__ = restype_atomaa_mask[protein_aatype] UpperCamelCase__ = residx_atomaa_mask return protein def __magic_name__ ( __a : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = tree_map(lambda __a : torch.tensor(__a , device=batch["""aatype"""].device ) , __a , np.ndarray ) UpperCamelCase__ = tensor_tree_map(lambda __a : np.array(__a ) , make_atomaa_masks(__a ) ) return out
244
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = False lowerCamelCase = 3.0 class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {"""a""": 2, """c""": 2.2_5} ) @require_cuda def _lowerCAmelCase ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCAmelCase =GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase =Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __A = Accelerator(kwargs_handlers=[ddp_scaler]) __A = torch.nn.Linear(100, 200) __A = accelerator.prepare(model) # Check the values changed in kwargs __A = '' __A = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
364
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
0
'''simple docstring''' def __lowerCamelCase ( A__ = 50 ) -> int: """simple docstring""" UpperCamelCase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
28
'''simple docstring''' def __lowerCamelCase ( A__ ) -> list: """simple docstring""" UpperCamelCase = len(A__ ) for i in range(1 , A__ ): UpperCamelCase = collection[i] UpperCamelCase = 0 UpperCamelCase = i - 1 while low <= high: UpperCamelCase = (low + high) // 2 if val < collection[mid]: UpperCamelCase = mid - 1 else: UpperCamelCase = mid + 1 for j in range(A__ , A__ , -1 ): UpperCamelCase = collection[j - 1] UpperCamelCase = val return collection if __name__ == "__main__": _lowerCamelCase : int = input("Enter numbers separated by a comma:\n").strip() _lowerCamelCase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
28
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A =logging.get_logger(__name__) __A ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __A =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): for attribute in key.split("." ): lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(lowerCamelCase__ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , lowerCamelCase__ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ = "weight" else: lowerCamelCase_ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ): if config_path is not None: lowerCamelCase_ = UniSpeechSatConfig.from_pretrained(lowerCamelCase__ ) else: lowerCamelCase_ = UniSpeechSatConfig() lowerCamelCase_ = "" if is_finetuned: lowerCamelCase_ = UniSpeechSatForCTC(lowerCamelCase__ ) else: lowerCamelCase_ = UniSpeechSatForPreTraining(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase_ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
47
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A ={ '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
47
1
from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase__ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(lowercase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): lowercase__ : str = set() # Replace all the whitespace in our sentence lowercase__ : int = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase ) == 26 def __UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): lowercase__ : Tuple = [False] * 26 for char in input_str: if char.islower(): lowercase__ : Optional[Any] = True elif char.isupper(): lowercase__ : Optional[int] = True return all(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __UpperCamelCase ( ): from timeit import timeit lowercase__ : List[Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=UpperCAmelCase ) ) print(timeit('''is_pangram_faster()''' , setup=UpperCAmelCase ) ) print(timeit('''is_pangram_fastest()''' , setup=UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
214
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected lowercase__ : str = 0 print(UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase , end=''',''' ) lowercase__ : str = j if __name__ == "__main__": import doctest doctest.testmod() __a: str = [1, 3, 0, 5, 8, 5] __a: Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
214
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowercase = logging.getLogger(__name__) @dataclass class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Whether to SortishSamler or not."""} ) a__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """whether to use adafactor"""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field(default=UpperCAmelCase_ , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) a__ : Optional[str] = field( default="""linear""" , metadata={"""help""": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
43
"""simple docstring""" UpperCAmelCase__ = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
288
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCAmelCase__ : str =''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __A ( unittest.TestCase , lowerCamelCase__ ): def _snake_case ( self ): lowerCamelCase =load_tool("""text-question-answering""" ) self.tool.setup() lowerCamelCase =load_tool("""text-question-answering""" , remote=UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =self.tool(UpperCAmelCase_ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCAmelCase_ , """launched the BigScience Research Workshop""" ) def _snake_case ( self ): lowerCamelCase =self.remote_tool(UpperCAmelCase_ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCAmelCase_ , """launched the BigScience Research Workshop""" ) def _snake_case ( self ): lowerCamelCase =self.tool(text=UpperCAmelCase_ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCAmelCase_ , """launched the BigScience Research Workshop""" ) def _snake_case ( self ): lowerCamelCase =self.remote_tool(text=UpperCAmelCase_ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(UpperCAmelCase_ , """launched the BigScience Research Workshop""" )
354
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __A ( unittest.TestCase ): def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase =Vector() def _snake_case ( self ): lowerCamelCase =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,0,0,0,0,1)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2] ) lowerCamelCase =Vector([1, 2, 3, 4, 5] ) lowerCamelCase =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([2, -1, 4] ) # for test of dot product lowerCamelCase =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _snake_case ( self ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _snake_case ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 2, 3] ) lowerCamelCase =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , """(3,4,7)""" ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase =x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , """(0,1,0)""" ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase =Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase_ ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _snake_case ( self ): lowerCamelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _snake_case ( self ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
262
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : List[str] = 2_5_0_0_0_4 a : List[str] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MBartTokenizer lowercase = MBartTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = MBartTokenizer(A , keep_accents=A ) UpperCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowercase( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : str = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Dict = tokenizer_r.save_pretrained(A ) UpperCAmelCase : int = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : int = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : List[str] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): lowercase = 'facebook/mbart-large-en-ro' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _lowercase( cls ) -> Tuple: UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase : int = 1 return cls def _lowercase( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def _lowercase( self ) -> List[str]: self.assertIn(A , self.tokenizer.all_special_ids ) UpperCAmelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase : int = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) UpperCAmelCase : int = 10 UpperCAmelCase : List[Any] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def _lowercase( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) UpperCAmelCase : Tuple = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase : Dict = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase : Dict = targets["""input_ids"""] UpperCAmelCase : Union[str, Any] = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 250004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
265
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = len(lowercase ) _lowerCamelCase : Optional[int] = [0] * len_array if len_array > 0: _lowerCamelCase : List[Any] = array[0] for i in range(1 , lowercase ): _lowerCamelCase : List[str] = self.prefix_sum[i - 1] + array[i] def A_ ( self , lowercase , lowercase ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A_ ( self , lowercase ): _lowerCamelCase : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
126
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=18 , SCREAMING_SNAKE_CASE__ : int=30 , SCREAMING_SNAKE_CASE__ : Any=4_00 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __A ( self : Union[str, Any] ) -> Union[str, Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : int ) -> Any: __lowerCamelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __lowerCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Dict = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> List[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def __A ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> Dict: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : int ) -> str: __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : Union[str, Any] ) -> Dict: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Dict ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches __lowerCamelCase = '''Hello''' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : List[str] ) -> Any: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Tuple ) -> List[str]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Any = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def __A ( self : List[Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[int] ) -> str: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
270
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel UpperCamelCase : Optional[int] = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48_000, """sample_size""": 65_536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48_000, """sample_size""": 131_072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16_000, """sample_size""": 65_536, }, } def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] ) -> int: """simple docstring""" return torch.atana(snake_case , snake_case ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[int]: """simple docstring""" a : int = torch.sin(t * math.pi / 2 ) ** 2 a : Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class UpperCamelCase ( a_ ): """simple docstring""" pass class UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : int): """simple docstring""" super().__init__() a : int = DiffusionAttnUnetaD(UpperCAmelCase_ , n_attn_layers=4) a : Union[str, Any] = deepcopy(self.diffusion) a : Tuple = torch.quasirandom.SobolEngine(1 , scramble=UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> List[str]: """simple docstring""" a : Optional[Any] = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" UpperCamelCase : Tuple = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } UpperCamelCase : str = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } UpperCamelCase : Optional[int] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } UpperCamelCase : List[Any] = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } UpperCamelCase : Union[str, Any] = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } UpperCamelCase : List[str] = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> int: """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Tuple=13 ) -> Any: """simple docstring""" a : str = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) a : Dict = 0 if string.startswith('net.3.' ): depth += 1 a : Any = string[6:] elif string.startswith('net.' ): a : Optional[int] = string[4:] while string.startswith('main.7.' ): depth += 1 a : str = string[7:] if string.startswith('main.' ): a : Optional[Any] = string[5:] # mid block if string[:2].isdigit(): a : Tuple = string[:2] a : int = string[2:] else: a : Any = string[0] a : str = string[1:] if depth == max_depth: a : str = MID_NUM_TO_LAYER[layer_num] a : int = 'mid_block' elif depth > 0 and int(snake_case ) < 7: a : int = DOWN_NUM_TO_LAYER[layer_num] a : Optional[Any] = F"""down_blocks.{depth}""" elif depth > 0 and int(snake_case ) > 7: a : Any = UP_NUM_TO_LAYER[layer_num] a : Any = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: a : List[str] = DEPTH_0_TO_LAYER[layer_num] a : List[Any] = F"""up_blocks.{max_depth - 1}""" if int(snake_case ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) a : Optional[int] = string_left[1:] if "resnets" in new_layer: a : int = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: a : Any = convert_attn_naming(snake_case ) a : int = new_string_left if not isinstance(snake_case , snake_case ): a : Tuple = prefix + '.' + new_layer + '.' + string_left else: a : List[Any] = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Optional[Any]: """simple docstring""" a : int = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue a : List[Any] = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): a : Any = transform_conv_attns(snake_case , snake_case , snake_case ) else: a : Dict = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[int] ) -> str: """simple docstring""" if len(snake_case ) == 1: if len(v.shape ) == 3: # weight a : int = v[:, :, 0] else: # bias a : List[str] = v else: # qkv matrices a : Any = v.shape[0] a : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: a : Tuple = v[i * single_shape : (i + 1) * single_shape, :, 0] else: a : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] ) -> Dict: """simple docstring""" a : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) a : Any = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" a : Any = download(snake_case ) a : List[str] = MODELS_MAP[model_name]['sample_rate'] a : Optional[int] = MODELS_MAP[model_name]['sample_size'] a : Union[str, Any] = Object() a : Any = sample_size a : Dict = sample_rate a : Dict = 0 a : List[str] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) a : Any = diffusers_model.state_dict() a : Tuple = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )['state_dict'] ) a : int = orig_model.diffusion_ema.eval() a : Tuple = orig_model.state_dict() a : Optional[Any] = rename_orig_weights(snake_case ) a : Tuple = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) a : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(snake_case ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": a : str = value.squeeze() a : Optional[int] = value diffusers_model.load_state_dict(snake_case ) a : Union[str, Any] = 100 a : Dict = 33 a : str = IPNDMScheduler(num_train_timesteps=snake_case ) a : List[Any] = torch.manual_seed(snake_case ) a : List[str] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) a : int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] a : Tuple = get_crash_schedule(snake_case ) a : Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) a : Optional[Any] = torch.manual_seed(33 ) a : Optional[Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios a : Union[str, Any] = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) a : Union[str, Any] = generated.clamp(-1 , 1 ) a : Tuple = (generated - audio).abs().sum() a : str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , snake_case ) print('Diff max' , snake_case ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") UpperCamelCase : int = parser.parse_args() main(args)
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> None: A_ = len(UpperCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col], [*diagonal_right_collisions, row - col], [*diagonal_left_collisions, row + col], UpperCAmelCase__, UpperCAmelCase__, ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: A_ = [] depth_first_search([], [], [], UpperCAmelCase__, UpperCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(UpperCAmelCase__ ) print("""""" ) print(len(UpperCAmelCase__ ), """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
162
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: A_ = {} A_ = job["""started_at"""] A_ = job["""completed_at"""] A_ = date_parser.parse(UpperCAmelCase__ ) A_ = date_parser.parse(UpperCAmelCase__ ) A_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A_ = start A_ = end A_ = duration_in_min return job_info def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> Union[str, Any]: A_ = None if token is not None: A_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' A_ = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A_ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(UpperCAmelCase__ ): A_ = requests.get(url + F'''&page={i + 2}''', headers=UpperCAmelCase__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = get_job_time(args.workflow_run_id) __lowerCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
162
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowercase : Optional[Any] = 192 __lowercase : Optional[Any] = 768 __lowercase : int = 12 __lowercase : Dict = 3 __lowercase : Tuple = [800, 1333] __lowercase : Tuple = False elif yolos_name == "yolos_s_dWr": __lowercase : List[Any] = 330 __lowercase : List[str] = 14 __lowercase : Union[str, Any] = 6 __lowercase : Dict = 1320 elif "yolos_s" in yolos_name: __lowercase : Optional[int] = 384 __lowercase : Tuple = 1536 __lowercase : str = 12 __lowercase : int = 6 elif "yolos_b" in yolos_name: __lowercase : Optional[int] = [800, 1344] __lowercase : str = 91 __lowercase : int = 'huggingface/label-files' __lowercase : List[Any] = 'coco-detection-id2label.json' __lowercase : int = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : YolosConfig , lowerCAmelCase_ : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowercase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Dict = in_proj_weight[: config.hidden_size, :] __lowercase : Any = in_proj_bias[: config.hidden_size] __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : int = in_proj_weight[-config.hidden_size :, :] __lowercase : List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ : str ): if "backbone" in name: __lowercase : Dict = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: __lowercase : Any = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: __lowercase : Optional[int] = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: __lowercase : List[str] = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: __lowercase : Any = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowercase : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: __lowercase : List[Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowercase : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowercase : Dict = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowercase : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowercase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: __lowercase : Optional[Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: __lowercase : int = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: __lowercase : Any = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): __lowercase : int = orig_state_dict.pop(UpperCAmelCase_ ) if "qkv" in key: __lowercase : str = key.split(""".""" ) __lowercase : int = int(key_split[2] ) __lowercase : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowercase : Any = val[:dim, :] __lowercase : Union[str, Any] = val[ dim : dim * 2, : ] __lowercase : Any = val[-dim:, :] else: __lowercase : Optional[int] = val[:dim] __lowercase : List[str] = val[dim : dim * 2] __lowercase : List[Any] = val[-dim:] else: __lowercase : Tuple = val return orig_state_dict def snake_case_ ( ): __lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ): __lowercase : Optional[Any] = get_yolos_config(UpperCAmelCase_ ) # load original state_dict __lowercase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location="""cpu""" )['model'] # load 🤗 model __lowercase : Optional[Any] = YolosForObjectDetection(UpperCAmelCase_ ) model.eval() __lowercase : int = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor __lowercase : Optional[Any] = 800 if yolos_name != 'yolos_ti' else 512 __lowercase : Dict = YolosImageProcessor(format="""coco_detection""" , size=UpperCAmelCase_ ) __lowercase : int = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : int = model(**UpperCAmelCase_ ) __lowercase : List[str] = outputs.logits, outputs.pred_boxes __lowercase : Dict = None, None if yolos_name == "yolos_ti": __lowercase : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __lowercase : Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __lowercase : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __lowercase : Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __lowercase : Optional[Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __lowercase : Tuple = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __lowercase : str = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __lowercase : Tuple = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __lowercase : str = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __lowercase : Dict = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: __lowercase : Any = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print("""Pushing to the hub...""" ) __lowercase : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(UpperCAmelCase_ , organization="""hustvl""" ) model.push_to_hub(UpperCAmelCase_ , organization="""hustvl""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Optional[int] = int(_lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Dict = divmod(_lowerCAmelCase , 2 ) return binary_recursive(_lowerCAmelCase ) + str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = str(_lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) UpperCamelCase : Optional[int] = "-" if number.startswith("-" ) else "" UpperCamelCase : Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(_lowerCAmelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
52
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> List[str]: super().__init__() lowercase__ : List[str] = model lowercase__ : Dict = 2 lowercase__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase( self ) -> str: pass def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # load longformer model from model identifier lowercase__ : Dict = LongformerModel.from_pretrained(UpperCAmelCase ) lowercase__ : List[str] = LightningModel(UpperCAmelCase ) lowercase__ : List[Any] = torch.load(UpperCAmelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase__ : Optional[int] = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a: Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
198
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = 'PoolFormerConfig' # Base docstring __UpperCAmelCase = 'sail/poolformer_s12' __UpperCAmelCase = [1, 5_12, 7, 7] # Image classification docstring __UpperCAmelCase = 'sail/poolformer_s12' __UpperCAmelCase = 'tabby, tabby cat' __UpperCAmelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : float = 0.0 , lowercase__ : bool = False ) -> Any: '''simple docstring''' if drop_prob == 0.0 or not training: return input lowerCAmelCase_ :str = 1 - drop_prob lowerCAmelCase_ :List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCAmelCase_ :Any = keep_prob + torch.rand(lowercase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCAmelCase_ :Union[str, Any] = input.div(lowercase__ ) * random_tensor return output class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A = None ) -> None: super().__init__() lowerCAmelCase_ :int = drop_prob def __lowerCAmelCase ( self , __A ) -> torch.Tensor: return drop_path(__A , self.drop_prob , self.training ) def __lowerCAmelCase ( self ) -> str: return "p={}".format(self.drop_prob ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A , __A , __A , __A , __A , __A=None ) -> Dict: super().__init__() lowerCAmelCase_ :List[str] = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) lowerCAmelCase_ :Any = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) lowerCAmelCase_ :Optional[int] = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) lowerCAmelCase_ :Dict = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) lowerCAmelCase_ :Any = norm_layer(__A ) if norm_layer else nn.Identity() def __lowerCAmelCase ( self , __A ) -> Dict: lowerCAmelCase_ :Any = self.projection(__A ) lowerCAmelCase_ :Union[str, Any] = self.norm(__A ) return embeddings class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ): def __init__( self , __A , **__A ) -> List[str]: super().__init__(1 , __A , **__A ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A ) -> Any: super().__init__() lowerCAmelCase_ :Union[str, Any] = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: return self.pool(__A ) - hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A , __A , __A , __A ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ :str = nn.Convad(__A , __A , 1 ) lowerCAmelCase_ :List[str] = nn.Convad(__A , __A , 1 ) lowerCAmelCase_ :Tuple = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): lowerCAmelCase_ :Optional[int] = ACTaFN[config.hidden_act] else: lowerCAmelCase_ :Tuple = config.hidden_act def __lowerCAmelCase ( self , __A ) -> List[str]: lowerCAmelCase_ :Tuple = self.conva(__A ) lowerCAmelCase_ :Union[str, Any] = self.act_fn(__A ) lowerCAmelCase_ :Union[str, Any] = self.drop(__A ) lowerCAmelCase_ :Dict = self.conva(__A ) lowerCAmelCase_ :Any = self.drop(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A , __A , __A , __A , __A , __A ) -> Any: super().__init__() lowerCAmelCase_ :Union[str, Any] = PoolFormerPooling(__A ) lowerCAmelCase_ :List[Any] = PoolFormerOutput(__A , __A , __A , __A ) lowerCAmelCase_ :Union[str, Any] = PoolFormerGroupNorm(__A ) lowerCAmelCase_ :Optional[int] = PoolFormerGroupNorm(__A ) # Useful for training neural nets lowerCAmelCase_ :Union[str, Any] = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() lowerCAmelCase_ :Tuple = config.use_layer_scale if config.use_layer_scale: lowerCAmelCase_ :str = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) lowerCAmelCase_ :List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def __lowerCAmelCase ( self , __A ) -> List[str]: if self.use_layer_scale: lowerCAmelCase_ :Tuple = self.pooling(self.before_norm(__A ) ) lowerCAmelCase_ :Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCAmelCase_ :List[str] = hidden_states + self.drop_path(__A ) lowerCAmelCase_ :Any = () lowerCAmelCase_ :Optional[Any] = self.output(self.after_norm(__A ) ) lowerCAmelCase_ :int = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCAmelCase_ :Tuple = hidden_states + self.drop_path(__A ) lowerCAmelCase_ :Tuple = (output,) + outputs return outputs else: lowerCAmelCase_ :Any = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection lowerCAmelCase_ :Any = pooling_output + hidden_states lowerCAmelCase_ :Optional[int] = () # Second residual connection inside the PoolFormerOutput block lowerCAmelCase_ :Optional[int] = self.drop_path(self.output(self.after_norm(__A ) ) ) lowerCAmelCase_ :Optional[int] = hidden_states + layer_output lowerCAmelCase_ :List[Any] = (output,) + outputs return outputs class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A ) -> Tuple: super().__init__() lowerCAmelCase_ :Optional[Any] = config # stochastic depth decay rule lowerCAmelCase_ :Any = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCAmelCase_ :int = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCAmelCase_ :List[Any] = nn.ModuleList(__A ) # Transformer blocks lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCAmelCase_ :Dict = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) lowerCAmelCase_ :Tuple = nn.ModuleList(__A ) def __lowerCAmelCase ( self , __A , __A=False , __A=True ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = () if output_hidden_states else None lowerCAmelCase_ :Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCAmelCase_ :int = layers # Get patch embeddings from hidden_states lowerCAmelCase_ :List[str] = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): lowerCAmelCase_ :int = blk(__A ) lowerCAmelCase_ :int = layer_outputs[0] if output_hidden_states: lowerCAmelCase_ :Dict = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = PoolFormerConfig UpperCAmelCase_ :Dict = "poolformer" UpperCAmelCase_ :Union[str, Any] = "pixel_values" UpperCAmelCase_ :Tuple = True def __lowerCAmelCase ( self , __A ) -> Optional[Any]: if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __lowerCAmelCase ( self , __A , __A=False ) -> Tuple: if isinstance(__A , __A ): lowerCAmelCase_ :List[Any] = value __UpperCAmelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCAmelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , A__ , ) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> List[Any]: super().__init__(__A ) lowerCAmelCase_ :Dict = config lowerCAmelCase_ :str = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self ) -> Optional[int]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , __A = None , __A = None , __A = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: lowerCAmelCase_ :List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ :Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowerCAmelCase_ :Optional[Any] = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) lowerCAmelCase_ :Optional[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __A ) -> Optional[int]: super().__init__() lowerCAmelCase_ :str = nn.Linear(config.hidden_size , config.hidden_size ) def __lowerCAmelCase ( self , __A ) -> Optional[Any]: lowerCAmelCase_ :List[Any] = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , A__ , ) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> int: super().__init__(__A ) lowerCAmelCase_ :List[str] = config.num_labels lowerCAmelCase_ :Tuple = PoolFormerModel(__A ) # Final norm lowerCAmelCase_ :Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCAmelCase_ :Optional[int] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , __A = None , __A = None , __A = None , __A = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: lowerCAmelCase_ :Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ :List[str] = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) lowerCAmelCase_ :Optional[int] = outputs[0] lowerCAmelCase_ :Dict = self.classifier(self.norm(__A ).mean([-2, -1] ) ) lowerCAmelCase_ :Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ :str = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ :List[Any] = """single_label_classification""" else: lowerCAmelCase_ :Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": lowerCAmelCase_ :Optional[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase_ :Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase_ :Optional[int] = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ :Union[str, Any] = CrossEntropyLoss() lowerCAmelCase_ :Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ :Optional[Any] = BCEWithLogitsLoss() lowerCAmelCase_ :Optional[Any] = loss_fct(__A , __A ) if not return_dict: lowerCAmelCase_ :List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
0
'''simple docstring''' def lowercase_ ( _lowercase ) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError('''Input value must be an \'int\' type''' ) lowerCamelCase_ : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
318
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=None ): _lowerCamelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , lowercase , getattr(lowercase , lowercase ) ) _lowerCamelCase : Tuple = module._original_module if isinstance(lowercase , _PatchedModuleObj ) else module class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = [] def __init__( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : int = obj _lowerCamelCase : Dict = target _lowerCamelCase : Optional[Any] = new _lowerCamelCase : Dict = target.split('.' )[0] _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Optional[int] = attrs or [] def __enter__( self ): *_lowerCamelCase, _lowerCamelCase : Dict = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase ) ): try: _lowerCamelCase : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _lowerCamelCase : Union[str, Any] = getattr(self.obj , lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _lowerCamelCase : List[str] = obj_attr # patch at top level setattr(self.obj , lowercase , _PatchedModuleObj(lowercase , attrs=self.attrs ) ) _lowerCamelCase : List[Any] = getattr(self.obj , lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase , lowercase , _PatchedModuleObj(getattr(lowercase , lowercase , lowercase ) , attrs=self.attrs ) ) _lowerCamelCase : List[str] = getattr(lowercase , lowercase ) # finally set the target attribute setattr(lowercase , lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _lowerCamelCase : Any = getattr(import_module('.'.join(lowercase ) ) , lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase ) is attr_value: _lowerCamelCase : Any = getattr(self.obj , lowercase ) setattr(self.obj , lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _lowerCamelCase : Any = globals()['__builtins__'][target_attr] setattr(self.obj , lowercase , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *lowercase ): for attr in list(self.original ): setattr(self.obj , lowercase , self.original.pop(lowercase ) ) def A_ ( self ): self.__enter__() self._active_patches.append(self ) def A_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
12
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): _lowerCamelCase : Tuple = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : Tuple = pad_token_id _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : List[str] = word_embed_proj_dim _lowerCamelCase : Any = False def A_ ( self ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) _lowerCamelCase : int = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = TFOPTModel(config=lowercase ) _lowerCamelCase : Optional[Any] = inputs_dict['input_ids'] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Dict = inputs_dict['attention_mask'][:1, :] _lowerCamelCase : Optional[Any] = 1 # first forward pass _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) _lowerCamelCase, _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] _lowerCamelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 10 def A_ ( self ): _lowerCamelCase : int = TFOPTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCamelCase : Optional[int] = model_class(config=lowercase ) _lowerCamelCase : int = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Tuple = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) _lowerCamelCase : str = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) _lowerCamelCase : Any = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing _lowerCamelCase : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Optional[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) _lowerCamelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase : Union[str, Any] = False self.assertTrue(lowercase ) def _snake_case ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = 99 def A_ ( self ): _lowerCamelCase : Tuple = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase : int = input_ids.shape[0] _lowerCamelCase : List[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase : List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCamelCase : List[str] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase : List[str] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state _lowerCamelCase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[str] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) _lowerCamelCase : List[str] = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : Union[str, Any] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): super().setUp() _lowerCamelCase : List[Any] = 'facebook/opt-350m' def A_ ( self ): _lowerCamelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' , padding=lowercase , add_special_tokens=lowercase ) _lowerCamelCase : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase : Any = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) _lowerCamelCase : Tuple = tf.function(lowercase , jit_compile=lowercase ) _lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self ): _lowerCamelCase : str = 'facebook/opt-125m' _lowerCamelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : int = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : int = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Any = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = 'facebook/opt-350m' _lowerCamelCase : int = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(lowercase ) _lowerCamelCase : Any = 'left' # use different length sentences to test batching _lowerCamelCase : Optional[int] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : Dict = tokenizer(lowercase , return_tensors='tf' , padding=lowercase ) _lowerCamelCase : int = inputs['input_ids'] _lowerCamelCase : Tuple = model.generate(input_ids=lowercase , attention_mask=inputs['attention_mask'] ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase ) _lowerCamelCase : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Union[str, Any] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : List[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def A_ ( self ): _lowerCamelCase : Tuple = 'facebook/opt-350m' _lowerCamelCase : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Optional[Any] = GPTaTokenizer.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: _lowerCamelCase : List[Any] = tokenizer(lowercase , return_tensors='tf' ).input_ids _lowerCamelCase : Optional[Any] = model.generate(lowercase , max_length=10 ) _lowerCamelCase : Dict = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
12
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='nllb-moe' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=12_81_12 , a_=10_24 , a_=12 , a_=40_96 , a_=16 , a_=12 , a_=40_96 , a_=16 , a_=0.05 , a_=0.05 , a_=True , a_=True , a_="relu" , a_=10_24 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.02 , a_=2 , a_=True , a_=False , a_="float32" , a_=False , a_=1_28 , a_=64 , a_=4 , a_=4 , a_=0.001 , a_=0.001 , a_="all" , a_=False , a_=False , a_=1.0 , a_=0.2 , a_=1 , a_=0 , a_=2 , a_=False , **a_ , ): '''simple docstring''' __snake_case : Optional[Any] = vocab_size __snake_case : int = max_position_embeddings __snake_case : int = d_model __snake_case : List[str] = encoder_ffn_dim __snake_case : Optional[Any] = encoder_layers __snake_case : Dict = encoder_attention_heads __snake_case : str = decoder_ffn_dim __snake_case : Dict = decoder_layers __snake_case : Union[str, Any] = decoder_attention_heads __snake_case : Optional[Any] = dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : Union[str, Any] = activation_dropout __snake_case : List[Any] = activation_function __snake_case : int = init_std __snake_case : List[Any] = encoder_layerdrop __snake_case : Optional[Any] = decoder_layerdrop __snake_case : Tuple = use_cache __snake_case : Dict = encoder_layers __snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : List[str] = router_z_loss_coef __snake_case : int = router_aux_loss_coef __snake_case : Union[str, Any] = decoder_sparse_step __snake_case : Tuple = encoder_sparse_step __snake_case : int = num_experts __snake_case : List[Any] = expert_capacity __snake_case : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __snake_case : Optional[int] = router_dtype __snake_case : Tuple = router_ignore_padding_tokens __snake_case : List[Any] = batch_prioritized_routing __snake_case : Optional[int] = second_expert_policy __snake_case : Any = normalize_router_prob_before_dropping __snake_case : List[Any] = moe_eval_capacity_token_fraction __snake_case : Optional[int] = moe_token_dropout __snake_case : int = output_router_logits super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , **a_ , )
102
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
0
"""simple docstring""" import csv import tweepy # Twitter API credentials lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' def snake_case ( A__ ): # authorize twitter, initialize tweepy UpperCAmelCase_ : Tuple = tweepy.OAuthHandler(lowercase_ ,lowercase_ ) auth.set_access_token(lowercase_ ,lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tweepy.API(lowercase_ ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ : Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ : List[str] = api.user_timeline(screen_name=lowercase_ ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase_ ) # save the id of the oldest tweet less one UpperCAmelCase_ : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase_ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ : int = api.user_timeline( screen_name=lowercase_ ,count=2_00 ,max_id=lowercase_ ) # save most recent tweets alltweets.extend(lowercase_ ) # update the id of the oldest tweet less one UpperCAmelCase_ : Tuple = alltweets[-1].id - 1 print(F"""...{len(lowercase_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ : List[str] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" ,"w" ) as f: UpperCAmelCase_ : int = csv.writer(lowercase_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowercase_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
357
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase_ = '''hf-internal-testing/tiny-random-bert''' lowerCamelCase_ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCamelCase_ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : Optional[int] = f.read() self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase_ ) ) # File is cached at the same place the second time. UpperCAmelCase_ : List[str] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Using a specific revision to test the full commit hash. UpperCAmelCase_ : int = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="9b8c223" ) self.assertEqual(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , "snapshots" , lowerCAmelCase_ , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): UpperCAmelCase_ : List[Any] = cached_file("tiny-random-bert" , lowerCAmelCase_ ) with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): UpperCAmelCase_ : Optional[Any] = cached_file(lowerCAmelCase_ , lowerCAmelCase_ , revision="aaaa" ) with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Union[str, Any] = cached_file(lowerCAmelCase_ , "conf" ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: with self.assertRaisesRegex(lowerCAmelCase_ , "does not appear to have a file named" ): UpperCAmelCase_ : Any = cached_file(lowerCAmelCase_ , "conf" ) with open(os.path.join(lowerCAmelCase_ , "refs" , "main" ) ) as f: UpperCAmelCase_ : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , ".no_exist" , lowerCAmelCase_ , "conf" ) ) ) UpperCAmelCase_ : str = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , local_files_only=lowerCAmelCase_ , _raise_exceptions_for_missing_entries=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) UpperCAmelCase_ : Any = mock.Mock() UpperCAmelCase_ : List[str] = 500 UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : List[Any] = HTTPError UpperCAmelCase_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase_ ) as mock_head: UpperCAmelCase_ : List[Any] = cached_file(lowerCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=lowerCAmelCase_ ) self.assertIsNone(lowerCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCAmelCase_ , revision="ahaha" ) UpperCAmelCase_ : int = get_file_from_repo("bert-base-cased" , lowerCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase_ : Optional[int] = json.loads(open(lowerCAmelCase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = Path(lowerCAmelCase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase_ , "a.txt" ) , str(lowerCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase_ , "b.txt" ) )
253
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = BertJapaneseTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: super().setUp() lowerCamelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = "こんにちは、世界。 \nこんばんは、世界。" lowerCamelCase_ = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: lowerCamelCase_ , lowerCamelCase_ = self.get_input_output_texts(lowercase ) lowerCamelCase_ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> int: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(lowercase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(lowercase ) lowerCamelCase_ = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase_ = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowercase , "wb" ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , "rb" ) as handle: lowerCamelCase_ = pickle.load(lowercase ) lowerCamelCase_ = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: try: lowerCamelCase_ = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: try: lowerCamelCase_ = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = MecabTokenizer(do_lower_case=lowercase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> int: try: lowerCamelCase_ = MecabTokenizer( do_lower_case=lowercase , normalize_text=lowercase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = MecabTokenizer(normalize_text=lowercase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(lowercase ) lowerCamelCase_ = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase_ = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowercase , "wb" ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , "rb" ) as handle: lowerCamelCase_ = pickle.load(lowercase ) lowerCamelCase_ = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = SudachiTokenizer(do_lower_case=lowercase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = SudachiTokenizer(normalize_text=lowercase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = SudachiTokenizer(trim_whitespace=lowercase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(lowercase ) lowerCamelCase_ = "こんにちは、世界。\nこんばんは、世界。" lowerCamelCase_ = tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(lowercase , "wb" ) as handle: pickle.dump(lowercase , lowercase ) with open(lowercase , "rb" ) as handle: lowerCamelCase_ = pickle.load(lowercase ) lowerCamelCase_ = tokenizer_new.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = JumanppTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = JumanppTokenizer(normalize_text=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = JumanppTokenizer(trim_whitespace=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] lowerCamelCase_ = {} for i, token in enumerate(lowercase ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=lowercase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) lowerCamelCase_ = tokenizer.subword_tokenizer lowerCamelCase_ = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(lowercase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) lowerCamelCase_ = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(lowercase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) lowerCamelCase_ = tokenizer.encode("ありがとう。" , add_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.encode("どういたしまして。" , add_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = BertJapaneseTokenizer lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: super().setUp() lowerCamelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_( self , **lowercase ) -> Any: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = "こんにちは、世界。 \nこんばんは、世界。" lowerCamelCase_ = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) lowerCamelCase_ = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( lowercase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] lowerCamelCase_ = {} for i, token in enumerate(lowercase ): lowerCamelCase_ = i lowerCamelCase_ = CharacterTokenizer(vocab=lowercase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) lowerCamelCase_ = tokenizer.encode("ありがとう。" , add_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.encode("どういたしまして。" , add_special_tokens=lowercase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = "cl-tohoku/bert-base-japanese" lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(lowercase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) lowerCamelCase_ = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(lowercase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
19
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 ): lowerCamelCase_ = end or len(lowerCamelCase__ ) for i in range(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = i lowerCamelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase_ = array[temp_index - 1] temp_index -= 1 lowerCamelCase_ = temp_index_value return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Max Heap lowerCamelCase_ = index lowerCamelCase_ = 2 * index + 1 # Left Node lowerCamelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase_ = right_index if largest != index: lowerCamelCase_ , lowerCamelCase_ = array[largest], array[index] heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = len(lowerCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase_ , lowerCamelCase_ = array[0], array[i] heapify(lowerCamelCase__ , 0 , lowerCamelCase__ ) return array def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = low lowerCamelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase_ , lowerCamelCase_ = array[j], array[i] i += 1 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) == 0: return array lowerCamelCase_ = 2 * math.ceil(math.loga(len(lowerCamelCase__ ) ) ) lowerCamelCase_ = 1_6 return intro_sort(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCamelCase__ ) max_depth -= 1 lowerCamelCase_ = median_of_a(lowerCamelCase__ , lowerCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase_ = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) intro_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = p return insertion_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __A =input('''Enter numbers separated by a comma : ''').strip() __A =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
19
1
UpperCamelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
221
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=512 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=0 , ) -> List[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = projection_dim def a ( self : Any ) -> Any: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) lowerCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: lowerCAmelCase__ = TFDPRReader(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : Dict ) -> int: lowerCAmelCase__ = TFDPRModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def a ( self : Tuple ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : List[str] ) -> Union[str, Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCAmelCase__ = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase__ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
221
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=3 , _a=224 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Dict = size if size is not None else {"""height""": 18, """width""": 18} _A : Tuple = parent _A : List[Any] = batch_size _A : Any = num_channels _A : Dict = image_size _A : str = min_resolution _A : int = max_resolution _A : Union[str, Any] = do_resize _A : Any = size _A : Tuple = do_normalize _A : int = image_mean _A : Optional[int] = image_std def a__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = ViTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[Any]: _A : Optional[int] = EfficientFormerImageProcessorTester(self ) @property def a__ ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Tuple: pass def a__ ( self ) -> Tuple: # Initialize image_processor _A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : List[Any] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _A : List[str] = image_processor(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processor _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _A : Dict = image_processor(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def a__ ( self ) -> int: # Initialize image_processor _A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : int = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _A : Optional[Any] = image_processor(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
26
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __A : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def a_ ( self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) # get prompt text embeddings UpperCamelCase : Optional[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) UpperCamelCase : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[Any] = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : Any = [""""""] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: UpperCamelCase : str = negative_prompt UpperCamelCase : Tuple = text_input_ids.shape[-1] UpperCamelCase : Dict = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : Optional[Any] = uncond_embeddings.shape[1] UpperCamelCase : str = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Any = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) UpperCamelCase : Tuple = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase : Any = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCamelCase : Tuple = latents_reference.to(self.device ) UpperCamelCase : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase : str = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase : Optional[int] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase : int = 0 if dx < 0 else dx UpperCamelCase : Union[str, Any] = 0 if dy < 0 else dy UpperCamelCase : List[Any] = max(-dx , 0 ) UpperCamelCase : Union[str, Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase : List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : Any = {} if accepts_eta: UpperCamelCase : List[Any] = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Tuple = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase : int = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : Tuple = noise_pred.chunk(2 ) UpperCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 1 / 0.18215 * latents UpperCamelCase : Dict = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase : Any = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors="""pt""" ).to( self.device ) UpperCamelCase , UpperCamelCase : Optional[int] = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase : List[str] = None if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
27
"""simple docstring""" def A_ ( snake_case_ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(snake_case_ ,(list, tuple) ) or not all( isinstance(snake_case_ ,snake_case_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) UpperCamelCase : int = numbers[0] for i in range(1 ,len(snake_case_ ) ): # update the maximum and minimum subarray products UpperCamelCase : List[str] = numbers[i] if number < 0: UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number ) UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number ) # update the maximum product found till now UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ ) return max_prod
27
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : list[int] , _lowercase : int ) ->tuple[float, list[float]]: '''simple docstring''' a : Tuple = list(range(len(_lowercase ) ) ) a : Tuple = [v / w for v, w in zip(_lowercase , _lowercase )] index.sort(key=lambda _lowercase : ratio[i] , reverse=_lowercase ) a : float = 0 a : list[float] = [0] * len(_lowercase ) for i in index: if weight[i] <= capacity: a : List[str] = 1 max_value += value[i] capacity -= weight[i] else: a : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
105
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _SCREAMING_SNAKE_CASE ( _lowercase : int = 8 ) ->str: '''simple docstring''' a : List[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int ) ->str: '''simple docstring''' i -= len(_lowercase ) a : List[str] = i // 3 a : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) a : int = ( chars_incl + random(_lowercase , quotient + remainder ) + random(_lowercase , _lowercase ) + random(_lowercase , _lowercase ) ) a : List[str] = list(_lowercase ) shuffle(_lowercase ) return "".join(_lowercase ) # random is a generalised function for letters, characters and numbers def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int ) ->str: '''simple docstring''' return "".join(secrets.choice(_lowercase ) for _ in range(_lowercase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : int ) ->List[str]: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : Optional[int] ) ->int: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' pass # Put your code here... def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : int = 8 ) ->bool: '''simple docstring''' if len(_lowercase ) < min_length: # Your Password must be at least 8 characters long return False a : List[str] = any(char in ascii_uppercase for char in password ) a : Optional[int] = any(char in ascii_lowercase for char in password ) a : List[str] = any(char in digits for char in password ) a : int = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _SCREAMING_SNAKE_CASE ( ) ->Union[str, Any]: '''simple docstring''' a : Dict = int(input("Please indicate the max length of your password: " ).strip() ) a : str = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowercase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowercase , _lowercase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
105
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : Optional[Any] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __UpperCamelCase ( lowercase__ ): lowercase : Any = 'vivit' def __init__( self :Any ,_UpperCamelCase :Optional[Any]=2_2_4 ,_UpperCamelCase :List[Any]=3_2 ,_UpperCamelCase :List[str]=[2, 1_6, 1_6] ,_UpperCamelCase :Tuple=3 ,_UpperCamelCase :Optional[int]=7_6_8 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Optional[int]=3_0_7_2 ,_UpperCamelCase :List[Any]="gelu_fast" ,_UpperCamelCase :Optional[Any]=0.0 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :str=0.02 ,_UpperCamelCase :Tuple=1E-0_6 ,_UpperCamelCase :Optional[int]=True ,**_UpperCamelCase :Tuple ,): snake_case_ : Dict = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : int = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : Dict = image_size snake_case_ : Union[str, Any] = num_frames snake_case_ : Union[str, Any] = tubelet_size snake_case_ : Optional[int] = num_channels snake_case_ : Optional[Any] = qkv_bias super().__init__(**_UpperCamelCase )
8
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ ( __a ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class lowerCamelCase_ : def __init__( self : int , _A : Tuple , _A : Any=13 , _A : Optional[int]=64 , _A : Optional[Any]=3 , _A : List[str]=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Optional[int]=[1, 2, 10] , _A : int=[7, 3, 3] , _A : Union[str, Any]=[4, 2, 2] , _A : Dict=[2, 1, 1] , _A : Optional[Any]=[2, 2, 2] , _A : Optional[Any]=[False, False, True] , _A : List[Any]=[0.0, 0.0, 0.0] , _A : str=0.0_2 , _A : Tuple=1e-12 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Optional[int]=2 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : List[str] = patch_sizes UpperCAmelCase__ : Any = patch_stride UpperCAmelCase__ : Tuple = patch_padding UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Optional[int] = embed_dim UpperCAmelCase__ : int = num_heads UpperCAmelCase__ : Any = stride_kv UpperCAmelCase__ : str = depth UpperCAmelCase__ : List[Any] = cls_token UpperCAmelCase__ : List[Any] = attention_drop_rate UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = layer_norm_eps def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase_ ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFCvtModel(config=_A ) UpperCAmelCase__ : List[str] = model(_A , training=_A ) UpperCAmelCase__ : int = (self.image_size, self.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase_ ( self : Optional[Any] , _A : Optional[Any] , _A : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFCvtForImageClassification(_A ) UpperCAmelCase__ : Any = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = config_and_inputs UpperCAmelCase__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TFCvtModelTester(self ) UpperCAmelCase__ : Tuple = TFCvtConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : Any ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def lowercase_ ( self : List[str] ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(_A ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_A ) UpperCAmelCase__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : Any ): '''simple docstring''' def check_hidden_states_output(_A : Dict , _A : Optional[Any] , _A : Dict ): UpperCAmelCase__ : str = model_class(_A ) UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Tuple = outputs.hidden_states UpperCAmelCase__ : int = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[str] = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = TFCvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> Any: UpperCAmelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_A , return_tensors='''tf''' ) # forward pass UpperCAmelCase__ : Optional[Any] = model(**_A ) # verify the logits UpperCAmelCase__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Union[str, Any] = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1e-4 ) )
181
1
class lowercase__ : def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = name SCREAMING_SNAKE_CASE : Optional[int] = value SCREAMING_SNAKE_CASE : List[Any] = weight def __repr__( self : List[Any] ): '''simple docstring''' return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __A ( self : str ): '''simple docstring''' return self.value def __A ( self : List[Any] ): '''simple docstring''' return self.name def __A ( self : Dict ): '''simple docstring''' return self.weight def __A ( self : List[Any] ): '''simple docstring''' return self.value / self.weight def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(len(_lowercase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = sorted(_lowercase , key=_lowercase , reverse=_lowercase ) SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = 0.0, 0.0 for i in range(len(_lowercase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
359
from typing import Union import fire import torch from tqdm import tqdm def A ( _lowercase , _lowercase = "cpu" , _lowercase = None ): SCREAMING_SNAKE_CASE : Optional[int] = torch.load(_lowercase , map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) SCREAMING_SNAKE_CASE : List[Any] = v.half() if save_path is None: # overwrite src_path SCREAMING_SNAKE_CASE : str = src_path torch.save(_lowercase , _lowercase ) if __name__ == "__main__": fire.Fire(convert)
258
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple=0.01 , SCREAMING_SNAKE_CASE_ : int=1_0_0_0 ) -> Tuple: lowercase_ = p_stop lowercase_ = max_length def __iter__( self : List[Any] ) -> Dict: lowercase_ = 0 lowercase_ = False while not stop and count < self.max_length: yield count count += 1 lowercase_ = random.random() < self.p_stop class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Dict=True ) -> List[str]: lowercase_ = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] lowercase_ = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> List[str]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> List[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> str: lowercase_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] lowercase_ = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Any: random.seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] lowercase_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) lowercase_ = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = 4_2 lowercase_ = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset lowercase_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Any: lowercase_ = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = DataLoader(list(range(1_6 ) ) , batch_size=4 ) lowercase_ = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : Any ) -> Any: Accelerator() lowercase_ = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
30
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = (DPMSolverSinglestepScheduler,) _snake_case : Optional[Any] = (("""num_inference_steps""", 25),) def a__ ( self , **lowerCamelCase ): __a = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**lowerCamelCase ) return config def a__ ( self , lowerCamelCase=0 , **lowerCamelCase ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("num_inference_steps" , lowerCamelCase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**lowerCamelCase ) __a = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) __a = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a , __a = sample, sample for t in range(lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): __a = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample __a = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__ ( self ): pass def a__ ( self , lowerCamelCase=0 , **lowerCamelCase ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("num_inference_steps" , lowerCamelCase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) __a = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample __a = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__ ( self , lowerCamelCase=None , **lowerCamelCase ): if scheduler is None: __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**lowerCamelCase ) __a = scheduler_class(**lowerCamelCase ) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**lowerCamelCase ) __a = scheduler_class(**lowerCamelCase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __a = model(lowerCamelCase , lowerCamelCase ) __a = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def a__ ( self ): __a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __a = 50 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __a = model(lowerCamelCase , lowerCamelCase ) __a = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def a__ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def a__ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __a = self.full_loop(scheduler=lowerCamelCase ) __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 __a = DEISMultistepScheduler.from_config(scheduler.config ) __a = DPMSolverMultistepScheduler.from_config(scheduler.config ) __a = UniPCMultistepScheduler.from_config(scheduler.config ) __a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __a = self.full_loop(scheduler=lowerCamelCase ) __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def a__ ( self ): self.check_over_configs(thresholding=lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , algorithm_type="dpmsolver++" , solver_order=lowerCamelCase , solver_type=lowerCamelCase , ) def a__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def a__ ( self ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , ) __a = self.full_loop( solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , ) assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers" def a__ ( self ): self.check_over_configs(lower_order_final=lowerCamelCase ) self.check_over_configs(lower_order_final=lowerCamelCase ) def a__ ( self ): self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def a__ ( self ): self.check_over_configs(variance_type=lowerCamelCase ) self.check_over_configs(variance_type="learned_range" ) def a__ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=0 ) def a__ ( self ): __a = self.full_loop() __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def a__ ( self ): __a = self.full_loop(use_karras_sigmas=lowerCamelCase ) __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def a__ ( self ): __a = self.full_loop(prediction_type="v_prediction" ) __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def a__ ( self ): __a = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=lowerCamelCase ) __a = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def a__ ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(thresholding=lowerCamelCase , dynamic_thresholding_ratio=0 ) __a = scheduler_class(**lowerCamelCase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __a = model(lowerCamelCase , lowerCamelCase ) __a = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
359
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCamelCase=None ): __a = {} if top_k is not None: __a = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ): return super().__call__(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = load_image(lowerCamelCase ) __a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCamelCase ): __a = self.model(**lowerCamelCase ) return model_outputs def a__ ( self , lowerCamelCase , lowerCamelCase=5 ): if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1 )[0] __a , __a = probs.topk(lowerCamelCase ) elif self.framework == "tf": __a = stable_softmax(model_outputs.logits , axis=-1 )[0] __a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __a , __a = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
268
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : int ={ '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] =[ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = tempfile.mkdtemp() # fmt: off __a = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __a = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) __a = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE)) __a = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __a = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __a = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = self.get_image_processor() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) processor_slow.save_pretrained(self.tmpdirname) __a = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE) __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) processor_fast.save_pretrained(self.tmpdirname) __a = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __a = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE) __a = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) __a = self.prepare_image_inputs() __a = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) __a = '''lower newer''' __a = processor(text=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''np''') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) __a = '''lower newer''' __a = self.prepare_image_inputs() __a = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def _lowerCamelCase ( self : Any): '''simple docstring''' __a = '''google/owlvit-base-patch32''' __a = OwlViTProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) __a = ['''cat''', '''nasa badge'''] __a = processor(text=__SCREAMING_SNAKE_CASE) __a = 16 self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = '''google/owlvit-base-patch32''' __a = OwlViTProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) __a = [['''cat''', '''nasa badge'''], ['''person''']] __a = processor(text=__SCREAMING_SNAKE_CASE) __a = 16 __a = len(__SCREAMING_SNAKE_CASE) __a = max([len(__SCREAMING_SNAKE_CASE) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = '''google/owlvit-base-patch32''' __a = OwlViTProcessor.from_pretrained(__SCREAMING_SNAKE_CASE) __a = ['''cat''', '''nasa badge'''] __a = processor(text=__SCREAMING_SNAKE_CASE) __a = 16 __a = inputs['''input_ids'''] __a = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) __a = self.prepare_image_inputs() __a = self.prepare_image_inputs() __a = processor(images=__SCREAMING_SNAKE_CASE , query_images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_tokenizer() __a = OwlViTProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(__SCREAMING_SNAKE_CASE) __a = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
370
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case :Optional[Any] = logging.get_logger(__name__) __snake_case :List[Any] = '''▁''' __snake_case :List[Any] = {'''vocab_file''': '''spiece.model'''} __snake_case :Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __snake_case :List[Any] = { '''google/reformer-crime-and-punishment''': 52_4288, } class _A ( __UpperCAmelCase ): UpperCamelCase__ : int = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Any=[] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.sp_model.get_piece_size() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Dict): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Dict , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __a = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) return token def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) + token __a = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE) return out_string.strip() def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,)
131
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Optional[int] = KandinskyImgaImgPipeline _lowerCAmelCase : List[Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCAmelCase : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCAmelCase : Optional[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase : Union[str, Any] = False @property def __lowercase ( self : Dict ): '''simple docstring''' return 32 @property def __lowercase ( self : List[str] ): '''simple docstring''' return 32 @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def __lowercase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return 1_00 @property def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __lowercase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) UpperCamelCase__ : str = MultilingualCLIP(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = text_encoder.eval() return text_encoder @property def __lowercase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase__ : str = UNetaDConditionModel(**SCREAMING_SNAKE_CASE ) return model @property def __lowercase ( self : str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.dummy_text_encoder UpperCamelCase__ : List[str] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_unet UpperCamelCase__ : int = self.dummy_movq UpperCamelCase__ : Optional[int] = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase__ : int = DDIMScheduler(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __lowercase ( self : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any]=0 ): '''simple docstring''' UpperCamelCase__ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(SCREAMING_SNAKE_CASE ) # create init_image UpperCamelCase__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ : Dict = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("RGB" ).resize((2_56, 2_56) ) if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase__ : int = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : str = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : List[str] = "cpu" UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : int = self.pipeline_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Optional[int] = output.images UpperCamelCase__ : int = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) , return_dict=SCREAMING_SNAKE_CASE , )[0] UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[str] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __a ( unittest.TestCase ): def __lowercase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) UpperCamelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase__ : List[str] = "A red cartoon frog, 4k" UpperCamelCase__ : Any = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) UpperCamelCase__ : Dict = pipeline.to(SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = pipe_prior( SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase__ : Optional[Any] = pipeline( SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , image_embeds=SCREAMING_SNAKE_CASE , negative_image_embeds=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="np" , ) UpperCamelCase__ : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
189
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] =logging.get_logger() @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : List[nn.Module] = field(default_factory=A__ ) _lowerCAmelCase : list = field(default_factory=A__ ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Dict = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : nn.Module _lowerCAmelCase : int = 0 _lowerCAmelCase : List = field(default_factory=A__ ) _lowerCAmelCase : List = field(default_factory=A__ ) def __call__( self : Any , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : Any = Tracker(self.src )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : str = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.src_skip , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[Any] = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.dest_skip , SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise Exception( F'Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> Optional[int]: print(f'Converting {name}...' ) with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() UpperCamelCase__ : List[Any] = ResNetForImageClassification(__lowerCAmelCase ).eval() UpperCamelCase__ : Optional[Any] = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) UpperCamelCase__ : int = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." UpperCamelCase__ : List[Any] = f'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one UpperCamelCase__ : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ) -> Dict: UpperCamelCase__ : Dict = "imagenet-1k-id2label.json" UpperCamelCase__ : Optional[int] = 1000 UpperCamelCase__ : Any = (1, num_labels) UpperCamelCase__ : Union[str, Any] = "huggingface/label-files" UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : str = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ : Optional[int] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase : int =parser.parse_args() lowerCamelCase : Path =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
189
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __magic_name__: str = logging.getLogger(__name__) @dataclass class snake_case__ : lowercase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class snake_case__ : lowercase__ : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowercase__ : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) lowercase__ : Optional[int] = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__ : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__ : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) lowercase__ : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__ : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) lowercase__ : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) lowercase__ : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) lowercase__ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) lowercase__ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) lowercase__ : Optional[int] = field(default=_lowerCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) lowercase__ : bool = field( default=_lowerCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(_A, os.path.join(_A, f'{split}_results.json' ) ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(_A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""", _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __magic_name__ : Any = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(_A, _A, _A ): assert hasattr(_A, _A ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_A, _A, getattr(_A, _A ) ) __magic_name__ : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __magic_name__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf=""".ckpt""" in model_args.model_name_or_path, config=_A, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(_A, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __magic_name__ : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_A, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_A, _A ): __magic_name__ : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __magic_name__ : Tuple = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_A ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __magic_name__ : List[str] = SeqaSeqDataset # Get datasets __magic_name__ : Union[str, Any] = ( dataset_class( _A, type_path="""train""", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", ) if training_args.do_train else None ) __magic_name__ : Tuple = ( dataset_class( _A, type_path="""val""", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __magic_name__ : List[str] = ( dataset_class( _A, type_path="""test""", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", ) if training_args.do_predict else None ) # Initialize our Trainer __magic_name__ : int = ( build_compute_metrics_fn(data_args.task, _A ) if training_args.predict_with_generate else None ) __magic_name__ : Any = SeqaSeqTrainer( model=_A, args=_A, data_args=_A, train_dataset=_A, eval_dataset=_A, data_collator=SeqaSeqDataCollator( _A, _A, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=_A, tokenizer=_A, ) __magic_name__ : str = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) __magic_name__ : Optional[int] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __magic_name__ : str = train_result.metrics __magic_name__ : Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""", _A, training_args.output_dir ) all_metrics.update(_A ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : Any = trainer.evaluate(metric_key_prefix="""val""" ) __magic_name__ : Optional[Any] = data_args.n_val __magic_name__ : Union[str, Any] = round(metrics["""val_loss"""], 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""", _A, training_args.output_dir ) all_metrics.update(_A ) if training_args.do_predict: logger.info("""*** Predict ***""" ) __magic_name__ : Dict = trainer.predict(test_dataset=_A, metric_key_prefix="""test""" ) __magic_name__ : Dict = test_output.metrics __magic_name__ : Tuple = data_args.n_test if trainer.is_world_process_zero(): __magic_name__ : Union[str, Any] = round(metrics["""test_loss"""], 4 ) handle_metrics("""test""", _A, training_args.output_dir ) all_metrics.update(_A ) if training_args.predict_with_generate: __magic_name__ : int = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=_A, clean_up_tokenization_spaces=_A ) __magic_name__ : List[str] = lmap(str.strip, _A ) write_txt_file(_A, os.path.join(training_args.output_dir, """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_A, os.path.join(training_args.output_dir, """all_results.json""" ) ) return all_metrics def UpperCamelCase ( _A ): """simple docstring""" main() if __name__ == "__main__": main()
138
import os from pathlib import Path def UpperCamelCase ( ): """simple docstring""" from torch.utils.cpp_extension import load __magic_name__ : Dict = Path(_A ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __magic_name__ : Optional[int] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""", """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""", """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""", _A, with_cuda=_A, extra_include_paths=[str(_A )], extra_cflags=["""-DWITH_CUDA=1"""], extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ], ) import MultiScaleDeformableAttention as MSDA return MSDA
138
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase = logging.get_logger(__name__) @dataclass class A_ ( _lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self :int , **lowerCamelCase_ :Any ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase__ : List[str] =deprecated_arg[3:] lowerCamelCase__ : Any =not kwargs.pop(A_ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCamelCase__ : Any =kwargs.pop('tpu_name' , self.tpu_name ) lowerCamelCase__ : Optional[int] =kwargs.pop('device_idx' , self.device_idx ) lowerCamelCase__ : int =kwargs.pop('eager_mode' , self.eager_mode ) lowerCamelCase__ : Union[str, Any] =kwargs.pop('use_xla' , self.use_xla ) super().__init__(**A_ ) SCREAMING_SNAKE_CASE_ = field( default=_lowercase , metadata={"""help""": """Name of TPU"""} , ) SCREAMING_SNAKE_CASE_ = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) SCREAMING_SNAKE_CASE_ = field(default=_lowercase , metadata={"""help""": """Benchmark models in eager model."""} ) SCREAMING_SNAKE_CASE_ = field( default=_lowercase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" requires_backends(self , ['tf'] ) lowerCamelCase__ : Union[str, Any] =None if self.tpu: try: if self.tpu_name: lowerCamelCase__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCamelCase__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCamelCase__ : Any =None return tpu @cached_property def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCamelCase__ : List[str] =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) lowerCamelCase__ : int =tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU lowerCamelCase__ : Tuple =tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" requires_backends(self , ['tf'] ) return self._setup_strategy @property def UpperCAmelCase__ ( self :int ): """simple docstring""" requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCAmelCase__ ( self :str ): """simple docstring""" return self.n_gpu > 0
126
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[int]=0.999 , snake_case__ : Union[str, Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A = [] for i in range(snake_case__ ): A = i / num_diffusion_timesteps A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase: Optional[Any] = 2 @register_to_config def __init__( self : str ,A_ : int = 1000 ,A_ : float = 0.0_00_85 ,A_ : float = 0.0_12 ,A_ : str = "linear" ,A_ : Optional[Union[np.ndarray, List[float]]] = None ,A_ : str = "epsilon" ,A_ : Optional[bool] = False ,A_ : Optional[bool] = False ,A_ : float = 1.0 ,A_ : str = "linspace" ,A_ : int = 0 ,) -> List[str]: if trained_betas is not None: A = torch.tensor(A_ ,dtype=torch.floataa ) elif beta_schedule == "linear": A = torch.linspace(A_ ,A_ ,A_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,A_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A = betas_for_alpha_bar(A_ ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": A = betas_for_alpha_bar(A_ ,alpha_transform_type='exp' ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) A = 1.0 - self.betas A = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(A_ ,A_ ,A_ ) A = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Tuple=None ) -> Tuple: if schedule_timesteps is None: A = self.timesteps A = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A = 1 if len(A_ ) > 1 else 0 else: A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep A = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : torch.FloatTensor ,A_ : Union[float, torch.FloatTensor] ,) -> torch.FloatTensor: A = self.index_for_timestep(A_ ) A = self.sigmas[step_index] A = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Union[str, torch.device] = None ,A_ : Optional[int] = None ,) -> Optional[Any]: A = num_inference_steps A = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A = np.linspace(0 ,num_train_timesteps - 1 ,A_ ,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(0 ,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(A_ ,0 ,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) A = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A = np.log(A_ ) A = np.interp(A_ ,np.arange(0 ,len(A_ ) ) ,A_ ) if self.config.use_karras_sigmas: A = self._convert_to_karras(in_sigmas=A_ ,num_inference_steps=self.num_inference_steps ) A = np.array([self._sigma_to_t(A_ ,A_ ) for sigma in sigmas] ) A = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A = torch.from_numpy(A_ ).to(device=A_ ) A = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A = torch.from_numpy(A_ ) A = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith('mps' ): # mps does not support float64 A = timesteps.to(A_ ,dtype=torch.floataa ) else: A = timesteps.to(device=A_ ) # empty dt and derivative A = None A = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A = defaultdict(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : List[str] ) -> Dict: # get log sigma A = np.log(A_ ) # get distribution A = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A = low_idx + 1 A = log_sigmas[low_idx] A = log_sigmas[high_idx] # interpolate sigmas A = (low - log_sigma) / (low - high) A = np.clip(A_ ,0 ,1 ) # transform interpolation to time range A = (1 - w) * low_idx + w * high_idx A = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : torch.FloatTensor ,A_ : int ) -> torch.FloatTensor: A = in_sigmas[-1].item() A = in_sigmas[0].item() A = 7.0 # 7.0 is the value used in the paper A = np.linspace(0 ,1 ,A_ ) A = sigma_min ** (1 / rho) A = sigma_max ** (1 / rho) A = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.dt is None def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : Union[float, torch.FloatTensor] ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : bool = True ,) -> Union[SchedulerOutput, Tuple]: A = self.index_for_timestep(A_ ) # advance index counter by 1 A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A = self.sigmas[step_index] A = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A = self.sigmas[step_index - 1] A = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A = 0 A = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A = sigma_hat if self.state_in_first_order else sigma_next A = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A = sigma_hat if self.state_in_first_order else sigma_next A = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: A = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A = sigma_next - sigma_hat # store for 2nd order step A = derivative A = dt A = sample else: # 2. 2nd order / Heun's method A = (sample - pred_original_sample) / sigma_next A = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A = self.dt A = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A = None A = None A = None A = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples A = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 A = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) A = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: A = self.timesteps.to(original_samples.device ) A = timesteps.to(original_samples.device ) A = [self.index_for_timestep(A_ ,A_ ) for t in timesteps] A = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A = sigma.unsqueeze(-1 ) A = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ) -> int: return self.config.num_train_timesteps
74
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __snake_case = """bert-base-cased""" __snake_case = """google/pegasus-xsum""" __snake_case = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] __snake_case = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] __snake_case = """patrickvonplaten/t5-tiny-random""" __snake_case = """sshleifer/bart-tiny-random""" __snake_case = """sshleifer/tiny-mbart""" __snake_case = """sshleifer/tiny-marian-en-de""" def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = '\n'.join(UpperCamelCase_ ) Path(UpperCamelCase_ ).open('w' ).writelines(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase_ , F'{split}.source' ) , UpperCamelCase_ ) _dump_articles(os.path.join(UpperCamelCase_ , F'{split}.target' ) , UpperCamelCase_ ) return tmp_dir class lowercase__ ( _UpperCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A_ ( self : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE__ = max(len(tokenizer.encode(UpperCAmelCase_ ) ) for a in ARTICLES ) SCREAMING_SNAKE_CASE__ = max(len(tokenizer.encode(UpperCAmelCase_ ) ) for a in SUMMARIES ) SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. SCREAMING_SNAKE_CASE__ = SeqaSeqDataset( UpperCAmelCase_ , data_dir=UpperCAmelCase_ , type_path='train' , max_source_length=UpperCAmelCase_ , max_target_length=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCAmelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place SCREAMING_SNAKE_CASE__ = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A_ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE__ = max(len(tokenizer.encode(UpperCAmelCase_ ) ) for a in ARTICLES ) SCREAMING_SNAKE_CASE__ = max(len(tokenizer.encode(UpperCAmelCase_ ) ) for a in SUMMARIES ) SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = LegacySeqaSeqDataset( UpperCAmelCase_ , data_dir=UpperCAmelCase_ , type_path='train' , max_source_length=20 , max_target_length=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCAmelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) SCREAMING_SNAKE_CASE__ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) SCREAMING_SNAKE_CASE__ = tmp_dir.joinpath('train.source' ).open().readlines() SCREAMING_SNAKE_CASE__ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCAmelCase_ , UpperCAmelCase_ , 128 , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {x.name for x in tmp_dir.iterdir()} SCREAMING_SNAKE_CASE__ = {x.name for x in save_dir.iterdir()} SCREAMING_SNAKE_CASE__ = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCAmelCase_ ) < len(UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCAmelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def A_ ( self : List[Any] ): if not FAIRSEQ_AVAILABLE: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_dataset(max_len=64 ) SCREAMING_SNAKE_CASE__ = 64 SCREAMING_SNAKE_CASE__ = ds.make_dynamic_sampler(UpperCAmelCase_ , required_batch_size_multiple=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [len(UpperCAmelCase_ ) for x in batch_sampler] assert len(set(UpperCAmelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) # no dropped or added examples SCREAMING_SNAKE_CASE__ = DataLoader(UpperCAmelCase_ , batch_sampler=UpperCAmelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for batch in data_loader: SCREAMING_SNAKE_CASE__ = batch['input_ids'].shape SCREAMING_SNAKE_CASE__ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple SCREAMING_SNAKE_CASE__ = np.product(batch['input_ids'].shape ) num_src_per_batch.append(UpperCAmelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCAmelCase_ ) assert num_src_per_batch[0] == max(UpperCAmelCase_ ) if failures: raise AssertionError(F'too many tokens in {len(UpperCAmelCase_ )} batches' ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_dataset(max_len=512 ) SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = ds.make_sortish_sampler(UpperCAmelCase_ , shuffle=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict="input_ids" ): return [batch[k].eq(UpperCAmelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCAmelCase_ , k='labels' ) ) < sum(count_pad_tokens(UpperCAmelCase_ , k='labels' ) ) assert sum(count_pad_tokens(UpperCAmelCase_ ) ) < sum(count_pad_tokens(UpperCAmelCase_ ) ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Any=128 ): if os.getenv('USE_REAL_DATA' , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = 'examples/seq2seq/wmt_en_ro' SCREAMING_SNAKE_CASE__ = max_len * 2 * 64 if not Path(UpperCAmelCase_ ).joinpath('train.len' ).exists(): save_len_file(UpperCAmelCase_ , UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = 'examples/seq2seq/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE__ = max_len * 4 save_len_file(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset( UpperCAmelCase_ , data_dir=UpperCAmelCase_ , type_path='train' , max_source_length=UpperCAmelCase_ , max_target_length=UpperCAmelCase_ , n_obs=UpperCAmelCase_ , ) return ds, max_tokens, tokenizer def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._get_dataset() SCREAMING_SNAKE_CASE__ = set(DistributedSortishSampler(UpperCAmelCase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = set(DistributedSortishSampler(UpperCAmelCase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=UpperCAmelCase_ ) ) assert idsa.intersection(UpperCAmelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A_ ( self : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) if tok_name == MBART_TINY: SCREAMING_SNAKE_CASE__ = SeqaSeqDataset( UpperCAmelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) SCREAMING_SNAKE_CASE__ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: SCREAMING_SNAKE_CASE__ = SeqaSeqDataset( UpperCAmelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) SCREAMING_SNAKE_CASE__ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCAmelCase_ ) == 1 if tok_name == BART_TINY else len(UpperCAmelCase_ ) == 0
169
from __future__ import annotations class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = text, pattern SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A_ ( self : Tuple , UpperCAmelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A_ ( self : str ): # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE__ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE__ = self.mismatch_in_text(UpperCAmelCase_ ) if mismatch_index == -1: positions.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = """ABAABA""" __snake_case = """AB""" __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
169
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: return (preds == labels).mean() @dataclass class A__ : lowerCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : lowerCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) lowerCAmelCase__ : str = field(metadata={"help": "Should contain the data files for the task."} ) lowerCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase__ : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) return results def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
325
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[Any] = logging.get_logger() @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = field(default_factory=UpperCAmelCase ) def lowerCamelCase__ ( self : str , A : Any , A : Tensor , A : Tensor ): '''simple docstring''' a : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self : List[Any] , A : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case : __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 1 __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = field(default_factory=UpperCAmelCase ) __magic_name__ = True def __call__( self : List[str] , A : Tensor ): '''simple docstring''' a : Any = Tracker(self.dest )(A ).parametrized a : Any = Tracker(self.src )(A ).parametrized a : Union[str, Any] = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) a : Any = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(A )} operations while''' F''' destination module has {len(A )}.''' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class snake_case ( nn.Module ): def __init__( self : Any , A : nn.Module ): '''simple docstring''' super().__init__() a : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F'''Unexpected layer name {k}''' a : int = len(A ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) a : Union[str, Any] = nn.ModuleDict(A ) def lowerCamelCase__ ( self : List[str] , A : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( A , out_feat_keys=A , feature_blocks=self._feature_blocks , ) class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : List[Any] , A : str ): '''simple docstring''' a : List[Any] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Tuple , A : str ): '''simple docstring''' if x not in self: a : str = self.convert_name_to_timm(A ) a : str = partial(lambda: (timm.create_model(A , pretrained=A ).eval(), None) ) else: a : List[str] = super().__getitem__(A ) return val class snake_case ( UpperCAmelCase ): def __getitem__( self : Optional[int] , A : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: a : List[str] = RegNetModel else: a : Optional[int] = RegNetForImageClassification return val def snake_case (A_ :Union[str, Any] , A_ :Dict , A_ :List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: a : List[Any] = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case (A_ :str , A_ :Callable[[], nn.Module] , A_ :Callable[[], nn.Module] , A_ :RegNetConfig , A_ :Path , A_ :bool = True , ): '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): a, a : int = from_model_func() a : List[str] = our_model_func(A_ ).eval() a : List[Any] = ModuleTransfer(src=A_ , dest=A_ , raise_if_mismatch=A_ ) a : Tuple = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(A_ ) if from_state_dict is not None: a : str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a : List[Any] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] a : Optional[Any] = manually_copy_vissl_head(A_ , our_model.state_dict() , A_ ) our_model.load_state_dict(A_ ) a : Optional[int] = our_model(A_ , output_hidden_states=A_ ) a : List[Any] = ( our_outputs.logits if isinstance(A_ , A_ ) else our_outputs.last_hidden_state ) a : Tuple = from_model(A_ ) a : Dict = from_output[-1] if type(A_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a : List[Any] = our_outputs.hidden_states[-1] assert torch.allclose(A_ , A_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=A_ , ) a : List[str] = 2_2_4 if 'seer' not in name else 3_8_4 # we can use the convnext one a : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=A_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=A_ , ) print(f'''Pushed {name}''' ) def snake_case (A_ :Path , A_ :str = None , A_ :bool = True ): '''simple docstring''' a : Union[str, Any] = 'imagenet-1k-id2label.json' a : Dict = 1_0_0_0 a : int = (1, num_labels) a : str = 'huggingface/label-files' a : Dict = num_labels a : Optional[Any] = json.load(open(cached_download(hf_hub_url(A_ , A_ , repo_type='dataset' ) ) , 'r' ) ) a : Optional[int] = {int(A_ ): v for k, v in idalabel.items()} a : int = idalabel a : List[Any] = {v: k for k, v in idalabel.items()} a : int = partial(A_ , num_labels=A_ , idalabel=A_ , labelaid=A_ ) a : List[str] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } a : Union[str, Any] = NameToOurModelFuncMap() a : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(A_ :str , A_ :Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: a : Tuple = torch.hub.load_state_dict_from_url(A_ , model_dir=str(A_ ) , map_location='cpu' ) a : Dict = model_func() # check if we have a head, if yes add it a : List[str] = files['classy_state_dict']['base_model']['model'] a : int = model_state_dict['trunk'] model.load_state_dict(A_ ) return model.eval(), model_state_dict["heads"] # pretrained a : str = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : List[Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : Any = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a : Union[str, Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned a : int = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : Union[str, Any] = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a : int = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a : Tuple = partial( A_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A_ , A_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A_ , A_ , A_ , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _UpperCamelCase : Dict = parser.parse_args() _UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
186
"""simple docstring""" _UpperCamelCase : List[Any] = 8.31_44_62 # Unit - J mol-1 K-1 def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
186
1
def UpperCamelCase ( __lowerCamelCase : list ): if any(not isinstance(__lowerCamelCase , __lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
59
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = """\ Text data. Second line of data.""" lowerCAmelCase__ = """file""" @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") A__ = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / "cache" A__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Dict: '''simple docstring''' A__ = "custom_cache" A__ = "custom_extracted_dir" A__ = tmp_path / "custom_extracted_path" if default_extracted: A__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path A__ = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = get_from_cache(F'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> int: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
68
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( _a : Optional[int] , _a : Any , _a : List[str] , _a : List[str]=1024 ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = [], [] UpperCAmelCase_ : Optional[int] = list(zip(_a , _a ) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = sorted_examples[0] def is_too_big(_a : Union[str, Any] ): return tok(_a , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase_ : List[str] = new_src + """ """ + src UpperCAmelCase_ : List[Any] = new_tgt + """ """ + tgt if is_too_big(_a ) or is_too_big(_a ): # cant fit, finalize example finished_src.append(_a ) finished_tgt.append(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = src, tgt else: # can fit, keep adding UpperCAmelCase_ , UpperCAmelCase_ : int = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_a ) finished_tgt.append(_a ) return finished_src, finished_tgt def lowerCamelCase_ ( _a : int , _a : Path , _a : Optional[Any] , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = Path(_a ) save_path.mkdir(exist_ok=_a ) for split in ["train"]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' UpperCAmelCase_ : str = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase_ : Any = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase_ , UpperCAmelCase_ : List[str] = pack_examples(_a , _a , _a , _a ) print(F'''packed {split} split from {len(_a )} examples -> {len(_a )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(_a ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(_a ) ) for split in ["val", "test"]: UpperCAmelCase_ , UpperCAmelCase_ : int = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_a , save_path / F'''{split}.source''' ) shutil.copyfile(_a , save_path / F'''{split}.target''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=_a , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=_a , default=128 ) parser.add_argument("""--data_dir""" , type=_a ) parser.add_argument("""--save_path""" , type=_a ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
59
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = ["pixel_values"] def __init__( self: List[str] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: bool = True ,**lowerCamelCase_: List[Any] ,) -> None: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : int = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase_ : Any = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : List[Any] = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : int = do_center_crop UpperCAmelCase_ : Optional[Any] = crop_size UpperCAmelCase_ : List[Any] = do_rescale UpperCAmelCase_ : str = rescale_factor UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[Any] = do_convert_rgb def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Dict ,) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Dict = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[Any] ,) -> np.ndarray: UpperCAmelCase_ : Optional[int] = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[int, float] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> str: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: ImageInput ,lowerCamelCase_: bool = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: float = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: Union[str, Any] ,) -> PIL.Image.Image: UpperCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ ,param_name="""size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : Dict = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : int = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Tuple = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[str] = [convert_to_rgb(lowerCamelCase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : str = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Tuple = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Optional[int] = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[Any] = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] UpperCAmelCase_ : str = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Any = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
59
1
"""simple docstring""" def __A () ->Dict: """simple docstring""" lowerCAmelCase__ :str = 0 for i in range(1 , 1001 ): total += i**i return str(_SCREAMING_SNAKE_CASE )[-10:] if __name__ == "__main__": print(solution())
293
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __A = Lock() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase__ :Any = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase__ :Tuple = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase__ :Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase__ :Optional[int] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :str = [] lowerCAmelCase__ :Optional[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase__ :List[str] = Pipe() lowerCAmelCase__ :List[Any] = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCAmelCase__ :Dict = temp_rs lowerCAmelCase__ :Optional[Any] = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): lowerCAmelCase__ :Union[str, Any] = Pipe() lowerCAmelCase__ :List[str] = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCAmelCase__ :Union[str, Any] = temp_rs lowerCAmelCase__ :Any = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :str = result_pipe[p][0].recv() process_array_[p].join() return arr def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
293
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Dict = BlipImageProcessor() lowerCAmelCase : Optional[Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCAmelCase : Dict = BlipaProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase : Optional[int] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = image_processor(snake_case__ , return_tensors="np" ) lowerCAmelCase : Optional[int] = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Optional[int] = "lower newer" lowerCAmelCase : int = processor(text=snake_case__ ) lowerCAmelCase : int = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : str = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : List[str] = "lower newer" lowerCAmelCase : List[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Dict = processor.batch_decode(snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : int = "lower newer" lowerCAmelCase : List[Any] = self.prepare_image_inputs() lowerCAmelCase : Any = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
351
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' lowerCAmelCase : str = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: lowerCAmelCase , lowerCAmelCase : Any = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
133
0
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): return int((input_a, input_a).count(0 ) != 0 ) def lowercase_ ( ): assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
25
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: list[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(_lowerCamelCase , _lowerCamelCase )] index.sort(key=lambda _lowerCamelCase : ratio[i] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : list[float] = [0] * len(_lowerCamelCase ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE : str = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
112
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowerCamelCase : int = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowerCamelCase : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=1_0_0 , UpperCAmelCase__ : str=" " ): SCREAMING_SNAKE_CASE = text.split(UpperCAmelCase__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ )] def __lowerCamelCase (UpperCAmelCase__ : dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(UpperCAmelCase__ ): titles.append(title if title is not None else "" ) texts.append(UpperCAmelCase__ ) return {"title": titles, "text": texts} def __lowerCamelCase (UpperCAmelCase__ : dict , UpperCAmelCase__ : DPRContextEncoder , UpperCAmelCase__ : DPRContextEncoderTokenizerFast ): SCREAMING_SNAKE_CASE = ctx_tokenizer( documents["title"] , documents["text"] , truncation=UpperCAmelCase__ , padding="longest" , return_tensors="pt" )["input_ids"] SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCamelCase (UpperCAmelCase__ : "RagExampleArguments" , UpperCAmelCase__ : "ProcessingArguments" , UpperCAmelCase__ : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE = dataset.map(UpperCAmelCase__ , batched=UpperCAmelCase__ , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE = dataset.map( partial(UpperCAmelCase__ , ctx_encoder=UpperCAmelCase__ , ctx_tokenizer=UpperCAmelCase__ ) , batched=UpperCAmelCase__ , batch_size=processing_args.batch_size , features=UpperCAmelCase__ , ) # And finally save your dataset SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(UpperCAmelCase__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=UpperCAmelCase__ ) # And save the index SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(UpperCAmelCase__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowercase : lowercase__ : str = field( default=str(Path(a ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) lowercase__ : Optional[str] = field( default=a , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) lowercase__ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) lowercase__ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) lowercase__ : Optional[str] = field( default=str(Path(a ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class lowercase : lowercase__ : Optional[int] = field( default=a , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) lowercase__ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class lowercase : lowercase__ : int = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) lowercase__ : int = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowerCamelCase : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowerCamelCase : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
206
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): try: with open(UpperCAmelCase__ , "rb" ) as flax_state_f: SCREAMING_SNAKE_CASE = from_bytes(UpperCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase__ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase__ : x.dtype == jnp.bfloataa , UpperCAmelCase__ ) ).values() if any(UpperCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) SCREAMING_SNAKE_CASE = jax.tree_util.tree_map( lambda UpperCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = flatten_dict(UpperCAmelCase__ , sep="." ) SCREAMING_SNAKE_CASE = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = jnp.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) SCREAMING_SNAKE_CASE = ".".join(UpperCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ) # remove from missing keys missing_keys.remove(UpperCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase__ ) pt_model.load_state_dict(UpperCAmelCase__ ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(UpperCAmelCase__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
206
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_encoder_blocks' ) ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=64 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=[2, 2, 2, 2] , lowerCAmelCase=[8, 4, 2, 1] , lowerCAmelCase=[16, 32, 64, 1_28] , lowerCAmelCase=[1, 4, 8, 16] , lowerCAmelCase=[1, 2, 4, 8] , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = image_size snake_case = num_channels snake_case = num_encoder_blocks snake_case = sr_ratios snake_case = depths snake_case = hidden_sizes snake_case = downsampling_rates snake_case = num_attention_heads snake_case = is_training snake_case = use_labels snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = num_labels snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = SegformerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase ) snake_case = snake_case = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = SegformerForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = 1 snake_case = SegformerForSemanticSegmentation(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase ) snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case = config_and_inputs snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Tuple = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowerCAmelCase : Any = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Dict = False def snake_case ( self ): """simple docstring""" snake_case = SegformerModelTester(self ) snake_case = SegformerConfigTester(self , config_class=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase ) @unittest.skip('SegFormer does not use inputs_embeds' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(lowerCAmelCase ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True for model_class in self.all_model_classes: snake_case = True snake_case = False snake_case = True snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) snake_case = outputs.attentions snake_case = sum(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case = True snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first attentions (first block, first layer) snake_case = (self.model_tester.image_size // 4) ** 2 snake_case = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case = (self.model_tester.image_size // 32) ** 2 snake_case = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case = len(lowerCAmelCase ) # Check attention is always last and order is fine snake_case = True snake_case = True snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase ) ) snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first attentions (first block, first layer) snake_case = (self.model_tester.image_size // 4) ** 2 snake_case = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) snake_case = outputs.hidden_states snake_case = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" if not self.model_tester.is_training: return snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase ): continue snake_case = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() snake_case = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) snake_case = model(**lowerCAmelCase ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = SegformerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCAmelCase__ ( ) -> str: """simple docstring""" snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase , align=lowerCAmelCase , do_random_crop=lowerCAmelCase ) snake_case = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCAmelCase ) snake_case = prepare_img() snake_case = image_processor(images=lowerCAmelCase , return_tensors='pt' ) snake_case = encoded_inputs.pixel_values.to(lowerCAmelCase ) with torch.no_grad(): snake_case = model(lowerCAmelCase ) snake_case = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) snake_case = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase , align=lowerCAmelCase , do_random_crop=lowerCAmelCase ) snake_case = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(lowerCAmelCase ) snake_case = prepare_img() snake_case = image_processor(images=lowerCAmelCase , return_tensors='pt' ) snake_case = encoded_inputs.pixel_values.to(lowerCAmelCase ) with torch.no_grad(): snake_case = model(lowerCAmelCase ) snake_case = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) snake_case = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase , atol=1E-1 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowerCAmelCase , align=lowerCAmelCase , do_random_crop=lowerCAmelCase ) snake_case = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCAmelCase ) snake_case = prepare_img() snake_case = image_processor(images=lowerCAmelCase , return_tensors='pt' ) snake_case = encoded_inputs.pixel_values.to(lowerCAmelCase ) with torch.no_grad(): snake_case = model(lowerCAmelCase ) snake_case = outputs.logits.detach().cpu() snake_case = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase , target_sizes=[(5_00, 3_00)] ) snake_case = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase ) snake_case = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) snake_case = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase )
150
"""simple docstring""" from __future__ import annotations from cmath import sqrt def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) snake_case = b * b - 4 * a * c snake_case = (-b + sqrt(_UpperCamelCase )) / (2 * a) snake_case = (-b - sqrt(_UpperCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case ,snake_case = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
150
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__( self : int, a_ : Optional[int], a_ : Optional[Any]=13, a_ : Any=32, a_ : int=3, a_ : Dict=4, a_ : Optional[int]=[10, 20, 30, 40], a_ : Any=[2, 2, 3, 2], a_ : Optional[Any]=True, a_ : Dict=True, a_ : Optional[int]=37, a_ : List[Any]="gelu", a_ : Optional[int]=10, a_ : Dict=0.02, a_ : Dict=["stage2", "stage3", "stage4"], a_ : str=[2, 3, 4], a_ : Any=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = num_stages UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = initializer_range UpperCamelCase__ = out_features UpperCamelCase__ = out_indices UpperCamelCase__ = scope def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase_ ( self : Optional[Any], a_ : List[str], a_ : Any, a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = ConvNextModel(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase_ ( self : Tuple, a_ : Any, a_ : Optional[Any], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = ConvNextForImageClassification(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int], a_ : Optional[int], a_ : Tuple, a_ : str ): """simple docstring""" UpperCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase__ = None UpperCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase : str = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = ConvNextModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def lowercase_ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : str ): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowercase_ ( self : List[Any] ): """simple docstring""" pass def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(a_ : Any, a_ : int, a_ : List[Any] ): UpperCamelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(a_, a_ ) ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def lowercase_ ( self : int ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = ConvNextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : List[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(a_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=a_, return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**a_ ) # verify the logits UpperCamelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, a_ ) UpperCamelCase__ = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1e-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase : str = ConvNextConfig _lowerCamelCase : Optional[Any] = False def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = ConvNextModelTester(self )
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = analyze_text(__SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowercase__ : Any = sum(single_char_strings.values() ) # one length string lowercase__ : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase__ : List[str] = single_char_strings[ch] lowercase__ : str = my_str / all_sum my_fir_sum += prob * math.loga(__SCREAMING_SNAKE_CASE ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowercase__ : str = sum(two_char_strings.values() ) lowercase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase__ : List[Any] = cha + cha if sequence in two_char_strings: lowercase__ : Any = two_char_strings[sequence] lowercase__ : int = int(__SCREAMING_SNAKE_CASE ) / all_sum my_sec_sum += prob * math.loga(__SCREAMING_SNAKE_CASE ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : str = Counter() # type: ignore lowercase__ : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a_ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
77
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): return None class A_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): return None class A_ ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'tf' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , 'pt' , 12 , **snake_case ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(snake_case ) ) vocab_file.flush() lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , 'pt' , 12 , snake_case ) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'tf' , 12 , **snake_case ) lowercase = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase = self._test_export(snake_case , 'pt' , 12 , **snake_case ) lowercase = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ): try: # Compute path with TemporaryDirectory() as tempdir: lowercase = Path(snake_case ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import BertModel lowercase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'pt' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self ): from transformers import TFBertModel lowercase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case , snake_case , 'tf' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = FeatureExtractionPipeline(snake_case , snake_case ) lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase , lowercase , lowercase , lowercase = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase , lowercase = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
195
0
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase : Tuple = _symbol_database.Default() lowerCAmelCase : int = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowerCAmelCase : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase : List[Any] = 45 lowerCAmelCase : List[str] = 1581 lowerCAmelCase : List[str] = 1517 lowerCAmelCase : List[Any] = 1570 lowerCAmelCase : List[str] = 1584 lowerCAmelCase : Tuple = 1793 lowerCAmelCase : Union[str, Any] = 1795 lowerCAmelCase : Tuple = 1916 lowerCAmelCase : Tuple = 1864 lowerCAmelCase : Any = 1905 lowerCAmelCase : int = 1919 lowerCAmelCase : Union[str, Any] = 2429 lowerCAmelCase : List[Any] = 2208 lowerCAmelCase : Tuple = 2418 lowerCAmelCase : str = 2323 lowerCAmelCase : List[str] = 2407 # @@protoc_insertion_point(module_scope)
362
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "M-CLIP" def __init__( self , _a=1_024 , _a=768 , **_a ): """simple docstring""" lowerCamelCase = transformerDimSize lowerCamelCase = imageDimSize super().__init__(**_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = MCLIPConfig def __init__( self , _a , *_a , **_a ): """simple docstring""" super().__init__(_a , *_a , **_a ) lowerCamelCase = XLMRobertaModel(_a ) lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = self.transformer(input_ids=_a , attention_mask=_a )[0] lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_a ), embs
168
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase_ = field( default=_a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase_ = field( default=_a , metadata={"""help""": """The column name of the images in the files."""} ) lowerCAmelCase_ = field(default=_a , metadata={"""help""": """A folder containing the training data."""} ) lowerCAmelCase_ = field(default=_a , metadata={"""help""": """A folder containing the validation data."""} ) lowerCAmelCase_ = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCAmelCase_ = field( default=_a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ = field( default=_a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {} if self.train_dir is not None: lowerCamelCase__ = self.train_dir if self.validation_dir is not None: lowerCamelCase__ = self.validation_dir lowerCamelCase__ = data_files if data_files else None @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field( default=_a , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowerCAmelCase_ = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowerCAmelCase_ = field( default=_a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowerCAmelCase_ = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCAmelCase_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase_ = field(default=_a , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase_ = field( default=_a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase_ = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowerCAmelCase_ = field( default=_a , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class __A ( _a ): '''simple docstring''' lowerCAmelCase_ = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase__() -> Dict: '''simple docstring''' lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' ,lowerCamelCase_ ,lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowerCamelCase__ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,lowerCamelCase_ ) and data_args.train_val_split > 0.0: lowerCamelCase__ = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ = split['train'] lowerCamelCase__ = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.config_name ,**lowerCamelCase_ ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path ,**lowerCamelCase_ ) else: lowerCamelCase__ = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name ,**lowerCamelCase_ ) elif model_args.model_name_or_path: lowerCamelCase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path ,**lowerCamelCase_ ) else: lowerCamelCase__ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCamelCase_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info('''Training new model from scratch''' ) lowerCamelCase__ = ViTMAEForPreTraining(lowerCamelCase_ ) if training_args.do_train: lowerCamelCase__ = ds['train'].column_names else: lowerCamelCase__ = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase__ = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ = 'image' elif "img" in column_names: lowerCamelCase__ = 'img' else: lowerCamelCase__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ = image_processor.size['shortest_edge'] else: lowerCamelCase__ = (image_processor.size['height'], image_processor.size['width']) lowerCamelCase__ = Compose( [ Lambda(lambda __snake_case : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCamelCase_ ,scale=(0.2, 1.0) ,interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ), ] ) def preprocess_images(__snake_case ): lowerCamelCase__ = [transforms(lowerCamelCase_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowerCamelCase__ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowerCamelCase__ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase_ ) # Compute absolute learning rate lowerCamelCase__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ = Trainer( model=lowerCamelCase_ ,args=lowerCamelCase_ ,train_dataset=ds['''train'''] if training_args.do_train else None ,eval_dataset=ds['''validation'''] if training_args.do_eval else None ,tokenizer=lowerCamelCase_ ,data_collator=lowerCamelCase_ ,) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' ,train_result.metrics ) trainer.save_metrics('''train''' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics('''eval''' ,lowerCamelCase_ ) trainer.save_metrics('''eval''' ,lowerCamelCase_ ) # Write model card and (optionally) push to hub lowerCamelCase__ = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
209
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
0
from __future__ import annotations from collections.abc import Generator def _lowercase ( ) -> Generator[int, None, None]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 2 while True: SCREAMING_SNAKE_CASE__ = factor_map.pop(UpperCamelCase_ , UpperCamelCase_ ) if factor: SCREAMING_SNAKE_CASE__ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE__ = factor else: SCREAMING_SNAKE_CASE__ = prime yield prime prime += 1 def _lowercase ( UpperCamelCase_ = 1e10 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = sieve() SCREAMING_SNAKE_CASE__ = 1 while True: SCREAMING_SNAKE_CASE__ = next(UpperCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
169
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split('/' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCamelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __snake_case = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _snake_case : Tuple = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case : int = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __snake_case : str = "" else: __snake_case : Tuple = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __snake_case : Any = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : List[str] = in_proj_weight[ : config.hidden_size, : ] __snake_case : str = in_proj_bias[: config.hidden_size] __snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Dict = in_proj_weight[ -config.hidden_size :, : ] __snake_case : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = dct.pop(__lowerCamelCase ) __snake_case : Union[str, Any] = val def lowerCAmelCase_ ( ): __snake_case : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): __snake_case : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=__lowerCamelCase , ) __snake_case : Union[str, Any] = ViTHybridConfig(backbone_config=__lowerCamelCase , image_size=3_8_4 , num_labels=1_0_0_0 ) __snake_case : str = False # load original model from timm __snake_case : Optional[Any] = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __snake_case : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCamelCase ) __snake_case : int = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Any = "huggingface/label-files" __snake_case : List[str] = "imagenet-1k-id2label.json" __snake_case : List[str] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : List[str] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Dict = idalabel __snake_case : List[str] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __snake_case : int = ViTHybridModel(__lowerCamelCase ).eval() else: __snake_case : Optional[int] = ViTHybridForImageClassification(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # create image processor __snake_case : str = create_transform(**resolve_data_config({} , model=__lowerCamelCase ) ) __snake_case : Any = transform.transforms __snake_case : Dict = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __snake_case : List[str] = ViTHybridImageProcessor( do_resize=__lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=__lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __snake_case : Dict = prepare_img() __snake_case : Tuple = transform(__lowerCamelCase ).unsqueeze(0 ) __snake_case : Tuple = processor(__lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__lowerCamelCase , __lowerCamelCase ) # verify logits with torch.no_grad(): __snake_case : int = model(__lowerCamelCase ) __snake_case : int = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: __snake_case : str = timm_model.forward_features(__lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: __snake_case : Any = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) _snake_case : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
123
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _snake_case : str = logging.get_logger(__name__) # pylint: disable=invalid-name class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , ) -> Dict: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def __snake_case ( self : str ) -> List[str]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , lowerCamelCase : Optional[torch.FloatTensor] = None , **lowerCamelCase : Any , ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Tuple = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCamelCase )}.' ) # get prompt text embeddings __snake_case : Tuple = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __snake_case : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : int = text_embeddings.shape __snake_case : Any = text_embeddings.repeat(1 , lowerCamelCase , 1 ) __snake_case : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : Tuple = negative_prompt __snake_case : str = text_input_ids.shape[-1] __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) __snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Tuple = uncond_embeddings.shape[1] __snake_case : Any = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __snake_case : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: __snake_case : Union[str, Any] = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __snake_case : int = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __snake_case : Union[str, Any] = latents_reference.to(self.device ) __snake_case : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __snake_case : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 __snake_case : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 __snake_case : str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __snake_case : List[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __snake_case : Tuple = 0 if dx < 0 else dx __snake_case : Union[str, Any] = 0 if dy < 0 else dy __snake_case : Any = max(-dx , 0 ) __snake_case : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() __snake_case : List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : Optional[Any] = {} if accepts_eta: __snake_case : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : List[Any] = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __snake_case : str = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = 1 / 0.1_82_15 * latents __snake_case : Dict = self.vae.decode(lowerCamelCase ).sample __snake_case : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __snake_case : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) __snake_case , __snake_case : str = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __snake_case : Dict = None if output_type == "pil": __snake_case : Any = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
123
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] , __UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , **__UpperCAmelCase : str , ) ->Any: """simple docstring""" super().__init__(features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , **__UpperCAmelCase ) a = Sql( cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , sql=__UpperCAmelCase , con=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , ) # Build dataset for splits a = self.builder.as_dataset( split='''train''' , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Dataset , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Any , ) ->str: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) a = dataset a = name a = con a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a = num_proc a = to_sql_kwargs def __lowerCAmelCase ( self : Optional[Any] ) ->int: """simple docstring""" a = self.to_sql_kwargs.pop('''sql''' , __UpperCAmelCase ) a = self.to_sql_kwargs.pop('''con''' , __UpperCAmelCase ) a = self.to_sql_kwargs.pop('''index''' , __UpperCAmelCase ) a = self._write(index=__UpperCAmelCase , **self.to_sql_kwargs ) return written def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple ) ->List[Any]: """simple docstring""" a , a , a = args a = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs a = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) a = batch.to_pandas() a = df.to_sql(self.name , self.con , index=__UpperCAmelCase , **__UpperCAmelCase ) return num_rows or len(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->int: """simple docstring""" a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a , a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = args.log_outputs _lowerCAmelCase = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric _lowerCAmelCase = load_metric("""wer""" ) _lowerCAmelCase = load_metric("""cer""" ) # compute metrics _lowerCAmelCase = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) _lowerCAmelCase = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results _lowerCAmelCase = F'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(F'{dataset_id}_eval_results.txt' , """w""" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _lowerCAmelCase = F'log_{dataset_id}_predictions.txt' _lowerCAmelCase = F'log_{dataset_id}_targets.txt' with open(snake_case , """w""" ) as p, open(snake_case , """w""" ) as t: # mapping function to write output def write_to_file(snake_case , snake_case ): p.write(F'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case , with_indices=snake_case ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _lowerCAmelCase = re.sub(snake_case , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _lowerCAmelCase = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: _lowerCAmelCase = """ """.join(text.split(snake_case ) ) return text def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _lowerCAmelCase = AutoFeatureExtractor.from_pretrained(args.model_id ) _lowerCAmelCase = feature_extractor.sampling_rate # resample audio _lowerCAmelCase = dataset.cast_column("""audio""" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: _lowerCAmelCase = 0 if torch.cuda.is_available() else -1 _lowerCAmelCase = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case ): _lowerCAmelCase = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _lowerCAmelCase = prediction["""text"""] _lowerCAmelCase = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples _lowerCAmelCase = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) A__ = parser.parse_args() main(args)
82
from __future__ import annotations import math def _UpperCAmelCase ( snake_case ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) _lowerCAmelCase = [n] for i in range(1 , len(snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCAmelCase ( snake_case ): """simple docstring""" if len(str(snake_case ) ) > 3: if not is_prime(int(str(snake_case )[-3:] ) ) or not is_prime(int(str(snake_case )[:3] ) ): return False return True def _UpperCAmelCase ( snake_case = 11 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 13 while len(snake_case ) != count: if validate(snake_case ): _lowerCAmelCase = list_truncated_nums(snake_case ) if all(is_prime(snake_case ) for i in list_nums ): list_truncated_primes.append(snake_case ) num += 2 return list_truncated_primes def _UpperCAmelCase ( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
82
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=7_68 ) -> Union[str, Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = proj_size __SCREAMING_SNAKE_CASE :int = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = PaintByExampleMapper(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = nn.LayerNorm(config.hidden_size ) __SCREAMING_SNAKE_CASE :str = nn.Linear(config.hidden_size ,self.proj_size ) # uncondition for scaling __SCREAMING_SNAKE_CASE :Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.model(pixel_values=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = clip_output.pooler_output __SCREAMING_SNAKE_CASE :Union[str, Any] = self.mapper(latent_states[:, None] ) __SCREAMING_SNAKE_CASE :List[Any] = self.final_layer_norm(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.proj_out(SCREAMING_SNAKE_CASE__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _SCREAMING_SNAKE_CASE( nn.Module ): def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE :Tuple = (config.num_hidden_layers + 1) // 5 __SCREAMING_SNAKE_CASE :Tuple = config.hidden_size __SCREAMING_SNAKE_CASE :Tuple = 1 __SCREAMING_SNAKE_CASE :Optional[int] = nn.ModuleList( [ BasicTransformerBlock(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,activation_fn='''gelu''' ,attention_bias=SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) ] ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" for block in self.blocks: __SCREAMING_SNAKE_CASE :Tuple = block(SCREAMING_SNAKE_CASE__ ) return hidden_states
239
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @require_torch def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = pipeline( task='''zero-shot-audio-classification''' ,model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) __SCREAMING_SNAKE_CASE :Any = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE :int = dataset['''train''']['''audio'''][-1]['''array'''] __SCREAMING_SNAKE_CASE :Dict = audio_classifier(SCREAMING_SNAKE_CASE__ ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] ,) @unittest.skip('''No models are available in TF''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @slow @require_torch def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = pipeline( task='''zero-shot-audio-classification''' ,model='''laion/clap-htsat-unfused''' ,) # This is an audio of a dog __SCREAMING_SNAKE_CASE :List[Any] = load_dataset('''ashraq/esc50''' ) __SCREAMING_SNAKE_CASE :Tuple = dataset['''train''']['''audio'''][-1]['''array'''] __SCREAMING_SNAKE_CASE :str = audio_classifier(SCREAMING_SNAKE_CASE__ ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] ,) __SCREAMING_SNAKE_CASE :Dict = audio_classifier([audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) __SCREAMING_SNAKE_CASE :Union[str, Any] = audio_classifier( [audio] * 5 ,candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ,batch_size=5 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) ,[ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 ,) @unittest.skip('''No models are available in TF''' ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass
239
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['YolosFeatureExtractor'] UpperCamelCase_ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Tuple: a_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") a_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(__UpperCAmelCase) from datasets import load_dataset a_ = load_dataset("nielsr/rvlcdip-demo") a_ = dataset["train"][0]["image"].convert("RGB") a_ = image_processor(__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.logits a_ = torch.Size((1, 16)) self.assertEqual(logits.shape , __UpperCAmelCase) a_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4))
243
1
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if n_term == "": return [] lowerCamelCase_ = [] for temp in range(int(lowercase ) ): series.append(f"""1/{temp + 1}""" if series else '1' ) return series if __name__ == "__main__": lowerCamelCase : int = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
208
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCamelCase : Any = 10 def a_ ( __lowercase : int , __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> int: for i in range(__lowercase , __lowercase ): if array[i] == target: return i return -1 def a_ ( __lowercase : list[int] , __lowercase : int ) -> int: _snake_case = 0 _snake_case = len(__lowercase ) while left <= right: if right - left < precision: return lin_search(__lowercase , __lowercase , __lowercase , __lowercase ) _snake_case = (left + right) // 3 + 1 _snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _snake_case = one_third - 1 elif array[two_third] < target: _snake_case = two_third + 1 else: _snake_case = one_third + 1 _snake_case = two_third - 1 else: return -1 def a_ ( __lowercase : int , __lowercase : int , __lowercase : list[int] , __lowercase : int ) -> int: if left < right: if right - left < precision: return lin_search(__lowercase , __lowercase , __lowercase , __lowercase ) _snake_case = (left + right) // 3 + 1 _snake_case = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowercase , one_third - 1 , __lowercase , __lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowercase , __lowercase , __lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowercase , __lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : List[Any] = input('''Enter numbers separated by comma:\n''').strip() _lowerCamelCase : str = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowerCamelCase : Union[str, Any] = int(input('''Enter the number to be found in the list:\n''').strip()) _lowerCamelCase : Tuple = ite_ternary_search(collection, target) _lowerCamelCase : List[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
282
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
1
import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if ( not isinstance(__lowerCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if ( not isinstance(__lowerCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
350
from bisect import bisect from itertools import accumulate def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE ) A_ , A_ : str = [i[0] for i in r], [i[1] for i in r] A_ : Tuple = list(accumulate(SCREAMING_SNAKE_CASE ) ) A_ : Optional[int] = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
65
0
import argparse from collections import defaultdict import yaml a_ = """docs/source/en/_toctree.yml""" def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = defaultdict(_UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 __lowerCamelCase = [key for key, value in counts.items() if value > 1] __lowerCamelCase = [] for duplicate_key in duplicates: __lowerCamelCase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_UpperCamelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_UpperCamelCase ,key=lambda _UpperCamelCase : s["title"].lower() ) def a__ ( _UpperCamelCase : Any=False ): with open(_UpperCamelCase ,encoding='''utf-8''' ) as f: __lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase = content[api_idx]['''sections'''] # Then to the model doc __lowerCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __lowerCamelCase = api_doc[model_idx]['''sections'''] __lowerCamelCase = [(idx, section) for idx, section in enumerate(_UpperCamelCase ) if '''sections''' in section] __lowerCamelCase = False for idx, modality_doc in modalities_docs: __lowerCamelCase = modality_doc['''sections'''] __lowerCamelCase = clean_model_doc_toc(_UpperCamelCase ) if old_modality_doc != new_modality_doc: __lowerCamelCase = True if overwrite: __lowerCamelCase = new_modality_doc if diff: if overwrite: __lowerCamelCase = model_doc __lowerCamelCase = api_doc with open(_UpperCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(yaml.dump(_UpperCamelCase ,allow_unicode=_UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
330
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_:Optional[int] = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:str = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE_:Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
from jiwer import compute_measures import datasets SCREAMING_SNAKE_CASE_:str = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ SCREAMING_SNAKE_CASE_:Union[str, Any] = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ SCREAMING_SNAKE_CASE_:List[Any] = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Value("""string""", id="""sequence""" ), """references""": datasets.Value("""string""", id="""sequence""" ), } ), codebase_urls=["""https://github.com/jitsi/jiwer/"""], reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ], ) def _lowerCAmelCase ( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=False ): if concatenate_texts: return compute_measures(lowerCamelCase__, lowerCamelCase__ )["wer"] else: A : str = 0 A : int = 0 for prediction, reference in zip(lowerCamelCase__, lowerCamelCase__ ): A : Tuple = compute_measures(lowerCamelCase__, lowerCamelCase__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
115
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCAmelCase = datasets.utils.logging.get_logger(__name__) UpperCAmelCase = ['''names''', '''prefix'''] UpperCAmelCase = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] UpperCAmelCase = ['''encoding_errors''', '''on_bad_lines'''] UpperCAmelCase = ['''date_format'''] @dataclass class lowerCAmelCase ( datasets.BuilderConfig ): lowerCAmelCase_ = "," lowerCAmelCase_ = None lowerCAmelCase_ = "infer" lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = "." lowerCAmelCase_ = None lowerCAmelCase_ = '"' lowerCAmelCase_ = 0 lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = 0 lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = None lowerCAmelCase_ = 1_0_0_0_0 lowerCAmelCase_ = None lowerCAmelCase_ = "strict" lowerCAmelCase_ = "error" lowerCAmelCase_ = None def snake_case ( self : Tuple ): """simple docstring""" if self.delimiter is not None: __lowercase =self.delimiter if self.column_names is not None: __lowercase =self.column_names @property def snake_case ( self : str ): """simple docstring""" __lowercase ={ 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowercase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCAmelCase ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ = CsvConfig def snake_case ( self : List[Any] ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self : int , __lowercase : int ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __lowercase =dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): __lowercase =data_files if isinstance(__lowercase , __lowercase ): __lowercase =[files] __lowercase =[dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __lowercase =[] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): __lowercase =[files] __lowercase =[dl_manager.iter_files(__lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={'files': files} ) ) return splits def snake_case ( self : str , __lowercase : pa.Table ): """simple docstring""" if self.config.features is not None: __lowercase =self.config.features.arrow_schema if all(not require_storage_cast(__lowercase ) for feature in self.config.features.values() ): # cheaper cast __lowercase =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowercase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __lowercase =table_cast(__lowercase , __lowercase ) return pa_table def snake_case ( self : Optional[Any] , __lowercase : Dict ): """simple docstring""" __lowercase =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __lowercase =( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowercase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): __lowercase =pd.read_csv(__lowercase , iterator=__lowercase , dtype=__lowercase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowercase ): __lowercase =pa.Table.from_pandas(__lowercase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowercase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowercase )}: {e}''' ) raise
141
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( A ): lowerCAmelCase_ = "data2vec-audio" def __init__( self : Tuple , __lowercase : Optional[int]=32 , __lowercase : List[str]=768 , __lowercase : List[str]=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Any="gelu" , __lowercase : Dict=0.1 , __lowercase : Any=0.1 , __lowercase : Tuple=0.1 , __lowercase : List[str]=0.0 , __lowercase : List[Any]=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=0.0_2 , __lowercase : Dict=1E-5 , __lowercase : Any="gelu" , __lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , __lowercase : str=(5, 2, 2, 2, 2, 2, 2) , __lowercase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase : Dict=False , __lowercase : int=16 , __lowercase : Any=19 , __lowercase : Tuple=5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Optional[int]=10 , __lowercase : int=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Tuple=10 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[int]="sum" , __lowercase : str=False , __lowercase : Union[str, Any]=False , __lowercase : Any=256 , __lowercase : str=(512, 512, 512, 512, 1500) , __lowercase : Union[str, Any]=(5, 3, 3, 1, 1) , __lowercase : List[Any]=(1, 2, 3, 1, 1) , __lowercase : Any=512 , __lowercase : int=0 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[int]=2 , __lowercase : Any=False , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=2 , __lowercase : Any=3 , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase =hidden_size __lowercase =feat_extract_activation __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =conv_bias __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =conv_pos_kernel_size __lowercase =len(self.conv_dim ) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =vocab_size __lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length __lowercase =mask_feature_min_masks # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =xvector_output_dim @property def snake_case ( self : Optional[Any] ): """simple docstring""" return math.prod(self.conv_stride )
141
1
"""simple docstring""" import numpy as np def _lowerCAmelCase ( UpperCAmelCase : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _lowerCAmelCase ( UpperCAmelCase : np.ndarray ): '''simple docstring''' return vector * sigmoid(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
157
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase : bool , UpperCAmelCase : bool ): '''simple docstring''' def run_func(UpperCAmelCase : List[str] ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Tuple ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): '''simple docstring''' UpperCamelCase__ : Tuple =random.Random() UpperCamelCase__ : List[str] =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = "TensorFlow" @property def _lowerCAmelCase ( self : int ): return tf.__version__ def _lowerCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process UpperCamelCase__ : Optional[int] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : str =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_inference ) def _lowerCAmelCase ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : int =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_speed(_train ) def _lowerCAmelCase ( self : Any , lowercase_ : str , lowercase_ : int , lowercase_ : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : Optional[Any] =self._prepare_inference_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_inference ) def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase_ ) UpperCamelCase__ : Tuple =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCamelCase__ : List[Any] =self._prepare_train_func(lowercase_ , lowercase_ , lowercase_ ) return self._measure_memory(_train ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Dict =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Dict ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[str] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Optional[int] =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Any =TF_MODEL_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : Optional[int] =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : List[Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase_ , decoder_input_ids=lowercase_ , training=lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase_ , training=lowercase_ ) UpperCamelCase__ : Dict =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : int ): UpperCamelCase__ : List[str] =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCamelCase__ : Optional[Any] =( hasattr(lowercase_ , '''architectures''' ) and isinstance(config.architectures , lowercase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ : Tuple ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ : List[Any] =__import__('''transformers''' , fromlist=[model_class] ) UpperCamelCase__ : Dict =getattr(lowercase_ , lowercase_ ) UpperCamelCase__ : Tuple =model_cls(lowercase_ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCamelCase__ : Optional[int] =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase_ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ : str =config.vocab_size if hasattr(lowercase_ , '''vocab_size''' ) else config.encoder.vocab_size UpperCamelCase__ : Union[str, Any] =random_input_ids(lowercase_ , lowercase_ , lowercase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase__ : Optional[Any] =model(lowercase_ , decoder_input_ids=lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : Dict =tf.gradients(lowercase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase__ : Dict =model(lowercase_ , labels=lowercase_ , training=lowercase_ )[0] UpperCamelCase__ : List[str] =tf.gradients(lowercase_ , model.trainable_variables ) return gradients UpperCamelCase__ : List[Any] =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase__ : int =timeit.repeat( lowercase_ , repeat=self.args.repeat , number=10 , ) return min(lowercase_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCAmelCase ( self : Dict , lowercase_ : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) UpperCamelCase__ : Tuple =start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) UpperCamelCase__ : List[str] ='''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() UpperCamelCase__ : Optional[Any] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase__ : Dict =nvml.nvmlDeviceGetMemoryInfo(lowercase_ ) UpperCamelCase__ : str =meminfo.used UpperCamelCase__ : int =Memory(lowercase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) UpperCamelCase__ : Union[str, Any] =None else: UpperCamelCase__ : Optional[int] =measure_peak_memory_cpu(lowercase_ ) UpperCamelCase__ : Dict =Memory(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase__ : Tuple =stop_memory_tracing(lowercase_ ) if memory is None: UpperCamelCase__ : List[Any] =summary.total else: UpperCamelCase__ : List[Any] =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''time_series_transformer''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Any , _A : Optional[int] = None , _A : Optional[int] = None , _A : str = "student_t" , _A : str = "nll" , _A : int = 1 , _A : List[int] = [1, 2, 3, 4, 5, 6, 7] , _A : Optional[Union[str, bool]] = "mean" , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : Optional[List[int]] = None , _A : Optional[List[int]] = None , _A : int = 32 , _A : int = 32 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : bool = True , _A : str = "gelu" , _A : int = 64 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : int = 100 , _A : float = 0.02 , _A : Optional[int]=True , **_A : Optional[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = prediction_length __SCREAMING_SNAKE_CASE : List[Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = distribution_output __SCREAMING_SNAKE_CASE : Optional[Any] = loss __SCREAMING_SNAKE_CASE : int = input_size __SCREAMING_SNAKE_CASE : int = num_time_features __SCREAMING_SNAKE_CASE : Optional[int] = lags_sequence __SCREAMING_SNAKE_CASE : List[str] = scaling __SCREAMING_SNAKE_CASE : List[Any] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cardinality else: __SCREAMING_SNAKE_CASE : int = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Dict = embedding_dimension else: __SCREAMING_SNAKE_CASE : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : Union[str, Any] = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : Dict = input_size * len(_A ) + self._number_of_features __SCREAMING_SNAKE_CASE : Dict = d_model __SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Dict = encoder_layers __SCREAMING_SNAKE_CASE : Any = decoder_layers __SCREAMING_SNAKE_CASE : Any = dropout __SCREAMING_SNAKE_CASE : Any = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : Dict = encoder_layerdrop __SCREAMING_SNAKE_CASE : Any = decoder_layerdrop __SCREAMING_SNAKE_CASE : Any = activation_function __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Dict = use_cache super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : int = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase_ ( a_ ): _A : Dict = 'yolos' def __init__( self , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=[5_12, 8_64] , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=1_00 , snake_case__=True , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , **snake_case__ , ) -> Dict: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = num_detection_tokens UpperCAmelCase = use_mid_position_embeddings UpperCAmelCase = auxiliary_loss # Hungarian matcher UpperCAmelCase = class_cost UpperCAmelCase = bbox_cost UpperCAmelCase = giou_cost # Loss coefficients UpperCAmelCase = bbox_loss_coefficient UpperCAmelCase = giou_loss_coefficient UpperCAmelCase = eos_coefficient class UpperCamelCase_ ( a_ ): _A : Any = version.parse('1.11' ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase_ ( self ) -> float: """simple docstring""" return 1e-4 @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return 12
248
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = [n] for i in range(1 , len(lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if len(str(lowerCAmelCase ) ) > 3: if not is_prime(int(str(lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase )[:3] ) ): return False return True def _lowerCAmelCase ( lowerCAmelCase = 11 ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 13 while len(lowerCAmelCase ) != count: if validate(lowerCAmelCase ): UpperCAmelCase = list_truncated_nums(lowerCAmelCase ) if all(is_prime(lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(1_1)) = }')
248
1
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : Union[str, Any]=None ,_snake_case : List[Any]=None ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = data lowercase__ : Tuple = previous lowercase__ : Tuple = next_node def __str__( self : Optional[Any] ) -> str: """simple docstring""" return f"""{self.data}""" def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.data def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return self.next def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.previous class __A : '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = head def __iter__( self : Union[str, Any] ) -> Any: """simple docstring""" return self def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" if not self.current: raise StopIteration else: lowercase__ : str = self.current.get_data() lowercase__ : Optional[Any] = self.current.get_next() return value class __A : '''simple docstring''' def __init__( self : List[Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = None # First node in list lowercase__ : int = None # Last node in list def __str__( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = self.head lowercase__ : Dict = [] while current is not None: nodes.append(current.get_data() ) lowercase__ : Dict = current.get_next() return " ".join(str(_snake_case ) for node in nodes ) def __contains__( self : Any ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : List[str] = self.head while current: if current.get_data() == value: return True lowercase__ : Tuple = current.get_next() return False def __iter__( self : Any ) -> Union[str, Any]: """simple docstring""" return LinkedListIterator(self.head ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.head: return self.head.get_data() return None def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" if self.tail: return self.tail.get_data() return None def UpperCAmelCase ( self : List[Any] ,_snake_case : Node ) -> None: """simple docstring""" if self.head is None: lowercase__ : Dict = node lowercase__ : Dict = node else: self.insert_before_node(self.head ,_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : Node ) -> None: """simple docstring""" if self.head is None: self.set_head(_snake_case ) else: self.insert_after_node(self.tail ,_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : Any = Node(_snake_case ) if self.head is None: self.set_head(_snake_case ) else: self.set_tail(_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Node ,_snake_case : Node ) -> None: """simple docstring""" lowercase__ : Tuple = node lowercase__ : Optional[Any] = node.previous if node.get_previous() is None: lowercase__ : Optional[int] = node_to_insert else: lowercase__ : List[str] = node_to_insert lowercase__ : Tuple = node_to_insert def UpperCAmelCase ( self : int ,_snake_case : Node ,_snake_case : Node ) -> None: """simple docstring""" lowercase__ : Dict = node lowercase__ : str = node.next if node.get_next() is None: lowercase__ : int = node_to_insert else: lowercase__ : Optional[int] = node_to_insert lowercase__ : Tuple = node_to_insert def UpperCAmelCase ( self : Optional[int] ,_snake_case : int ,_snake_case : int ) -> None: """simple docstring""" lowercase__ : Dict = 1 lowercase__ : Optional[Any] = Node(_snake_case ) lowercase__ : Any = self.head while node: if current_position == position: self.insert_before_node(_snake_case ,_snake_case ) return current_position += 1 lowercase__ : Optional[Any] = node.next self.insert_after_node(self.tail ,_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : int ) -> Node: """simple docstring""" lowercase__ : Any = self.head while node: if node.get_data() == item: return node lowercase__ : Tuple = node.get_next() raise Exception('''Node not found''' ) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ) -> str: """simple docstring""" if (node := self.get_node(_snake_case )) is not None: if node == self.head: lowercase__ : List[Any] = self.head.get_next() if node == self.tail: lowercase__ : List[Any] = self.tail.get_previous() self.remove_node_pointers(_snake_case ) @staticmethod def UpperCAmelCase ( _snake_case : Node ) -> None: """simple docstring""" if node.get_next(): lowercase__ : int = node.previous if node.get_previous(): lowercase__ : Optional[int] = node.next lowercase__ : List[Any] = None lowercase__ : Tuple = None def UpperCAmelCase ( self : str ) -> str: """simple docstring""" return self.head is None def __UpperCAmelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
1
"""simple docstring""" import random from typing import Any def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' for _ in range(len(lowerCAmelCase ) ): UpperCAmelCase = random.randint(0 , len(lowerCAmelCase ) - 1 ) UpperCAmelCase = random.randint(0 , len(lowerCAmelCase ) - 1 ) UpperCAmelCase , UpperCAmelCase = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase_ : Tuple = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ : Union[str, Any] = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
248
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCAmelCase_ : str = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCAmelCase_ : Any = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() ) lowerCAmelCase_ : Optional[int] = '''|'''.join(sys.argv[1:]) lowerCAmelCase_ : Union[str, Any] = re.compile(RF'^({joined_dirs}).*?\.py$') lowerCAmelCase_ : int = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
248
1
"""simple docstring""" import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple, UpperCAmelCase__ : float, UpperCAmelCase__ : int ): if k in (0.04, 0.06): __lowercase = k __lowercase = window_size else: raise ValueError("invalid k value" ) def __str__( self : Any ): return str(self.k ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : str ): __lowercase = cva.imread(UpperCAmelCase__, 0 ) __lowercase ,__lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(UpperCAmelCase__, cva.COLOR_GRAY2RGB ) __lowercase ,__lowercase = np.gradient(UpperCAmelCase__ ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.04 __lowercase = self.window_size // 2 for y in range(UpperCAmelCase__, h - offset ): for x in range(UpperCAmelCase__, w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": _a = HarrisCorner(0.04, 3) _a , _a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
17
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE__ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __UpperCamelCase )-> str: if "://" in dataset_path: UpperCamelCase = dataset_path.split("""://""" )[1] return dataset_path def lowercase__ ( __UpperCamelCase )-> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def lowercase__ ( )-> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = threading.Lock()
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : int = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
58
"""simple docstring""" from math import pi def _lowercase ( __snake_case ,__snake_case ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
58
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = 13 snake_case__ : Any = 7 snake_case__ : Optional[int] = True snake_case__ : Union[str, Any] = True snake_case__ : Union[str, Any] = True snake_case__ : Optional[Any] = True snake_case__ : Optional[int] = 99 snake_case__ : List[str] = 32 snake_case__ : Tuple = 2 snake_case__ : List[Any] = 4 snake_case__ : List[str] = 37 snake_case__ : str = 'gelu' snake_case__ : Union[str, Any] = 0.1 snake_case__ : int = 0.1 snake_case__ : List[Any] = 512 snake_case__ : str = 16 snake_case__ : Optional[Any] = 2 snake_case__ : Dict = 0.0_2 snake_case__ : Dict = 3 snake_case__ : int = 4 snake_case__ : Any = None def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[Any] = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : Union[str, Any] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = TFRoFormerModel(config=__UpperCamelCase ) snake_case__ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : Dict = [input_ids, input_mask] snake_case__ : Any = model(__UpperCamelCase ) snake_case__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : int = True snake_case__ : Optional[Any] = TFRoFormerForCausalLM(config=__UpperCamelCase ) snake_case__ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Union[str, Any] = model(__UpperCamelCase )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Optional[int] = TFRoFormerForMaskedLM(config=__UpperCamelCase ) snake_case__ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : List[str] = self.num_labels snake_case__ : int = TFRoFormerForSequenceClassification(config=__UpperCamelCase ) snake_case__ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.num_choices snake_case__ : Dict = TFRoFormerForMultipleChoice(config=__UpperCamelCase ) snake_case__ : List[Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Union[str, Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case__ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = self.num_labels snake_case__ : str = TFRoFormerForTokenClassification(config=__UpperCamelCase ) snake_case__ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: '''simple docstring''' snake_case__ : int = TFRoFormerForQuestionAnswering(config=__UpperCamelCase ) snake_case__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Tuple = config_and_inputs snake_case__ : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __lowerCamelCase = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = TFRoFormerModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : int = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : str = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) snake_case__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : List[str] = model(__UpperCamelCase )[0] # TODO Replace vocab size snake_case__ : str = 50000 snake_case__ : Dict = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. snake_case__ : Any = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase = 1E-4 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = tf.constant([[4, 10]] ) snake_case__ : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) snake_case__ : List[str] = emba(input_ids.shape ) snake_case__ : Union[str, Any] = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) snake_case__ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) snake_case__ : Optional[int] = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase = 1E-4 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Tuple = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case__ : Tuple = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 snake_case__ : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) snake_case__ : Optional[int] = embed_positions([2, 16, 768] )[None, None, :, :] snake_case__ , snake_case__ : List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) snake_case__ : List[str] = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance )
143
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Dict = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = filter(lambda lowercase__ : p.requires_grad , model.parameters() ) A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" if metric == "rouge2": A = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": A = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": A = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) A = ModelCheckpoint( dirpath=lowercase__ , filename=lowercase__ , monitor=F"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=lowercase__ , verbose=lowercase__ , ) class __UpperCamelCase ( pl.Callback ): def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]): A = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE) @rank_zero_only def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=True): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""") A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results A = Path(pl_module.hparams.output_dir) if type_path == "test": A = od / "test_results.txt" A = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" A = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE) generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE) with open(__SCREAMING_SNAKE_CASE , "a+") as writer: for key in sorted(__SCREAMING_SNAKE_CASE): if key in ["log", "progress_bar", "preds"]: continue A = metrics[key] if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor): A = val.item() A = F"""{key}: {val:.6f}\n""" writer.write(__SCREAMING_SNAKE_CASE) if not save_generations: return if "preds" in metrics: A = "\n".join(metrics["preds"]) generations_file.open("w+").write(__SCREAMING_SNAKE_CASE) @rank_zero_only def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): try: A = pl_module.model.model.num_parameters() except AttributeError: A = pl_module.model.num_parameters() A = count_trainable_parameters(__SCREAMING_SNAKE_CASE) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6}) @rank_zero_only def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "test") @rank_zero_only def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : Optional[Any]): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
57
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
195
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BICUBIC , snake_case = True , snake_case = None , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'shortest_edge': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case ) lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case , default_to_square=snake_case , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BICUBIC , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase = get_resize_output_image_size(snake_case , size=size['shortest_edge'] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(snake_case , size=(size['height'], size['width']) , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case , param_name='size' , default_to_square=snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(snake_case , param_name='crop_size' , default_to_square=snake_case ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
195
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _snake_case ( enum.Enum ): snake_case__ = 0 snake_case__ = 1 snake_case__ = 2 @add_end_docstrings(a__ ) class _snake_case ( a__ ): snake_case__ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Tuple , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCamelCase : Any = None if self.model.config.prefix is not None: __lowerCamelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCamelCase : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCamelCase : Optional[Any] = self._sanitize_parameters(prefix=UpperCAmelCase , **self._forward_params ) __lowerCamelCase : Optional[int] = {**self._preprocess_params, **preprocess_params} __lowerCamelCase : Tuple = {**self._forward_params, **forward_params} def lowerCamelCase__ ( self : str , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : str , ): __lowerCamelCase : Union[str, Any] = {} if prefix is not None: __lowerCamelCase : Dict = prefix if prefix: __lowerCamelCase : Tuple = self.tokenizer( UpperCAmelCase , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) __lowerCamelCase : Tuple = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) __lowerCamelCase : List[Any] = handle_long_generation preprocess_params.update(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = generate_kwargs __lowerCamelCase : str = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) __lowerCamelCase : List[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) __lowerCamelCase : Optional[Any] = ReturnType.TENSORS if return_type is not None: __lowerCamelCase : Dict = return_type if clean_up_tokenization_spaces is not None: __lowerCamelCase : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCamelCase : Any = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) if len(UpperCAmelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) __lowerCamelCase : Union[str, Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase__ ( self : int , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*UpperCAmelCase , **UpperCAmelCase ) def __call__( self : Dict , UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any="" , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ): __lowerCamelCase : Dict = self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=self.framework ) __lowerCamelCase : Any = prompt_text if handle_long_generation == "hole": __lowerCamelCase : List[str] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCamelCase : str = generate_kwargs["max_new_tokens"] else: __lowerCamelCase : Optional[Any] = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCamelCase : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) __lowerCamelCase : Optional[int] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __lowerCamelCase : Union[str, Any] = inputs["attention_mask"][:, -keep_length:] return inputs def lowerCamelCase__ ( self : Any , UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ): __lowerCamelCase : str = model_inputs["input_ids"] __lowerCamelCase : List[Any] = model_inputs.get("attention_mask" , UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Dict = 1 else: __lowerCamelCase : List[str] = input_ids.shape[0] __lowerCamelCase : str = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCamelCase : int = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: __lowerCamelCase : Optional[int] = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCamelCase : Tuple = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCamelCase : Union[str, Any] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCamelCase : int = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": __lowerCamelCase : Any = generated_sequence.reshape(UpperCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCamelCase : Optional[int] = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCamelCase__ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=ReturnType.FULL_TEXT , UpperCAmelCase : Optional[Any]=True ): __lowerCamelCase : str = model_outputs["generated_sequence"][0] __lowerCamelCase : Dict = model_outputs["input_ids"] __lowerCamelCase : Tuple = model_outputs["prompt_text"] __lowerCamelCase : Optional[Any] = generated_sequence.numpy().tolist() __lowerCamelCase : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCamelCase : Optional[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCamelCase : List[Any] = self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCamelCase : Dict = 0 else: __lowerCamelCase : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCamelCase : Union[str, Any] = prompt_text + text[prompt_length:] else: __lowerCamelCase : Union[str, Any] = text[prompt_length:] __lowerCamelCase : Dict = {"generated_text": all_text} records.append(UpperCAmelCase ) return records
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _snake_case ( a__ ): snake_case__ = "visual_bert" def __init__( self : int , UpperCAmelCase : Any=30522 , UpperCAmelCase : Tuple=768 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Dict=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : List[str]=2 , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : str = hidden_size __lowerCamelCase : Union[str, Any] = visual_embedding_dim __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : List[str] = type_vocab_size __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[str] = bypass_transformer __lowerCamelCase : Optional[int] = special_visual_initialize
64
0
import os def _snake_case( ) -> Any: with open(os.path.dirname(_lowerCamelCase ) + """/grid.txt""" ) as f: lowercase : List[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCamelCase ) for x in f.readline().split()] ) lowercase : Tuple = 0 # right for i in range(20 ): for j in range(17 ): lowercase : str = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase : str = temp # down for i in range(17 ): for j in range(20 ): lowercase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase : List[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase : Dict = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase : List[str] = temp return maximum if __name__ == "__main__": print(solution())
20
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = '▁' lowercase : Tuple = {'vocab_file': 'spiece.model'} lowercase : Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } lowercase : Any = { 'google/reformer-crime-and-punishment': 524288, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :int , a :List[Any] , a :Tuple="</s>" , a :str="<unk>" , a :Dict=[] , a :Optional[Dict[str, Any]] = None , **a :Union[str, Any] , ) -> None: __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _lowerCamelCase ( self :Optional[Any] ) -> Any: return self.sp_model.get_piece_size() def _lowerCamelCase ( self :Optional[int] ) -> Dict[str, int]: __UpperCamelCase : str = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :int , a :List[str] ) -> int: __UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : int = {} __UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :Optional[int] , a :Optional[Any] ) -> str: return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self :Dict , a :Union[str, Any] ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __UpperCamelCase : Optional[int] = self.sp_model.IdToPiece(a ) return token def _lowerCamelCase ( self :Dict , a :List[Any] ) -> Dict: __UpperCamelCase : Optional[int] = [] __UpperCamelCase : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
232
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCamelCase = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _lowerCamelCase : Optional[int]="no" , _lowerCamelCase : str = default_json_config_file , _lowerCamelCase : bool = False): lowercase__ : List[str] = Path(lowerCamelCase_) path.parent.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''') return False lowercase__ : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''') lowercase__ : Union[str, Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): lowercase__ : Optional[int] = torch.cuda.device_count() lowercase__ : Tuple = num_gpus lowercase__ : List[Any] = False if num_gpus > 1: lowercase__ : Any = '''MULTI_GPU''' else: lowercase__ : Optional[int] = '''NO''' elif is_xpu_available() and use_xpu: lowercase__ : Any = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : Union[str, Any] = False if num_xpus > 1: lowercase__ : Optional[int] = '''MULTI_XPU''' else: lowercase__ : List[str] = '''NO''' elif is_npu_available(): lowercase__ : List[str] = torch.npu.device_count() lowercase__ : Optional[int] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : Tuple = '''MULTI_NPU''' else: lowercase__ : Any = '''NO''' else: lowercase__ : Dict = 0 lowercase__ : Dict = True lowercase__ : Tuple = 1 lowercase__ : int = '''NO''' lowercase__ : List[str] = ClusterConfig(**lowerCamelCase_) config.to_json_file(lowerCamelCase_) return path def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]): lowercase__ : Any = parser.add_parser("default" , parents=lowerCamelCase_ , help=lowerCamelCase_ , formatter_class=lowerCamelCase_) parser.add_argument( "--config_file" , default=lowerCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have " "such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed " "with \'huggingface\'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowerCamelCase_ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowerCamelCase_) return parser def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location) if config_file: print(f'''accelerate configuration saved at {config_file}''')
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _lowerCamelCase ( a_ ): _lowerCamelCase :int = "deit" def __init__( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : str=12 , UpperCamelCase : List[Any]=12 , UpperCamelCase : Any=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : List[Any]=1E-1_2 , UpperCamelCase : List[str]=2_24 , UpperCamelCase : List[str]=16 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]=16 , **UpperCamelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Dict = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Any = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : List[str] = qkv_bias lowerCAmelCase__ : str = encoder_stride class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = version.parse("1.11" ) @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self : List[str] ) -> float: """simple docstring""" return 1E-4
242
"""simple docstring""" from typing import Any import numpy as np def lowercase_ ( __UpperCAmelCase ) -> bool: return np.array_equal(__UpperCAmelCase , matrix.conjugate().T ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = v.conjugate().T lowerCAmelCase__ : Optional[int] = v_star.dot(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , np.ndarray ) return (v_star_dot.dot(__UpperCAmelCase )) / (v_star.dot(__UpperCAmelCase )) def lowercase_ ( ) -> None: lowerCAmelCase__ : Union[str, Any] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowerCAmelCase__ : List[str] = np.array([[1], [2], [3]] ) assert is_hermitian(__UpperCAmelCase ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__UpperCAmelCase ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__UpperCAmelCase , __UpperCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
242
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __A = ['bert-base-uncased', 'bert-base-cased'] __A = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowerCamelCase__ ( tf.keras.Model ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =tokenizer _lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase ) _lowerCAmelCase =TFAutoModel.from_config(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any: _lowerCAmelCase =self.tokenizer(__UpperCAmelCase ) _lowerCAmelCase =self.bert(**__UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =[ BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _lowerCAmelCase =[TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCAmelCase =[ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _lowerCAmelCase =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" ) _lowerCAmelCase =tf_tokenizer(__UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =tf_tokenizer(self.paired_sentences ) _lowerCAmelCase =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =tf.function(__UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): _lowerCAmelCase =tf.constant(__UpperCAmelCase ) _lowerCAmelCase =compiled_tokenizer(__UpperCAmelCase ) _lowerCAmelCase =tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: _lowerCAmelCase =ModelToSave(tokenizer=__UpperCAmelCase ) _lowerCAmelCase =tf.convert_to_tensor(self.test_sentences ) _lowerCAmelCase =model(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCAmelCase =Path(__UpperCAmelCase ) / """saved.model""" model.save(__UpperCAmelCase ) _lowerCAmelCase =tf.keras.models.load_model(__UpperCAmelCase ) _lowerCAmelCase =loaded_model(__UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = KandinskyInpaintPipeline __UpperCamelCase = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __UpperCamelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __UpperCamelCase = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCamelCase = False @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return 100 @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_ : Any = MultilingualCLIP(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel(**lowercase_) return model @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[int] = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_unet SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE_ : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : int=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase_) # create init_image SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : Optional[int] = Image.fromarray(np.uinta(lowercase_)).convert('''RGB''').resize((256, 256)) # create mask SCREAMING_SNAKE_CASE_ : List[Any] = np.ones((64, 64) , dtype=np.floataa) SCREAMING_SNAKE_CASE_ : Any = 0 if str(lowercase_).startswith('''mps'''): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(lowercase_) else: SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=lowercase_).manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : int = self.pipeline_class(**lowercase_) SCREAMING_SNAKE_CASE_ : str = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : str = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}') assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : str = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''') SCREAMING_SNAKE_CASE_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') SCREAMING_SNAKE_CASE_ : Tuple = np.ones((768, 768) , dtype=np.floataa) SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Tuple = '''a hat''' SCREAMING_SNAKE_CASE_ : List[str] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_ : List[str] = pipeline.to(lowercase_) pipeline.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ : str = pipeline( lowercase_ , image=lowercase_ , mask_image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_)
91
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :AutoencoderKL , lowerCamelCase :CLIPTextModel , lowerCamelCase :CLIPTokenizer , lowerCamelCase :UNetaDConditionModel , lowerCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase :StableDiffusionSafetyChecker , lowerCamelCase :CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self :int , lowerCamelCase :Union[str, List[str]] , lowerCamelCase :int = 512 , lowerCamelCase :int = 512 , lowerCamelCase :int = 50 , lowerCamelCase :float = 7.5 , lowerCamelCase :Optional[Union[str, List[str]]] = None , lowerCamelCase :Optional[int] = 1 , lowerCamelCase :float = 0.0 , lowerCamelCase :Optional[torch.Generator] = None , lowerCamelCase :Optional[torch.FloatTensor] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , lowerCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase :int = 1 , lowerCamelCase :Optional[torch.FloatTensor] = None , **lowerCamelCase :List[str] , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCamelCase )}.''' ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase__ = latents_reference.to(self.device ) UpperCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase__ = 0 if dx < 0 else dx UpperCAmelCase__ = 0 if dy < 0 else dy UpperCAmelCase__ = max(-dx , 0 ) UpperCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(lowerCamelCase ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) UpperCAmelCase__ , UpperCAmelCase__ = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase__ = None if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
169
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A : Union[str, Any] = sys.version_info >= (3, 10) def a__ ( __UpperCamelCase=None , __UpperCamelCase=None ): return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 4_2 lowerCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''titi''' lowerCamelCase__ = '''toto''' class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''titi''' lowerCamelCase__ = '''toto''' lowerCamelCase__ = 4_2 @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = BasicEnum(self.foo ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[] ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[1, 2, 3] ) lowerCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCamelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field() lowerCamelCase__ = field() lowerCamelCase__ = field() def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = field() lowerCamelCase__ = None lowerCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[] ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ) -> int: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE_ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} SCREAMING_SNAKE_CASE_ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((SCREAMING_SNAKE_CASE_) , ) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __A ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __A ( self : Optional[Any] ) -> List[Any]: @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE_ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } SCREAMING_SNAKE_CASE_ = parser.parse_dict(__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __A ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCAmelCase ( lowerCamelCase_ ): UpperCamelCase = 42 UpperCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
336
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=64 , _a=5 , _a=4 , _a=64 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def __UpperCAmelCase ( self ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = MPNetModel(config=_a ) model.to(_a ) model.eval() __a = model(_a , _a ) __a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() __a = model( _a , attention_mask=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = self.num_choices __a = MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() __a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() __a = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = True def __UpperCAmelCase ( self ): __a = MPNetModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) __a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __a = model(_a )[0] __a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _a ) __a = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ) -> List[Any]: '''simple docstring''' if "." in tensor_name: __lowercase= tensor_name.split('.' ) for split in splits[:-1]: __lowercase= getattr(lowercase__ , lowercase__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) __lowercase= new_module __lowercase= splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) __lowercase= tensor_name in module._buffers __lowercase= getattr(lowercase__ , lowercase__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) __lowercase= False __lowercase= False if is_buffer or not is_bitsandbytes_available(): __lowercase= False __lowercase= False else: __lowercase= hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) __lowercase= isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: __lowercase= module._parameters[tensor_name] if param.device.type != "cuda": if value is None: __lowercase= old_value.to(lowercase__ ) elif isinstance(lowercase__ , torch.Tensor ): __lowercase= value.to('cpu' ) if value.dtype == torch.inta: __lowercase= version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: __lowercase= torch.tensor(lowercase__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowercase__ ) and fpaa_statistics is None: __lowercase= new_value.T __lowercase= old_value.__dict__ if is_abit: __lowercase= bnb.nn.IntaParams(lowercase__ , requires_grad=lowercase__ , **lowercase__ ).to(lowercase__ ) elif is_abit: __lowercase= bnb.nn.Paramsabit(lowercase__ , requires_grad=lowercase__ , **lowercase__ ).to(lowercase__ ) __lowercase= new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(lowercase__ ) ) else: if value is None: __lowercase= old_value.to(lowercase__ ) elif isinstance(lowercase__ , torch.Tensor ): __lowercase= value.to(lowercase__ ) else: __lowercase= torch.tensor(lowercase__ , device=lowercase__ ) if is_buffer: __lowercase= new_value else: __lowercase= nn.Parameter(lowercase__ , requires_grad=old_value.requires_grad ) __lowercase= new_value def _lowerCamelCase( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False ) -> Union[str, Any]: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: __lowercase= [] current_key_name.append(lowercase__ ) if (isinstance(lowercase__ , nn.Linear ) or isinstance(lowercase__ , lowercase__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(lowercase__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowercase__ , lowercase__ ): __lowercase, __lowercase= module.weight.shape else: __lowercase= module.in_features __lowercase= module.out_features if quantization_config.quantization_method() == "llm_int8": __lowercase= bnb.nn.LinearabitLt( lowercase__ , lowercase__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) __lowercase= True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: __lowercase= bnb.nn.Linearabit( lowercase__ , lowercase__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) __lowercase= True # Store the module class in case we need to transpose the weight later __lowercase= type(lowercase__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowercase__ ) if len(list(module.children() ) ) > 0: __lowercase, __lowercase= _replace_with_bnb_linear( lowercase__ , lowercase__ , lowercase__ , lowercase__ , has_been_replaced=lowercase__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowerCamelCase( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None ) -> List[str]: '''simple docstring''' __lowercase= ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert __lowercase, __lowercase= _replace_with_bnb_linear( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowerCamelCase( *lowercase__ , **lowercase__ ) -> Optional[Any]: '''simple docstring''' warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowercase__ , ) return replace_with_bnb_linear(*lowercase__ , **lowercase__ ) def _lowerCamelCase( *lowercase__ , **lowercase__ ) -> List[str]: '''simple docstring''' warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowercase__ , ) return set_module_quantized_tensor_to_device(*lowercase__ , **lowercase__ ) def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= deepcopy(lowercase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() __lowercase= find_tied_parameters(lowercase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase__ , lowercase__ ): __lowercase= sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowercase= sum(lowercase__ , [] ) __lowercase= len(lowercase__ ) > 0 # Check if it is a base model __lowercase= not hasattr(lowercase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowercase= list(model.named_children() ) __lowercase= [list_modules[-1][0]] # add last module together with tied weights __lowercase= set(lowercase__ ) - set(lowercase__ ) __lowercase= list(set(lowercase__ ) ) + list(lowercase__ ) # remove ".weight" from the keys __lowercase= ['.weight', '.bias'] __lowercase= [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowercase= name.replace(lowercase__ , '' ) filtered_module_names.append(lowercase__ ) return filtered_module_names
295
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class A ( A_ ): UpperCamelCase_ : Dict =VOCAB_FILES_NAMES UpperCamelCase_ : Dict =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[str] =TaTokenizer UpperCamelCase_ : List[int] =[] def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase=1_0_0 , lowerCAmelCase=None , **lowerCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase= [f'<extra_id_{i}>' for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowercase= len(set(filter(lambda lowerCAmelCase : bool('extra_id_' in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= vocab_file __lowercase= False if not self.vocab_file else True __lowercase= extra_ids @staticmethod def _A (lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowercase= TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowerCAmelCase , ) return max_model_length def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase= os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowercase= token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _A (self ): return list( set(filter(lambda lowerCAmelCase : bool(re.search(r'<extra_id_\d+>' , lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _A (self ): return [self.convert_tokens_to_ids(lowerCAmelCase ) for token in self.get_sentinel_tokens()]
295
1
import copy import random from transformers import CLIPTokenizer class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' super().__init__(*UpperCamelCase , **UpperCamelCase ) _snake_case : List[str] = {} def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , *UpperCamelCase : List[str] , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = super().add_tokens(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def UpperCamelCase_ ( self : str , UpperCamelCase : Dict , *UpperCamelCase : int , UpperCamelCase : Optional[int]=1 , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[str] = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) output.append(UpperCamelCase ) else: _snake_case : str = [] for i in range(UpperCamelCase ): _snake_case : Optional[int] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) output.append(UpperCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) _snake_case : Tuple = output def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : str=False , UpperCamelCase : Dict=1.0 ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Tuple = [] for i in range(len(UpperCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Any = self.token_map[placeholder_token] _snake_case : Optional[Any] = tokens[: 1 + int(len(UpperCamelCase ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : List[str] = copy.copy(UpperCamelCase ) random.shuffle(UpperCamelCase ) _snake_case : Optional[Any] = text.replace(UpperCamelCase , ' '.join(UpperCamelCase ) ) return text def __call__( self : List[str] , UpperCamelCase : Tuple , *UpperCamelCase : int , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=1.0 , **UpperCamelCase : Any ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase , vector_shuffle=UpperCamelCase , prop_tokens_to_load=UpperCamelCase ) , *UpperCamelCase , **UpperCamelCase , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , *UpperCamelCase : int , UpperCamelCase : Tuple=False , UpperCamelCase : Any=1.0 , **UpperCamelCase : Optional[int] ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase , vector_shuffle=UpperCamelCase , prop_tokens_to_load=UpperCamelCase ) , *UpperCamelCase , **UpperCamelCase , )
260
from math import ceil def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] )-> str: _snake_case : Union[str, Any] = list(range(0 , lowerCAmelCase ) ) _snake_case : int = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _snake_case : Any = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase ) # Missing blocks _snake_case : Dict = [i for i in blocks if i not in device_map_blocks] _snake_case : Tuple = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase ) ) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] )-> Optional[Any]: _snake_case : int = list(range(lowerCAmelCase ) ) _snake_case : Union[str, Any] = int(ceil(n_layers / len(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase , lowerCAmelCase )] return dict(zip(lowerCAmelCase , lowerCAmelCase ) )
260
1